Skip to main content
Log in

DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Suspensions of commercial refined beech pulp (RBP) were further processed through mechanical disintegration (MD-RBP), chemical modification (CM-RBP) and through chemical modification followed by mechanical disintegration (CM-MD-RBP). Nanocomposites were prepared by compounding a poly(vinyl acetate) (PVAc) latex adhesive with increasing contents of the different types of nanofibrils, and the resulting nanocomposites were analyzed by dynamic mechanical analysis (DMA). Also, the suitability of using the CM-RBP fibrils to formulate PVAc adhesives for wood bonded assemblies with improved heat resistance was studied. The presence of cellulose nanofibrils had a strong influence on the viscoelastic properties of PVAc latex films. For all nanocomposites, increasing amounts of cellulose nanofibrils (treated or untreated) led to increasing reinforcing effects in the glassy state, but especially in the PVAc and PVOH glass transitions. This reinforcement primarily resulted from interactions between the cellulose fibrils network and the hydrophilic PVOH matrix that led to the complete disappearance of the PVOH glass transition (tan δ peak) for some fibril types and contents. At any given concentration in the PVOH transition, the CM-MD-RBP nanofibrils provided the highest reinforcement, followed by the MD-RBP, CM-RBP and the untreated RBP. Finally, the use of the CM-RBP fibrils to prepare PVAc reinforced adhesives for wood bonding was promising since, even though they generally performed worse in dry and wet conditions, the boards showed superior heat resistance (EN 14257) and passed the test for durability class D1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    Article  CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Backman AC, Lindberg KAH (2004) Interaction between wood and polyvinyl acetate glue studied with dynamic mechanical analysis and scanning electron microscopy. J Appl Polym Sci 91:3009–3015

    Article  CAS  Google Scholar 

  • Bordeanu N, Eyholzer C, Zimmermann T (2008) Cellulose nanostructures with tailored functionalities. Pending patent

  • Cantiani R, Guerin G, Senechal A, Vincent I, Benchimol J (2001a) Supplementation of cellulose nanofibrils with carboxycellulose with low degree of substitution. US patent 6231657

  • Cantiani R, Guerin G, Senechal A, Vincent I, Benchimol J (2001b) Additivation of essentially amorphous cellulose nanofibrils with carboxyl cellulose with a high degree of substitution. US patent 6224663

  • Cantiani R, Guerin G, Senechal A, Vincent I, Benchimol J (2001c) Supplementation of essentially amorphous cellulose nanofibrils with carboxycellulose which has a high degree of substitution. US patent 6306207

  • Cash MJ, Chan AN, Conner HT, Cowan PJ, Gelman RA, Lusvardi KM, Thompson SA, Tise FP (2000) Derivatized microfibrillar polysaccharide. WO patent 0047628

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58

    Article  CAS  Google Scholar 

  • Couderc S, Ducloux O, Kim BJ, Someya T (2009) A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet. J Micromech Microeng 19:055006

    Article  Google Scholar 

  • Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behaviour and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of procesing conditions. Comp Sci Technol 67:829–839

    Article  CAS  Google Scholar 

  • De Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3):261–270

    Article  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR, Maureaux A, Vincent I (1996) Microfibrillated cellulose and method for preparing same from primary wall plant pulp, particularly sugar beet pulp. WO patent 9624720

  • European Standard EN 14257:2006 Adhesives—wood adhesives—determination of tensile strength of lap joints at elevated temperature (WATT’91)

  • European Standard EN 204:2001 Classification of thermoplastic wood adhesives for non-structural applications

  • European Standard EN 205:2003 Adhesives—wood adhesives for non-structural applications—determination of tensile shear strength of lap joints

  • Excoffier G, Vignon M, Benchimol J, Vincent I, Hannuskela T, Chauve V (1999) Parenchyma cellulose substituted with carboxyalkyl groups and preparation method. WO patent 9938892

  • Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2009) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose, under final revision

    Google Scholar 

  • Eyler RW, Klug ED, Diephuis F (1947) Determination of degree of substitution of sodium carboxymethylcellulose. Anal Chem 19(1):24–27

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  Google Scholar 

  • Herrick FW (1984) Process for preparing microfibrillated cellulose. US patent 4481077

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioRes 3(3):929–980

    Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A: Mater Sci Process 89(2):461–466

    Article  CAS  Google Scholar 

  • Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohyd Polym 68:146–158

    Article  CAS  Google Scholar 

  • Kvien K, Oksman K (2007) Orientiation of cellulose nanowhiskers in polyvinyl alcohol. Appl Phys A 87:641–643

    Article  CAS  Google Scholar 

  • Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking. Trans. 10th fundamental research symposium. Pira International, Oxford, pp 1235–1260

    Google Scholar 

  • Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    Article  CAS  Google Scholar 

  • Lindström T, Carlsson G (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers. Svensk Papperstidn 85(15):R146–R151

    Google Scholar 

  • López-Suevos F, Frazier CE (2005) Parallel-plate rheology of latex films bonded to wood. Holzforschung 59:435–440

    Article  Google Scholar 

  • López-Suevos F, Frazier CE (2006) The role of resol fortifiers in latex wood adhesives. Holzforschung 60:561–566

    Article  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A-Appl S 39(5):738–746

    Article  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A: Mater Sci Process 78(4):547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A: Mater Sci Process 80(1):155–159

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559

    Article  CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Samir M, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316

    Article  CAS  Google Scholar 

  • Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Walecka JA (1956) An investigation of low degree of substitution carboxymethylcelluloses. Tappi 39(7):458–463

    CAS  Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Young RA (1994) Comparison of the properties of chemical cellulose pulps. Cellulose 1:107–130

    Article  CAS  Google Scholar 

  • Zadorecki P, Michell AJ (1989) Future-prospects for wood cellulose as reinforcement in organic polymer composites. Polym Compos 10:69–77

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mat 6(9):754–761

    Article  Google Scholar 

  • Zimmermann T, Pöhler E, Schwaller P (2005) Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv Eng Mater 7(12):1156–1161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Daniel Heer, Mr. Walter Risi and Mr. Michael Strässle (Wood Lab, Empa) for their technical assistance in the manufacture, ageing and testing treatments, respectively, of the bonded assemblies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco López-Suevos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Suevos, F., Eyholzer, C., Bordeanu, N. et al. DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 17, 387–398 (2010). https://doi.org/10.1007/s10570-010-9396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9396-8

Keywords

Navigation