Skip to main content
Log in

Green one-pot preparation of carbon dots (CD)-embedded cellulose transparent film for Fe3+ indicator using ionic liquid

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, carbon dots (CD)-embedded film was successfully fabricated for Fe3+ sensing via a one-pot process. The carbon dots for Fe3+ ion detection were synthesized using the cellulose/ionic liquid solution for different treatment times. With the increase of the treatment time, the N-doped graphitic structure in the core and the functional groups on the surface were highly developed in the carbon dots. The properties and structures of the carbon dots were characterized using TEM, UV–Vis spectroscopy, XPS, IR, TCSPC, and PL spectroscopy. The carbon dots prepared by 12 h treatment showed a high quantum yield of 28.4%, and the superior stability for long-term storage, UV exposure, ionic strength, and pH change. The carbon dots in the film, as well as in the aqueous dispersion, revealed highly selective detection toward Fe3+. The CD-embedded cellulose film can be used as a Fe3+ indicating film with good reusability, outstanding transparency, and high photostability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4: a
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abderrahim B et al (2015) Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. World J Environ Eng 3:95

    Google Scholar 

  • Ahn Y, Kwak S-Y, Song Y, Kim H (2016a) Physical state of cellulose in BmimCl: dependence of molar mass on viscoelasticity and sol-gel transition. Phys Chem Chem Phys 18:1460–1469

    CAS  PubMed  Google Scholar 

  • Ahn Y, Song Y, Kwak S-Y, Kim H (2016b) Highly ordered cellulose II crystalline regenerated from cellulose hydrolyzed by 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 137:321–327

    CAS  PubMed  Google Scholar 

  • Ahn Y, Song Y, Kim H (2017a) In situ formation of autodispersing cellulose nanoparticles with extreme uniformity. ACS Macro Lett 6:762–767

    CAS  Google Scholar 

  • Ahn Y, Song Y, Kim H, Kwak S-Y (2017b) Formation of cellulose-carbene complex via depolymerization in ILs: dependence of IL types on kinetics, conformation and dispersity. Carbohydr Polym 159:86–93

    CAS  PubMed  Google Scholar 

  • Ahn J et al (2019) Food waste-driven N-doped carbon dots: applications for Fe3+ sensing and cell imaging. Mater Sci Eng C 102:106–112

    CAS  Google Scholar 

  • Arul V, Edison TNJI, Lee YR, Sethuraman MG (2017) Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. J Photochem Photobiol B Biol 168:142–148

    CAS  Google Scholar 

  • Barsbay M et al (2007) Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40:7140–7147

    CAS  Google Scholar 

  • Börjesson M, Westman G (2015) Crystalline nanocellulose-preparation, modification, and properties. In: Poletto M, Ornaghi H Jr (eds) Cellulose-fundamental aspects and current trends. IntechOpen, London, pp 159–191

    Google Scholar 

  • Chae A et al (2018) Mechanochemical synthesis of fluorescent carbon dots from cellulose powders. Nanotechnology 29:165604

    PubMed  Google Scholar 

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meters RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

    Google Scholar 

  • da Silva Souza DR, Caminhas LD, de Mesquita JP, Pereira FV (2018) Luminescent carbon dots obtained from cellulose. Mater Chem Phys 203:148–155

    Google Scholar 

  • Du H, Qian X (2011) The effects of acetate anion on cellulose dissolution and reaction in imidazolium ionic liquids. Carbohydr Res 346:1985–1990

    CAS  PubMed  Google Scholar 

  • Edison TNJI et al (2016) Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J Photochem Photobiol B Biol 161:154–161

    CAS  Google Scholar 

  • Fang B-Y et al (2018) Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells. Biosens Bioelectron 100:41–48

    CAS  PubMed  Google Scholar 

  • Feng Z et al (2017) Nitrogen-doped carbon quantum dots as fluorescent probes for sensitive and selective detection of nitrite. Molecules 22:2061

    PubMed Central  Google Scholar 

  • Gu D, Shang S, Yu Q, Shen J (2016) Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci 390:38–42

    CAS  Google Scholar 

  • Gu J et al (2018) Green synthesis of amphiphilic carbon dots from organic solvents: application in fluorescent polymer composites and bio-imaging. RSC Adv 8:12556–12561

