Skip to main content
Log in

Late Miocene–early Pleistocene paleoproductivity variations of the Lop Nor in the Tarim Basin and its implications on aridification in Asian Interior

  • Article
  • Geology
  • Published:
Chinese Science Bulletin

Abstract

Extensive lacustrine deposits in the eastern Tarim Basin provide records of climate change influenced by the westerly winds and the Asian monsoon. To characterize the evolution of climate change in this region, we analyze elemental concentrations of barium (Ba) from the Ls2 drill core of Lop Nor, a paleo-lakebed located in the eastern Tarim Basin. Biogenic Ba concentrations from this drill core display a large-amplitude oscillation that generally follows a pattern similar to that of Artemisia content and ostracod assemblages, suggesting that is may serve as an index for climate change experienced in the basin. Our results indicate that biogenic Ba is especially sensitive to precipitation. All climatic proxies served in this study vary significantly over late Miocene to early Pleistocene time period. Strong aridification of eastern Tarim in the late Miocene to the early Pliocene may be attributed to a latitudinal shift in the westerly winds, which would have resulted in more moisture transported to southern and eastern Tibet. The growth of the Himalaya and Tibetan Plateau may have acted as an orographic barrier that blocked moisture sourced in the south from the northern margins of the plateau. We link weaker aridification in the late Pliocene to an increased intensity of the Indian Monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun JM, Zhang ZQ, Zhang LY (2009) New evidence on the age of the Taklimakan Desert. Geology 37:159–162

    Article  Google Scholar 

  2. Zheng HB, Powell C, An ZS et al (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28:715–718

    Article  Google Scholar 

  3. Sun JM, Zhang LY, Deng CL et al (2008) Evidence for enhanced aridity in the Tarim Basin of China since 5.3 Ma. Quat Sci Rev 27:1012–1023

    Article  Google Scholar 

  4. Sun DH, Bloemendal J, Yi ZY et al (2011) Palaeomagnetic and palaeoenvironmental study of two parallel section of late Cenozoic strata in the central Taklimakan Desert: implications for the sedertification of the Tarim Basin. Palaeogeogr Palaeoclimatol Palaeoecol 300:1–10

    Article  Google Scholar 

  5. Zhu ZD, Wu Z, Liu S et al (1980) An outline on Chinese Deserts. Science Press, Beijing, pp 1–107 (in Chinese)

    Google Scholar 

  6. Xinjiang Bureau of Geology and Mineral Resources (1993) Regional Geology of Xinjiang. Geological Press, Beijing, pp 1–841 (in Chinese)

    Google Scholar 

  7. Fang XM, Lü LQ, Yang SL et al (2002) Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China. Sci China Ser D Earth Sci 45:289–299

  8. Chang H, An ZS, Liu WG et al (2012) Magnetostratigraphic and palaeoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin. Glob Planet Chang 80–81:113–122

    Article  Google Scholar 

  9. Maher BA (1998) Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 137:25–54

    Article  Google Scholar 

  10. An ZS, Kutzbach JE, Prell WL et al (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature 411:62–66

    Article  Google Scholar 

  11. Honjo H (1982) Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science 218:883–884

    Article  Google Scholar 

  12. Prabhu CN, Shankar R (2005) Palaeoproductivity of the eastern Arabian Sea during the past 200 ka: a multi-proxy investigation. Deep-Sea Res II 52:1994–2002

  13. Paytan A, Kasner M, Chavez FP (1996) Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science 274:1355–1357

    Article  Google Scholar 

  14. Li JR, Wang RJ, Li BH (2002) Variations of opal accumulation rates and paleoproductivity over the past 12 Ma at ODP Site 1143, southern South China Sea. Chin Sci Bull 47:596–598

    Article  Google Scholar 

  15. Shimmield GB, Mowbray SR (1991) The inorganic geochemical record of the northwest Arabian Sea: a history of productivity over the last 400 k.y. from Sites 722 and 724. Proc Ocean Drill Program Sci Results 117:409–429

    Google Scholar 

  16. Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7:163–181

    Article  Google Scholar 

  17. Wolff EW, Fischer H, Fundel F et al (2006) Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440:491–496

    Article  Google Scholar 

  18. Patten JN, Masuzawa T, Divakar Naidu P et al (2003) Productivity fluctuations in the southeastern Arabian Sea during the last 140 ka. Palaeogeogr Palaeoclimatol Palaeoecol 193:575–590

