Skip to main content
Log in

Modal recovery of sea-level variability in the South China Sea using merged altimeter data

  • Remote sensing
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Using 20 years (1993–2012) of merged data recorded by contemporary multi-altimeter missions, a variety of sea-level variability modes are recovered in the South China Sea employing three-dimensional harmonic extraction. In terms of the long-term variation, the South China Sea is estimated to have a rising sea-level linear trend of 5.39 mm/a over these 20 years. Among the modes extracted, the seven most statistically significant periodic or quasi-periodic modes are identified as principal modes. The geographical distributions of the magnitudes and phases of the modes are displayed. In terms of intraannual and annual regimes, two principal modes with strict semiannual and annual periods are found, with the annual variability having the largest amplitudes among the seven modes. For interannual and decadal regimes, five principal modes at approximately 18, 21, 23, 28, and 112 months are found with the most mode-active region being to the east of Vietnam. For the phase distributions, a series of amphidromes are observed as twins, termed “amphidrome twins”, comprising rotating dipole systems. The stability of periodic modes is investigated employing joint spatiotemporal analysis of latitude/longitude sections. Results show that all periodic modes are robust, revealing the richness and complexity of sea-level modes in the South China Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AVISO. 2013. SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products, CLS-DOS-NT-06-034, Edition 033.036, France: Ramonville St.Agne. 58p.

    Google Scholar 

  • Cazenave A, Llovel W. 2010. Contemporary sea level rise. Annu. Rev. Mar. Sci., 2: 145–173.

    Article  Google Scholar 

  • Chen G, Li H. 2008. Fine pattern of natural modes in sea surface temperature variability: 1985–2003. J. Phys. Oceanogr., 38: 314–336.

    Article  Google Scholar 

  • Chen G, Qian C, Zhang C. 2012. New insights into annual and semiannual cycles of sea level pressure. Mon. Weather Rev., 140: 1347–1355.

    Article  Google Scholar 

  • Chen G, Quartly G D. 2005. Annual amphidromes: a common feature in the ocean? IEEE GeoSci. Remote S., 2: 423–427.

    Article  Google Scholar 

  • Chen G, Wang Z, Qian C, Lv C, Han Y. 2010. Seasonal-todecadal modes of global sea level variability derived from merged altimeter data. Remote Sens. Environ., 114: 2524–2535.

    Article  Google Scholar 

  • Chen G. 2006. A novel scheme for identifying principal modes in geophysical variability with application to global precipitation. J. Geophys. Res., 111: D11103, http://dx.doi.org/10.1029/2005jd006233.

    Article  Google Scholar 

  • Chen G. 2013. Revisit to atmospheric oscillations over global ocean: a combined climatology/modality approach. Int. J. Climatol., http://dx.doi.org/10.1002/joc.3870.

    Google Scholar 

  • Cheng X, Qi Y. 2007. Trends of sea level variations in the South China Sea from merged altimetry data. Global Planet Change, 57: 371–382.

    Article  Google Scholar 

  • Cheng X, Qi Y. 2010. On steric and mass-induced contributions to the annual sea-level variations in the South China Sea. Global Planet. Change, 72: 227–233.

    Article  Google Scholar 

  • Cumins P F, Lagerloef G S E, Mitchum G. 2005. A regional index of northeast Pacific variability based on satellite altimeter data. Geophys. Res. Lett., 32: L17607, http://dx.doi.org/10.1029/2005GL023642.

    Article  Google Scholar 

  • Fang G, Chen H, Wei Z, Wang Y, Wang X, Li C. 2006. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J. Geophys. Res., 111: C11S16, http://dx.doi.org/10.1029/2005jc003276.

    Google Scholar 

  • Feng W, Zhong M, Xu H. 2012. Sea level variations in the South China Sea inferred from satellite gravity, altimetry, and oceanographic data. Sci. China Earth Sci., 55: 1696–1701.

    Article  Google Scholar 

  • Han G, Huang W. 2008. Low-frequency sea-level variability in the South China Sea and its relationship to ENSO. Theor. Appl. Climatol., 97: 41–52.

    Article  Google Scholar 

  • Ho C R, Zheng Q, Soong Y S, Kuo N J, Hu J H. 2000. Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J. Geophys. Res., 105: 13 981–13 990, http://dx.doi.org/10.1029/2000JC900001.

    Article  Google Scholar 

  • Hughes C W, Williams S D P. 2010. The color of sea level: importance of spatial variations in spectral shape for assessing the significance of trends. J. Geophys. Res., 115: C10048, http://dx.doi.org/10.1029/2010JC006102.

    Article  Google Scholar 

  • Hwang C, Chen S A. 2000. Fourier and wavelet analyses of TOPEX/Poseidon-derived sea level anomaly over the South China Sea: a contribution to the South China Sea Monsoon Experiment. J. Geophys. Res., 105: 28 785–28 804.

    Article  Google Scholar 

  • Le Traon P Y, Dibarboure G. 2002. Velocity mapping capabilities of present and future altimeter missions: the role of high-frequency signals. J. Atmos. Ocean. Tech., 19: 2077–2087.

    Article  Google Scholar 

  • Le Traon P Y, Nadal F, Ducet N. 1998. An improved mapping method of multistatellite altimeter data. J. Atmos. Ocean. Tech., 15: 522–534.

    Article  Google Scholar 

  • Li L, Xu J, Cai R. 2002. Trend of sea level rise in the South China Sea during th. 1990. An altimeter result. Chin. Sci. Bull., 47: 582–585.

    Article  Google Scholar 

  • Liu Q, Jia Y, Wang X, Yang H. 2001. On the annual cycle characteristics of the sea surface height in South China Sea. Adv. Atmos. Sci., 18: 613–622.

    Article  Google Scholar 

  • Liu Q, Jiang X, Xie S, Liu W. 2004. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: seasonal development and interannual variability. J. Geophys. Res., 109 (C07): 1–12.

    Google Scholar 

  • Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. B. Am. Meteol. Soc., 78: 1069–1079.

    Article  Google Scholar 

  • Metropolis N, Ulam s. (1949. The Monte Carlo method. J. Am. Stat. Assoc., 44: 335–341.

    Article  Google Scholar 

  • Rong Z, Liu Y, Zong H, Cheng Y. 2007. Interannual sea level variability in the South China Sea and its response to ENSO. Global Planet. Change, 55: 257–272.

    Article  Google Scholar 

  • Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanol. Acta, 22: 1–17.

    Article  Google Scholar 

  • Waliser D E, Murtugudde R, Lucas L E. 2003. Indo-Pacific Ocean response to atmospheric intraseasonal variability: 1. Austral summer and the Madden-Julian Oscillation. J. Geophys. Res., 108: 3 160, http://dx.doi.org/10.1029/2002JC001620.

    Article  Google Scholar 

  • Wang W, Wang D, Wang Q. 2006. Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res., 111: C03203, http://dx.doi.org/10.1029/2005JC003333.

    Google Scholar 

  • Woodworth P L, Player R. 2003. The permanent service for mean sea level: an update to the 21st century. J. Coastal Res., 19: 287–295.

    Google Scholar 

  • Zhang C, Chen G, Qiu F. 2008. Annual amphidromes observed in the atmosphere with remote sensing data. J. Geophys. Res., 11: D16112, http://dx.doi.org/10.1029/2008JD009864.

    Article  Google Scholar 

  • Zhang C, Wang B, Chen G. 2006. Annual sea level amphidromes in the South China Sea revealed by merged altimeter data. Geophys. Res. Lett., 33: L14606, http:// dx.doi.org/10.1029/2006gl026493.

    Article  Google Scholar 

  • Zhuang W, Qiu B, Du Y. 2013. Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine Archipelago, J. Geophys. Res., 118: 6759–6773, http://dx.doi.org/10.1002/2013JC 009376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Chen  (陈戈).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41331172, U1406404) and the National High Technology Research and Development Program of China (863 Program) (No. 2013AA09A505)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Chen, G. Modal recovery of sea-level variability in the South China Sea using merged altimeter data. Chin. J. Ocean. Limnol. 33, 1233–1244 (2015). https://doi.org/10.1007/s00343-015-4110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4110-1

Keyword

Navigation