    CAS  Google Scholar 

  • Guo Y, Zhang L, Cao F, Leng Y (2016) Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg 2+. Sci Rep 6:35795

    CAS  PubMed  PubMed Central  Google Scholar 

  • He G et al (2017) Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots. Appl Surf Sci 422:257–265

    CAS  Google Scholar 

  • Huddleston JG et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    CAS  Google Scholar 

  • Ishida H et al (2010) Recent advances in instrumentation for absolute emission quantum yield measurements. Coord Chem Rev 254:2449–2458

    CAS  Google Scholar 

  • Jeong Y et al (2018) Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bioimaging applications. ACS Sustain Chem Eng 6:4510–4515

    CAS  Google Scholar 

  • Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031

    CAS  Google Scholar 

  • Kim H, Ahn Y, Kwak S-Y (2016) Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass. Biomass Bioenergy 93:243–253

    CAS  Google Scholar 

  • Kim Y, Song Y, Kim H (2018) Preparation of transparent cellulose film with controlled haze using halloysite nanotubes. Cellulose 25:1239–1248

    CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid- mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhou Q (2017) Sensitive pH probe developed with water-soluble fluorescent carbon dots from chocolate by one-step hydrothermal method. Int J Environ Anal Chem 97:1119–1131

    CAS  Google Scholar 

  • Liu S et al (2011) Preparation of photoluminescent carbon nitride dots from CCl4 and 1, 2-ethylenediamine: a heat-treatment-based strategy. J Mater Chem 21:11726–11729

    CAS  Google Scholar 

  • Liu R et al (2015) An ionic liquid promoted microwave-hydrothermal route towards highly photoluminescent carbon dots for sensitive and selective detection of iron (III). RSC Adv 5:24205–24209

    CAS  Google Scholar 

  • Loi E et al (2017) One- pot synthesis of carbon dots using two different acids and their respective unique photoluminescence property. Luminescence 32:114–118

    CAS  PubMed  Google Scholar 

  • Lu J et al (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375

    CAS  PubMed  Google Scholar 

  • Ma R et al (2016) Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 102:58–65

    CAS  Google Scholar 

  • MináKim S et al (2015) In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale 7:5468–5475

    Google Scholar 

  • Ng YH, Chin SF, Pang SC, Ng SM (2017) The luminescence profile of carbon dots synthesized from α-cellulose under different acid hydrolysis conditions. Opt Mater 70:50–56

    CAS  Google Scholar 

  • Nie H et al (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112

    CAS  Google Scholar 

  • Ogi T et al (2016) Kinetics of nitrogen-doped carbon dot formation via hydrothermal synthesis. New J Chem 40:5555–5561

    CAS  Google Scholar 

  • Ou R et al (2012) Solid biopolymer electrolytes based on all-cellulose composites prepared by partially dissolving cellulosic fibers in the ionic liquid 1-butyl-3-methylimidazolium chloride. J Mater Sci 47:5978–5986

    CAS  Google Scholar 

  • Pels J et al (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653

    CAS  Google Scholar 

  • Qu D et al (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:5294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J et al (2019) Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale 11:2056–2064

    CAS  PubMed  Google Scholar 

  • Santiago S et al (2017) Synthesis of N-doped graphene quantum dots by pulsed laser ablation with diethylenetriamine (DETA) and their photoluminescence. Phys Chem Chem Phys 19:22395–22400

    CAS  PubMed  Google Scholar 

  • Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    CAS  Google Scholar 

  • Shen P, Gao J, Cong J, Liu Z, Li C, Yao J (2016) Synthesis of cellulose- based carbon dots for bioimaging. ChemistrySelect 1:1314–1317

    CAS  Google Scholar 

  • Shi L et al (2016) Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells. Biosens Bioelectron 77:598–602

    CAS  PubMed  Google Scholar 

  • Shu Y et al (2017) Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging. Carbon 114:324–333

    CAS  Google Scholar 

  • Silva SS, Mano JF, Reis RL (2017) Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem 19:1208–1220

