Skip to main content

Advertisement

Log in

Spatial and temporal variation of natural recharge in the semi-arid valley of Aguascalientes, Mexico

Variation spatiale et temporelle de la recharge naturelle dans la vallée semiarided’Aguascalientes, Mexique

Variación espacial y temporal de la recarga natural en el valle semiárido de Aguascalientes, Mexico

墨西哥阿瓜斯卡连特斯州半干旱河谷天然补给的时空变化

Variação especial e temporal da recarga natural no vale semiárido de Aguascalientes, México

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The investigation involves a temporal and spatial analysis to characterize recharge in the Aguascalientes valley in central Mexico. The results are based on a two-part methodological strategy using a geospatial and numerical analysis. Results from the geospatial analysis are based on the analytical hierarchical process (AHP) method, which involves developing a zoning map that qualifies the conditions for groundwater recharge in the valley. In addition, one-dimensional numerical modeling based on the van Genuchten equation was applied for various soil column configurations to estimate the transit time of recharge through the vadose zone. The analysis was performed over a 20-year period from 1995 to 2015. The results of the geospatial analysis indicate that the optimal area for groundwater recharge is the lower zone of the valley, particularly the portion influenced by surface discontinuities. The shortest estimated period of recharge for water to pass through the vadose zone is approximately 4.25 years.

Résumé

L’étude implique une analyse spatio-temporelle pour caractériser la recharge dans la vallée d’Aguascalientes du centre du Mexique. Les résultats sont fondés sur une démarche méthodologique en deux parties, recourant à une analyse géospatiale et numérique. Les résultats de l’analyse géospatiale sont basés sur la méthode du processus hiérarchisation analytique (PHA), qui consiste à élaborer une carte de zonage qualifiant les conditions de la recharge des eaux souterraines dans la vallée. De plus, un modèle numérique uni-dimensionnel basé sur l’équation de Van Genuchten a été appliqué pour des configurations variées de colonne de sol, afin d’estimer le temps de transit de la recharge à travers la zone vadose. L’analyse a été réalisée sur une période de 20 ans, allant de 1995 à 2015. Les résultats de l’analyse géospatiale indiquent que la zone optimale pour la recharge des eaux souterraines est la partie basse de la vallée, particulièrement la portion influencée par des discontinuités de surface. Le temps de recharge estimé le plus court pour le passage de l’eau à travers la zone vadose est approximativement de 4.25 ans.

Resumen

La investigación involucra un análisis temporal y espacial para caracterizar la recarga en el Valle de Aguascalientes en México central. Los resultados se basan en una estrategia metodológica de dos partes utilizando análisis numérico y geoespacial. Los resultados del análisis geoespacial se basan en el método proceso analítico jerárquico (AHP), el cual involucra el desarrollo de un mapa de zonificación que califica las condiciones para la recarga en el valle. Adicionalmente, un modelo numérico unidimensional basado en la ecuación de van Genuchten se aplicó en varias configuraciones de columna de suelo para estimar el tiempo de tránsito de recarga a través de la zona vadosa. El análisis se aplicó en un periodo de 20 años desde 1995 hasta 2015. El resultado del análisis geoespacial indica que las áreas óptimas para la recarga de agua subterránea son la zona sur del valle, en particular la porción influenciada por las discontinuidades superficiales. El tiempo más corto estimado para la recarga de agua a través de la zona vadosa es de aproximadamente 4.25 años.

