The 2023 MDPI Annual Report has
been released!
 
23 pages, 1458 KiB  
Article
Greening Emerging Economies: Enhancing Environmental, Social, and Governance Performance through Environmental Management Accounting and Green Financing
by Tianyao Zhen and Md. Mominur Rahman
Sustainability 2024, 16(11), 4753; https://doi.org/10.3390/su16114753 (registering DOI) - 3 Jun 2024
Abstract
Given the rising interest in sustainability globally, this paper investigates whether the environmental management accounting (EMA) and green financing of a firm are associated with superior environmental, social, and governance (ESG) performance, considering manufacturing firms from emerging economies like Bangladesh to address a [...] Read more.
Given the rising interest in sustainability globally, this paper investigates whether the environmental management accounting (EMA) and green financing of a firm are associated with superior environmental, social, and governance (ESG) performance, considering manufacturing firms from emerging economies like Bangladesh to address a gap in relevant research. Drawing on the perspective of contingency theory, this study is one of the first to analyze how EMA and green financing enable sustainable production to enhance ESG performance, as well as the mediation that sustainable production exerts on this relationship. This study entails an analysis of ESG performance in sensitive industries, i.e., those that are more likely to cause social and environmental damage. To test our hypotheses, we applied partial least squares path modeling to analyze data from 467 responses. Further, we used fuzzy set qualitative comparative analysis (fsQCA) to check the robustness. The results suggest that sensitive industries present superior ESG performance through integrating EMA and green financing. Further, empirical evidence demonstrates that sustainable production fully mediates the relationship between EMA and ESG performance. Meanwhile, sustainable production does not moderate green financing and ESG performance. For managers, this study demonstrates how embedding green financing and EMA into the organizational process for transitioning to a sustainable production model can present superior ESG performance. Our study contributes to research on both the impact of EMA and green financing on ESG performance, mediation effects of sustainable production, and integrated analysis using PLS-SEM and fsQCA, and the practice of sustainability management in firms in developing countries. Full article
Show Figures

Figure 1

14 pages, 1844 KiB  
Review
Avogadro and Planck Constants, Two Pillars of the International System of Units
by Enrico Massa
Physics 2024, 6(2), 845-858; https://doi.org/10.3390/physics6020052 (registering DOI) - 3 Jun 2024
Abstract
The International System of Units (SI), the current form of the metric system and the world’s most used system of units, has been continuously updated and refined since the Metre Convention of 1875 to ensure that it remains up to date with the [...] Read more.
The International System of Units (SI), the current form of the metric system and the world’s most used system of units, has been continuously updated and refined since the Metre Convention of 1875 to ensure that it remains up to date with the latest scientific and technological advances. The General Conference on Weights and Measures, at its 26th meeting in 2018, decided to adopt stipulated values of seven physical constants linked to seven measurement units (the second, meter, kilogram, ampere, kelvin, mole, and candela). This paper reviews the technologies developed, in intense and long-standing work, to determine the Avogadro and Planck constants, which are now integral to realising the kilogram. Full article
(This article belongs to the Special Issue Precision Physics and Fundamental Physical Constants (FFK 2023))
Show Figures

Figure 1

24 pages, 8552 KiB  
Article
Path Planning for Autonomous Mobile Robot Using Intelligent Algorithms
by Jorge Galarza-Falfan, Enrique Efrén García-Guerrero, Oscar Adrian Aguirre-Castro, Oscar Roberto López-Bonilla, Ulises Jesús Tamayo-Pérez, José Ricardo Cárdenas-Valdez, Carlos Hernández-Mejía, Susana Borrego-Dominguez and Everardo Inzunza-Gonzalez
Technologies 2024, 12(6), 82; https://doi.org/10.3390/technologies12060082 (registering DOI) - 3 Jun 2024
Abstract
Machine learning technologies are being integrated into robotic systems faster to enhance their efficacy and adaptability in dynamic environments. The primary goal of this research was to propose a method to develop an Autonomous Mobile Robot (AMR) that integrates Simultaneous Localization and Mapping [...] Read more.
Machine learning technologies are being integrated into robotic systems faster to enhance their efficacy and adaptability in dynamic environments. The primary goal of this research was to propose a method to develop an Autonomous Mobile Robot (AMR) that integrates Simultaneous Localization and Mapping (SLAM), odometry, and artificial vision based on deep learning (DL). All are executed on a high-performance Jetson Nano embedded system, specifically emphasizing SLAM-based obstacle avoidance and path planning using the Adaptive Monte Carlo Localization (AMCL) algorithm. Two Convolutional Neural Networks (CNNs) were selected due to their proven effectiveness in image and pattern recognition tasks. The ResNet18 and YOLOv3 algorithms facilitate scene perception, enabling the robot to interpret its environment effectively. Both algorithms were implemented for real-time object detection, identifying and classifying objects within the robot’s environment. These algorithms were selected to evaluate their performance metrics, which are critical for real-time applications. A comparative analysis of the proposed DL models focused on enhancing vision systems for autonomous mobile robots. Several simulations and real-world trials were conducted to evaluate the performance and adaptability of these models in navigating complex environments. The proposed vision system with CNN ResNet18 achieved an average accuracy of 98.5%, a precision of 96.91%, a recall of 97%, and an F1-score of 98.5%. However, the YOLOv3 model achieved an average accuracy of 96%, a precision of 96.2%, a recall of 96%, and an F1-score of 95.99%. These results underscore the effectiveness of the proposed intelligent algorithms, robust embedded hardware, and sensors in robotic applications. This study proves that advanced DL algorithms work well in robots and could be used in many fields, such as transportation and assembly. As a consequence of the findings, intelligent systems could be implemented more widely in the operation and development of AMRs. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

13 pages, 5349 KiB  
Article
Structural Characterization and Magnetic Behavior Due to the Cationic Substitution of Lanthanides on Ferrite Nanoparticles
by Cristóbal Pinto García, Arianne Maine, Rodrigo A. Valenzuela-Fernández, Álvaro Aliaga Cerón, Patricia Barahona Huenchumil, Octavio Peña, Inmaculada Álvarez-Serrano, Andrés Ibáñez, Francisco Melo and Antonio Galdámez Silva
Nanomaterials 2024, 14(11), 971; https://doi.org/10.3390/nano14110971 (registering DOI) - 3 Jun 2024
Abstract
A new series of [Fe3−xLnx]O4 nanoparticles, with Ln = Gd; Dy; Lu and x = 0.05; 0.1; 0.15, was synthesized using the coprecipitation method. Analyses by X-ray diffraction (XRD), Rietveld refinement, and high-resolution transmission electron microscopy (HRTEM) [...] Read more.
A new series of [Fe3−xLnx]O4 nanoparticles, with Ln = Gd; Dy; Lu and x = 0.05; 0.1; 0.15, was synthesized using the coprecipitation method. Analyses by X-ray diffraction (XRD), Rietveld refinement, and high-resolution transmission electron microscopy (HRTEM) indicate that all phases crystallized in space group Fd3¯m, characteristic of spinels. The XRD patterns, HRTEM, scanning electron microscopy analysis (SEM-EDS), and Raman spectra showed single phases. Transmission electron microscopy (TEM), Rietveld analysis, and Scherrer’s calculations confirm that these materials are nanoparticles with sizes in the range of ~6 nm to ~13 nm. Magnetic measurements reveal that the saturation magnetization (Ms) of the as-prepared ferrites increases with lanthanide chemical substitution (x), while the coercivity (Hc) has low values. The Raman analysis confirms that the compounds are ferrites and the Ms behavior can be explained by the relationship between the areas of the signals. The magnetic measurements indicate superparamagnetic behavior. The blocking temperatures (TB) were estimated from ZFC-FC measurements, and the use of the Néel equation enabled the magnetic anisotropy to be estimated. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

17 pages, 2534 KiB  
Article
LeakPred: An Approach for Identifying Components with Resource Leaks in Android Mobile Applications
by Josias Gomes Lima, Rafael Giusti and Arilo Claudio Dias-Neto
Computers 2024, 13(6), 140; https://doi.org/10.3390/computers13060140 (registering DOI) - 3 Jun 2024
Abstract
Context: Mobile devices contain some resources, for example, the camera, battery, and memory, that are allocated, used, and then deallocated by mobile applications. Whenever a resource is allocated and not correctly released, a defect called a resource leak occurs, which can cause [...] Read more.
Context: Mobile devices contain some resources, for example, the camera, battery, and memory, that are allocated, used, and then deallocated by mobile applications. Whenever a resource is allocated and not correctly released, a defect called a resource leak occurs, which can cause crashes and slowdowns. Objective: In this study, we intended to demonstrate the usefulness of the LeakPred approach in terms of the number of components with resource leak problems identified in applications. Method: We compared the approach’s effectiveness with three state-of-the-art methods in identifying leaks in 15 Android applications. Result: LeakPred obtained the best median (85.37%) of components with identified leaks, the best coverage (96.15%) of the classes of leaks that could be identified in the applications, and an accuracy of 81.25%. The Android Lint method achieved the second best median (76.92%) and the highest accuracy (100%), but only covered 1.92% of the leak classes. Conclusions: LeakPred is effective in identifying leaky components in applications. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

8 pages, 492 KiB  
Communication
An Overview of Opioid Prescription Patterns among Non-Opioid Users Following Emergency Department Admission
by Miriam Zeino, Romain Léguillon, Pauline Brevet, Baptiste Gerard, Catherine Chenailler, Johanna Raymond, Lucas Bibaut, Sophie Pouplin, Luc Marie Joly, Rémi Varin and Eric Barat
Healthcare 2024, 12(11), 1138; https://doi.org/10.3390/healthcare12111138 (registering DOI) - 3 Jun 2024
Abstract
The evolving landscape of opioid prescription practices necessitates a comprehensive understanding of emerging patterns, particularly among new opioid users discharged from emergency departments. This study delves into the intricate realm of opioid utilization by elucidating the prevalence of their prescriptions. A retrospective analysis [...] Read more.
The evolving landscape of opioid prescription practices necessitates a comprehensive understanding of emerging patterns, particularly among new opioid users discharged from emergency departments. This study delves into the intricate realm of opioid utilization by elucidating the prevalence of their prescriptions. A retrospective analysis of electronic health records was conducted, including a cohort of 71 patients who received opioid prescriptions upon discharge from emergency departments from 1 January 2022 to 30 June 2022. Demographic characteristics and prescription details were systematically examined. This study illuminates tramadol’s prominence, with 84% of prescriptions and a Defined Daily Dose (DDD) morphine equivalent of 60 mg, as the primary choice as a new opioid, a finding that draws attention due to the closely aligned dosages with morphine equivalents. This discovery prompts a critical reassessment of tramadol’s therapeutic role, considering its multifaceted nature encompassing serotonergic effects and heightened fall risks. This study advocates for a nuanced and vigilant approach to tramadol prescription, cognizant of its potential risks and therapeutic implications, and highlights the imperative of optimizing data quality and traceability within electronic health records to enhance patient care and facilitate future research endeavors. Full article
(This article belongs to the Special Issue Pain Management Practice and Research)
Show Figures

Figure 1

14 pages, 2040 KiB  
Article
Lung Ultrasonography in the Evaluation of Late Sequelae of COVID-19 Pneumonia—A Comparison with Chest Computed Tomography: A Prospective Study
by Katarzyna Zimna, Małgorzata Sobiecka, Jacek Wakuliński, Dorota Wyrostkiewicz, Ewa Jankowska, Monika Szturmowicz and Witold Z. Tomkowski
Viruses 2024, 16(6), 905; https://doi.org/10.3390/v16060905 (registering DOI) - 3 Jun 2024
Abstract
The onset of the COVID-19 pandemic allowed physicians to gain experience in lung ultrasound (LUS) during the acute phase of the disease. However, limited data are available on LUS findings during the recovery phase. The aim of this study was to evaluate the [...] Read more.
The onset of the COVID-19 pandemic allowed physicians to gain experience in lung ultrasound (LUS) during the acute phase of the disease. However, limited data are available on LUS findings during the recovery phase. The aim of this study was to evaluate the utility of LUS to assess lung involvement in patients with post-COVID-19 syndrome. This study prospectively enrolled 72 patients who underwent paired LUS and chest CT scans (112 pairs including follow-up). The most frequent CT findings were ground glass opacities (83.3%), subpleural lines (72.2%), traction bronchiectasis (37.5%), and consolidations (31.9%). LUS revealed irregular pleural lines as a common abnormality initially (56.9%), along with subpleural consolidation >2.5 mm ≤10 mm (26.5%) and B-lines (26.5%). A strong correlation was found between LUS score, calculated by artificial intelligence percentage involvement in ground glass opacities described in CT (r = 0.702, p < 0.05). LUS score was significantly higher in the group with fibrotic changes compared to the non-fibrotic group with a mean value of 19.4 ± 5.7 to 11 ± 6.6, respectively (p < 0.0001). LUS might be considered valuable for examining patients with persistent symptoms after recovering from COVID-19 pneumonia. Abnormalities identified through LUS align with CT scan findings; thus, LUS might potentially reduce the need for frequent chest CT examinations. Full article
(This article belongs to the Special Issue COVID-19 and Pneumonia 3rd Edition)
Show Figures

Figure 1

11 pages, 1552 KiB  
Article
Chrysomycins, Anti-Tuberculosis C-Glycoside Polyketides from Streptomyces sp. MS751
by Jiaming Yu, Hui Guo, Jing Zhang, Jiansen Hu, Hongtao He, Caixia Chen, Na Yang, Fan Yang, Zexu Lin, Huanqin Dai, Liming Ouyang, Cuihua Liu, Xiaoguang Lei, Lixin Zhang, Guoliang Zhu and Fuhang Song
Mar. Drugs 2024, 22(6), 259; https://doi.org/10.3390/md22060259 (registering DOI) - 3 Jun 2024
Abstract
A new dimeric C-glycoside polyketide chrysomycin F (1), along with four new monomeric compounds, chrysomycins G (2), H (3), I (4), J (5), as well as three known analogues, chrysomycins A (6 [...] Read more.
A new dimeric C-glycoside polyketide chrysomycin F (1), along with four new monomeric compounds, chrysomycins G (2), H (3), I (4), J (5), as well as three known analogues, chrysomycins A (6), B (7), and C (8), were isolated and characterised from a strain of Streptomyces sp. obtained from a sediment sample collected from the South China Sea. Their structures were determined by detailed spectroscopic analysis. Chrysomycin F contains two diastereomers, whose structures were further elucidated by a biomimetic [2 + 2] photodimerisation of chrysomycin A. Chrysomycins B and C showed potent anti-tuberculosis activity against both wild-type Mycobacterium tuberculosis and a number of clinically isolated MDR M. tuberculosis strains. Full article
(This article belongs to the Special Issue Marine Streptomyces-Derived Natural Products 2024)
Show Figures

Figure 1

17 pages, 3016 KiB  
Article
Implications of Using Scalar Forcing to Sustain Reactant Mixture Stratification in Direct Numerical Simulations of Turbulent Combustion
by Peter Brearley, Umair Ahmed and Nilanjan Chakraborty
Computation 2024, 12(6), 114; https://doi.org/10.3390/computation12060114 (registering DOI) - 3 Jun 2024
Abstract
A recently proposed scalar forcing scheme that maintains the mixture fraction mean, root-mean-square and probability density function in the unburned gas can lead to a statistically quasi-stationary state in direct numerical simulations of turbulent stratified combustion when combined with velocity forcing. Scalar forcing [...] Read more.
A recently proposed scalar forcing scheme that maintains the mixture fraction mean, root-mean-square and probability density function in the unburned gas can lead to a statistically quasi-stationary state in direct numerical simulations of turbulent stratified combustion when combined with velocity forcing. Scalar forcing alongside turbulence forcing leads to greater values of turbulent burning velocity and flame surface area in comparison to unforced simulations for globally fuel-lean mixtures. The sustained unburned gas mixture inhomogeneity changes the percentage shares of back- and front-supported flame elements in comparison to unforced simulations, and this effect is particularly apparent for high turbulence intensities. Scalar forcing does not significantly affect the heat release rates due to different modes of combustion and the micro-mixing rate within the flame characterised by scalar dissipation rate of the reaction progress variable. Thus, scalar forcing has a significant potential for enabling detailed parametric studies as well as providing well-converged time-averaged statistics for stratified-mixture combustion using Direct Numerical Simulations in canonical configurations. Full article
Show Figures

Figure 1

15 pages, 3459 KiB  
Article
Alendronate as Bioactive Coating on Titanium Surfaces: An Investigation of CaP–Alendronate Interactions
by Ines Despotović, Željka Petrović, Jozefina Katić and Dajana Mikić
Materials 2024, 17(11), 2703; https://doi.org/10.3390/ma17112703 (registering DOI) - 3 Jun 2024
Abstract
The surface modification of dental implants plays an important role in establishing a successful interaction of the implant with the surrounding tissue, as the bioactivity and osseointegration properties are strongly dependent on the physicochemical properties of the implant surface. A surface coating with [...] Read more.
The surface modification of dental implants plays an important role in establishing a successful interaction of the implant with the surrounding tissue, as the bioactivity and osseointegration properties are strongly dependent on the physicochemical properties of the implant surface. A surface coating with bioactive molecules that stimulate the formation of a mineral calcium phosphate (CaP) layer has a positive effect on the bone bonding process, as biomineralization is crucial for improving the osseointegration process and rapid bone ingrowth. In this work, the spontaneous deposition of calcium phosphate on the titanium surface covered with chemically stable and covalently bound alendronate molecules was investigated using an integrated experimental and theoretical approach. The initial nucleation of CaP was investigated using quantum chemical calculations at the density functional theory (DFT) level. Negative Gibbs free energies show a spontaneous nucleation of CaP on the biomolecule-covered titanium oxide surface. The deposition of calcium and phosphate ions on the alendronate-modified titanium oxide surface is governed by Ca2+–phosphonate (-PO3H) interactions and supported by hydrogen bonding between the phosphate group of CaP and the amino group of the alendronate molecule. The morphological and structural properties of CaP deposit were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. This integrated experimental–theoretical study highlights the spontaneous formation of CaP on the alendronate-coated titanium surface, confirming the bioactivity ability of the alendronate coating. The results provide valuable guidance for the promising forthcoming advancements in the development of biomaterials and surface modification of dental implants. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Dental Applications)
Show Figures

Graphical abstract

14 pages, 7208 KiB  
Article
Influence of Impeller Structure Parameters on the Hydraulic Performance and Casting Molding of Spiral Centrifugal Pumps
by Chao Wang, Yin Luo, Zihan Li, Zhenhua Shen and Daoxing Ye
Water 2024, 16(11), 1598; https://doi.org/10.3390/w16111598 (registering DOI) - 3 Jun 2024
Abstract
In order to study the influence of impeller structural parameters on the hydraulic performance and casting moulding of spiral centrifugal pumps, this paper selects a double vane spiral centrifugal pump with a specific rotation number of 170 as the research object. The Plackett–Burman [...] Read more.
In order to study the influence of impeller structural parameters on the hydraulic performance and casting moulding of spiral centrifugal pumps, this paper selects a double vane spiral centrifugal pump with a specific rotation number of 170 as the research object. The Plackett–Burman experimental design is used to screen the influencing factors, and the results show that the vane thickness and the impeller outlet width are the significant influencing factors. Based on this result, five different scenarios were set for these two key parameters, numerical calculations were carried out using numerical simulation software for each of the five flow ratio cases, and casting simulations were carried out for the model of each scenario using AnyCasting6.0 to analyze the influence of these two factors on the hydraulic performance and casting forming of the spiral centrifugal pump. It was found that in terms of vane thickness, a moderate increase in vane thickness improved the hydraulic performance at small flow rates, but an excessive increase at large flow rates led to a decrease in efficiency and an increase in the probability of casting defects. In terms of impeller outlet width, increasing the outlet width caused the design point to be shifted, leading to a decrease in efficiency at small flow rates, but an increase in efficiency when the design flow rate was higher. At the same time, increasing the outlet width makes casting defects more likely to occur at the blade and back cover joint than on the blade surface. The study in this paper clarifies the significant effects of these two parameters on the performance and casting quality of spiral centrifugal pumps, and provides guidance for the optimal design of spiral centrifugal pumps. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery)
Show Figures

Figure 1

21 pages, 2405 KiB  
Review
Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms
by Mingtao Zhu, Yu Wang, Jianwei Han, Yanping Sun, Shuang Wang, Bingyou Yang, Qiuhong Wang and Haixue Kuang
Antioxidants 2024, 13(6), 686; https://doi.org/10.3390/antiox13060686 (registering DOI) - 3 Jun 2024
Abstract
The human body comprises numerous organs and tissues operating in synchrony, it facilitates metabolism, circulation, and overall organismal function. Consequently, the well-being of our organs and tissues significantly influences our overall health. In recent years, research on the protective effects of artesunate (AS) [...] Read more.
The human body comprises numerous organs and tissues operating in synchrony, it facilitates metabolism, circulation, and overall organismal function. Consequently, the well-being of our organs and tissues significantly influences our overall health. In recent years, research on the protective effects of artesunate (AS) on various organ functions, including the heart, liver, brain, lungs, kidneys, gastrointestinal tract, bones, and others has witnessed significant advancements. Findings from in vivo and in vitro studies suggest that AS may emerge as a newfound guardian against organ damage. Its protective mechanisms primarily entail the inhibition of inflammatory factors and affect anti-fibrotic, anti-aging, immune-enhancing, modulation of stem cells, apoptosis, metabolic homeostasis, and autophagy properties. Moreover, AS is attracting a high level of interest because of its obvious antioxidant activities, including the activation of Nrf2 and HO-1 signaling pathways, inhibiting the release of reactive oxygen species, and interfering with the expression of genes and proteins associated with oxidative stress. This review comprehensively outlines the recent strides made by AS in alleviating organismal injuries stemming from various causes and protecting organs, aiming to serve as a reference for further in-depth research and utilization of AS. Full article
Show Figures

Graphical abstract

9 pages, 583 KiB  
Article
Probabilistic Mixture Model-Based Spectral Unmixing
by Oliver Hoidn, Aashwin Ananda Mishra and Apurva Mehta
Appl. Sci. 2024, 14(11), 4836; https://doi.org/10.3390/app14114836 (registering DOI) - 3 Jun 2024
Abstract
Spectral unmixing attempts to decompose a spectral ensemble into the constituent pure spectral signatures (called endmembers) along with the proportion of each endmember. This is essential for techniques like hyperspectral imaging (HSI) used in environment monitoring, geological exploration, etc. Several spectral unmixing approaches [...] Read more.
Spectral unmixing attempts to decompose a spectral ensemble into the constituent pure spectral signatures (called endmembers) along with the proportion of each endmember. This is essential for techniques like hyperspectral imaging (HSI) used in environment monitoring, geological exploration, etc. Several spectral unmixing approaches have been proposed, many of which are connected to hyperspectral imaging. However, most extant approaches assume highly diverse collections of mixtures and extremely low-loss spectroscopic measurements. Additionally, current non-Bayesian frameworks do not incorporate the uncertainty inherent in unmixing. We propose a probabilistic inference algorithm that explicitly incorporates noise and uncertainty, enabling us to unmix endmembers in collections of mixtures with limited diversity. We use a Bayesian mixture model to jointly extract endmember spectra and mixing parameters while explicitly modeling observation noise and the resulting inference uncertainties. We obtain approximate distributions over endmember coordinates for each set of observed spectra while remaining robust to inference biases from the lack of pure observations and the presence of non-isotropic Gaussian noise. As a direct impact of our methodology, access to reliable uncertainties on the unmixing solutions would enable robust solutions to noise, as well as informed decision-making for HSI applications and other unmixing problems. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

22 pages, 4067 KiB  
Article
A Sensor Fusion Approach to Observe Quadrotor Velocity
by José Ramón Meza-Ibarra, Joaquín Martínez-Ulloa, Luis Alfonso Moreno-Pacheco and Hugo Rodríguez-Cortés
Sensors 2024, 24(11), 3605; https://doi.org/10.3390/s24113605 (registering DOI) - 3 Jun 2024
Abstract
The growing use of Unmanned Aerial Vehicles (UAVs) raises the need to improve their autonomous navigation capabilities. Visual odometry allows for dispensing positioning systems, such as GPS, especially on indoor flights. This paper reports an effort toward UAV autonomous navigation by proposing a [...] Read more.
The growing use of Unmanned Aerial Vehicles (UAVs) raises the need to improve their autonomous navigation capabilities. Visual odometry allows for dispensing positioning systems, such as GPS, especially on indoor flights. This paper reports an effort toward UAV autonomous navigation by proposing a translational velocity observer based on inertial and visual measurements for a quadrotor. The proposed observer complementarily fuses available measurements from different domains and is synthesized following the Immersion and Invariance observer design technique. A formal Lyapunov-based observer error convergence to zero is provided. The proposed observer algorithm is evaluated using numerical simulations in the Parrot Mambo Minidrone App from Simulink-Matlab. Full article
(This article belongs to the Collection Navigation Systems and Sensors)
Show Figures

Figure 1

41 pages, 1934 KiB  
Article
Changes in Population Densities and Species Richness of Pollinators in the Carpathian Basin during the Last 50 Years (Hymenoptera, Diptera, Lepidoptera)
by Attila Haris, Zsolt Józan, Ladislav Roller, Peter Šima and Sándor Tóth
Diversity 2024, 16(6), 328; https://doi.org/10.3390/d16060328 (registering DOI) - 3 Jun 2024
Abstract
Temporal changes in population densities and species richness of three main pollinator groups—moths and butterflies (Lepidoptera); bees, wasps and sawflies (Hymenoptera); and hoverflies, horseflies, tachinids and bee flies (Diptera)—were investigated in the Carpathian Basin. Maintaining pollinator diversity is a crucial factor for preserving [...] Read more.
Temporal changes in population densities and species richness of three main pollinator groups—moths and butterflies (Lepidoptera); bees, wasps and sawflies (Hymenoptera); and hoverflies, horseflies, tachinids and bee flies (Diptera)—were investigated in the Carpathian Basin. Maintaining pollinator diversity is a crucial factor for preserving our biodiversity and ecosystems; furthermore, several pollinator species have a strong economic role in maintaining crop and fruit cultures. Our conclusions are based on our three and four decades of faunistic surveys in various regions of the Carpathian Basin. Analyzing and comparing our data with the historical data of the last 50 years, we concluded that densities of some pollinators declined during the past decade and a half (Symphyta, hoverflies), although populations of several species of Mediterranean origin grew (Aculeata) and new species even migrated from the warmer regions. In numerous cases, this decrease was dramatic: more than 90% decline of certain butterfly species were detected. On the other hand, the composition of pollinator fauna significantly changed due to the disappearance of some mountainous or mesophile species. The main reason for the decrease in pollinator communities is due partly to climatic change and partly to anthropogenic factors. Different groups of pollinators react differently: some groups like Syrphidae, Tachinidae, most of the butterfly families and bumblebees suffered a strong decline in the last two decades; other warm-loving groups like most of Aculeata and horseflies and bee flies showed a significant increase in population densities. Our conclusion: in our region, the pollinator crisis is present but moderate; however, there is a clear sign of the gradual transition of our pollinator fauna towards the Mediterranean type. Full article
(This article belongs to the Special Issue Emerging Effects of Pollinator Loss on Biodiversity)
Show Figures

Figure 1

25 pages, 14611 KiB  
Article
Localized Path Planning for Mobile Robots Based on a Subarea-Artificial Potential Field Model
by Qiang Lv, Guoqiang Hao, Zhen Huang, Bin Li, Dandan Fu, Huanlong Zhao, Wei Chen and Sheng Chen
Sensors 2024, 24(11), 3604; https://doi.org/10.3390/s24113604 (registering DOI) - 3 Jun 2024
Abstract
The artificial potential field method has efficient obstacle avoidance ability, but this traditional method suffers from local minima, unreasonable paths, and sudden changes in heading angles during obstacle avoidance, leading to rough paths and increased energy consumption. To enable autonomous mobile robots (AMR) [...] Read more.
The artificial potential field method has efficient obstacle avoidance ability, but this traditional method suffers from local minima, unreasonable paths, and sudden changes in heading angles during obstacle avoidance, leading to rough paths and increased energy consumption. To enable autonomous mobile robots (AMR) to escape from local minimum traps and move along reasonable, smooth paths while reducing travel time and energy consumption, in this paper, an artificial potential field method based on subareas is proposed. First, the optimal virtual subgoal was obtained around the obstacles based on the relationship between the AMR, obstacles, and goal points in the local environment. This was done according to the virtual subgoal benefit function to solve the local minima problem and select a reasonable path. Secondly, when AMR encountered an obstacle, the subarea-potential field model was utilized to solve problems such as path zigzagging and increased energy consumption due to excessive changes in the turning angle; this helped to smooth its planning path. Through simulations and actual testing, the algorithm in this paper demonstrated smoother heading angle changes, reduced energy consumption, and a 10.95% average reduction in movement time when facing a complex environment. This proves the feasibility of the algorithm. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

22 pages, 7092 KiB  
Article
Phytochemical Identification and Anti-Oxidative Stress Effects Study of Cimicifugae Rhizoma Extract and Its Major Component Isoferulic Acid
by Jing Liu, Aqian Chang, Hulinyue Peng, Xingbin Yin, Xiaoxv Dong, Changhai Qu and Jian Ni
Separations 2024, 11(6), 175; https://doi.org/10.3390/separations11060175 (registering DOI) - 3 Jun 2024
Abstract
Background and Objectives: Cimicifugae Rhizoma, also known as ‘Sheng ma’ in Madeiran, is a widely used Chinese herbal medicine that has several pharmacological qualities, one of which is its antioxidant activity. Isoferulic acid, a prominent phenolic compound found in Cimicifugae Rhizoma, [...] Read more.
Background and Objectives: Cimicifugae Rhizoma, also known as ‘Sheng ma’ in Madeiran, is a widely used Chinese herbal medicine that has several pharmacological qualities, one of which is its antioxidant activity. Isoferulic acid, a prominent phenolic compound found in Cimicifugae Rhizoma, has potent antioxidant properties. This study was aimed to comprehensively analyze the components in Cimicifugae Rhizoma and rat plasma to evaluate the in vitro antioxidant and anti-inflammatory properties of Cimicifugae Rhizoma extract and Isoferulic acid as potential candidates for developing herbal formulations targeting podocyte injury in diabetic nephropathy for further clinical utilization. Materials and Methods: UPLC/Q-TOF-MS and HPLC were utilized as analytical tools to identify components of Cimicifugae Rhizoma extract or rat plasma after administrating it. MPC5 cells were cultured with H2O2 and high glucose and subjected to oxidative stress injury. The CXCL12/CXCR4 system plays a crucial role at certain stages of multiple kidney diseases’ injury. Apoptosis-related and target CXCL12/CXCR4/mTOR/Caspase-3 and Cask protein levels were assessed, and the levels of inflammatory-related factors, motility, morphology, ROS level, and apoptosis in podocytes were tested. Results: A total of 82 and 39 components were identified in the Cimicifugae Rhizoma extract and plasma, and Isoferulic acid content was determined as 6.52 mg/g in the Cimicifugae Rhizoma extract. The Cimicifugae Rhizoma extract (1 μg/mL) and Isoferulic acid (10, 25, 50 μM) considerably decreased high glucose and oxidative-stress-mediated toxicity, impaired mobility and adhesion and apoptotic changes in MPC5 cells, and reversed inflammation response. Moreover, the Cimicifugae Rhizoma extract and Isoferulic acid down-regulated Cask, mTOR, and Caspase-3, while significantly blocking the overactivation of CXCL12/CXCR4 in podocytes stimulated by oxidative stress and high glucose. Conclusions: These results indicate that the renal protective mechanism of the Cimicifugae Rhizoma extract and Isoferulic acid on simulating H2O2-induced podocyte injury involves mainly the of CXCL12/CXCR4 pathways and the inactivation of oxidative-stress-mediated apoptotic pathways after comprehensive qualitative and quantitative research by UPLC/Q-TOF-MS and HPLC. These findings provide an important efficacy and ingredient basis for further study on the clinical utilities of Cimicifugae Rhizoma and Isoferulic acid on podocyte and kidney impairment. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

19 pages, 8284 KiB  
Article
Establishment and Analysis of Load Spectrum for Bogie Frame of High-Speed Train at 400 km/h Speed Level
by Guidong Tao, Zhiming Liu, Chengxiang Ji and Guangxue Yang
Machines 2024, 12(6), 382; https://doi.org/10.3390/machines12060382 (registering DOI) - 3 Jun 2024
Abstract
The bogie frame, as one of the most critical load-bearing structures of the Electric Multiple Unit (EMU), is responsible for bearing and transmitting various loads from the car body, wheelsets, and its own installation components. With the increasing operating speed of high-speed EMUs, [...] Read more.
The bogie frame, as one of the most critical load-bearing structures of the Electric Multiple Unit (EMU), is responsible for bearing and transmitting various loads from the car body, wheelsets, and its own installation components. With the increasing operating speed of high-speed EMUs, especially when the design and operational speeds exceed 400 km/h, the applicability of current international standards is uncertain. The load spectrum serves as the foundation for structural reliability design and fatigue evaluation. In this paper, the measured loads of the bogie frame of a CR400AF high-speed train on the Beijing–Shanghai high-speed railway are obtained, and the time-domain characteristic of the measured loads is analyzed under different operating conditions. Then, through the Weibull distribution of three parameters, the Weibull parameters at the 450 km/h speed level are fitted, and the maximum load and cumulative frequency under the speed level are derived. Finally, the load spectrum of the bogie frame at the 450 km/h speed level is established, which provides a more realistic load condition for accurately evaluating the fatigue strength of bogie frames at higher speed levels. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

22 pages, 7141 KiB  
Article
Enhancement of Mosquito Collection for Ultraviolet Light-Emitting Diodes Trapping System Using Cavity Reflectors
by Jui-Chen Chang, Yi-Chian Chen, Wei-Yu Lu, Xuan-Huy Nguyen and Hsiao-Yi Lee
Photonics 2024, 11(6), 532; https://doi.org/10.3390/photonics11060532 (registering DOI) - 3 Jun 2024
Abstract
This research explores novel avenues for optimizing mosquito-catching efficiency using a multifaceted approach. While previous studies have primarily focused on singular parameters, such as light intensity or wind speed, this study delves into the intricate interplay between various factors. Experiment 1 challenges conventional [...] Read more.
This research explores novel avenues for optimizing mosquito-catching efficiency using a multifaceted approach. While previous studies have primarily focused on singular parameters, such as light intensity or wind speed, this study delves into the intricate interplay between various factors. Experiment 1 challenges conventional wisdom by revealing a wider light divergence angle. When the reflective plate combined with the airflow board was set to 0 cm in length, the effectiveness of capturing mosquitoes was lower than that of the 3 cm unit, suggesting overlooked variables at play. Experiment 2 introduces a novel perspective by demonstrating the superior efficiency of the 5 cm unit, even with reduced wind speed and luminous area under optimized conditions, showcasing the significance of a holistic approach. Moreover, Experiment 3 uncovers nuanced insights, showcasing the differential performance of units in capturing small insects versus mosquitoes and moths, highlighting the need for tailored strategies. By integrating these findings, the study pioneers the development of two distinct mosquito collection units, emphasizing the critical importance of balancing diverse parameters for optimal results. The innovation lies in the thorough investigation of multifaceted optimization strategies, providing valuable insights to propel advancements in mosquito control technologies. Full article
(This article belongs to the Special Issue Photodetector Materials and Optoelectronic Devices)
Show Figures

Figure 1

17 pages, 4522 KiB  
Article
The Zootechnical Performance, Health State Modulation, Morphology, and Intestinal Microbiome of Nile Tilapia Juveniles Fed with a Functional Blend of Immunostimulants Associated with a Diet High in Soybean Meal
by Lúvia Souza de Sá, Gabriela Tomas Jerônimo, Thiago Soligo, Eduardo Yamashita, Débora Machado Fracalossi, Maurício Laterça Martins and José Luiz Pedreira Mouriño
Fishes 2024, 9(6), 212; https://doi.org/10.3390/fishes9060212 (registering DOI) - 3 Jun 2024
Abstract
The aim of this study was to evaluate the effect of supplementing feed with a functional mixture of immunomodulators, including β-glucans, nucleotides, ascorbic acid, and alpha-tocopherol, associated with a diet with lower levels of animal protein (11.5%) and higher levels of soybean meal [...] Read more.
The aim of this study was to evaluate the effect of supplementing feed with a functional mixture of immunomodulators, including β-glucans, nucleotides, ascorbic acid, and alpha-tocopherol, associated with a diet with lower levels of animal protein (11.5%) and higher levels of soybean meal (43.5%), on the zootechnical performance, health, hematological and immunological parameters, intestinal morphology, centesimal composition, and intestinal microbiome of juvenile Nile tilapia (initial weight 1.88 g ± 0.25 g, mean ± standard deviation). Two isocaloric and isoproteic diets (35% crude protein) were formulated, one with the inclusion of the immunostimulant functional mixture (40 kg·t−1), composed of 150 mg·kg−1 of nucleotides, 1000 mg·kg−1 of β-glucans, 1000 mg·kg−1 of ascorbic acid (vitamin C), and 20 mg·kg−1 of alpha-tocopherol (vitamin E), and another without. The combined supplementation of nucleotides, β-glucans, ascorbic acid, and alpha-tocopherol resulted in a 59.95% increase in final weight, 64% weight gain, 66% daily gain, a 21.31% decrease in feed conversion rate, and double the retention of body protein. Supplementation also improved intestinal morphology and modulated the intestinal microbiome, increasing Chao-1 diversity. Transmission electron microscopy confirmed that fish fed with both diets exhibited intact intestinal mucosal membranes. Supplementation did not alter the hematological and immunological parameters, suggesting that there was no overstimulation of the fish’s immune system. This work allows us to evaluate the effect of reducing the use of animal protein in the diets of fish, along with the effects of nucleotides, β-glucans, ascorbic acid, and alpha-tocopherol. Together, these compounds can provide fish with the necessary tools to achieve optimal health and growth. Full article
(This article belongs to the Special Issue Relationship between Nutrition and the Immune Response of Fish)
Show Figures

Figure 1

13 pages, 3971 KiB  
Communication
Comprehensive Analysis of Antiphage Defense Mechanisms: Serovar-Specific Patterns
by Pavlo Petakh, Valentyn Oksenych, Yevheniya Khovpey and Oleksandr Kamyshnyi
Antibiotics 2024, 13(6), 522; https://doi.org/10.3390/antibiotics13060522 (registering DOI) - 3 Jun 2024
Abstract
Leptospirosis is a major zoonotic disease caused by pathogenic spirochetes in the genus Leptospira, affecting over a million people annually and causing approximately 60,000 deaths. Leptospira interrogans, a key causative agent, likely possesses defense systems against bacteriophages (leptophages), yet these systems are [...] Read more.
Leptospirosis is a major zoonotic disease caused by pathogenic spirochetes in the genus Leptospira, affecting over a million people annually and causing approximately 60,000 deaths. Leptospira interrogans, a key causative agent, likely possesses defense systems against bacteriophages (leptophages), yet these systems are not well understood. We analyzed 402 genomes of L. interrogans using the DefenseFinder tool to identify and characterize the antiphage defense systems. We detected 24 unique systems, with CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins), PrrC, Borvo, and Restriction-Modification (R-M) being the most prevalent. Notably, Cas were identified in all strains, indicating their central role in phage defense. Furthermore, there were variations in the antiphage system distribution across different serovars, suggesting unique evolutionary adaptations. For instance, Retron was found exclusively in the Canicola serovar, while prokaryotic Argonaute proteins (pAgo) were only detected in the Grippotyphosa serovar. These findings significantly enhance our understanding of Leptospira’s antiphage defense mechanisms. They reveal the potential for the development of serovar-specific phage-based therapies and underscore the importance of further exploring these defense systems. Full article
(This article belongs to the Special Issue Antibiotics vs. Phage Therapy, 2nd Edition)
Show Figures

Figure 1

21 pages, 1958 KiB  
Review
A Critical Review on the Advancement of the Development of Low-Cost Membranes to Be Utilized in Microbial Fuel Cells
by Alok Tiwari, Niraj Yadav, Dipak A. Jadhav, Diksha Saxena, Kirtan Anghan, Vishal Kumar Sandhwar and Shivendu Saxena
Water 2024, 16(11), 1597; https://doi.org/10.3390/w16111597 (registering DOI) - 3 Jun 2024
Abstract
Microbial fuel cells provide a promising solution for both generating electricity and treating wastewater at the same time. This review evaluated the effectiveness of using readily available earthen membranes, such as clayware and ceramics, in MFC systems. By conducting a comprehensive search of [...] Read more.
Microbial fuel cells provide a promising solution for both generating electricity and treating wastewater at the same time. This review evaluated the effectiveness of using readily available earthen membranes, such as clayware and ceramics, in MFC systems. By conducting a comprehensive search of the Scopus database from 2015 to 2024, the study analyzed the performance of various earthen membranes, particularly in terms of wastewater treatment and energy production. Ceramic membranes were found to be the most effective, exhibiting superior power density, COD removal, and current density, with values of 229.12 ± 18.5 mW/m2, 98.41%, and 1535.0 ± 29 mW/m2, respectively. The review emphasizes the use of affordable resources like red soil, bentonite clay, CHI/MMT nanocomposites, and Kalporgan soil, which have proven to be effective in MFC applications. Incorporating earthen materials into the membrane construction of MFCs makes them more cost-effective and accessible. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 1264 KiB  
Article
General Method for Predicting Interface Bonding at Various Oxide–Metal Interfaces
by Michiko Yoshitake
Surfaces 2024, 7(2), 414-427; https://doi.org/10.3390/surfaces7020026 (registering DOI) - 3 Jun 2024
Abstract
Interface termination bonding between metal oxide and metals is discussed from the viewpoint of thermodynamics. The method of interface termination prediction proposed by the authors for Al2O3–metal and ZnO–metal interfaces is extended to a general interface between metal-oxide and [...] Read more.
Interface termination bonding between metal oxide and metals is discussed from the viewpoint of thermodynamics. The method of interface termination prediction proposed by the authors for Al2O3–metal and ZnO–metal interfaces is extended to a general interface between metal-oxide and metals. The extension of the prediction method to the interface between metal oxides and elemental semiconductors is also discussed. Information on interface bonding was extracted by carefully examining the experimental results and first-principles calculations in the references. The extracted information on interface bonding from references is compared with the results obtained via the proposed prediction method. It is demonstrated that interface termination bonding can be predicted by extending the method to oxide–metal interfaces in general, when there is no interface reaction such as the reduction of oxide, oxidation of metal, or mixed oxide formation. The method uses only basic quantities of pure elements and the formation enthalpy of oxides. Therefore, it can be applied to most of the metals (including elemental semiconductors) in the periodic table and metal oxides with one stable valence. The method is implemented as a software, “InterChemBond”, and can be used free of charge. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop