Skip to main content
Log in

Synthesis of methylcellulose model copolymers with heterogeneous distribution and their solution properties

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In order to elucidate the characteristic features of commercial methylcellulose precisely, O-methylcellulose model copolymers consisting of 2,3,6-tri-O-methylanhydroglucose unit (236MeAGU) and 2-O-methylanhydroglucose unit (2MeAGU) with various composition ratios were synthesized via cationic ring-opening copolymerization of the corresponding glucose orthoester derivatives, subsequent removal of pivaloyl and allyl groups, and methylation. The structure of the obtained copolymers was confirmed by 1H-, 13C-NMR, and FT-IR. Temperature-dependent turbidity measurement verified their thermoresponsive behavior in aqueous solution. The lower critical solution temperature was tuned from 63 to 45 °C above 47 mol-% 236MeAGU content. The hydrophobicity along the cellulose chain was dominant to determine their physical properties. However, the aqueous properties of the MC model copolymers were strongly affected by the slight difference of the composition ratio. The present method would provide further details of the structure–property relationship of O-methylcellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AGU:

Anhydroglucose unit

DP:

Degree of polymerization

DS:

Degree of substitution

GPC:

Gel permeation chromatography

LCST:

Lower critical solution temperature

MC:

O-methylcellulose

2MeAGU:

2-O-methylanhydroglucose unit

236MeAGU:

2,3,6-tri-O-methylanhydroglucose unit

M n :

Number-averaged molecular weight

M w :

Weight-averaged molecular weight

2Piv36AllAGU:

3,6-di-O-allyl-2-O-pivaloylanhydroglucose unit

2Piv36MeAGU:

3,6-di-O-methyl-2-O-pivaloylanhydroglucose unit

T CP :

Cloud point on heating

T RCP :

Cloud point on cooling

References

  • Desbrières J, Hirrien M, Rinaudo M (1998) A calorimetric study of methylcellulose gelation. Carbohydr Polym 37:145–152

    Article  Google Scholar 

  • Fitzpatrick F, Schagerlf H, Andersson T, Richardson S, Tjerneld F, Wahlund KG, Wittgren B (2006) NMR, could-point measurements and enzymatic depolymerization: complementary tools to investigate substituent patterns in modified celluloses. Biomacromolecules 7:2909–2917

    Article  CAS  Google Scholar 

  • Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  • Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22:161–173

    Article  CAS  Google Scholar 

  • Haque A, Richardson RK, Morris ER, Gidley MJ, Caswell DC (1993) Thermogelation of methylcellulose. Part II: effect of hydroxypropyl substituents. Carbohydr Polym 22:175–186

    Article  CAS  Google Scholar 

  • Heymann E (1935) Studies on sol-gel transformations. I. The inverse sol-gel transformation of methylcellulose in water. Trans Faraday Soc 31:846–864

    Article  CAS  Google Scholar 

  • Hirrien M, Desbrières J, Rinaudo M (1996) Physical properties of methylcelluloses in relation with the conditions for cellulose modification. Carbohydr Polym 31:243–252

    Article  CAS  Google Scholar 

  • Hirrien M, Chevillard C, Desbrières J, Axelos MV, Rinaudo M (1998) Thermogelation of methylcelluloses: new evidence for understanding the gelation mechanism. Polymer 39:6251–6259

    Article  CAS  Google Scholar 

  • Kamitakahara H, Nakatsubo F (2010) ABA- and BAB-triblock cooligomers of tri-O-methylated and unmodified cello-oligosaccharides: syntheses and structure-solubility relationship. Cellulose 17:173–186

    Article  CAS  Google Scholar 

  • Kamitakahara H, Nakatsubo F, Klemm D (2006) Block co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides as model compounds for methylcellulose and its dissolution/gelation behavior. Cellulose 13:375–392

    Article  CAS  Google Scholar 

  • Kamitakahara H, Yoshinaga A, Aono H, Nakatsubo F, Klemm D, Burchard W (2008) New approach to unravel the structure–property relationship of methylcellulose. Cellulose 15:797–801

    Article  CAS  Google Scholar 

  • Karakawa M, Kamitakahara H, Takano T, Nakatsubo F (2002a) The utility of a 3-O-allyl group as a protective group for ring-opening polymerization of α-d-glucopyranose 1,2,4-orthopivalated derivatives. Biomacromolecules 3:538–546

    Article  CAS  Google Scholar 

  • Karakawa M, Mikawa Y, Kamitakahara H, Nakatsubo F (2002b) Preparations of regioselectively methylated cellulose acetates and their 1H and 13C NMR spectroscopic analyses. J Polym Sci Part A Polym Chem 40:4167–4179

    Article  CAS  Google Scholar 

  • Karakawa M, Nakai S, Kamitakahara H, Takano T, Nakatsubo F (2007a) Preparation of highly regioregular O-methylcelluloses and their water solubility. Cellulose Chem Technol 41:569–573

