Skip to main content

Advertisement

Log in

The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

This study is focused on the comparison of soil structure and soil hydraulic properties of a Haplic Cambisol on paragneiss under two different land managements. Soil samples were taken from all diagnostic horizons (A, Bw and C) of the soil profile under the permanent grass cover (grassland) and under the conventional tillage (arable land). Basic soil properties were measured. Aggregate stability was assessed using the WSA index. Soil composition was evaluated using micromorphological images. Tension disk infiltrometers with two diameters of 2.22 and 10.25 cm (and applied pressure head of −2 cm) and Guelph permeameter were used to measure unsaturated and saturated hydraulic conductivities, respectively. Soil hydraulic properties were measured in the laboratory using the multistep outflow experiment, which was performed on the undisturbed 100 cm3 soil samples. Results showed that the unsaturated and saturated hydraulic conductivities measured in all horizons were lower at the arable land than conductivities at the grassland. The shapes of the soil water retention curves for A and Bw horizons were also different, indicating that soil below the grass contained larger fraction of the large capillary pores, which also corresponded to measured hydraulic conductivities and soil structure characteristics. Differences between both locations were caused by a negative impact of tillage (inflicting soil degradation) and positive influence of grass (increasing organic matter content and improving soil aggregation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmair S., Weiler M. & Nȕtzmann G. 2010. Benchmarking of two dual-permeability models under different land use and land cover. Vadose Zone J. 9: 226–237.

    Article  Google Scholar 

  • Bachmann J., Krüger J., Göbel M.-O. & Heinze S. 2016. Occurrence and spatial pattern of water repellency in a beech forest subsoil. J. Hydrol. Hydromech. 64: 100–110.

    Article  Google Scholar 

  • Bartlová J., Badalíková B., Pospíšilová L., Pokorný E. & Šarapatka B. 2015. Water stability of soil aggregates in different systems of tillage. Soil Water Res. 10: 147-154

  • Bormann H. & Klassen K. 2008. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma 145: 295–302.

    Article  Google Scholar 

  • Dohnal M., Dusek J. & Vogel T. 2010. Improving hydraulic conductivity estimates from Minidisk Infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J. 74: 804–811.

    Article  CAS  Google Scholar 

  • Elrick D. E., Reynolds W.D. & Tan K. A. 1989. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monit. Rew. 9: 184–193.

    Article  Google Scholar 

  • Flint A.L. & Flint L.E. 2002. Particle density, pp. 229–240. In: Dane J.H. & Topp G.C. (ds). Methods of Soil Analysis, Part 4 -Physical Methods, Soil Science Society of America, Inc. Madison, USA.

    Google Scholar 

  • Gardner W. R. 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci. 85: 228–232.

    Article  Google Scholar 

  • Gee G.W. & Or D. 2002. Particle-size analysis, pp. 255–294. In: Dane J.H. & Topp G.C. (eds), Methods of Soil Analysis, Part 4 — Physical Methods, Soil Science Society of America, Inc. Madison, USA.

    Google Scholar 

  • van Genuchten M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892–898.

    Article  Google Scholar 

  • Herbst M., Diekkrüger B. & Vereecken H. 2006. Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes. Geoderma 132: 206–221.

    Article  Google Scholar 

  • Horel Á., Tóth E., Gelybó G., Kása I., Bakacsi Z. & Farkas C. 2015. Effects of land use and management on soil hydraulic properties. Open Geoscience 1: 742–754.

    Google Scholar 

  • Huang M., Zettl J.D., Barbour S.L. & Pratt D. 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma 262: 285–293.

    Article  Google Scholar 

  • International Organization of Standardization, Standard of Soil quality — Determination of pH (ISO 10390:1994).

  • IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources No. 106. FAI, Rome.

    Google Scholar 

  • Jakšík O., Kodešová R., Kubiš A., Stehlíková I., Drábek O. & Kapicka A. 2015. Soil aggregate stability within morphologically diverse areas. Catena 127: 287–299.

    Article  CAS  Google Scholar 

  • Jirku V., Kodešová R., Nikodem A., Mühlhanselová M. & Żigová A. 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 204-205: 43–58.