    CAS  Google Scholar 

  • Song Y et al (2017) Morphological and chemical structure of hydrothermally carbonized saccharides. Fiber Polym 18:1602–1608

    CAS  Google Scholar 

  • Su H, Bi Z, Ni Y, Yan L (2019) One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution. Green Energy Environ 4:391–399

    Google Scholar 

  • Tan X, Li X, Chen L, Xie F (2016) Solubility of starch and microcrystalline cellulose in 1-ethyl-3-methylimidazolium acetate ionic liquid and solution rheological properties. Phys Chem Chem Phys 18:27584–27593

    CAS  PubMed  Google Scholar 

  • Tang L et al (2013) Energy-level structure of nitrogen-doped graphene quantum dots. J Mater Chem C 1:4908–4915

    CAS  Google Scholar 

  • Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786

    CAS  PubMed  Google Scholar 

  • Wang Y et al (2014) Lignin dissolution in dialkylimidazolium-based ionic liquid–water mixtures. Bioresour Technol 170:499–505

    CAS  PubMed  Google Scholar 

  • Wang S, Chen Z-G, Cole I, Li Q (2015) Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon 82:304–313

    CAS  Google Scholar 

  • Wang C et al (2016) Synthesis of cellulose-derived carbon dots using acidic ionic liquid as a catalyst and its application for detection of Hg 2+. J Mater Sci 51:861–867

    CAS  Google Scholar 

  • Wei L, Li K, Ma Y, Hou X (2012) Dissolving lignocellulosic biomass in a 1-butyl-3-methylimidazolium chloride–water mixture. Ind Crop Prod 37:227–234

    CAS  Google Scholar 

  • Wu R-L et al (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574

    CAS  PubMed  Google Scholar 

  • Wu P et al (2017) Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe 3+ ions in an acidic environment. RSC Adv 7:44144–44153

    CAS  Google Scholar 

  • Xiao D et al (2016) One-step hydrothermal synthesis of photoluminescent carbon nitride dots derived from ionic liquids. New J Chem 40:320–324

    CAS  Google Scholar 

  • Xie Y et al (2018) Surface hydrophobic modification of microcrystalline cellulose by poly (methylhydro) siloxane using response surface methodology. Polymers 10:1335

    PubMed Central  Google Scholar 

  • Xu M et al (2013) Hydrothermal/solvothermal synthesis of graphene quantum dots and their biological applications. Nano Biomed Eng 5:65–71

    CAS  Google Scholar 

  • Yang X et al (2014) Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron 60:292–298

    CAS  PubMed  Google Scholar 

  • Yang G et al (2016) Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. J Mater Chem A 4:12841–12849

    CAS  Google Scholar 

  • Yang J et al (2017) Hydrothermal synthesis and photoluminescent mechanistic investigation of highly fluorescent nitrogen doped carbon dots from amino acids. Mater Res Bull 89:26–32

    CAS  Google Scholar 

  • Yesudass S et al (2016) Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. J Taiwan Inst Chem E 64:252–268

    CAS  Google Scholar 

  • Yu J et al (2018) Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions. Nanomaterials 8:233–244

    PubMed Central  Google Scholar 

  • Zhai X et al (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48:7955–7957

    CAS  Google Scholar 

  • Zhang P et al (2014) Updating biomass into functional carbon material in ionothermal manner. ACS Appl Mater Interfaces 6:12515–12522

    CAS  PubMed  Google Scholar 

  • Zhang B et al (2015) Understanding the structural disorganization of starch in water–ionic liquid solutions. Phys Chem Chem Phys 17:13860–13871

    CAS  PubMed  Google Scholar 

  • Zhang Y et al (2016) Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Appl Surf Sci 387:1236–1246

    CAS  Google Scholar 

  • Zheng B et al (2015) One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission. RSC Adv 5:11667–11675

    CAS  Google Scholar 

  • Zu F et al (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science (NRF-2018R1A2B6003570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungsup Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, J., Song, Y., Ahn, J. et al. Green one-pot preparation of carbon dots (CD)-embedded cellulose transparent film for Fe3+ indicator using ionic liquid. Cellulose 27, 4609–4621 (2020). https://doi.org/10.1007/s10570-020-03099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03099-5

Keywords

Navigation