    Article  Google Scholar 

  19. Guptha MVS, Divakar PD, Haake BG et al (2005) Carbonate and carbon fluctuations in the Eaastern Arabian Sea over 140 ka: implications on productivity changes? Deep-Sea Res II 52:1981–1993

  20. Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  Google Scholar 

  21. Hedges JI, Baldock JA, Gélinas Y et al (2001) Evidence of non-selective preservation of organic matter in sinking marine particles. Nature 409:801–804

    Article  Google Scholar 

  22. Filippelli GM, Delaney ML (1992) Similar phosphorous fluxes in ancient phosphorite deposits and a modern phosphogenic environment. Geology 20:709–712

    Article  Google Scholar 

  23. Reitze A, Pfeifer K, de Lange GJ et al (2004) Biogenic barium and the detrial Ba/Al ratio: a comparison of their direct and indirect determination. Mar Geol 204:289–300

    Article  Google Scholar 

  24. Goldberg ED, Arrhenius GOS (1958) Chemistry of pelagic Pacific sediments. Geochim Cosmochim Acta 13:152–212

    Google Scholar 

  25. Dehairs F, Chesselet R, Jedwab J (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Ear Planet Sci Lett 49:528–550

    Article  Google Scholar 

  26. McManus J, Berelson WM, Hammond DE et al (1999) Barium cycling in the North Pacific: implications for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography 14:53–61

    Article  Google Scholar 

  27. Hull PM, Norris RD (2011) Diverse patterns of ocean export productivity change across the Cretaceous–Paleogene boundary: new insights from biogenic barium. Paleoceanography 26:PA3205. doi:10.1029/2010PA002082

    Article  Google Scholar 

  28. Dymond J, Collier R (1996) Particulate barium fluxes and their relationships to biological productivity. Deep-Sea Res II 43:1283–1308

    Article  Google Scholar 

  29. Griffith E, Calhoun M, Thomas E et al (2010) Export productivity and carbonate accumulation in the Pacific Basin at the transition from a greenhouse to icehouse climate (late Eocene to early Oligocene). Paleoceanography 25:PA3213. doi:10.1029/2010PA001932

    Article  Google Scholar 

  30. Boström K, Joensuu O, Moore C et al (1973) Geochemistry of barium in pelagic sediments. Lithos 6:159–174

    Article  Google Scholar 

  31. Pirrung M, Illner P, Matthiessen J (2008) Biogenic barium in surface sediments of the European Nordic Seas. Mar Geol 250:89–103

    Article  Google Scholar 

  32. Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity—an overview. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: present and past. Dahlem Workshop reports, Wiley-Interscience, Chichester, p 1–34

  33. Milliman JD, Troy PJ, Balch WM et al (1999) Biological mediated dissolution of calcium carbonate above the chemical lysocline? Deep-sea Res I 46:1653–1669

  34. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  35. Shimmield GB, Mowbray SR, Weedon GP (1990) A 350 ka history of the Indian Southwest Monsoon-evidence from deep-sea cores, northwest Arabian Sea. Trans R Soc Edinb Earth Sci 81:289–299

    Article  Google Scholar 

  36. Zable M, Bickert T, Dittert L (1999) Significance of the sedimentary Al:Ti ratio as an indicator for variations in the circulation patterns of the equatorial North Atlantic. Paleoceanography 14:789–799

    Article  Google Scholar 

  37. Bonn WJ, Gingele FX, Grobe H et al (1998) Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka. Palaeogeogr Palaeoclimatol Palaeoecol 139:195–211

    Article  Google Scholar 

  38. Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell, Malden, pp 1–328

    Google Scholar 

  39. Wehausen R, Brumsack HJ (1999) Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation. Mar Geol 153:161–176

    Article  Google Scholar 

  40. Klump J, Hebbeln D, Wefer G (2001) High concentrations of biogenic barium in Pacific sediments after Termination I—a signal of changes in productivity and deep water chemistry. Mar Geol 177:1–11

    Article  Google Scholar 

  41. MaManus J, Berelson WM, Klinkhammer GP et al (1998) Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim Cosmochim Acta 62:3453–3473

    Article  Google Scholar 

  42. Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095

    Article  Google Scholar 

  43. Zhang ZQ, Sun JM (2011) Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, northwestern China. Glob Planet Change 75:56–66

    Article  Google Scholar 

  44. Sun ZC, Feng XJ, Li DM et al (1999) Cenozoic Ostracode and palaeoenvironments of the northeastern Tarim Basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol 148:37–50

    Article  Google Scholar 

  45. Hao H, Ferguson DK, Chang H et al (2012) Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Clim Change 113:323–338

    Article  Google Scholar 

  46. Cheng H, Zhang PZ, Spötl C et al (2012) The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett 39:L01705. doi:10.1029/2011GL050202

    Article  Google Scholar 

  47. Chang ZG, Xiao JL, Lü LQ et al (2010) Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in southwest China. J Asian Earth Sci 37:166–175

    Article  Google Scholar 

  48. Watts IEM (1969) Climates of China and Korea. In: Arakawa H, Landsberg HE (eds) Climates of Northern and Eastern Asia (World Survey Climatology, 8). Elsevier, Amsterdam, p 1–118

  49. Aizon VB, Aizen EM, Joswiak DR et al (2006) Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol 43:49–60

    Article  Google Scholar 

  50. Rea DK, Snoeckx H, Joseph LH (1998) Late Conozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13:215–224

    Article  Google Scholar 

  51. Zachos J, Pagani M, Sloan L et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  52. Larsen HC, Sauders AD, Clift PD et al (1994) Seven million years of Glaciation in Greenland. Science 264:952–955

    Article  Google Scholar 

  53. Jansen E, Sjøholm J (1991) Reconstruction of glaciation over the past 6 Myr from ice-bone deposits in the Norwegian Sea. Nature 349:600–603

    Article  Google Scholar 

  54. Wolf TCW, Thiede J (1991) History of terrigenous sedimentation during the past 10 m.y. in the North Atlantic (ODP Legs 104 and 105 and DSDP Leg 81). Mar Geol 101:83–102

    Article  Google Scholar 

  55. Thiede J, Winkler A, Wolf-Welling T et al (1998) Late Cenozoic history of the polar north Atlantic: results from ocean drilling. Quat Sci Rev 17:185–208

    Article  Google Scholar 

  56. Luo C, Peng ZC, Yang D et al (2009) A lacustrine record from Lop Nur, Xinjiang, China: Implications for paleoclimate change during Late Pleistocene. J Asian Earth Sci 34:38–45

    Article  Google Scholar 

  57. Liu XD, Yin ZY (2001) Spatial and temporal variation of summer precipitation over the Eastern Tibetan Plateau and the North Atlantic Oscillation. J Clim 14:2896–2909

    Article  Google Scholar 

  58. Wu GX, Liu YM, Wang TM et al (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol 8:770–789

    Article  Google Scholar 

  59. Boos WR, Kuang ZM (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–223

    Article  Google Scholar 

  60. Molnar P, Boos WR, Battisti DD (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38:77–102

    Article  Google Scholar 

  61. Chen ZL, Wang XF, Yin A et al (2002) Cenozoic left-slip motion along the central Altyn Tagh fault as inferred from the sedimentary record. Int Geol Rev 46:839–856

    Article  Google Scholar 

  62. Zheng DW, Zhang PZ, Wan JL et al (2006) Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planeta Sci Lett 248:198–208

    Article  Google Scholar 

  63. Nie JS, King JW, Fang XM (2008) Tibetan uplift intensified the 400 k.y. signal in paleoclimate records at 4 Ma. Geol Soc Am Bull 120:1338–1344

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Research Program of China (2010CB833400), the Tibetan Plateau Special Project from Chinese Academy of Sciences (XDB03020102) and the National Natural Science Foundation of China (41290252, 40921120406). We are grateful to Professor Peter Molnar and Dr. Lydia Staisch for their comments and advancing English. We thank Professor Xiaomin Fang, Huayu Lu, Chunhui Song and Dr. Chaofeng Fu for their helpful works in the field drilling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., An, Z., Liu, W. et al. Late Miocene–early Pleistocene paleoproductivity variations of the Lop Nor in the Tarim Basin and its implications on aridification in Asian Interior. Chin. Sci. Bull. 59, 3650–3658 (2014). https://doi.org/10.1007/s11434-014-0327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0327-1

Keywords

Navigation