    Article  CAS  Google Scholar 

  • Kelishadi H., Mosaddeghi M.R., Hajabassi M.A. & Ayoubi S. 2014. Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma 213: 426–434.

    Article  Google Scholar 

  • Kodešová R., Jirku V., Kodeš V., Mühlhanselová M., Nikodem A. & Žigová A. 2011. Soil structure and soil hydraulic properties of haplic Luvisol used as arable land and grassland. Soil Till. Res. 111: 154–161.

    Article  Google Scholar 

  • Kodešová R., Kocárek M., Kodeš V., Šimůnek J. & Kozák J. 2008. Impact of soil micromorphology features on water flow and herbicide transport in soils. Vadose Zone J. 7: 798–809.

    Article  CAS  Google Scholar 

  • Kodešová R., Němecek K., Kodeš V. & Žigová A. 2012. Using dye tracer for visualization of preferential flow at macro-and microscales. Vadose Zone J. 11, vzj2011.0088.

  • Kodešová R., Pavlu L., Kodeš V., Žigová A. & Nikodem A. 2007. Impact of spruce forest and grass vegetation cover on soil micromorphology and hydraulic properties of organic matter horizon. Biologia 62: 565–568.

    Article  Google Scholar 

  • Kodešová R., Rohošková M. & Žigová A. 2009. Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia 64: 550–554.

    Article  Google Scholar 

  • Kodešová R., Šimunek J., Nikodem A. & Jirku V. 2010. Estimation of parameters of the radially-symmetric dualpermeability model using tension disc infiltrometer and Guelph permeameter experiments. Vadose Zone J. 9: 213–225.ai]

    Article  Google Scholar 

  • Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences hydrophysical parameters and heterogeneity pf water flow in sandy soil. Pedosphere 21: 719–729.

    Article  CAS  Google Scholar 

  • Lichner L., Hallett P.D. & Orfanus T. 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology 3: 413–420.

    Article  Google Scholar 

  • Lipiec J., Kuś J., Słowińska-Jurkiewicz A. & Nosalewicz A. 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil Till. Res. 89: 210–220.

    Article  Google Scholar 

  • Lozano E., García-Orenes F., Bárcenas-Moreno G., Jiménez-Pinilla P., Mataix-Solera J., Arcenegui V., Morugán-Coronado A. & Mataix-Beneyto J. 2014. Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest. J. Hydrol. Hydromech. 62: 101–107.

    Article  Google Scholar 

  • Noellemeyer E., Frank F., Alvarez C., Morazzo G. & Quiroga A. 2008. Carbon content and aggregation related to soil physical and biological properties under a landuse sequence in the semiarid region of central Argentina. Soil Till. Res. 99: 179–190.

    Article  Google Scholar 

  • Nikodem A., Pavlu L., Kodešová R., Boruvka L. & Drábek O. 2013. Study of podzolization process under different vegetation cover in the Jizera Mountains region. Soil Water Res. 8: 1–13.

    Article  CAS  Google Scholar 

  • Matocha C.J., Grove J.H., Karathanasis T.D. & Vandiviere M. 2016. Changes in soil mineralogy due to nitrogen fertilization in an agroecosystem. Geoderma 263: 176–184.

    Article  CAS  Google Scholar 

  • Nimmo J.R. & Perkins K.S. 2002. Aggregate stability and size distribution, pp. 317–328. In: Dane J.H. & Topp G.C. (eds), Methods of Soil Analysis, Part 4 — Physical Methods. SSSA, Madison.

    Google Scholar 

  • Orfánus T., Stojkovová D., Rajkai K., Czachor H. & Sándor R. 2016. Spatial patterns of wetting characteristics in grassland sandy soil. J. Hydrol. Hydromech. 64: 167–175.

    Article  Google Scholar 

  • Orfánus T., Bedrna Z., Lichner L., Hallet P.D., Knava K. & Sebin M. 2008. Spatial variability of water repellency in pine forest soil. Soil Water Res. 3: 123–129.

    Article  Google Scholar 

  • Orfánus T., Dlapa P., Fodor N., Raikai K., Sandor R. & Novakova K. 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Till. Res. 125: 49–59.

    Article  Google Scholar 

  • Pagliai M. & Vignozzi N. 2002. The pore system as an indicator of soil quality. In: Pagliai M. & Jones R. (eds), Sustainable Land Management -Environmental Protection — A Soil Physical Approach. Advances in Geology 35: 71–82.

    Google Scholar 

  • Reynolds W.D. & Elrick D. E. 1991. Determination of hydraulic conductivity using a pension infiltrometer. Soil Sci. Soc. Am. J. 55: 633–639.

    Article  Google Scholar 

  • Reynolds W.D., Elrick D.E., Youngs E.G., Amoozegar A., Booltink H.W.G. & Bouma J. 2002. Saturated and fieldsaturated water flow parameters, pp. 797–878. In: Dane J. & Topp C. (eds), Methods of Soil Analysis. Part 4: Physical Methods. Soil Science Society of America, Inc., Madison, USA.

    Google Scholar 

  • Sándor R., Lichner L., Filep T., Balog K., Lehoczky É. & Fodor N. 2015. Spatial variability of hydrophysical properties of fallow sandy soils. Biologia 70: 1468–1473.

    Article  CAS  Google Scholar 

  • Schwartz R.C., Steven R.E. & Unger P.W. 2003. Soil hydraulic properties of cropland compared with reestablished and native grassland. Geoderma 116: 47–60.

    Article  Google Scholar 

  • Schwen A., Bodner G., Scholl P., Buchan G.D. & Loiskandl W. 2011. Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Till. Res. 113: 89–98.

    Article  Google Scholar 

  • Skukla M.K., Lal R., Owens L.B. & Urikefer P. 2003. Land use and management impact on structure and infiltration characteristics of soils in the North Appalachian region of Ohio. Soil Sci. 168: 167–177.

    Google Scholar 

  • Šimunek, J. van Genuchten M. Th. & Šejna M. 2008. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose Zone J. 7 (2): 587–600.

    Article  CAS  Google Scholar 

  • Skjemstad J. & Baldock J.A. 2008. Total and organic carbon, pp. 225–238. In: Carter M. (ed.), Soil Sampling and Methods of Analysis, (2nd Edition), Soil Science Society of Canada, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Soilmoisture Equipment Corp. 2008. Model 2800K1 Guelph Permeameter Operating Instructions. Soilmoisture Equipment Corp., Santa Barbara, CA.

    Google Scholar 

  • Stoops G. 2003. Guidelines for Analysis and Desription of Soils and Regolith Thin Sections. Soil Science Society of America, Inc. Madison, Wisconsin, USA, 184 pp.

    Google Scholar 

  • Watson K.W. & Luxmoore R.J. 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J. 50: 578–582.

    Article  Google Scholar 

  • Wooding R.A. 1968. Steady infiltration from a shallow circular pond. Water Resour. Res. 4: 1259–1273.

    Article  Google Scholar 

  • Zádorová T., Jakšík O., Kodešová R. & Penížek V. 2011. Influence of terrain attributes and soil properties on soil aggregate stability. Soil Water Res. 6: 111–119.

    Article  Google Scholar 

  • Zhang Z.F., Groenevelt P.H. & Parkin G.W. 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph permeameter. Soil Till. Res. 49: 219–221.

    Article  Google Scholar 

  • Zhang R. 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 61: 1024–1030.

    Article  CAS  Google Scholar 

  • Žigová A., Štastný M. & Kodešová R. 2013. Development of soils on paragneis and granite in the southearn part of Bohemia. Acta Geodyn. Geomater. 10: 85–95.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of the Czech Science Foundation grants no. 526/08/0434 and 13-12477S, and Dr. Žigová for taking micro-morphological images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Fér.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fér, M., Kodešová, R., Nikodem, A. et al. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate. Biologia 71, 1144–1150 (2016). https://doi.org/10.1515/biolog-2016-0133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0133

Key words

Navigation