Skip to main content

Advertisement

Log in

High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Conventional two-dimensional cell monolayers do not provide the geometrical, biochemical and mechanical cues found in real tissues. Cells in real tissues interact through chemical and mechanical stimuli with adjacent cells and via the extracellular matrix. Such a highly interconnected communication network extends along all three dimensions. This architecture is lost in two-dimensional cultures. Therefore, at least in many cases, two-dimensional cell monolayers do not represent a suitable in vitro tool to characterize accurately the biology of real tissues. Many studies performed over the last few years have demonstrated that the differences between three-dimensional and two-dimensional cultured cells are striking at the morphological and molecular levels and that three-dimensional cell cultures can be employed in order to shrink the gap between real tissues and in vitro cell models. End-point and long-term imaging of cellular and sub-cellular processes with fluorescence microscopy provides direct insight into the physiological behavior of three-dimensional cell cultures and their response to chemical or mechanical stimulation. Fluorescence imaging of three-dimensional cell cultures sets new challenges and imposes specific requirements concerning the choice of a suitable microscopy technique. Deep penetration into the specimen, high imaging speed and ultra-low intensity of the excitation light are key requirements. Light-sheet-based fluorescence microscopy (LSFM) offers a favorable combination of these requirements and is therefore currently established as the technique of choice for the study of three-dimensional cell cultures. This review illustrates the benefits of cellular spheroids in the life sciences and suggests that LSFM is essential for investigations of cellular and sub-cellular dynamic processes in three-dimensions over time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agastin S, Giang UB, Geng Y, Delouise LA, King MR (2011) Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics 5:24110

    Article  PubMed  CAS  Google Scholar 

  • Alanentalo T, Asayesh A, Morrison H, Lorén CE, Holmberg D, Sharpe J, Ahlgren U (2007) Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat Methods 4:31–33

    Article  PubMed  CAS  Google Scholar 

  • Arrenberg AB, Stainier DY, Baier H, Huisken J (2010) Optogenetic control of cardiac function. Science 330:971–974

    Article  PubMed  CAS  Google Scholar 

  • Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci USA 107:13724–13729

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Jährling N, Kramer ER, Schnorrer F, Dodt HU (2008) Ultramicroscopy: 3D reconstruction of large microscopical specimens. J Biophotonics 1:36–42

    Article  PubMed  CAS  Google Scholar 

  • Berchtold D, Fesser S, Bachmann G, Kaiser A, Eilert JC, Frohns F, Sadoni N, Muck J, Kremmer E, Eick D, Layer PG, Zink D (2011) Nuclei of chicken neurons in tissues and three-dimensional cell cultures are organized into distinct radial zones. Chromosome Res 19:165–182

    Article  PubMed  CAS  Google Scholar 

  • Bhadriraju K, Hansen LK (2002) Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp Cell Res 278:92–100

    Article  PubMed  CAS  Google Scholar 

  • Bilodeau K, Mantovani D (2006) Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 12:2367–2383

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    PubMed  CAS  Google Scholar 

  • Bissell MJ, Rizki A, Mian IS (2003) Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 15:753–762

    Article  PubMed  CAS  Google Scholar 

  • Butor C, Davoust J (1992) Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports. Exp Cell Res 203:115–127

    Article  PubMed  CAS  Google Scholar 

  • Buzhor E, Harari-Steinberg O, Omer D, Metsuyanim S, Jacob-Hirsch J, Noiman T, Dotan Z, Goldstein RS, Dekel B (2011) Kidney spheroids recapitulate tubular organoids leading to enhanced tubulogenic potency of human kidney-derived cells. Tissue Eng Part A 17(17–18):2305–2319

    Article  PubMed  CAS  Google Scholar 

  • Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Cho J, Pastorino S, Zeng Q, Xu X, Johnson W, Vandenberg S et al (2011) Glioblastoma-derived epidermal growth factor receptor (EGFR) carboxyl-terminal deletion mutants are transforming and are sensitive to EGFR-directed therapies. Cancer Res 71:7587–7596

    Article  PubMed  CAS  Google Scholar 

  • Cohen JE (2004) Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better. PLoS Biol 2:e439

    Article  PubMed  CAS  Google Scholar 

  • Colombelli J, Reynaud EG, Rietdorf J, Pepperkok R, Stelzer EH (2005) In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 6:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  PubMed  CAS  Google Scholar 

  • Dent P, Yacoub A, Park M, Sarkar K, Shah K, Curiel DT, Grant S, Fisher PB (2008) Searching for a cure: gene therapy for glioblastoma. Cancer Biol Ther 7:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Dickinson ME (2006) Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn 235:2386–2400

    Article  PubMed  Google Scholar 

  • Dodt HU, Leischner U, Schierloh AU, Jährling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgänsberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336

    Article  PubMed  CAS  Google Scholar 

  • Dufau I, Frongia C, Sicard F, Dedieu L, Cordelier P, Ausseil F, Ducommun B, Valette A (2012) Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 12:15

    Article  PubMed  CAS  Google Scholar 

  • Engelbrecht CJ, Greger K, Reynaud EG, Krzic U, Colombelli J, Stelzer EH (2007) Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). Opt Express 15:6420–6430

    Article  PubMed  Google Scholar 

  • Fahrbach FO, Rohrbach A (2010) A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt Express 18:24229–24244

    Article  PubMed  Google Scholar 

  • Fraley SI, Feng Y, Krishnamurthy R, Kim DH, Celedon A, Longmore GD, Wirtz D (2010) A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat Cell Biol 12:598–604

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M, Gan Q, Ermolayev V, Harms GS (2011) STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution. Biophys J 100:L43–L45

    Article  PubMed  CAS  Google Scholar 

  • Frith JE, Thomson B, Genever PG (2010) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 16:735–749

    Article  PubMed  CAS  Google Scholar 

  • Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Spagnoli GC, Martin I, Ploegert S, Demougin P, Heberer M, Reschner A (2005a) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204:522–531

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Rosenthal R, Zajac P, Weber WP, Oertli D, Heberer M, Martin I, Spagnoli GC, Reschner A (2005b) Culture of melanoma cells in 3-dimensional architectures results in impaired immunorecognition by cytotoxic T lymphocytes specific for Melan-A/MART-1 tumor-associated antigen. Ann Surg 242:851–857, discussion 858

    Article  PubMed  Google Scholar 

  • Gilbert RJ, Hoffman M, Capitano A, So PT (2000) Imaging of three-dimensional epithelial architecture and function in cultured CaCo2a monolayers with two-photon excitation microscopy. Microsc Res Tech 51:204–210

    Article  PubMed  CAS  Google Scholar 

  • Gobel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4:73–79

    Article  PubMed  CAS  Google Scholar 

  • Greger K, Neetz MJ, Reynaud EG, Stelzer EH (2011) Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt Express 19:20743–20750

    Article  PubMed  CAS  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson MG, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16

    Article  PubMed  CAS  Google Scholar 

  • Hagios C, Lochter A, Bissell MJ (1998) Tissue architecture: the ultimate regulator of epithelial function? Philos Trans R Soc Lond B Biol Sci 353:857–870

    Article  PubMed  CAS  Google Scholar 

  • Haouzi D, Baghdiguian S, Granier G, Travo P, Mangeat P, Hibner U (2005) Three-dimensional polarization sensitizes hepatocytes to Fas/CD95 apoptotic signalling. J Cell Sci 118:2763–2773

    Article  PubMed  CAS  Google Scholar 

  • Hell SW, Stelzer EHK (1992) Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A 9:2159–2166

    Article  Google Scholar 

  • Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB (2012) Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS One 7:e44640

    Article  PubMed  CAS  Google Scholar 

  • Holekamp TF, Turaga D, Holy TE (2008) Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57:661–672

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Huisken J, Stainier DY (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975

    Article  PubMed  CAS  Google Scholar 

  • Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  PubMed  CAS  Google Scholar 

  • Ivascu A, Kubbies M (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 11:922–932

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer JP (2005) A multiscale model for avascular tumor growth. Biophys J 89:3884–3894

    Article  PubMed  CAS  Google Scholar 

  • Jung P, Sato T, Merlos-Suárez A, Barriga FM, Iglesias M, Rossell D et al (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW (2000) Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 18:954–958

    Article  PubMed  CAS  Google Scholar 

  • Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z, Wittbrodt J, Stelzer EH (2010) Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 7:637–642

    Article  PubMed  CAS  Google Scholar 

  • Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180

    Article  PubMed  CAS  Google Scholar 

  • Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    Article  PubMed  CAS  Google Scholar 

  • Kogel D, Fulda S, Mittelbronn M (2010) Therapeutic exploitation of apoptosis and autophagy for glioblastoma. Anticancer Agents Med Chem 10:438–449

    Article  PubMed  Google Scholar 

  • Konig K, Uchugonova A, Gorjup E (2011) Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation. Microsc Res Tech 74:9–17

    Article  PubMed  Google Scholar 

  • Korff T, Augustin HG (1998) Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 143:1341–1352

    Article  PubMed  CAS  Google Scholar 

  • Krausz E, de Hoogt R, Gustin E, Cornelissen F, Grand-Perret T, Janssen L et al (2013) Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening. J Biomol Screen 18:54–66

    Article  PubMed  Google Scholar 

  • Kress C, Ballester M, Devinoy E, Rijnkels M (2010) Epigenetic modifications in 3D: nuclear organization of the differentiating mammary epithelial cell. J Mammary Gland Biol Neoplasia 15:73–83

    Article  PubMed  Google Scholar 

  • Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285

    Article  PubMed  CAS  Google Scholar 

  • Le Beyec J, Xu R, Lee SY, Nelson CM, Rizki A, Alcaraz J, Bissell MJ (2007) Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res 313:3066–3075

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kotliarova S, Kotliarova Y, Li A, Su Q, Donin NM et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  PubMed  CAS  Google Scholar 

  • Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422

    Article  PubMed  CAS  Google Scholar 

  • Lillegard JB, Fisher JE, Nedredal G, Luebke-Wheeler J, Bao J, Wang W, Amoit B, Nyberg SL (2011) Normal atmospheric oxygen tension and the use of antioxidants improve hepatocyte spheroid viability and function. J Cell Physiol 226:2987–2996

    Article  PubMed  CAS  Google Scholar 

  • van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    Article  PubMed  CAS  Google Scholar 

  • Lindek S, Stelzer EHK (1996) Optical transfer functions for confocal theta fluorescence microscopy. J Opt Soc Am A 13:479–482

    Article  Google Scholar 

  • Lindek S, Cremer C, Stelzer EH (1996a) Confocal theta fluorescence microscopy with annular apertures. Appl Opt 35:126–130

    Article  PubMed  CAS  Google Scholar 

  • Lindek S, Cremer C, Stelzer EHK (1996b) Confocal theta fluorescence microscopy using two-photon absorption and annular apertures. Optik 102:131–134

    CAS  Google Scholar 

  • Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 164:603–612

    Article  PubMed  CAS  Google Scholar 

  • Liu SQ, Ee PL, Ke CY, Hedrick JL, Yang YY (2009) Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials 30:1453–1461

    Article  PubMed  CAS  Google Scholar 

  • Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC (2010) Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31:8494–8506

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Wang C, Hossain M, Qiao Y, Ma L, An J, Su M (2012) Three-dimensional microtissue assay for high-throughput cytotoxicity of nanoparticles. Anal Chem 84:6731–6738

    Article  PubMed  CAS  Google Scholar 

  • Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EH (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385

    Article  PubMed  CAS  Google Scholar 

  • Meshel AS, Wei Q, Adelstein RS, Sheetz MP (2005) Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7:157–164

    Article  PubMed  CAS  Google Scholar 

  • Millerot-Serrurot E, Guilbert M, Fourré N, Witkowski W, Said G, Van Gulick L, Terryn C, Zahm JM, Garnotel R, Jeannesson P (2010) 3D collagen type I matrix inhibits the antimigratory effect of doxorubicin. Cancer Cell Int 10:26

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A, Wollman R, Marshall WF (2006) Quantitative modeling in cell biology: what is it good for? Dev Cell 11:279–287

    Article  PubMed  CAS  Google Scholar 

  • Montesano R (1986) Cell-extracellular matrix interactions in morphogenesis: an in vitro approach. Experientia 42:977–985

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Schaller G, Orci L (1991a) Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66:697–711

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Matsumoto K, Nakamura T, Orci L (1991b) Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67:901–908

    Article  PubMed  CAS  Google Scholar 

  • Mostov K, Su T, ter Beest M (2003) Polarized epithelial membrane traffic: conservation and plasticity. Nat Cell Biol 5:287–293

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Klieser W (1997) Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 273:C1109–C1123

    PubMed  CAS  Google Scholar 

  • Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905–1907

    Article  PubMed  CAS  Google Scholar 

  • O’Brien LE, Jou TS, Pollack AL, Zhang Q, Hansen SH, Yurchenco P, Mostov KE (2001) Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 3:831–838

    Article  PubMed  Google Scholar 

  • O’Brien LE, Zegers MM, Mostov KE (2002) Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 3:531–537

    Article  PubMed  CAS  Google Scholar 

  • Pampaloni E (1957) Problemi fondiari dell’agricoltura sarda. Sassari, Gallizzi

    Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  PubMed  CAS  Google Scholar 

  • Pampaloni F, Stelzer EH, Leicht S, Marcello M (2010) Madin-Darby canine kidney cells are increased in aerobic glycolysis when cultured on flat and stiff collagen-coated surfaces rather than in physiological 3-D cultures. Proteomics 10:3394–3413

    Article  PubMed  CAS  Google Scholar 

  • Pickl M, Ries CH (2009) Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28:461–468

    Article  PubMed  CAS  Google Scholar 

  • Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417-423

    Article  PubMed  CAS  Google Scholar 

  • Pollack AL, Apodaca G, Mostov KE (2004) Hepatocyte growth factor induces MDCK cell morphogenesis without causing loss of tight junction functional integrity. Am J Physiol Cell Physiol 286:C482–C494

    Article  PubMed  CAS  Google Scholar 

  • Potapova IA, Brink PR, Cohen IS, Doronin SV (2008) Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J Biol Chem 283:13100–13107

    Article  PubMed  CAS  Google Scholar 

  • Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465

    Article  PubMed  CAS  Google Scholar 

  • Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7:418–419

    Article  PubMed  CAS  Google Scholar 

  • Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5:e11639

    Article  PubMed  CAS  Google Scholar 

  • Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, Finkelstein D, Hasan T (2010) Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res 70:9319–9328

    Article  PubMed  CAS  Google Scholar 

  • Robertson FM, Ogasawara MA, Ye Z, Chu K, Pickei R, Debeb BG et al (2010) Imaging and analysis of 3D tumor spheroids enriched for a cancer stem cell phenotype. J Biomol Screen 15:820–829

    Article  PubMed  CAS  Google Scholar 

  • Rohrbach A, Stelzer EH (2001) Optical trapping of dielectric particles in arbitrary fields. J Opt Soc Am A Opt Image Sci Vis 18:839–853

    Article  PubMed  CAS  Google Scholar 

  • Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719

    Article  PubMed  CAS  Google Scholar 

  • Salim A, Giaccia AJ, Longaker MT (2004) Stem cell differentiation. Nat Biotechnol 22:804–806

    Article  PubMed  CAS  Google Scholar 

  • Santi PA, Johnson SB, Hillenbrand M, GrandPre PZ, Glass TJ, Leger JR (2009) Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. Biotechniques 46:287–294

    PubMed  CAS  Google Scholar 

  • Sätzler K, Eils R (1997) Resolution improvement by 3-D reconstructions from tilted views in axial tomography and confocal theta microscopy. Bioimaging 5:171–182

    Article  Google Scholar 

  • Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116:2377–2388

    Article  PubMed  CAS  Google Scholar 

  • Schneckenburger H, Weber P, Wagner M, Schickinger S, Richter V, Bruns T, Strauss WS, Wittig R (2012) Light exposure and cell viability in fluorescence microscopy. J Microsc 245:311–318

    Article  PubMed  CAS  Google Scholar 

  • Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6:e21303

    Article  PubMed  CAS  Google Scholar 

  • Sharma SV, Settleman J (2010) Exploiting the balance between life and death: targeted cancer therapy and “oncogenic shock”. Biochem Pharmacol 80:666–673

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Verma Y, Rao KD, Nair R, Gupta PK (2007) Imaging growth dynamics of tumour spheroids using optical coherence tomography. Biotechnol Lett 29:273–278

    Article  PubMed  CAS  Google Scholar 

  • Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sørensen J, Baldock R, Davidson D (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545

    Article  PubMed  CAS  Google Scholar 

  • Siebrasse JP, Grunwald D, Kubitscheck U (2007) Single-molecule tracking in eukaryotic cell nuclei. Anal Bioanal Chem 387:41–44

    Article  PubMed  CAS  Google Scholar 

  • Spencer VA, Xu R, Bissell MJ (2010) Gene expression in the third dimension: the ECM-nucleus connection. J Mammary Gland Biol Neoplasia 15:65–71

    Article  PubMed  Google Scholar 

  • Stein AM, Demuth T, Mobley D, Berens M, Sander LM (2007) A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J 92:356–365

    Article  PubMed  CAS  Google Scholar 

  • Stelzer EHK, Lindek S (1994) Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt Commun 111:536–547

    Article  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  PubMed  CAS  Google Scholar 

  • Sutherland RM, McCredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 46:113–120

    PubMed  CAS  Google Scholar 

  • Swoger J, Huisken J, Stelzer EH (2003) Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt Lett 28:1654–1656

    Article  PubMed  Google Scholar 

  • Swoger J, Verveer P, Greger K, Huisken J, Stelzer EH (2007) Multi-view image fusion improves resolution in three-dimensional microscopy. Opt Express 15:8029–8042

    Article  PubMed  Google Scholar 

  • Tabatabai M, Williams DK, Bursac Z (2005) Hyperbolastic growth models: theory and application. Theor Biol Med Model 2:14

    Article  PubMed  Google Scholar 

  • Timmins NE, Harding FJ, Smart C, Brown MA, Nielsen LK (2005) Method for the generation and cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. Cell Tissue Res 320:207–210

    Article  PubMed  CAS  Google Scholar 

  • Verveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EH (2007) High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 4:311–313

    PubMed  CAS  Google Scholar 

  • Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles ES (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29

    Article  PubMed  CAS  Google Scholar 

  • Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170:229–236

    Article  PubMed  CAS  Google Scholar 

  • Walpita D, Hay E (2002) Studying actin-dependent processes in tissue culture. Nat Rev Mol Cell Biol 3:137–141

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R, Bissell MJ (1998) Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci USA 95:14821–14826

    Article  PubMed  CAS  Google Scholar 

  • Weaver VM, Lelièvre S, Lakins JN, Chrenek MA, Jones JC, Giancotti F, Werb Z, Bissell MJ (2002) Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2:205–216

    Article  PubMed  CAS  Google Scholar 

  • Webb DJ, Horwitz AF (2003) New dimensions in cell migration. Nat Cell Biol 5:690–692

    Article  PubMed  CAS  Google Scholar 

  • Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ (2010) HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat 122:35–43

    Article  PubMed  CAS  Google Scholar 

  • Williams RM, Zipfel WR, Webb WW (2001) Multiphoton microscopy in biological research. Curr Opin Chem Biol 5:603–608

    Article  PubMed  CAS  Google Scholar 

  • Wohland T, Shi X, Sankaran J, Stelzer EH (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P (2003a) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Müller R, Borgmann S, Bröcker EB, Friedl P (2003b) Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102:3262–3269

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Spencer VA, Groesser DL, Bissell MJ (2010) Laminin regulates PI3K basal localization and activation to sustain STAT5 activation. Cell Cycle 9:4315–4322

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17:559–564

    Article  PubMed  CAS  Google Scholar 

  • Yuste R (2011) Imaging: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Zegers MM, O’Brien LE, Yu W, Datta A, Mostov KE (2003) Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol 13:169–176

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15:413–420

    Article  PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst H. K. Stelzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pampaloni, F., Ansari, N. & Stelzer, E.H.K. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 352, 161–177 (2013). https://doi.org/10.1007/s00441-013-1589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1589-7

Keywords

Navigation