    CAS  Google Scholar 

  • Karakawa M, Takano T, Nakatsubo F (2007b) Copolymerization of α-d-glucopyranose 1,2,4-orthopivalate derivatives -preparation of O-methylcelluloses with heterogeneous distribution of methyl groups and their water solubility-. Cellulose Chem Technol 41:555–561

    CAS  Google Scholar 

  • Kato T, Yokoyama M, Takahashi A (1978) Melting temperature of thermally reversible gels IV. Methyl cellulose-water gels. Colloid & Polymer Sci 256:15–21

    Article  CAS  Google Scholar 

  • Kern H, Choi S, Wenz G, Heinrich J, Ehrhardt L, Mischnick P, Garidel P, Blume A (2000) Synthesis, control of substitution pattern and phase transitions of 2,3-di-O-methylcellulose. Carbohydr Res 326:67–79

    Article  CAS  Google Scholar 

  • Kobayashi K, Huang CI, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077

    Article  CAS  Google Scholar 

  • Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci Part B Polym Phys 35:717–723

    Article  CAS  Google Scholar 

  • Kondo T, Gray D (1991) The preparation of O-methyl- and O-ethyl-celluloses having controlled distribution of substituents. Carbohydr Res 220:173–183

    Article  CAS  Google Scholar 

  • Kundu PP, Kundu M (2001) Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose. Polymer 42:2015–2020

    Article  CAS  Google Scholar 

  • Li L (2002) Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35:5990–5998

    Article  CAS  Google Scholar 

  • Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18:7291–7298

    Article  CAS  Google Scholar 

  • Li L, Liu E, Lim CH (2007) Micro-DSC and rheological studies of interactions between methylcellulose and surfactants. J Phys Chem B 111:6410–6416

    Article  CAS  Google Scholar 

  • Liu HQ, Zhang LN, Takaragi A, Miyamoto T (1997) Effect of substituent distribution on water solubility of O-methylcellulose. Cellulose 4:321–327

    Article  CAS  Google Scholar 

  • Liu HQ, Zhang LN, Takaragi A, Miyamoto T (1998) Phase transition of 2,3-O-methylcelulose. Polym Bull 40:741–747

    Article  CAS  Google Scholar 

  • Nakatsubo F, Kamitakahara H, Hori M (1996) Cationic ring-opening polymerization of 3,6-di-O-benzyl-α-d-glucose 1,2,4-orthopivalate and the first chemical synthesis of cellulose. J Am Chem Soc 118:1677–1681

    Article  CAS  Google Scholar 

  • Nishinari K, Hofmann KE, Moritaka H, Kohyama K, Nishinari N (1997) Gel-sol transition of methylcellulose. Macromol Chem Phys 198:1217–1226

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Jager C, Nakatsubo F, French AD, Mereiter K (2009) Towards a comprehensive understanding of cellulose swelling and dissolution at a molecular level. American Chemical Society National Meeting, Salt Lake City, US

    Google Scholar 

  • Sarkar N, Walker LC (1995) Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 27:177–185

    Article  CAS  Google Scholar 

  • Savage AB (1957) Temperature-viscosity relationships for water-soluble cellulose ethers. Ind Eng Chem 49:99–103

    Article  CAS  Google Scholar 

  • Schupper N, Rabin Y, Rosenbluh M (2008) Multiple stages in the aging of a physical polymer gel. Macromolecules 41:3983–3994

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53:145–153

    Article  CAS  Google Scholar 

  • Takahashi S, Fujimoto T, Miyamoto T, Inagaki H (1987) Relationship between distribution of substituents and water solubility of O-methyl cellulose. J Polym Sci Part A Polym Chem 25:987–994

    Article  CAS  Google Scholar 

  • Takahashi M, Shimazaki M, Yamamoto J (2001) Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci Part B Polym Phys 39:91–100

    Article  CAS  Google Scholar 

  • Viridén A, Wittgren B, Andersson T, Abrahmsén-Alami S, Larsson A (2009) Influence of substitution pattern on solution behavior of hydroxypropyl methylcellulose. Biomacromolecules 10:522–529

    Article  Google Scholar 

  • Wang Q, Li L (2005) Effects of molecular weight on thermoreversible gelation and gel elasticity of methylcellulose in aqueous solution. Carbohydr Polym 62:232–238

    Article  CAS  Google Scholar 

  • Xu Y, Wang C, Tam KC, Li L (2004) Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water. Langmuir 20:646–652

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (no. 17380107). K.S. acknowledges the Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Takano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakakibara, K., Takano, T. & Nakatsubo, F. Synthesis of methylcellulose model copolymers with heterogeneous distribution and their solution properties. Cellulose 18, 105–115 (2011). https://doi.org/10.1007/s10570-010-9461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9461-3

Keywords

Navigation