Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: Implications for the genesis of posttraumatic epilepsy

Abstract

The delayed development of recurring seizures is a common consequence of traumatic head injury; the cause of such epilepsy is unknown. We demonstrate here that transection of the mature axons of CA3 pyramidal cells in hippocampal slice cultures leads to the formation by CA3 pyramidal cells of new axon collaterals that are immunoreactive with the growth-associated protein GAP-43. Individual CA3 cell axons had an elevated number of presynaptic boutons 14 days after the lesion, and dual intracellular recordings revealed an increased probability that any two CA3 pyramidal cells were connected by an excitatory synapse. Lesioned cultures were hyperexcitable and synaptic responses often displayed unusual prolonged polysynaptic components. We thus demonstrate that recurrent axon collaterals are newly sprouted by pyramidal cells as a consequence of axonal injury and suggest that this underlies the development of posttraumatic epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Caveness, W.F. et al. The nature of posttraumatic epilepsy. J. Neurosurg. 50, 545–553 (1979).

    Article  CAS  Google Scholar 

  2. Jennett, B. Posttraumatic epilepsy. Adv. Neural. 22, 137–147 (1979).

    CAS  Google Scholar 

  3. Majkowski, J. Posttraumatic epilepsy. in Comprehensive Epileptology. (eds. Mogens, D. & Lennart, G.) 281–288 (Raven, New York, 1990).

    Google Scholar 

  4. Willmore, J.L. Post-traumatic epilepsy: cellular mechanisms and implications for treatment. Epilepsia 31, S67–S73 (1990).

    Article  Google Scholar 

  5. Willmore, J.L. Post-traumatic seizures. Neural. Clin. 11, 823–834 (1993).

    Article  CAS  Google Scholar 

  6. Dugan, E.M. & Howell, J.M. Posttraumatic seizures. Emergency Med. Clin. N. Am. 12, 1081–1087 (1994).

    CAS  Google Scholar 

  7. Dichter, M.A. & Ayala, G.F. Cellular mechanisms of epilepsy: A status report. Science 237, 157–164 (1987).

    Article  CAS  Google Scholar 

  8. Traub, R.D. & Miles, R. Neuronol Networks of the Hippocampus. (Cambridge Univ. Press, Cambridge, UK, 1991).

  9. Ribak, C.E. & Reiffenstein, R.J. Selective inhibitory synapse loss in chronic cortical slabs: A morphological basis for epileptic susceptibility. Can. J. Physiol. Pharmacol. 60, 864–870 (1982).

    Article  CAS  Google Scholar 

  10. Prince, D.A. & Tseng, G.-F. Epileptogenesis in chronically injured cortex: In vitro studies. J. Neurophysiol. 69, 1276–1291 (1993).

    Article  CAS  Google Scholar 

  11. Hoffman, S. N., Salin, P.A. & Prince, D.A. Chronic neocortical epileptogenesis in vitro. J. Neurophysiol. 71, 1762–1773 (1994).

    Article  CAS  Google Scholar 

  12. Salin, P., Tseng, G.-F., Hoffman, S., Parada, I. & Prince, D. A. Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. J. Neurophysiol. 15, 8234–8245 (1995).

    CAS  Google Scholar 

  13. Gähwiler, B.H. Organotypic monolayer cultures of nervous tissue. J. Neumsci. Methods 4, 329–342 (1981).

    Article  Google Scholar 

  14. Meiri, K.F., Pfenninger, K.H. & Willard, M.B. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to a pp46, a major polypeptide of subCellular fraction enriched in growth cones. Proc. Natl. Acad. Sci. USA 83, 3537–3541 (1986).

    Article  CAS  Google Scholar 

  15. McGuire, C.B., Snipes, G.J. & Norden, J.J. Light-microscopic immunolocalization of the growth-and plasticity-associated GAP-43 in the developing rat brain. Dev. Brain Res. 41, 277–291 (1988).

    Article  CAS  Google Scholar 

  16. Skene, J.H.P. Axonal growth-associated proteins. Ann. Rev. Neurosci. 12, 127–156 (1989).

    Article  CAS  Google Scholar 

  17. Benowitz, L.I., Rodriguez, W.R., Neve, R.L. The pattern of GAP-43 immunostaining changes in the rat hippocampal formation during reactive synaptogenesis. Mol. Brain Res. 8, 17–23 (1990).

    Article  CAS  Google Scholar 

  18. Debanne, D., Guérineau, N.C., Gähwiler, B.H. & Thompson, S.M. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release. J. Physiol. (lond.) 491, 163–176 (1996).

    Article  CAS  Google Scholar 

  19. Scanziani, M., Debanne, D., Müller, M., Gähwiler, B.H. & Thompson, S.M. Role of excitatory amino acid and GABA, receptors in the generation of epileptiform activity in disinhibited hippocampal slice cultures. Neuroscience 61, 823–832 (1994).

    Article  CAS  Google Scholar 

  20. Cotman, C.W. & Nadler, J.V. Reactive synaptogenesis in the hippocampus. in Neuronal Plasticity, (ed. Cotman, C.W.) 227–269 (Raven, New York, 1978).

    Google Scholar 

  21. Laurberg, S. & Zimmer, J. Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats. J. Comp. Neural. 200, 433–459 (1981).

    Article  CAS  Google Scholar 

  22. Goldowitz, D., Scheff, S.W., Cotman, C.W. The specificity of reactive synaptogenesis: A comparative study in the adult rat hippocampal formation. Brain Res. 170, 427–441 (1979).

    Article  CAS  Google Scholar 

  23. Sutula, T., Xiao-Xian, H., Cavazos, J. & Scott, G. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 239, 1147–1150 (1988).

    Article  CAS  Google Scholar 

  24. Tauck, D.L. & Nadler, J.V. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosd. 5, 1016–1022 (1985).

    Article  CAS  Google Scholar 

  25. Golarai, G., Cavazos, J.E. & Sutula, T.P. Activation of the dentate gyrus by pentylenetetrazol evoked seizures induces mossy fiber synaptic reorganization. Brain Res. 593, 257–264 (1992).

    Article  CAS  Google Scholar 

  26. Represa, A., Jorquera, J., Le Gal La Salle, G. & Ben-Ari, Y. Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule Cell dendrites? Hippocampus 3, 257–268–(1993).

    Article  CAS  Google Scholar 

  27. Wuarin, J.-P. & Dudek, F.E. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J. Neurosd. 16, 4438–4448 (1996).

    Article  CAS  Google Scholar 

  28. Ramón Y Cajal, S. Estudios sobre la degeneración y regeneración del sistema nervioso. (Imprenta de Hijos de Nicolás Moya, Madrid, 1914).

    Google Scholar 

  29. Purpura, D.P. & Housepian, E.M. Morphological and physiological properties of chronically isolated immature neocortex. Exp. Neural. 4, 377–401 (1961).

    Article  CAS  Google Scholar 

  30. Perez, Y., Morin, F., Beaulieu, C. & Lacaille, J.-C. Axonal sprouting of CA1 pyramidal Cells in hyperexcitable hippocampal slices of kainate-treated rats. Eur. J. Neurosd. 8, 736–748 (1996).

    Article  CAS  Google Scholar 

  31. Povlischock, J.T. & Jenkins, L.W. Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol. 5, 415–426 (1995).

    Article  Google Scholar 

  32. Meberg, P.J. & Routtenberg, A. Selective expression of protein F1/(GAP-43) mRNA in pyramidal but not in granule cells of the hippocampus. Neuroscience 45, 721–733 (1991).

    Article  CAS  Google Scholar 

  33. Meldrum, B.S. & Corsellis, J.A.N. Epilepsy. in Greenfield's Neuropathology. (eds. Adams, J.H., Corsellis, J.A.N. & Duchen, L.W.) 921–950 (Wiley Medical, New York, 1984).

    Google Scholar 

  34. Sutula, T., Cascino, G., Cavazos, J., Parada, I. & Ramirez, L. Mossy fiber reorganization in the epileptic human temporal lobe. Ann. Neural. 26, 321–330 (1989).

    Article  CAS  Google Scholar 

  35. Gall, C.M. & Isackson, P.J. Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. Science 245, 758–761 (1989).

    Article  CAS  Google Scholar 

  36. Lowenstein, D.H., Seren, M.S. & Longo, F.M. Prolonged increases in neurotrophic activity associated with kainate-induced hippocampal synaptic reorganization. Neuroscience 56, 597–604 (1993).

    Article  CAS  Google Scholar 

  37. Lindvall, O., Kokaia, Z., Bengzon, J., Elmér, E. & Kokaia, M. Neurotrophins and brain insults. Trends Neurosd. 17, 490–496 (1994).

    Article  CAS  Google Scholar 

  38. Barde, Y.-A. Trophic factors and neuronal survival. Neuron 2, 1525–1534 (1989).

    Article  CAS  Google Scholar 

  39. Rashid, K. et al. A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy. Proc. Natl. Acad. Sci. USA 92, 9495–9499 (1995).

    Article  CAS  Google Scholar 

  40. Van der Zee, C.E.E.M. et al. Intraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats. J. Neurosci. 15, 5316–5323 (1995).

    Article  CAS  Google Scholar 

  41. Debanne, D., Guérineau, N.C., Gähwiler, B.H. & Thompson, S.M. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. J. Neurophysiol. 73, 1282–1294 (1995).

    Article  CAS  Google Scholar 

  42. Meiri, K.F., Bickerstaff, L.E. & Schwob, J.E. Monoclonal antibodies show that kinase C phosphorylation of GAP-43 during axonogenesis is both spatially and temporally restricted in vivo. J. Cell Biol. 112, 991–1005 (1991).

    Article  CAS  Google Scholar 

  43. Weidenmann, B. & Franke, W.W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41, 1017–1028 (1985).

    Article  Google Scholar 

  44. Streit, P., Thompson, S.M. & Gähwiler, B.H. Anatomical and physiological properties of GABAergic neurotransmission in organotypic slice cultures of rat hippocampus. Eur. J. Neurosd. 1, 603–615 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mckinney, R., Debanne, D., Gähwiler, B. et al. Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: Implications for the genesis of posttraumatic epilepsy. Nat Med 3, 990–996 (1997). https://doi.org/10.1038/nm0997-990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0997-990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing