The 2023 MDPI Annual Report has
been released!
 
20 pages, 1621 KiB  
Article
Risk Perception: Chemical Stimuli in Predator Detection and Feeding Behaviour of the Invasive Round Goby Neogobius melanostomus
by Natalia Z. Szydłowska, Pavel Franta, Marek Let, Vendula Mikšovská, Miloš Buřič and Bořek Drozd
Biology 2024, 13(6), 406; https://doi.org/10.3390/biology13060406 (registering DOI) - 2 Jun 2024
Abstract
The round goby Neogobius melanostomus is a notoriously invasive fish originating from the Ponto-Caspian region that in recent decades has successfully spread across the globe. One of its primary impacts is direct predation; in addition, when entering new ecosystems, the round goby is [...] Read more.
The round goby Neogobius melanostomus is a notoriously invasive fish originating from the Ponto-Caspian region that in recent decades has successfully spread across the globe. One of its primary impacts is direct predation; in addition, when entering new ecosystems, the round goby is likely to become a food resource for many higher native predators. However, little is known either about the indirect effects of predators on the round goby as prey or its feeding behaviour and activity. The non-consumptive effect of the presence of higher native predators presumably plays an important role in mitigating the impact of non-native round gobies as mesopredators on benthic invertebrate communities, especially when both higher- and mesopredators occupy the same habitat. We tested the food consumption probability and gut evacuation rates in round gobies in response to chemical signals from a higher predator, the European eel Anguilla anguilla. Gobies were placed individually in experimental arenas equipped with shelters and exposed to water from a tank in which (a) the higher predator had actively preyed on a heterospecific prey, earthworms Lumbricus sp. (the heterospecific treatment; HS); (b) the higher predator had fed on round gobies (the conspecific treatment; CS); or (c) the water was provided as a control treatment (C). To ensure exposure to the chemical stimuli, this study incorporated the application of skin extracts containing damaged-released alarm cues from the CS treatment; distilled water was used for the remaining treatments. No significant differences were observed in either the food consumption probability or gut evacuation rate in the tested treatments. Despite the lack of reaction to the chemical stimuli, round gobies did exhibit high evacuation rates (R = 0.2323 ± 0.011 h−1; mean ± SE) in which complete gut clearance occurred within 16 h regardless of the applied treatment. This rapid food processing suggests high efficiency and great pressure on resources regardless of the presence or not of a higher predator. These findings hint at the boldness of round gobies, which did not exhibit any pronounced threat sensitivity. This would seem to suggest great efficiency in food processing and a potential competitive advantage over local native species when colonising new ecosystems, irrespective of the presence of native predators. Our study did not detect any non-consumptive effect attributable to the higher predator, given that the feeding activity of the invasive round goby was not altered. Full article
(This article belongs to the Special Issue Risk Assessment for Biological Invasions)
Show Figures

Figure 1

21 pages, 8600 KiB  
Article
Contour Extraction of UAV Point Cloud Based on Neighborhood Geometric Features of Multi-Level Growth Plane
by Xijiang Chen, Qing An, Bufan Zhao, Wuyong Tao, Tieding Lu, Han Zhang, Xianquan Han and Emirhan Ozdemir
Drones 2024, 8(6), 239; https://doi.org/10.3390/drones8060239 (registering DOI) - 2 Jun 2024
Abstract
The extraction of UAV building point cloud contour points is the basis for the expression of a three-dimensional lightweight building outline. Previous unmanned aerial vehicle (UAV) building point cloud contour extraction methods have mainly focused on the expression of the roof contour, but [...] Read more.
The extraction of UAV building point cloud contour points is the basis for the expression of a three-dimensional lightweight building outline. Previous unmanned aerial vehicle (UAV) building point cloud contour extraction methods have mainly focused on the expression of the roof contour, but did not extract the wall contour. In view of this, an algorithm based on the geometric features of the neighborhood points of the region-growing clustering fusion surface is proposed to extract the boundary points of the UAV building point cloud. Firstly, the region growth plane is fused to obtain a more accurate segmentation plane. Then, the neighboring points are projected onto the neighborhood plane and a vector between the object point and neighborhood point is constructed. Finally, the azimuth of each vector is calculated, and the boundary points of each segmented plane are extracted according to the difference in adjacent azimuths. Experiment results show that the best boundary points can be extracted when the number of adjacent points is 24 and the difference in adjacent azimuths is 120. The proposed method is superior to other methods in the contour extraction of UAV buildings point clouds. Moreover, it can extract not only the building roof contour points, but also the wall contour points, including the window contour points. Full article
(This article belongs to the Special Issue Resilient UAV Autonomy and Remote Sensing)
Show Figures

Figure 1

14 pages, 2312 KiB  
Article
Comparison of RNA-Sequencing Methods for Degraded RNA
by Hiroki Ura and Yo Niida
Int. J. Mol. Sci. 2024, 25(11), 6143; https://doi.org/10.3390/ijms25116143 (registering DOI) - 2 Jun 2024
Abstract
RNA sequencing (RNA-Seq) is a powerful technique and is increasingly being used in clinical research and drug development. Currently, several RNA-Seq methods have been developed. However, the relative advantage of each method for degraded RNA and low-input RNA, such as RNA samples collected [...] Read more.
RNA sequencing (RNA-Seq) is a powerful technique and is increasingly being used in clinical research and drug development. Currently, several RNA-Seq methods have been developed. However, the relative advantage of each method for degraded RNA and low-input RNA, such as RNA samples collected in the field of clinical setting, has remained unknown. The Standard method of RNA-Seq captures mRNA by poly(A) capturing using Oligo dT beads, which is not suitable for degraded RNA. Here, we used three commercially available RNA-Seq library preparation kits (SMART-Seq, xGen Broad-range, and RamDA-Seq) using random primer instead of Oligo dT beads. To evaluate the performance of these methods, we compared the correlation, the number of detected expressing genes, and the expression levels with the Standard RNA-Seq method. Although the performance of RamDA-Seq was similar to that of Standard RNA-Seq, the performance for low-input RNA and degraded RNA has decreased. The performance of SMART-Seq was better than xGen and RamDA-Seq in low-input RNA and degraded RNA. Furthermore, the depletion of ribosomal RNA (rRNA) improved the performance of SMART-Seq and xGen due to increased expression levels. SMART-Seq with rRNA depletion has relative advantages for RNA-Seq using low-input and degraded RNA. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
19 pages, 3434 KiB  
Article
Emergence of Rarely Reported Extensively Drug-Resistant Salmonella Enterica Serovar Paratyphi B among Patients in East China
by Jiefu Peng, Jingchao Feng, Hong Ji, Xiaoxiao Kong, Jie Hong, Liguo Zhu and Huimin Qian
Antibiotics 2024, 13(6), 519; https://doi.org/10.3390/antibiotics13060519 (registering DOI) - 2 Jun 2024
Abstract
Background: In recent years, global concern over increasing multidrug resistance (MDR) among various Salmonella serotypes has grown significantly. However, reports on MDR Salmonella Paratyphi B remain scarce, let alone the extensively drug-resistant (XDR) strains. Methods: In this retrospective study, we investigated the isolates [...] Read more.
Background: In recent years, global concern over increasing multidrug resistance (MDR) among various Salmonella serotypes has grown significantly. However, reports on MDR Salmonella Paratyphi B remain scarce, let alone the extensively drug-resistant (XDR) strains. Methods: In this retrospective study, we investigated the isolates of Salmonella Paratyphi B in Jiangsu Province over the past decade and carried out antimicrobial susceptibility tests, then the strains were sequenced and bioinformatics analyses were performed. Results: 27 Salmonella Paratyphi B strains were identified, of which the predominant STs were ST42 (11), ST86 (10), and ST2814 (5). Among these strains, we uncovered four concerning XDR Salmonella Paratyphi B ST2814 strains (4/5) which were previously unreported. These alarmingly resistant isolates showed resistance to all three major antibiotic classes for Salmonella treatment and even the last resort treatment tigecycline. Bioinformatics analysis revealed high similarity between the plasmids harbored by these XDR strains and diverse Salmonella serotypes and Escherichia coli from China and neighboring regions. Notably, these four plasmids carried the ramAp gene responsible for multiple antibiotic resistance by regulating the AcrAB-TolC pump, predominantly originating from China. Additionally, a distinct MDR ST42(1/11) strain with an ICE on chromosome was also identified. Furthermore, phylogenetic analysis of global ST42/ST2814 isolates highlighted the regional specificity of these strains, with Jiangsu isolates clustering together with domestic isolates and XDR ST2814 forming a distinct branch, suggesting adaptation to local antibiotic pressures. Conclusions: This research underscores the pressing need for closely monitoring the MDR/XDR Salmonella Paratyphi B, particularly the emerging ST2814 strains in Jiangsu Province, to effectively curb its spread and protect public health. Moreover, surveillance should be strengthened across different ecological niches and genera to track resistance genes and horizontal gene transfer elements under the concept of “ONE HEALTH”. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
11 pages, 275 KiB  
Article
Communicating Arteries and Leptomeningeal Collaterals: A Synergistic but Independent Effect on Patient Outcomes after Stroke
by Sara Sablić, Krešimir Dolić, Danijela Budimir Mršić, Mate Čičmir-Vestić, Antonela Matana, Sanja Lovrić Kojundžić and Maja Marinović Guić
Neurol. Int. 2024, 16(3), 620-630; https://doi.org/10.3390/neurolint16030046 (registering DOI) - 2 Jun 2024
Abstract
The collateral system is a compensatory mechanism activated in the acute phase of an ischemic stroke. It increases brain perfusion to the hypoperfused area. Arteries of the Willis’ circle supply antegrade blood flow, while pial (leptomeningeal) arteries direct blood via retrograde flow. The [...] Read more.
The collateral system is a compensatory mechanism activated in the acute phase of an ischemic stroke. It increases brain perfusion to the hypoperfused area. Arteries of the Willis’ circle supply antegrade blood flow, while pial (leptomeningeal) arteries direct blood via retrograde flow. The aim of our retrospective study was to investigate the relationship between both collateral systems, computed tomography perfusion (CTP) values, and functional outcomes in acute stroke patients. Overall, 158 patients with anterior circulation stroke who underwent mechanical thrombectomy were included in the study. We analyzed the presence of communicating arteries and leptomeningeal arteries on computed tomography angiography. Patients were divided into three groups according to their collateral status. The main outcomes were the rate of functional independence 3 months after stroke (modified Rankin scale score, mRS) and mortality rate. Our study suggests that the collateral status, as indicated by the three groups (unfavorable, intermediate, and favorable), is linked to CT perfusion parameters, potential recuperation ratio, and stroke outcomes. Patients with favorable collateral status exhibited smaller core infarct and penumbra volumes, higher mismatch ratios, better potential for recuperation, and improved functional outcomes compared to patients with unfavorable or intermediate collateral status. Full article
(This article belongs to the Special Issue Treatment Strategy and Mechanism of Acute Ischemic Stroke)
21 pages, 5658 KiB  
Article
Synergistic Evolution of PM2.5 and O3 Concentrations: Evidence from Environmental Kuznets Curve Tests in the Yellow River Basin
by Guangzhi Qi, Yi Miao, Fucong Xie, Chao Teng, Chengxin Wang and Zhibao Wang
Sustainability 2024, 16(11), 4744; https://doi.org/10.3390/su16114744 (registering DOI) - 2 Jun 2024
Abstract
Air pollution, especially the synergistic pollution of PM2.5 and O3, poses a severe threat to human life and production. The synergistic formation mechanism of PM2.5 and O3 pollution is relatively confirmed, while research on their spatiotemporal synergy is [...] Read more.
Air pollution, especially the synergistic pollution of PM2.5 and O3, poses a severe threat to human life and production. The synergistic formation mechanism of PM2.5 and O3 pollution is relatively confirmed, while research on their spatiotemporal synergy is urgent. Based on remotely sensed interpretation data from 90 cities in the Yellow River Basin, we analyzed the synergistic evolution of PM2.5 and O3 concentrations during 2013–2020. Combined with the environmental Kuznets curve, we performed factor analysis using a panel regression model. The synergistic evolution pattern shows a gradual decrease in PM2.5 concentration and a gradual increase in O3 concentration. There is a strong spatial auto-correlation in the two pollutants’ concentrations. The relationship between economy and PM2.5 concentration shows an “N-shaped” curve, while that between O3 concentration and economic development presents an inverse “N-shaped” curve. The environmental Kuznets curve shows that the deterioration of O3 pollution takes place later than the mitigation of PM2.5 pollution. Various factors have obvious heterogeneous effects on PM2.5 and O3 concentrations. Meanwhile, the sensitivity effect of per capita GDP on PM2.5 concentration in the midstream region is stronger than that in the upstream region, while the sensitivity effect of per capita GDP on O3 concentration is strongest in the midstream region than that in upstream and downstream region. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

20 pages, 837 KiB  
Article
Period-1 Motions and Bifurcations of a 3D Brushless DC Motor System with Voltage Disturbance
by Bin Chen, Yeyin Xu, Yinghou Jiao and Zhaobo Chen
Appl. Sci. 2024, 14(11), 4820; https://doi.org/10.3390/app14114820 (registering DOI) - 2 Jun 2024
Abstract
Abstract: In this paper, the nonlinear dynamic system of a brushless DC motor with voltage disturbance is studied analytically via a generalized harmonic balance method. A truncated Fourier series with time-varying coefficients is utilized to represent the analytical variations of nonlinear currents [...] Read more.
Abstract: In this paper, the nonlinear dynamic system of a brushless DC motor with voltage disturbance is studied analytically via a generalized harmonic balance method. A truncated Fourier series with time-varying coefficients is utilized to represent the analytical variations of nonlinear currents and voltages within this dynamic system. Bifurcations of periodic currents and voltages are obtained, and their stability is discussed through eigenvalue analysis. The frequency–amplitude characteristics of periodic currents and voltages exhibit complexity in the frequency domain. Comparative illustrations are provided to contrast the analytical solutions with numerical outcomes for periodic currents and voltages. These analytical findings can be effectively employed for controlling the brushless DC motors experiencing voltage disturbances. Full article
(This article belongs to the Section Applied Physics General)
45 pages, 8843 KiB  
Article
Novel Insights in Soil Mechanics: Integrating Experimental Investigation with Machine Learning for Unconfined Compression Parameter Prediction of Expansive Soil
by Ammar Alnmr, Haidar Hosamo Hosamo, Chuangxin Lyu, Richard Paul Ray and Mounzer Omran Alzawi
Appl. Sci. 2024, 14(11), 4819; https://doi.org/10.3390/app14114819 (registering DOI) - 2 Jun 2024
Abstract
This paper presents a novel application of machine learning models to clarify the intricate behaviors of expansive soils, focusing on the impact of sand content, saturation level, and dry density. Departing from conventional methods, this research utilizes a data-centric approach, employing a suite [...] Read more.
This paper presents a novel application of machine learning models to clarify the intricate behaviors of expansive soils, focusing on the impact of sand content, saturation level, and dry density. Departing from conventional methods, this research utilizes a data-centric approach, employing a suite of sophisticated machine learning models to predict soil properties with remarkable precision. The inclusion of a 30% sand mixture is identified as a critical threshold for optimizing soil strength and stiffness, a finding that underscores the transformative potential of sand amendment in soil engineering. In a significant advancement, the study benchmarks the predictive power of several models including extreme gradient boosting (XGBoost), gradient boosting regression (GBR), random forest regression (RFR), decision tree regression (DTR), support vector regression (SVR), symbolic regression (SR), and artificial neural networks (ANNs and proposed ANN-GMDH). Symbolic regression equations have been developed to predict the elasticity modulus and unconfined compressive strength of the investigated expansive soil. Despite the complex behaviors of expansive soil, the trained models allow for optimally predicting the values of unconfined compressive parameters. As a result, this paper provides for the first time a reliable and simply applicable approach for estimating the unconfined compressive parameters of expansive soils. The proposed ANN-GMDH model emerges as the pre-eminent model, demonstrating exceptional accuracy with the best metrics. These results not only highlight the ANN’s superior performance but also mark this study as a groundbreaking endeavor in the application of machine learning to soil behavior prediction, setting a new benchmark in the field. Full article
22 pages, 2581 KiB  
Article
Effect of Cluster-Zone Leaf Removal at Different Stages on Cabernet Sauvignon and Marselan (Vitis vinifera L.) Grape Phenolic and Volatile Profiles
by Xuechen Yao, Yangpeng Wu, Yibin Lan, Yanzhi Cui, Tonghua Shi, Changqing Duan and Qiuhong Pan
Plants 2024, 13(11), 1543; https://doi.org/10.3390/plants13111543 (registering DOI) - 2 Jun 2024
Abstract
This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer [...] Read more.
This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer rainfall. The results indicated that cluster-zone leaf removal generally reduced the titratable acidity of both varieties, but did not affect the total soluble solids of grape berries. Leaf-removal treatments increased the anthocyanin and flavonol content of berries in both varieties. However, in Cabernet Sauvignon, leaf removal negatively affected the norisoprenoid compounds, with a more pronounced impact observed when the leaf removal was conducted at an early stage. This negative effect may be related to a decrease in the levels of violaxanthin and neoxanthin, potential precursors of vitisprine and β-damascenone. In contrast, the removal of leaves had no effect on the norisoprenoid aroma of Marselan grapes. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 4126 KiB  
Article
Under-Actuated Motion Control of Haidou-1 ARV Using Data-Driven, Model-Free Adaptive Sliding Mode Control Method
by Jixu Li, Yuangui Tang, Hongyin Zhao, Jian Wang, Yang Lu and Rui Dou
Sensors 2024, 24(11), 3592; https://doi.org/10.3390/s24113592 (registering DOI) - 2 Jun 2024
Abstract
We propose a data-driven, model-free adaptive sliding mode control (MFASMC) approach to address the Haidou-1 ARV under-actuated motion control problem with uncertainties, including external disturbances and parameter perturbations. Firstly, we analyzed the two main difficulties in the motion control of Haidou-1 ARV. Secondly, [...] Read more.
We propose a data-driven, model-free adaptive sliding mode control (MFASMC) approach to address the Haidou-1 ARV under-actuated motion control problem with uncertainties, including external disturbances and parameter perturbations. Firstly, we analyzed the two main difficulties in the motion control of Haidou-1 ARV. Secondly, in order to address these problems, a MFASMC control method was introduced. It is combined by a model-free adaptive control (MFAC) method and a sliding mode control (SMC) method. The main advantage of the MFAC method is that it relies only on the real-time measurement data of an ARV instead of any mathematical modeling information, and the SMC method guarantees the MFAC method’s fast convergence and low overshooting. The proposed MFASMC control method can maneuver Haidou-1 ARV cruising at the desired forward speed, heading, and depth, even when the dynamic parameters of the ARV vary widely and external disturbances exist. It also addresses the problem of under-actuated motion control for the Haidou-1 ARV. Finally, the simulation results, including comparisons with a PID method and the MFAC method, demonstrate the effectiveness of our proposed method. Full article
(This article belongs to the Special Issue Sensors, Modeling and Control for Intelligent Marine Robots)
Show Figures

Figure 1

17 pages, 575 KiB  
Article
Voices from Graduate School and the Workforce: Identified Student Outcomes from Completing a Multi-Semester Undergraduate Research Experience Capstone
by Blake C. Colclasure, Arian Alai, Kristina Quinn, Tyler Granberry, Erin L. Doyle and Tessa Durham Brooks
Educ. Sci. 2024, 14(6), 598; https://doi.org/10.3390/educsci14060598 (registering DOI) - 2 Jun 2024
Abstract
Recent reforms in undergraduate science education have highlighted the need for student-centered learning that challenges students to take ownership of the scientific process through conducting authentic research. As such, Undergraduate Research Experiences (UREs) have become more prevalent in higher education. However, extensive variations [...] Read more.
Recent reforms in undergraduate science education have highlighted the need for student-centered learning that challenges students to take ownership of the scientific process through conducting authentic research. As such, Undergraduate Research Experiences (UREs) have become more prevalent in higher education. However, extensive variations in the structures, durations, and contexts of UREs exist and long-term implications are not well documented. We used the Social Cognitive Career Theory to guide our exploration of student outcomes from completing a required three-semester capstone URE at a predominantly undergraduate institution located in the Midwest, United States. We sought to answer two central research questions: (1) What skills and competencies do alumni perceive to have gained from completing the URE capstone, and (2) What is the impact of the URE capstone on alumni success in the workforce and/or graduate school? We conducted in-depth, one-on-one interviews with 16 alumni who recently completed their undergraduate research capstone and who were currently in a science-based career or attending graduate school. Results indicate long-term benefits from URE capstones and are described through three primary themes: technical skill acquisition and future application, soft skill acquisition and future application, and scientific pursuits. Full article
23 pages, 11416 KiB  
Article
Orthologs of NOX5 and EC-SOD/SOD3: dNox and dSod3 Impact Egg Hardening Process and Egg Laying in Reproductive Function of Drosophila melanogaster
by Eva Louise Steinmetz, Annika Scherer, Célestine Calvet and Uli Müller
Int. J. Mol. Sci. 2024, 25(11), 6138; https://doi.org/10.3390/ijms25116138 (registering DOI) - 2 Jun 2024
Abstract
The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the ineffectiveness of the antioxidative defense mechanisms. Primary sources of ROS are respiratory electron transfer and the activity of NADPH oxidases (NOX) while [...] Read more.
The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the ineffectiveness of the antioxidative defense mechanisms. Primary sources of ROS are respiratory electron transfer and the activity of NADPH oxidases (NOX) while superoxide dismutases (SOD) are the main key regulators that control the levels of ROS and reactive nitrogen species intra- and extracellularly. Because of their central role SODs are the subject of research on human ovarian dysfunction but sample acquisition is low. The high degree of cellular and molecular similarity between Drosophila melanogaster ovaries and human ovaries provides this model organism with the best conditions for analyzing the role of ROS during ovarian function. In this study we clarify the localization of the ROS-producing enzyme dNox within the ovaries of Drosophila melanogaster and by a tissue-specific knockdown we show that dNox-derived ROS are involved in the chorion hardening process. Furthermore, we analyze the dSod3 localization and show that reduced activity of dSod3 impacts egg-laying behavior but not the chorion hardening process. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine)
Show Figures