摘要

本研究涉及到了时空分析,以描述墨西哥中部阿瓜斯卡连特斯河谷补给的特征。结果基于采用地理空间和数值分析的两部分方法策略。地理空间分析得到的结果基于解析分层过程方法,这种方法涉及到绘制能够满足河谷地下水补给条件的分区图。此外,针对各种土柱配置应用基于van Genuchten方程式的一维数值模拟估算补给通过包气带的运移时间。对1995年到2015年20年长的情况进行了分析。地理空间分析结果表明,地下水补给的最优区域是河谷的下游,特别是受到表层不连续影响的区域。水通过包气带最短的补给时间估算为大约4.25

Resumo

A investigação envolve uma análise temporal e espacial para caracterizar a recarga no vale de Aguascalientes, no México central. Os resultados são baseados em uma estratégia metodológica de duas partes usando uma análise geoespacial e numérica. Os resultados da análise geoespacial são baseados no método do processo analítico hierárquico (AHP), que envolve o desenvolvimento de um mapa de zoneamento que qualifica as condições para recarga subterrânea no vale. Além disso, a modelagem numérica unidimensional baseada na equação de van Genuchten foi aplicada para várias configurações de colunas de solo para estimar o tempo de trânsito da recarga através da zona vadosa. A analise foi realizada ao longo de um período de 20 anos, de 1995 a 2015. Os resultados da análise geoespacial indicam que a área ideal para a recarga das águas subterrâneas é a zona inferior do vale, particularmente a porção influenciada por descontinuidades superficiais. O menor tempo estimado de recarga da água para passar pela zona vadosa é de aproximadamente 4.25 anos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allison GB, Cook PG, Barnett SR, Walker GR, Jolly ID, Hughes MW (1990) Land clearance and river salinization in the western Murray Basin Australia. J Hydrol (119):1–20

    Article  Google Scholar 

  • Bredehoeft JD, Belitz K, Sharp-Hansen S (1992) The hydrodynamics of the Big Horn Basin: a study of the role of faults. Am Assoc Pet Geol Bull 76:530–546

    Google Scholar 

  • Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. Am Soc Civil Eng (92):61–88

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Cao G, Scanlon BR, Han D, Zheng C (2016) Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. J Hydrol (537):260–270

    Article  Google Scholar 

  • Chowdhury A, Jha KM, Chowdary VM (2009) Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ Earth Sci 59(6):1209–1222

    Article  Google Scholar 

  • Coelho VHR, Montenegro S, Almeida CN, Silva BB, Oliveira LM, Gusmao ACV, Freitas ES, Montenegro AAA (2017) Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data. J Hydrol 548:1–15

    Article  Google Scholar 

  • COMSOL Multiphysics User's Guide (2013) Version 4.4, Comsol AB, Stockholm, Sweden

  • CONAGUA (2009) Actualización de la disponibilidad media anual de agua subterránea, acuífero (0101) Valle de Aguascalientes (Update on the average annual availability of groundwater, aquifer (0101) Aguascalientes Valley). Aguascalientes, 27 pp

  • Fenta AA, Kifle A, Gebreyohannes T, Hailu G (2015) Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeol J 23(1):195–206

    Article  Google Scholar 

  • Han D, Curriell MJ, Cao G, Hall B (2017) Alterations to groundwater recharge due to anthropogenic landscape change. J Hydrol 554:545–557

    Article  Google Scholar 

  • Healy R, Cook P (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10(1):91–109

    Article  Google Scholar 

  • Hernandez-Marin M, Pacheco-Martínez J, Burbey TJ, Carreón-Freyre DC, Ochoa-González GH, Campos-Moreno GE, de Lira-Gómez P (2017) Evaluation of subsurface infiltration and displacement in a subsidence-reactivated normal fault in the Aguascalientes Valley, Mexico. Environ Earth Sci 76:812

  • INEGI (2011) Datos generales de la situación de recarga de Aguascalientes (General data on the recharge situation in Aguascalientes). National Institute of Statistics and Geography, Aguascalientes

  • INEGI (2015a) Panorama sociodemográfico de Mexico 2015 (Sociodemographic outlook for Mexico 2015). National Institute of Statistics and Geography, Aguascalientes, 49 pp

  • INEGI (2015b) Anuario estadístico y geográfico de Aguascalientes 2015 (Statistical and geographic yearbook of Aguascalientes 2015). National Institute of Statistics and Geography, Aguascalientes, 385 pp

  • Orellana E (1982): Prospección geoeléctrica en corriente continua (Geo-electric prospecting with continuous current). Paraninfo, Madrid, 523 pp

  • Pacheco-Martínez J, Hernández-Marín M, Burbey TJ, González-Cervantes N, Ortíz-Lozano JA, Zermeño-de-León ME, Solís-Pinto A (2013) Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley. México Eng Geol 164:172–186

  • Pacheco-Martínez J, Cabral-Cano E, Wdowinski S, Hernández-Marín M, Ortíz-Lozano JA, Zermeño-de-León ME (2015a) Application of InSAR and gravimetry for land subsidence hazard zoning in Aguascalientes, Mexico. Remote Sens 7:17035–17050

    Article  Google Scholar 

  • Pacheco-Martínez J, Wdowinski S, Cabral-Cano E, Hernández-Marín M, Ortiz-Lozano JA, Oliver-Cabrera T, Solano-Rojas D, Havazli E (2015b) Application of InSAR and gravimetric surveys for developing construction codes in zones of land subsidence induced by groundwater extraction: case study of Aguascalientes, Mexico. Proc IAHS 372:121–127

    Article  Google Scholar 

  • POEA (2013) Periódico Oficial del Estado de Aguascalientes (Official newspaper of the State of Aguascalientes). H Ayuntamiento del Municipio de Aguascalientes. Plan de Acción Climática Municipal (PACMUN). http://www.ordenjuridico.gob.mx/Documentos/Estatal/Aguascalientes/Todos%20los%20Municipios/wo84747.pdf

  • Richards L (1931) Capillary conduction of liquids in porous media. Physics 1:318–333

    Article  Google Scholar 

  • Rosales D (2011) Caracterización de los “Tepetates” usados como materiales de sustitución en la ciudad de Querétaro (Characterization of “tepetates” used as substitution material in Queretaro city), Msc Thesis dissertation. Universidad Autónoma de Querétaro, Querétaro

    Google Scholar 

  • Saaty T (1980) The analytic hierarchy process. McGraw-Hill, New York

  • Scanlon B, Healy R, Cook P (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:W03437. https://doi.org/10.1029/2006WR005486

    Article  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176

    Article  Google Scholar 

  • Senanayake IP, Dissanayake DMDOK, Mayadunna BB, Weerasekera WL (2016) An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci Front 7(1):115–124

    Article  Google Scholar 

  • Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur. Turkey Hydrogeol J 13(5):826–834

    Article  Google Scholar 

  • Sibanda T, Nonner JC, Uhlenbrook S (2009) Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area. Zimbabwe Hydrogeol J 17(6):1427–1441

    Article  Google Scholar 

  • UNEP—United Nations Environment Programme (1992) World Atlas of Desertification. Oxford University Press, 69 pp

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am 44(5):892–898

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • Yin L, Hu G, Huang J, Wen D, Dong J, Wang X, Li H (2011) Groundwater-recharge estimation in the Ordos plateau, China: comparison of methods. Hydrogeol J 19(8): 1563–1575

    Article  Google Scholar 

  • Yuan R, Song X, Zhang Y, Han D, Wang S, Tang C (2011) Using major ions and stable isotopes to characterize recharge regime of a fault-influenced aquifer in Beiyishui River watershed, North China plain. J Hydrol 405(3–4):512–521

    Article  Google Scholar 

Download references

Acknowledgements

Lilia Guerrero, Alfredo Zermeño and Lorena Rodriguez are thankful for financial support from Conacyt. The authors are also grateful for the outstanding comments and suggestions from three anonymous reviewers, which greatly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Hernández-Marín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Marín, M., Guerrero-Martínez, L., Zermeño-Villalobos, A. et al. Spatial and temporal variation of natural recharge in the semi-arid valley of Aguascalientes, Mexico. Hydrogeol J 26, 2811–2826 (2018). https://doi.org/10.1007/s10040-018-1819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1819-x

Keywords

Navigation