Skip to main content
Log in

Insoluble but enzymatically active α-amylase from Bacillus licheniformis

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The gene encoding thermostable α-amylase from Bacillus licheniformis consisting of 483 amino acid residues (mature protein) was cloned and expressed in Escherichia coli under the control of T7 promoter. The analysis of the soluble and insoluble fractions after lyzing the host cells revealed that recombinant α-amylase was produced in insoluble aggregates. Despite being produced in the insoluble aggregates the recombinant enzyme was highly active with a specific activity of 408 U/mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAZy:

Carbohydrate-Active enZyme

CBB:

Coomassie brilliant blue

GHs:

glycoside hydrolases

IPTG:

isopropyl-β-D-thiogalactopyranoside

LB:

Luria Bertani

PAGE:

polyacrylamide gel electrophoresis

PCR:

polymerase chain reaction

SDS:

sodium dodecyl sulfate

References

  • Bertoldo C. & Antranikian G. 2002. Starch hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37 (Database issue): D233–D238.

    Article  PubMed  CAS  Google Scholar 

  • Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M. & Pandey A. 2006. Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol. Biotechnol. 44: 269–274.

    CAS  Google Scholar 

  • Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M., Sukumaran R.K. & Pandey A. 2008. Response surface methodology for the optimization of α-amylase production by Bacillus amyloliquefaciens. Biores. Technol. 99: 4597–4602.

    Article  CAS  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.

    PubMed  CAS  Google Scholar 

  • Hockney R.C. 1994. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12: 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Janecek S. 1997. α-Amylase family: molecular biology and evolution. Progr. Biophys. Mol. Bio. 67: 67–97.

    Article  CAS  Google Scholar 

  • Janecek S. & Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Janecek S., Svensson B. & MacGregor E.A. 2003. Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. Eur. J. Biochem. 270: 635–645.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen S., Vorgias C.E. & Antranikian G. 1997. Cloning, sequencing, characterization and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J. Biol. Chem. 272: 16335–16342.

    Article  PubMed  CAS  Google Scholar 

  • Kuriki T., Takata H., Yanase M., Ohdan K., Fujii K., Terada Y., Takaha T., Hondoh H., Matsuura Y. & Imanaka T. 2006. he concept of the α-amylase family: a rational tool for interconverting glucanohydrolases/glucanotransferases, and their specificities. J. Appl. Glycosci. 53: 155–161.

    CAS  Google Scholar 

  • Lin L.L. & Hsu W.H. 1997. Lactose-induced expression of Bacillus sp. TS-23 amylase gene in E. coli regulated by a T7 promoter. Lett. Appl. Microbiol. 24: 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Machovic M., Svensson B., MacGregor E.A. & Janecek S. 2005. A new clan of CBM families based on bioinformatics of starchbinding domains from families CBM20 and CBM21. FEBS J. 272: 497–513.

    Article  Google Scholar 

  • Machovic M. & Janecek S. 2006. The evolution of putative starchbinding domains. FEBS Lett. 580: 6349–6356.

    Article  PubMed  CAS  Google Scholar 

  • Marco J.L., Bataus L.A. & Valencina F.F. 1996. Purification and characterization of a truncated B. subtilis α-amylase produced by E. coli. Appl. Microbiol. Biotechnol. 44: 746–752.

    PubMed  CAS  Google Scholar 

  • Marston F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1–12.

    PubMed  CAS  Google Scholar 

  • Oslancova A. & Janecek S. 2002. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family de-fined by the fifth conserved sequence region. Cell. Mol. Life Sci. 59: 1945–1959.

    Article  PubMed  CAS  Google Scholar 

  • Park C.S., Chang C.C. & Kim J.Y. 1997. Expression, secretion, and processing of rice α-amylase in the Yarrowia lipolytica. J. Biol. Chem. 272: 6876–6881.

    Article  PubMed  CAS  Google Scholar 

  • Rashid N., Cornista J., Ezaki S., Fukui T., Atomi H. & Imanaka T. 2002. Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J. Bacteriol. 184: 777–784.

    Article  PubMed  CAS  Google Scholar 

  • Rashid N., Shimada Y., Ezaki S., Atomi H. & Imanaka T. 2001. Low-temperature lipase from a psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064–4069.

    Article  PubMed  CAS  Google Scholar 

  • Rivera M.H., Lopez-Munguia A., Soberon X. & Saab-Rincon G. 2003. α-Aamylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Protein Eng. 16: 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, ISBN 0-87969-309-6.

    Google Scholar 

  • Shahhoseini M., Ziaee A.A. & Ghaemi N. 2003. Expression and secretion of an α-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J. Appl. Microbiol. 95: 1250–1254.

    Article  PubMed  CAS  Google Scholar 

  • Sibakov M. 1986. High expression of Bacillus licheniformis α-amylase with Bacillus secretion vector. Eur. J. Biochem. 155:577–581.

    Article  PubMed  CAS  Google Scholar 

  • Sivaramakrishnan S., Gangadharan D., Nampoothiri K.M. & Pandey A. 2006. gα-Amylases from microbial sources — an overview on recent developments. Food Technol. Biotechnol. 44: 173–184.

    CAS  Google Scholar 

  • Speed M.A., Wang D.I.C. & King J. 1996. Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat. Biotechnol. 14: 1283–1287.

    Article  PubMed  CAS  Google Scholar 

  • Suominen I., Meyer P. & Tilgmann C. 1995. Effects of signal peptide mutations on processing of Bacillus stearothermophilus α-amylase in Escherichia coli. Microbiology 141: 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Tabor S. & Richardson C.C. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  • Thomas J.G. & Baneyx F. 1997. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Express. Purif. 11: 289–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeem Rashid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, N., Farooq, A., Ikram-ul-Haq et al. Insoluble but enzymatically active α-amylase from Bacillus licheniformis . Biologia 64, 660–663 (2009). https://doi.org/10.2478/s11756-009-0132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0132-5

Key words

Navigation