Figure 1

15 pages, 4325 KiB  
Article
Real-World Outcomes of a Rhythm Control Strategy for Atrial Fibrillation Patients with Reduced Left Ventricular Ejection Fraction (<50%)
by Ji-Hoon Choi and Chang Hee Kwon
J. Clin. Med. 2024, 13(11), 3285; https://doi.org/10.3390/jcm13113285 (registering DOI) - 2 Jun 2024
Abstract
Background/Objectives: The effectiveness of a rhythm control strategy in patients with atrial fibrillation (AF) and reduced left ventricular ejection fraction (LVEF < 50%) in real-world practice remains uncertain. Our objective was to evaluate the real-world outcomes of a rhythm control strategy in [...] Read more.
Background/Objectives: The effectiveness of a rhythm control strategy in patients with atrial fibrillation (AF) and reduced left ventricular ejection fraction (LVEF < 50%) in real-world practice remains uncertain. Our objective was to evaluate the real-world outcomes of a rhythm control strategy in patients with AF and reduced LVEF, focusing on changes in LV systolic function and brain natriuretic peptide (BNP) levels. Methods: The study retrospectively reviewed the medical records of 80 patients with concurrent AF and reduced LVEF who underwent rhythm control therapy between March 2015 and December 2021. Results: The patients had an average age of 63.6 years and an initial LVEF of 34.3%. Sinus rhythm was restored using anti-arrhythmic drugs (38, 47.5%) or electrical cardioversion (42, 52.5%). Over a follow-up period of 53.0 months, AF recurred in 65% of patients, with 57.7% undergoing catheter ablation. Significant improvements were noted in LVEF (from 34.3% to 55.1%, p < 0.001) and BNP levels (from 752 pg/mL to 72 pg/mL, p < 0.001) at the last follow-up. Nearly all patients (97.5%) continued with the rhythm control strategy during the follow-up period. Conclusions: In real-world settings, a rhythm control strategy proves to be feasible and effective for improving LVEF and reducing BNP levels in AF patients with reduced LVEF. Full article
Show Figures

Figure 1

11 pages, 1999 KiB  
Article
A Novel Approach for Temperature-Induced Ball Grid Array Collapse Observation
by Kristina Sorokina, Karel Dušek and David Bušek
Materials 2024, 17(11), 2693; https://doi.org/10.3390/ma17112693 (registering DOI) - 2 Jun 2024
Abstract
This study presents a new approach to investigating the impact of repeated reflow on the failure of ball grid array (BGA) packages. The issue with the BGA package collapse is that the repeated reflow can lead to short circuits, particularly for BGAs with [...] Read more.
This study presents a new approach to investigating the impact of repeated reflow on the failure of ball grid array (BGA) packages. The issue with the BGA package collapse is that the repeated reflow can lead to short circuits, particularly for BGAs with a very fine pitch between leads. A novel approach was developed to measure the collapse of BGA solder balls during the melting and solidification process, enabling in situ measurements. The study focused on two types of solders: Sn63Pb37 as a reference, and the commonly used SAC305, with measurements taken at various temperatures. The BGA samples were subjected to three different heating/cooling cycles in a thermomechanical analyzer (TMA) at temperatures of 250 °C, 280 °C, and 300 °C, with a subsequent cooling down to 100 °C. The results obtained from the TMA indicated differences in the collapse behavior of both BGA solder alloys at various temperatures. Short circuits between neighboring leads (later confirmed by an X-ray analysis) were also recognizable on the TMA. The novel approach was successfully developed and applied, yielding clear insights into the behavior of solder balls during repeated reflow. Full article
28 pages, 3300 KiB  
Article
Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1
by Chuda Chittasupho, Sonthaya Umsumarng, Kamonwan Srisawad, Punnida Arjsri, Rungsinee Phongpradist, Weerasak Samee, Wipawan Tingya, Chadarat Ampasavate and Pornngarm Dejkriengkraikul
Pharmaceutics 2024, 16(6), 751; https://doi.org/10.3390/pharmaceutics16060751 (registering DOI) - 2 Jun 2024
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, poses a significant global health threat. The spike glycoprotein S1 of the SARS-CoV-2 virus is known to induce the production of pro-inflammatory mediators, contributing to hyperinflammation in COVID-19 patients. Triphala, an ancient Ayurvedic remedy composed of dried [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, poses a significant global health threat. The spike glycoprotein S1 of the SARS-CoV-2 virus is known to induce the production of pro-inflammatory mediators, contributing to hyperinflammation in COVID-19 patients. Triphala, an ancient Ayurvedic remedy composed of dried fruits from three plant species—Emblica officinalis (Family Euphorbiaceae), Terminalia bellerica (Family Combretaceae), and Terminalia chebula (Family Combretaceae)—shows promise in addressing inflammation. However, the limited water solubility of its ethanolic extract impedes its bioavailability. In this study, we aimed to develop nanoparticles loaded with Triphala extract, termed “nanotriphala”, as a drug delivery system. Additionally, we investigated the in vitro anti-inflammatory properties of nanotriphala and its major compounds, namely gallic acid, chebulagic acid, and chebulinic acid, in lung epithelial cells (A549) induced by CoV2-SP. The nanotriphala formulation was prepared using the solvent displacement method. The encapsulation efficiency of Triphala in nanotriphala was determined to be 87.96 ± 2.60% based on total phenolic content. In terms of in vitro release, nanotriphala exhibited a biphasic release profile with zero-order kinetics over 0–8 h. A549 cells were treated with nanotriphala or its active compounds and then induced with 100 ng/mL of spike S1 subunit (CoV2-SP). The results demonstrate that chebulagic acid and chebulinic acid are the active compounds in nanotriphala, which significantly reduced cytokine release (IL-6, IL-1β, and IL-18) and suppressed the expression of inflammatory genes (IL-6, IL-1β, IL-18, and NLRP3) (p < 0.05). Mechanistically, nanotriphala and its active compounds notably attenuated the expression of inflammasome machinery proteins (NLRP3, ASC, and Caspase-1) (p < 0.05). In conclusion, the nanoparticle formulation of Triphala enhances its stability and exhibits anti-inflammatory properties against CoV2-SP-induction. This was achieved by suppressing inflammatory mediators and the NLRP3 inflammasome machinery. Thus, nanotriphala holds promise as a supportive preventive anti-inflammatory therapy for COVID-19-related chronic inflammation. Full article
17 pages, 5189 KiB  
Article
Precipitation Simulation and Dynamic Response of a Transmission Line Subject to Wind-Driven Rain during Super Typhoon Lekima
by Jianping Sun, Mingfeng Huang, Sunce Liao and Wenjuan Lou
Appl. Sci. 2024, 14(11), 4818; https://doi.org/10.3390/app14114818 (registering DOI) - 2 Jun 2024
Abstract
Typhoons bring great damages to transmission line systems located in coastal areas. Strong wind and extreme precipitation are the main sources of damaging effects. Transmission lines suffered from wind-driven rain exhibit more susceptibility to damage due to the coupled effect of wind and [...] Read more.
Typhoons bring great damages to transmission line systems located in coastal areas. Strong wind and extreme precipitation are the main sources of damaging effects. Transmission lines suffered from wind-driven rain exhibit more susceptibility to damage due to the coupled effect of wind and rainwater. This paper presents an integrated numerical simulation framework based on mesoscale WRF model, multiphase CFD model and FEM model to analyze the motions of a transmission line subjected to coupled wind and rain loads during typhoon events. A full-scale transmission line in Zhoushan Island is employed to demonstrate the effectiveness of the proposed framework by simulating typhoon evolution in terms of wind fields and rainfall, solving the coupled wind and rain fields around the conductor and predicting the dynamic responses of the transmission line during Super Typhoon Lekima in 2019. The results show that the horizontal displacements of the transmission line under the joint actions of wind and rain increase approximately 17%–18% compared to those of wind loads only. It is important to consider the coupled effects of wind-driven rain on conductors in the design of transmission lines under typhoon conditions. Full article
14 pages, 1143 KiB  
Article
Optimizing Underwater Image Restoration and Depth Estimation with Light Field Images
by Bo Xiao, Xiujing Gao and Hongwu Huang
J. Mar. Sci. Eng. 2024, 12(6), 935; https://doi.org/10.3390/jmse12060935 (registering DOI) - 2 Jun 2024
Abstract
Methods based on light field information have shown promising results in depth estimation and underwater image restoration. However, improvements are still needed in terms of depth estimation accuracy and image restoration quality. Previous work on underwater image restoration employed an image formation model [...] Read more.
Methods based on light field information have shown promising results in depth estimation and underwater image restoration. However, improvements are still needed in terms of depth estimation accuracy and image restoration quality. Previous work on underwater image restoration employed an image formation model (IFM) that overlooked the effects of light attenuation and scattering coefficients in underwater environments, leading to unavoidable color deviation and distortion in the restored images. Additionally, the high blurriness and associated distortions in underwater images make depth information extraction and estimation very challenging. In this paper, we refine the light propagation model and propose a method to estimate the attenuation and backscattering coefficients of the underwater IFM. We simplify these coefficients into distance-related functions and design a relationship between distance and the darkest channel to estimate the water coefficients, effectively suppressing color deviation and distortion in the restoration results. Furthermore, to increase the accuracy of depth estimation, we propose using blur cues to construct a cost for refocusing in the depth direction, reducing the impact of high signal-to-noise ratio environments on depth information extraction, and effectively enhancing the accuracy and robustness of depth estimation. Finally, experimental comparisons show that our method achieves more accurate depth estimation and image restoration closer to real scenes compared to state-of-the-art methods. Full article
(This article belongs to the Special Issue Underwater Engineering and Image Processing)
17 pages, 2826 KiB  
Article
Analysis of the Effectiveness of Model, Data, and User-Centric Approaches for Chat Application: A Case Study of BlenderBot 2.0
by Chanjun Park, Jungseob Lee, Suhyune Son, Kinam Park, Jungsun Jang and Heuiseok Lim
Appl. Sci. 2024, 14(11), 4821; https://doi.org/10.3390/app14114821 (registering DOI) - 2 Jun 2024
Abstract
BlenderBot 2.0 represents a significant advancement in open-domain chatbots by incorporating real-time information and retaining user information across multiple sessions through an internet search module. Despite its innovations, there are still areas for improvement. This paper examines BlenderBot 2.0’s limitations and errors from [...] Read more.
BlenderBot 2.0 represents a significant advancement in open-domain chatbots by incorporating real-time information and retaining user information across multiple sessions through an internet search module. Despite its innovations, there are still areas for improvement. This paper examines BlenderBot 2.0’s limitations and errors from three perspectives: model, data, and user interaction. From the data perspective, we highlight the challenges associated with the crowdsourcing process, including unclear guidelines for workers, insufficient measures for filtering hate speech, and the lack of a robust process for verifying the accuracy of internet-sourced information. From the user perspective, we identify nine types of limitations and conduct a thorough investigation into their causes. For each perspective, we propose practical methods for improvement and discuss potential directions for future research. Additionally, we extend our analysis to include perspectives in the era of large language models (LLMs), further broadening our understanding of the challenges and opportunities present in current AI technologies. This multifaceted analysis not only sheds light on BlenderBot 2.0’s current limitations but also charts a path forward for the development of more sophisticated and reliable open-domain chatbots within the broader context of LLM advancements. Full article
16 pages, 2456 KiB  
Article
Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle
by Wondossen Ayalew, Xiaoyun Wu, Getinet Mekuriaw Tarekegn, Tesfaye Sisay Tessema, Rakan Naboulsi, Renaud Van Damme, Erik Bongcam-Rudloff, Zewdu Edea, Min Chu, Solomon Enquahone, Chunnian Liang and Ping Yan
Int. J. Mol. Sci. 2024, 25(11), 6142; https://doi.org/10.3390/ijms25116142 (registering DOI) - 2 Jun 2024
Abstract
In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three [...] Read more.
In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding Mechanisms in Domestics Animals 2.0)
Show Figures

Figure 1

15 pages, 8811 KiB  
Article
Assessment of the Influence of Fabric Structure on Their Electro-Conductive Properties
by Magdalena Tokarska, Ayalew Gebremariam and Adam K. Puszkarz
Materials 2024, 17(11), 2692; https://doi.org/10.3390/ma17112692 (registering DOI) - 2 Jun 2024
Abstract
Electro-conductive fabrics are key materials for designing and developing wearable smart textiles. The properties of textile materials depend on the production method, the technique which leads to high conductivity, and the structure. The aim of the research work was to determine the factors [...] Read more.
Electro-conductive fabrics are key materials for designing and developing wearable smart textiles. The properties of textile materials depend on the production method, the technique which leads to high conductivity, and the structure. The aim of the research work was to determine the factors affecting the electrical conductivity of woven fabrics and elucidate the mechanism of electric current conduction through this complex, aperiodic textile material. The chemical composition of the material surface was identified using scanning electron microscopy energy dispersion X-ray spectroscopy. The van der Pauw method was employed for multidirectional resistance measurements. The coefficient was determined for the assessment of the electrical anisotropy of woven fabrics. X-ray micro-computed tomography was used for 3D woven structure geometry analysis. The anisotropy coefficient enabled the classification of electro-conductive fabrics in terms of isotropic or anisotropic materials. It was found that the increase in weft density results in an increase in sample anisotropy. The rise in thread width can lead to smaller electrical in-plane anisotropy. The threads are unevenly distributed in woven fabric, and their widths are not constant, which is reflected in the anisotropy coefficient values depending on the electrode arrangement. The smaller the fabric area covered by four electrodes, the fewer factors leading to structure aperiodicity. Full article
Show Figures

Figure 1

16 pages, 1918 KiB  
Article
The Impact of Different Dietary Ratios of Soluble Carbohydrate-to-Neutral Detergent Fiber on Rumen Barrier Function and Inflammation in Dumont Lambs
by Shufang Li, Tian Ma, Yawen An, Yu Zhang, Xiaodong Yang, Aiwu Gao and Hairong Wang
Animals 2024, 14(11), 1666; https://doi.org/10.3390/ani14111666 (registering DOI) - 2 Jun 2024
Abstract
Appropriate soluble carbohydrate (SCHO)-to-NDF ratios in the diet are essential for rumen health. The effects of different SCHO-to-NDF ratios (1.0, 1.5, and 2.0) on rumen barrier function and inflammation in Dumont lambs (n = 18, 6 replicates per treatment) was investigated. The SCHO:NDF [...] Read more.
Appropriate soluble carbohydrate (SCHO)-to-NDF ratios in the diet are essential for rumen health. The effects of different SCHO-to-NDF ratios (1.0, 1.5, and 2.0) on rumen barrier function and inflammation in Dumont lambs (n = 18, 6 replicates per treatment) was investigated. The SCHO:NDF ratio was altered by replacing the forage (Leynus chinensis) with corn grain. With an increase in the proportion of SCHO, the final body weight (FBW), average daily gain (ADG), soluble carbohydrate intake (SCHOI), and LPS level increased; and the neutral detergent fiber intake (NDFI), ruminal papillae height, papillae area, and pH decreased (p < 0.05, plin < 0.05). The medium CHO:NDF group had increased claudin-1 mRNA (p < 0.05, plin = 0.005, pquad = 0.003) and protein (p < 0.05, pquad < 0.001) levels; the high CHO:NDF group had increased occludin mRNA and protein (p < 0.05, plin = 0.001) levels. The level of the anti-inflammatory cytokine IL-10 was significantly greater in the medium CHO:NDF group than in the high CHO:NDF group (p < 0.05, pquad < 0.001). With an increase in the ratio of SCHO, the mRNA level and concentration of the proinflammatory cytokines IL-1β, IL-6, and TNF-α linearly increased (p < 0.05, plin < 0.05), and those in the high CHO:NDF group were significantly greater than those in the low CHO:NDF group. The levels of phosphorylated p65 (plin = 0.003), IκB-α (plin < 0.001), and JNK (plin = 0.001) increased linearly, and those in the high CHO:NDF group were significantly greater than those in the other two groups (p < 0.05). Therefore, when the SCHO-to-NDF ratio was increased to 1.5, the rumen epithelium was not affected, but when the ratio was increased to 2.0, NF-κB and MAPK were activated in the rumen epithelium, leading to impaired barrier function and inflammation. The suitable NFC:NDF ratio for the short-term fattening of Dumont lambs was found to be 1.50. Full article
20 pages, 16964 KiB  
Article
A Wearable Visually Impaired Assistive System Based on Semantic Vision SLAM for Grasping Operation
by Fei Fei, Sifan Xian, Ruonan Yang, Changcheng Wu and Xiong Lu
Sensors 2024, 24(11), 3593; https://doi.org/10.3390/s24113593 (registering DOI) - 2 Jun 2024
Abstract
Because of the absence of visual perception, visually impaired individuals encounter various difficulties in their daily lives. This paper proposes a visual aid system designed specifically for visually impaired individuals, aiming to assist and guide them in grasping target objects within a tabletop [...] Read more.
Because of the absence of visual perception, visually impaired individuals encounter various difficulties in their daily lives. This paper proposes a visual aid system designed specifically for visually impaired individuals, aiming to assist and guide them in grasping target objects within a tabletop environment. The system employs a visual perception module that incorporates a semantic visual SLAM algorithm, achieved through the fusion of ORB-SLAM2 and YOLO V5s, enabling the construction of a semantic map of the environment. In the human–machine cooperation module, a depth camera is integrated into a wearable device worn on the hand, while a vibration array feedback device conveys directional information of the target to visually impaired individuals for tactile interaction. To enhance the system’s versatility, a Dobot Magician manipulator is also employed to aid visually impaired individuals in grasping tasks. The performance of the semantic visual SLAM algorithm in terms of localization and semantic mapping was thoroughly tested. Additionally, several experiments were conducted to simulate visually impaired individuals’ interactions in grasping target objects, effectively verifying the feasibility and effectiveness of the proposed system. Overall, this system demonstrates its capability to assist and guide visually impaired individuals in perceiving and acquiring target objects. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

15 pages, 1994 KiB  
Review
Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites
by Yuting Li and Jie Zhang
Catalysts 2024, 14(6), 363; https://doi.org/10.3390/catal14060363 (registering DOI) - 2 Jun 2024
Abstract
Direct upgrading of methane into value-added products is one of the most significant technologies for the effective transformation of hydrocarbon feedstocks in the chemical industry. Both oxidative and non-oxidative methane conversion are broadly useful approaches, though the two reaction pathways are quite distinguished. [...] Read more.
Direct upgrading of methane into value-added products is one of the most significant technologies for the effective transformation of hydrocarbon feedstocks in the chemical industry. Both oxidative and non-oxidative methane conversion are broadly useful approaches, though the two reaction pathways are quite distinguished. Oxidative coupling of methane (OCM) has been widely studied, but suffers from the low selectivity to C2 hydrocarbons because of the overoxidation leading to undesired byproducts. Therefore, non-oxidative coupling of methane is a worthy alternative approach to be developed for the efficient, direct utilization of methane. Recently, heterogeneous catalysts comprising singly dispersed metal sites, such as single-atom catalysts (SAC) and surface organometallic catalysts (SOMCat), have been proven to be effectively active for direct coupling of methane to product hydrogen and C2 products. In this context, this review summarizes recent discoveries of these novel catalysts and provides a perspective on promising catalytic processes for methane transformation via non-oxidative coupling. Full article
(This article belongs to the Special Issue Study of Novel Catalysts for Methane Conversion)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop