Skip to main content

Advertisement

Log in

Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

A study of differences in the water chemistry and macroinvertebrate composition after a decade was performed in a strongly acidified mountain stream in the Brdy Mountains. In 1999 and again in 2010 we carried out monthly sampling of stream water and macroinvertebrates. We detected significantly lower concentrations of SO4-, Ca, Mg, Na, NH+4, Cl- and F- ions, reactive aluminium (R-Al) and its toxic form Aln, and significantly higher concentrations of total organic carbon (TOC) between 1999 and 2010, possibly indicating recovery of this stream from acidification, even though there was no significant difference in pH. The signs of a biological recovery from acidification included the first occurrences of less acid-tolerant macroinvertebrate taxa: the stonefly Diura bicaudata and the caddisfly Rhyacophila sp. We observed higher taxonomic richness in 2010 compared to 1999 and found several species typical of standing waters plus a few rare species. This could partly be attributed to the effects of logging in the catchment. If recovery from acidification continues, we expect a return of other less acid-tolerant taxa to this strongly acidified stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks J.L., Li J. & Herlihy A.T. 2007. Influence of clearcut logging, flow duration, and season on emergent aquatic insects in headwater streams of the Central Oregon Coast Range. J. North Am. Benthol. Soc. 26(4): 620–632. DOI: Benthol. Soc. 26 (4): 620–632. DOI: https://doi.org/10.1899/06-104.1

    Article  Google Scholar 

  • Boukal D.S., Boukal M., Fikáček M., Hájek J., Klečka J., Skalický S., Šťastný J. & Trávníček D. 2007. Katalog vodních brouků České republiky. Catalogue of water beetles of the Czech Republic (Coleoptera: Sphaeriusidae, Gyrinidae, Haliplidae, Noteridae, Hygrobiidae, Dytiscidae, Helophoridae, Georissi-dae, Hydrochidae, Spercheidae, Hydrophilidae, Hydraenidae, Scirtidae, Elmidae, Dryopidae, Limnichidae, Heteroceridae, Psephenidae). Klapalekiana 43(Suppl.): 1–289.

    Google Scholar 

  • Boulton A.J. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biol. 48(7): 1173–1185. DOI: https://doi.org/10.1046/j.1365-2427.2003.01084.x

    Article  Google Scholar 

  • Braukmann U. & Biss R. 2004. Conceptual study - An improved method to assess acidification in German streams by using benthic macroinvertebrates. Limnologica 34(4): 433–450. DOI: https://doi.org/10.1016/S0075-9511(04)80011-2

    Article  CAS  Google Scholar 

  • Brooks R.T., Nislow K.H., Lowe W.H., Wilson M.K. & King D.I. 2012. Forest succession and terrestrial-aquatic biodiversity in small forested watersheds: a review of principles, relationships and implications for management. Forestry - Int. J. Forest Res. 85(3): 315–328. DOI: https://doi.org/10.1093/forestry/cps031

    Article  Google Scholar 

  • Dangles O.J. & Guérold F.A. 2000. Structural and functional responses of benthic macroinvertebrates to acid precipitation in two forested headwater streams (Vosges Mountains, northeastern France). Hydrobiologia 418(1): 25–31. DOI: https://doi.org/10.1023/A:1003805902634

    Article  Google Scholar 

  • Driscoll C.T. 1984. A procedure for the fractionation of the aqueous aluminum in dilute acidic waters. Int. J. Envir. Anal. Chem. 16: 267–283. DOI: https://doi.org/10.1080/03067318408076957

    Article  CAS  Google Scholar 

  • Driscoll C.T. 1985. Aluminum in acidic surface waters: Chemistry, transport and effects. Envir. Health Perspect. 63: 93–104. DOI: https://doi.org/10.2307/3430034

    Article  CAS  Google Scholar 

  • Fjellheim A. & Raddum G.G. 1990. Acid precipitation: Biological monitoring of streams and lakes. Sci. Total Envir. 96(1-2): 57–66. DOI: https://doi.org/10.1016/0048-9697(90)90006-G

    Article  CAS  Google Scholar 

  • Frost S., Huni A. & Kershaw W.E. 1971. Evaluation of kicking technique for sampling stream bottom fauna. Can. J. Zool. 49: 167–173. DOI: https://doi.org/10.1139/z71-026

    Article  Google Scholar 

  • Garmo Ø.A., Skjelkvåle B.L., de Wit H.A., Colombo L., Curtis C., Fölster J., Hoffmann A., Hruška J., Høgåsen T., Jeffries D.S., Keller W.B., Krám P., Majer V., Monteith D.T., Pater-son A.M., Rogora M., Rzychon D., Steingruber S., Stoddard J.L., Vuorenmaa J. & Worsztynowicz A. 2014. Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water, Air, and Soil Pollution 225(3): 1880. DOI: https://doi.org/10.1007/s11270-014-1880-6

    Article  CAS  Google Scholar 

  • Gray C., Hildrew A.G., Lu X., Ma A., McElroy D., Monteith D., O’Gorman E., Shilland E. & Woodward G. 2016. Recovery and nonrecovery of freshwater food webs from the effects of acidification. Adv. Ecol. Res. 55: 475–534. DOI: https://doi.org/10.1016/bs.aecr.2016.08.009

    Article  Google Scholar 

  • Guérold F., Vein D., Jacquemin G. & Pihan J.C. 1995: The macroinvertebrate communities of streams draining a small granitic catchment exposed to acidic precipitations (Vosges Mountains, northeastern France). Hydrobiologia 300/301: 141–148. DOI: https://doi.org/10.1007/BF00024456

    Article  Google Scholar 

  • Hardekopf D.W., Horecký J., Kopáček J. & Stuchlík E. 2008. Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic). Hydrol. Earth Syst. Sci. 12: 479–490. DOI: https://doi.org/10.5194/hess-12-479-2008

    Article  CAS  Google Scholar 

  • Horecký J. 2003. Zhodnocení vlivu kyselé atmosférické depozice na chemismus a oživení horských potoků v ČR [Evaluation of the impact of acid atmospheric deposition on chemistry and biology of mountain streams in the Czech Republic]. Charles University in Prague, Faculty of Science, PhD thesis, 69 pp.

    Google Scholar 

  • Horecký J., Rucki J., Krám P., Křeček J., Bitušík P., Špaček J. & Stuchlík E. 2013. Differences in benthic macroinvertebrate structure of headwater streams with extreme hydrochemistry. Biologia 68(2): 303–313. DOI: https://doi.org/10.2478/s11756-013-0156-8

    Article  CAS  Google Scholar 

  • Horecký J., Stuchlík E., Chvojka P., Bitušík P., Liška M., Pšenáková P. & Špaček J. 2002. Effects of acid atmospheric deposition on chemistry and benthic macroinvertebrates of forest streams in the Brdy Mts (Czech Republic). Acta Soc. Zool. Bohem. 66: 189–203.

    Google Scholar 

  • Horecký J., Stuchlík E., Chvojka P., Hardekopf D.W., Mihalje-vič M. & Špaček J. 2006. Macroinvertebrate community and chemistry of the most atmospherically acidified streams in the Czech Republic. Water, Air, and Soil Pollution 173: 261–272. DOI: https://doi.org/10.1007/s11270-005-9071-0

    Article  CAS  Google Scholar 

  • Hruška J., Krám P., McDowell W.H. & Oulehle F. 2009. Increased dissolved organic carbon (DOC) in Central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Envir. Sci. Technol. 43: 4320–4326. DOI: https://doi.org/10.1021/es803645w

    Article  CAS  Google Scholar 

  • Hruška J., Krám P., Moldan F., Oulehle F., Evans C.D., Wright R.F., Kopáček J. & Cosby B.J. 2014. Changes in soil dissolved organic carbon affect reconstructed history and projected future trends in surface water acidification. Water, Air, and Soil Pollution 225: 2015. DOI: https://doi.org/10.1007/s11270-014-2015-9

    Article  CAS  Google Scholar 

  • Hruška J., Moldan F. & Krám P. 2002. Recovery from acidification in central Europe - observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic. Envir. Pollut. 120: 261–274. DOI: https://doi.org/10.1016/S0269-7491(02)00149-5

    Article  Google Scholar 

  • Kopáček J., Fluksová H., Hejzlar J., Kaňa J., Porcal P. & Turek J. 2017. Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment. Sci. Total Envir. 584-585: 971–981. DOI: https://doi.org/10.1016/j.scitotenv.2017.01.148

    Article  CAS  Google Scholar 

  • Kopáček J., Fluksová H., Hejzlar J., Kaňa J., Porcal P., Turek J. & Zaloudík J. 2013. Chemistry of tributaries to Plešné and Čertovo lakes during 1998–2012. Silva Gabreta 19(3): 105–137.

    Google Scholar 

  • Kopáček J., Hejzlar J., Kaňa J., Porcal P. & Turek J. 2016. The sensitivity of water chemistry to climate in a forested, nitrogen-saturated catchment recovering from acidification. Ecol. Indic. 63: 196–208. DOI: https://doi.org/10.1016/j.ecolind.2015.12.014

    Article  CAS  Google Scholar 

  • Kopáček J., Hejzlar J. & Mosello R. 2000. Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Res. 34: 3598–3606. DOI: https://doi.org/10.1016/S0043-1354(00)00109-3

    Article  Google Scholar 

  • Kopáček J., Stuchlík E., Veselý J., Schaumburg J., Anderson I.C., Fott J., Hejzlar J. & Vrba J. 2002. Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water, Air and Soil Pollution, Focus 2: 91–114. DOI: https://doi.org/10.1023/A:1020190205652

    Article  Google Scholar 

  • Kopáček J. & Veselý J. 2005. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmosph. Envir. 39: 2179–2188. DOI: https://doi.org/10.1016/j.atmosenv.2005.01.002

    Article  CAS  Google Scholar 

  • Kopáček J., Veselý J. & Stuchlík E. 2001. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the industrial revolution (1850-2000). Hydrol. Earth Syst. Sci. 5: 391–405. DOI: https://doi.org/10.5194/hess-5-391-2001

    Article  Google Scholar 

  • Křeček J. & Hořická Z. 2001. Degradation and recovery of mountain watersheds: the Jizera Mountains, Czech Republic. Una-sylva 207: 43–49.

    Google Scholar 

  • Křeček J., Hořická Z. & Nováková J. 2006. Role of grassland ecosystems in protection of forested wetlands, pp. 49–58. DOI: https://doi.org/10.1007/1-4020-4228-0-4. In: Krecek J. & Haigh M. (eds), Environmental Role of Wetlands in Headwaters Book Series: NATO Science Series IV Earth and Environmental Science 63, 347 pp. ISBN: 978-1-4020-4226-3

    Article  Google Scholar 

  • Kullberg A. 1992. Benthic macroinvertebrate community structure in 20 streams of varying pH and humic content. En-vir. Pollut. 78(1-3): 103–106. DOI: https://doi.org/10.1016/0269-7491(92) 90016-4

    Article  CAS  Google Scholar 

  • Lamačová A., Hruška J., Krám P., Stuchlík E., Farda A., Chuman T. & Fottová D. 2014. Runoff trends analysis and future projections of hydrological patterns in small forested catchments. Soil Water Res. 9(4): 169–181.

    Article  Google Scholar 

  • LaZerte B.D. 1984. Forms of aqueous aluminum in acidified catchments of central Ontario: A methodological analysis. Can. J. Fish Aquat. Sci. 41(5): 766–776. DOI: https://doi.org/10.1139/f84-089

    Article  CAS  Google Scholar 

  • Malcolm I.A., Gibbins C.N., Fryer R.J., Keay J., Tetzlaff D. & Soulsby C. 2014. The influence of forestry on acidification and recovery: Insights from long-term hydrochemi-cal and invertebrate data. Ecol. Indic. 37: 317–329. DOI: https://doi.org/10.1016/j.ecolind.2011.12.011

    Article  CAS  Google Scholar 

  • Monteith D.T., Hildrew A.G., Flower R.J., Raven P.J., Beaumont W.R.B., Collen P., Kreiser A.M., Shilland E.M. & Winterbottom J.H. 2005. Biological responses to the chemical recovery of acidified fresh waters in the UK. Envir. Pollut. 137: 83–101. DOI: https://doi.org/10.1016/j.envpol.2004.12.026

    Article  CAS  Google Scholar 

  • Monteith D.T., Stoddard J.L., Evans C.D., de Wit H.A., Forsius M., Høgåsen T., Wilander A., Skjelkvåle B.L., Jeffries D.S., Vuorenmaa J., Keller B., Kopáček J. & Veselý J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–540. DOI: https://doi.org/10.1038/nature06316

    Article  CAS  PubMed  Google Scholar 

  • Murphy J.F., Winterbottom J.H., Orton S., Simpson G.L., Shilland E.M. & Hildrew A.G. 2014. Evidence of recovery from acidification in the macroinvertebrate assemblages of UK fresh waters: A 20-year time series. Ecol. Indic. 37: 330–340. DOI: https://doi.org/10.1016/j.ecolind.2012.07.009

    Article  CAS  Google Scholar 

  • Oulehle F., Chuman T., Hruška J., Krám P., McDowell W.H., Myška O., Navrátil T. & Tesař M. 2017. Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry 132: 251–272. DOI: https://doi.org/10.1007/s10533-017-0298-9

    Article  CAS  Google Scholar 

  • QGIS Development Team 2014. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://doi.org/qgis.osgeo.org

    Google Scholar 

  • R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://doi.org/www.R-project.org/

    Google Scholar 

  • Reid D.J., Quinn J.M. & Wright-Stow A.E. 2010. Responses of stream macroinvertebrate communities to progressive forest harvesting: Influences of harvest intensity, stream size and riparian buffers. Forest Ecol. Manage. 260(10): 1804–1815. DOI: https://doi.org/10.1016/j.foreco.2010.08.025

    Article  Google Scholar 

  • Řezníčková P., Tajmrová L., Pařil P. & Zahrádková S. 2013. Effects of drought on the composition and structure of benthic macroinvertebrate assemblages - a case study. Acta Univ. Agricult. Silvicult. Mendel. Brun. 61(6): 1853–1865. DOI: https://doi.org/10.11118/actaun201361061853

    Article  Google Scholar 

  • Scheibová D. & Helešic J. 1999. Hydrobiological assessment of stream acidification in the Czech-Moravian highland, Czech Republic. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun. Biol. 25(1): 13–32.

    Google Scholar 

  • Soldán T., Zahrádková S., Helešic J., Dušek L. & Landa V. 1998. Distributional and quantitative patterns of Ephemeroptera and Plecoptera in the Czech Republic: A possibility of detection of long-term environmental changes of aquatic biotopes. Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Biol. 98: 1–305. ISBN: 80-210-1870-4

    Google Scholar 

  • Speirs D.C., Gurney W.S.C., Hildrew A.G. & Winterbottom J.H. 2000. Long-term demographic balance in the Broadstone stream insect community. J. Anim. Ecol. 69: 45–58. DOI: https://doi.org/10.1046/j.1365-2656.2000.00369.x

    Article  Google Scholar 

  • Stuchlík E., Appleby P., Bitušík P., Curtis C., Fott J., Kopáček J., Pražáková M., Rose N., Strunecký O. & Wright R.F. 2002. Reconstruction of long-term changes in lake water chemistry, zooplankton and benthos of a small acidified highmountain lake: MAGIC modelling and palaeolimnological analysis. Water, Air and Soil Pollution, Focus 2: 127–138. DOI: https://doi.org/10.1023/A:1020198424308

    Article  Google Scholar 

  • Stuchlík E., Hořická Z., Prchalová M., Křeček J. & Barica J. 1997. Hydrobiological investigation of three acidified reservoirs in the Jizera Mountains, the Czech Republic, during the summer stratification. Can. Tech. Rep. Fish. Aquat. Sci. 2155: 56–64.

    Google Scholar 

  • Svitok M., Novikmec M., Bitušík P., Máša B., Oboňa J., Očadlík M. & Michalková E. 2014. Benthic communities of low-order streams affected by acid mine drainages: A case study from Central Europe. Water 6: 1312–1338. DOI: https://doi.org/10.3390/w6051312

    Article  Google Scholar 

  • Ungermanová L., Kolaříková K., Stuchlík E., Senoo T., Horecký J., Kopáček J., Chvojka P., Tátosová J., Bitušík P. & Fjell-heim A. 2014. Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. Biologia 69(9): 1190–1201. DOI: https://doi.org/10.2478/s11756-014-0420-6

    Article  Google Scholar 

  • Veselý J. & Majer V. 1998. Hydrogeochemical mapping of Czech freshwaters. Bull. Czech Geol. Surv./Věstník Českého Geo-logického Ústavu 73: 183–192.

    Google Scholar 

  • Vrba J., Kopáček J., Fott J. & Nedbalová L. 2014. Forest die-back modified plankton recovery from acidic stress. AMBIO - J. Human Envir. 43(2): 207–217. DOI: https://doi.org/10.1007/s13280-013-0415-5

    Article  Google Scholar 

  • Waringer J. & Graf W. 1997. Atlas der Österreichischen Köcherfliegenlarven unter Einschluß der angrenzenden Gebiete. Facultas-Universitätsverlag, Wien, 287 pp. ISBN-10: 3850764117, ISBN-13: 978-3850764117

    Google Scholar 

  • Yoshimura M. 2012. Effects of forest disturbances on aquatic insect assemblages. Entomol. Sci. 15: 145–154. DOI: https://doi.org/10.1111/j.1479-8298.2011.00511.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Beneš.

Electronic supplementary material

11756_2017_72091049_MOESM1_ESM.pdf

The online version of this article (DOI: https://doi.org/10.1515/biolog-2017-0121) contains supplementary material, which is available to authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beneš, F., Horecký, J., Senoo, T. et al. Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream. Biologia 72, 1049–1058 (2017). https://doi.org/10.1515/biolog-2017-0121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0121

Key words

Navigation