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Abstract. Understanding the land use and land cover changes (LULCC) and its implication on surface hydrology of the Dinder 

and Rahad basins (D&R) approximately 77,504 km2 is vital for the management and utilization of water resources in the 

basins. Although there are many studies on LULCC in the Blue Nile basin, specific studies on LULCC in the D&R are still 

missing. Hence, its impact on streamflow is unknown. The objective of this paper is to understand the LULCC in the Dinder 15 

and Rahad and its implications on streamflow response using satellite data and hydrological modelling. The hydrological 

model has been derived by different sets of LULC maps from 1972, 1986, 1998 and 2011.  Catchment topography, land cover 

and soil maps, are derived from satellite images and serve to estimate model parameters. Results of LULCC detection between 

1972 and 2011 indicate a significant decrease of woodland and an increase of cropland. Woodland decreased from 42% to 

14% and from 35% to 14% for Dinder and Rahad respectively. Cropland increased from 14% to 47% and from 18% to 68% 20 

in Dinder and Rahad respectively. The model results indicate that streamflow is affected by LULCC in both the Dinder and 

the Rahad Rivers. The effect of LULCC on streamflow is significant during 1986 and 2011. This could be attributed to the 

severe drought during mid 1980s and the recent large expansion in cropland. 
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1 Introduction 

Streamflow is an important hydrological variable needed for water resources planning and management, and for ecosystem 

conservations. The rainfall runoff process over the upper Dinder and Rahad basins (D&R) is complex, non-linear, and exhibits 

temporal and spatial variability. To manage water resources effectively at a local level, decision makers need to understand 

how human activities and climate change may impact local streamflow. However, the impact is often not well understood with 5 

locally obtained data such as observed flow. For this reason, we used satellite data and hydrological modelling to analyze the 

land use and land cover changes (LULCC) and its impacts on streamflow response in the D&R.  

The D&R generate around 7% of the Blue Nile basin’s annual flow. The Rahad River supplies water to the Rahad 

Irrigation Scheme (100,000 ha), while the Dinder River supplies water to the diverse ecosystem of the Dinder National Park 

(DNP). The DNP (10,291 km2) is a vital ecological area in the arid and semi-arid Sudan-Saharan region. 10 

The Dinder and Rahad Rivers has experienced significant changes in floodplain hydrology during recent years, claimed to be 

caused by land use land cover changes in the upstream catchment. The floodplain hydrology defines the seasonal wetlands 

(Mayas) which are the only source of water in the DNP during the dry season (8 months). The hydrology of the mayas has 

large implications on the ecosystem of the DNP. A detailed description of the mayas wetlands can be found in (Hassaballah et 

al., 2016). 15 

LULCC was identified as a key research priority with multi-directional impacts on both human and natural systems 

(Turner II et al. 2007). Many studies highlighted the impacts of LULCC on hydrology (DeFries and Eshleman 2004; 

Uhlenbrook 2007), on ecosystem services (DeFries and Bounoua 2004; Metzger et al. 2006; Polasky et al. 2011) and on 

biodiversity (Hansen et al. 2004; Hemmavanh et al. 2010). 

LULCC is a widespread observable phenomenon in the Ethiopian highlands as pointed by (Zeleke and Hurni 2001; Bewket 20 

and Sterk 2005; Hurni et al. 2005; Teferi et al. 2013;). These studies have pointed out different types and rates of LULCC in 

different parts of the Ethiopian highlands over different time periods and reported that the expansion of croplands associated 

with a decrease in woodlands have been the general forms of transitions.  

Recently, Gumindoga et al. (2014) assessed the effect of land cover changes on streamflow in the Upper Gilgel Abbay 

river basin in northwestern Ethiopia. Their results showed significant land cover changes where cropland has changed from 25 

30% of the catchment in 1973 to 40% in 1986 and 62% in 2001. The study attributed these changes to the increase in 

population, which increased the demands for agricultural land. The study has also pointed that farmers in the area are 

commonly clearing forests to create croplands, and the resulting effect was the decrease in forest land from 52% in 1973 to 

33% in 1986 and 17% in 2001. Since the Upper Blue Nile basin is neighboring the D&R, one may expect some similarities of 

catchment characteristics, though differences cannot be excluded. These transitions have contributed to the high rate of soil 30 

erosion and land degradation in the Ethiopian plateau (Bewket and Teferi 2009). Understanding the impacts of LULCC on 

hydrology, and incorporating this understanding into the emerging focus on LULCC science are the most important needs for 

the future (Turner et al. 2003). 

  Many models have been developed to simulate impacts of LULCC on streamflow. These can be categorized as an 

empirical black box, conceptual, and physically based distributed models. Each type of these three models has its own 35 

advantages and limitations. Several situations in practice demand the use of simple tools such as the linear system models or 

black box models. Nevertheless, these simpler models usually fail to mimic the non-linear dynamics, which are essential in 

the rainfall-runoff transformation process. Therefore, the development of a dynamic modelling language within a GIS 

framework such as PCRaster is a further important stage that allows complex models, like the WFlow rainfall-runoff model, 

to be implemented making use of globally available spatial data sets. The PCRaster programming language is an environmental 40 

modelling language to build dynamic spatial environmental models (Bates and De Roo 2000; Karssenberg 2002; Uhlenbrook 

et al. 2004).  Such spatially distributed models also have the potential to help in answering questions of policymakers about 

the impact of spatial changes (e.g. impacts of LULCC on streamflow dynamic). It has been shown that a variety of probable 
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LULCC impacts on hydrologic processes in the D&R are likely to happen. Therefore, the objective of this study is to 

understand the LULCC in the D&R and its impacts on streamflow response using satellite data, GIS and remote sensing, and 

hydrological modelling. The WFlow distributed hydrological model (Schellekens, 2011) is used simulate the processes. In 

addition, understanding the level to which the streamflow has altered is critical for developing an effective management plan 

for ecosystem restoration and conservation. Thus, the Indicators of Hydrological Alteration (IHA) approach proposed by 5 

Richter et al. (1996), was then applied to analyze the streamflow characteristics likely to effect the ecological processes in the 

D&R including: flow magnitude, timing, and rate of change of flow.  

2 Study area  

The Dinder and the Rahad are the lower sub-basins of the Blue Nile River basin located between longitude 33°30' E and 37°30' 

E and latitude 11°00' N and 15°00' N (Fig. 1). The Blue Nile basin collects flows of eight major tributaries in Ethiopia besides 10 

the two main tributaries in Sudan: the Dinder and the Rahad Rivers. Both tributaries derive their water from the runoff of the 

Ethiopian highlands approximately 30 km west of Lake Tana (Hurst et al. 1959). Their catchment areas are about 34,964 and 

42,540 km2 for the Dinder and the Rahad, respectively, giving a total area of about 77,504 km2. The catchment has varied 

topography with elevation ranges between about 384 m at the catchment outlet and up to 2731 m at the Ethiopian plateau. The 

D&R have a complex hydrology, with varying climate, topography, soil, vegetation and geology (Hassaballh et al. 2016).  The 15 

annual average flow is about 2.797 x 109 and 1.102 x 109 m3/year for the Dinder and the Rahad, respectively.  
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Figure 1. Location map of the Dinder and Rahad basins and the DNP. The two black stars are the hydrological stations (Al-

Gewisi and Al-Hawata). 

3 Data and Methods  

Limited data is available for simulating the hydrology of the D&R. To fill this data gap, use has been made of globally available 5 

free datasets. The datasets which have been used to run the WFlow model are divided into two datasets; static data and dynamic 

data. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-128, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 20 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



5 
 

3.1 Input data   

3.1.1 Static data     

The static data contain maps that do not change over time. It includes maps of the catchment delineation, Digital Elevation 

Map (DEM), gauging points, land use, local drainage direction (ldd), outlets and rivers. These maps were created with a pre-

prepare processes of the WFlow hydrologic model. 5 

The catchment boundary has been delineated based on a 90 m x 90 m digital elevation map (DEM) of the NASA Shuttle Radar 

Topographic Mission (SRTM) obtained from the Consortium for Spatial Information (CGIAR_CSI) website 

(http://srtm.csi.cgiar.org).  

Multi-temporal Landsat data for the years 1972, 1986, 1998 and 2011 were obtained free of charge from the internet site of 

the United States Geological Survey (USGS) (source: http://glovis.usgs.gov/). All images were geometrically corrected into 10 

the Universal Transverse Mercator (UTM) coordinate system (Zone-36N).  

The soil map was obtained free of charge from the Food and Agriculture Organization (FAO) Harmonized World Soil Database 

(HWSD). The original catchment boundary layer provided 44 Soil Mapping Units (SMU) classes. These classes have been 

reclassified into 8 dominant soil group (DSG) categories, based on the DSG of each soil mapping unit code. These categories 

are: vertisols 71%, luvisols 9%, nitisols 8%, leptosols 5%, cambisols 4%, alisols 2% and fluvisols 1%. The map was then 15 

projected to WGS-84-UTM -zone-36N and resampled to a horizontal resolution of 500 m. 

3.1.2 Satellite based rainfall and evapotranspiration data 

The dynamic data contain maps that change over time. It includes daily maps of the precipitation and evapotranspiration. These 

maps were created with a pre-prepare step1 and step2 of WFlow model. In this study, three open-access satellite-based rainfall 

estimates (SBRE) products were compared based on their runoff performance at Al-Gewisi and Al-Hawata stations the outlets 20 

of the Dinder and Rahad basins, respectively. The best product was then used to run the WFlow model using different LULC 

maps. The SBRE and the evapotranspiration products used in this study are: Rainfall Estimates (RFE 2.0), potential 

evapotranspiration (PET), Tropical Rainfall Measuring Mission (TRMM) and Climate Hazards Group InfraRed Precipitation 

with Stations (CHIRPS). 

The RFE 2.0 and the PET data were obtained from the Famine Early Warning System Network (FEWS NET). The horizontal 25 

resolution is 0.1 degree (11.0 km) for the RFE and 1.0 degree (110 km) for PET. This data is available on a daily basis from 

2001 to near real-time period of record. More description can be found at http://earlywarning.usgs.gov/adds/downloads/. 

The TRMM is a joint space mission between NASA and the Japan Aerospace Exploration Agency (JAXA) launched in 1997. 

TRMM product uses a multi-satellite precipitation analysis (TMPA), which includes also ground measurements provided by 

the Global Precipitation Climatology Center (GPCC). The TRMM has a spatial resolution of 0.25° and a temporal resolution 30 

of 3 hours. More information can be found in Huffman and Bolvin (2013), and on www.trmm.gsfc.nasa.gov. 

The CHIRPS data were developed by the Climate Hazards Group (CHG) and scientists at the U.S. Geological Survey Earth 

Resources Observation and Science Center. This product is a new quasi-global precipitation with daily to seasonal time scales, 

a 0.05° resolution, and 1981 to near real-time period of record. The CHIRPS uses the monthly Climate Hazards Precipitation 

Climatology (CHPClim), the InfraRed (IR) sensors from the Group on Earth Observations (GEO) satellites, the TRMM 3B42 35 

product, and the ground precipitation observations. More information about TRMM data can be found in Funk et al. (2014). 

A summary of all precipitation and evapotranspiration satellite products was provided in Table 1. 

 

 

 40 
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Table 1: Summary of the different precipitation and evapotranspiration satellite products 

Product  Developer  Spatial 

resolution  

Covering area  Temporal 

resolution  

Time span  Ground 

measurement  

TRMM v7  NASA, 

JAXA  

0.25°  0°E-360°E/50°N-50°S  3 hourly  Jan 1998 - present  Yes  

RFE 2.0  NOAA 

(CPC)  

0.1°  20°E-55°E/40°N-40°S  6 Hourly  Jan 2001 - present  Yes  

CHIRPS v2.0  CHG  0.05°  0°E-360°E/50°N-50°S  Pentads 

(Daily for 

Africa)  

Jan 1983 - present  Yes  

PET NOAA 

(CPC) 

1.0° 20°E-55°E/40°N-40°S  6 Hourly  Jan 2001 - present  Yes  

 

3.1.3 Observed hydrological streamflow 

Daily streamflow data at Al-Gewisi station on the Dinder River and at Al-Hawata station on the Rahad River for the period 

(2001-2012) were obtained from the Ministry of Water Resources, Irrigation and Electricity-Sudan. This data is mainly used 5 

for calibration and validation of the WFlow hydrological model. 

3.2 LULC classification and change detection 

LULC images were selected in the same season to minimize the influence of seasonal variations on the classification result. In 

order to cover all the study area, more than one scene of the satellite data was obtained, and consequently all images were 

mosaicked. The classification results of the historical images 1972, 1986 and 1998 were validated through visual interpretation 10 

of the unclassified satellite images and supported by in-depth interview of local elders. The classification of the 2011 image 

was validated by ground survey during a field visits throughout the study area during the period between 2011 and 2013 

assuming no significant change during this period. A Global Positioning System (GPS) device was used to obtain exact location 

point data for each LULC class included in the classification scheme and for the creation of training sites and for signature 

generations as well. Moreover, field notes, site descriptions, and terrestrial photographs were taken to relate the site location 15 

to scene features. A total of (120) training areas were selected based on image interpretation keys, established during the field 

survey and from interviews with the local people. This later step was used as a crosscheck validation for the visual 

interpretation performed to the historical images. A supervised Maximum Likelihood Classification (MLC) technique was 

independently employed to the individual images. MLC is the most common supervised classification method used with 

remote sensing image data (Ellis et al. 2010; Pradhan and Suleiman 2009). The derivation of MLC is generally acceptable for 20 

remote sensing applications and is used widely (Richards et al. 2006). 

The accuracy assessment of the classified images was based on the visual interpretation of the unclassified satellite 

images (Biro et al. 2013). However, the visual interpretation was conducted by an independent analyst not involved in the 

classification. The stratified random sampling design, where the number of points was stratified to the LULC types, was 

adopted in order to reduce bias (Mundia and Aniya 2006). Accordingly, error matrices as cross-tabulations of the classified 25 

data vs. the reference data were used to evaluate the classification accuracy. The overall accuracy, the user’s and producer’s 

accuracies, and the Kappa statistic values were then derived from the error matrices. 

Multi-date Post-classification Comparison (PCC) change detection method described by Yuan et al. (2005) was used 

to determine the LULCC in three intervals: 1972–1986, 1986–1998 and 1998–2011. PCC is a quantitative technique that 

involves an independent classification of separate images from different dates for the same geographic location, followed by 30 
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a comparison of the corresponding pixels (thematic labels) in order to identify and quantify areas of change (Al Fugara et al. 

2009; Jensen 2004). It is the most commonly used method of LULCC detection mapping (Kamusoko and Aniya 2009). 

3.3 Description of the WFlow hydrological Model 

In order to assess the impacts of LULCC on the streamflow dynamic, the WFlow distributed hydrological model (Schellekens, 

2011) is forced using SBRE. The WFlow is a state-of-the-art open source distributed catchment model. The model is part of 5 

the Deltares OpenStreams project (http://www.openstreams.nl). The model is derived from the CQFLOW model (Kohler et 

al., 2006). It is a hydrological model platform that includes two models: the WFlow_sbm model described by Verstessy and 

Elsenbeer (1999) derived from the TIOPG_SBM soil concept, and the WFlow_hbv model (distributed version of the HBV 

model). The model directly appeals to the need within the hydrological and geomorphologic sciences community to effectively 

use spatial datasets e.g. digital elevation models, land use maps, dynamic satellite data for rapid and adequate modelling of 10 

river basins with limited data availability. The model is programmed in PCRaster GIS dynamic language (Deursen 1995). 

In this study, the WFlow_sbm PCRaster-based distributed hydrological model which makes use of the Gash and the 

TOPOG_SBM models was used. The model requires less calibration and maximizes the use of available spatial data that makes 

it a suitable model for this study. Step one of WFlow model was to delineate river network and the gauging points based on 

the DEM. Next, a land use and soil maps were added to the model and parameters were estimated based on physical 15 

characteristics of the soil and land use type. The rainfall interception was calculated using the Gash model (Gash 1979, 1995), 

while hydrologic processes that cause a runoff or overland flow were calculated using the TOPOG_SBM model. The WFlow 

uses potential evapotranspiration as an input data and derives the actual evaporation based on soil water content and vegetation 

cover type. The analytical Gash sub-model of rainfall interception in the WFlow is based on Rutter’s numerical model. The 

surface runoff is modelled using a kinematic wave routine.  20 

The model is fully distributed, which means that it makes the calculations for every grid cell of the basin. Each cell (500 m x 

500 m) is seen as a bucket with a total depth divided to saturated and unsaturated stores (Fig. 2). The streamflow model results 

were then analyzed using the IHA approach described by Richter et al. (1996). 

 

 25 
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Figure 2. Schematization of the soil within the WFlow_sbm model  

Source: http://WFlow.readthedocs.io/en/latest/WFlow_sbm.html#the-soil-model 

 5 

3.3.1 Model calibration and validation 

As with all hydrological models, calibration of the Dinder and Rahad hydrological model is needed for optimal performance. 

Since the hydrological data available for calibration start from 2001, the nearest land use (land use of 1998) was used in the 

calibration. The calibration procedure performed in two steps based on; firstly, initial values of all parameters were estimated 

based on the land use and the soil types. Secondly, by adjusting the model parameters and evaluate the results.  10 

The performance of the model was assessed using measures of goodness of fit between the modeled and observed flow using 

the coefficient of determination (R2) and the Nash–Sutcliffe efficiency (NSE), defined by Nash and Sutcliffe (1970). The 

observed and the simulated flow of the Dinder and Rahad correlated well, except for few under-predictions and over-

predictions of peak flows which can be explained in terms of inherent uncertainty in the model and the data. However, measures 

of performances for both calibration and verification runs fell within the acceptable ranges. 15 

3.4 Indicators of hydrologic alterations (IHA) 

The IHA approach was introduced by Richter et al. (1996). The approach used to assess river ecosystem management 

objectives defined based on a statistical representation of the most ecologically relevant hydrologic indicators. These indicators 

describe the essential characteristics of a river flow that have ecological implications. A detailed description of IHA can be 

found in (Richter et al., 1996 and Poff et al., 1997). 20 
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4 Results and Discussion 

4.1 LULC classification and change detection  

The overall LULC classification accuracy levels for the four images ranged from 82% to 87%, with Kappa indices of agreement 

ranging from 77% to 83% (Table 2). This accuracy is satisfactory for the study area considering the multi-temporal analysis 

of Landsat data and the visual interpretation adapted to image classification. 5 

 

Table 2: Accuracy assessment (%) of LULC maps. 

LULC 

Classes 

1972 1986 1998 2011 

Producer’s User’s Producer’s User’s Producer’s User’s Producer’s User’s 

Woodland 88 89 89 90 89 90 91 93 

Cropland 78 70 80 74 80 80 83 82 

Shrubland 71 71 73 75 77 75 80 75 

Grassland 80 88 83 88 85 88 86 89 

Bare Land 82 76 82 78 82 78 82 85 

Water 86 86 88 86 91 86 94 86 

Overall 82 84 85 87 

Kappa 77 79 81 83 

 

 

Landsat image classification results for the years 1972, 1986, 1998 and 2011 are shown in Fig. 3. According to the produced 10 

LULC maps, it was found that woodland, shrubland and grassland were the dominant types of LULC classes for the years 

1972, while for the year 1986 they were shrubland, grassland and cropland. The LULC map of 1998 illustrates that the 

predominant types of LULC classes were cropland and woodland, while they were cropland and shrubs in 2011.  

LULCC in the D&R are assessed by image comparison. In general, the results showed that the dominant process is the large 

decrease of woodland and increase of cropland. This result was in agreement with that of Rientjes et al. (1979) and Gumindoga 15 

et al. (2014), who studied the changes in land cover, rainfall and streamflow in the neighboring catchment of the upper Gilgel 

Abbay in Ethiopia. 
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Figure 3. Classified LULC maps of the years 1972, 19986, 1998 and 2011. 

 

 

Table 3 shows the percentages of LULCC classes in Dinder and Rahad basins that occurred in the period 1972 to 1986, 1986 5 

to 1998, and 1998 to 2011. The decrease in the woodland area in 1986 is mainly attributed to the deforestation during the 

drought time in 1984 and 1985.  As a result, the cropland was increased due to the development of new agricultural areas in 

both irrigated (i.e. Rahad Agricultural Scheme) and rain-fed sectors. The rapid expansion in the mechanized rain-fed 
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agriculture led to a large increase in cropland during 1998 and 2011. These findings are in agreement with what have been 

reported by Marcotullio and Onishi (2008), and Biro et.al, (2013) from their similar studies conducted in the Ethiopian 

highlands and Gedarif region in eastern Sudan. 

 

Table 3: Land cover changes (%) in Dinder and Rahad basins that occurred in the period 1972 to 1986, 1986 to 1998, and 1998 5 

to 2011.  

Land cover 

type (%) 

Dinder 

1972 

 

1986  

 

1998  

 

2011 

Rahad 

1972 

 

1986  

 

1998  

 

2011 

Bare area 5 1 0 2 6 5 0 3 

Woodland 42 23 27 14 35 14 21 14 

Shrubland 23 43 21 36 30 32 13 15 

Grassland 16 18 5 1 11 22 9 1 

Cropland 14 15 45 47 18 26 55 68 

 

 

4.1.1 Calibration and validation of the hydrological model results 

The NSE and R2 ranged from 0.4 to 0.80 and 0.50 to 0.80, respectively for the daily calibration and validation for the three 10 

precipitation products at Al-Gewisi station on the Dinder River and Al-Hawata station on the Rahad River (Fig. 4 and 5). 

The calibration results indicate that CHIRPS 2.0 is the best products over rugged terrain with complex rainfall patterns in the 

D&R basins. This result is in agreement with Hessels (2015), who compared and validated 10 open-access and spatially 

distributed satellite rainfall products over the Nile Basin and found that CHIRPS is the best product to be used in the Nile 

Basin. The modelling results show that the approach is reasonably good and therefore can be used in predicting runoff at a 15 

sub-basin level. Then the model was used to simulate the impact of LULCC on streamflow by running the model using land 

cover from different periods of time (1972, 1986, 1998 and 2011) and keeping precipitation (CHIRPS), evapotranspiration and 

other model parameters without change.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)  

 

(f) 

 

Figure 4. Calibration and validation results at Al-Gewisi station on Dinder River (a) and (b) for RFE, (c) and (d) for TRMM 

and (e) and (f) for CHIRPS. 
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(f) 

 

Figure 5. Calibration and validation results at Al-Hawata station on Rahad River (a) and (b) for RFE, (c) and (d) for TRMM 

and (e) and (f) for CHIRPS. 

 

4.2 Streamflow response under land cover conversions 

After the calibration and validation of the WFlow, the model has been run using different land use with fixed model parameters. 5 

First with land use from 1972; second with land use from 1986; third with land use from 1998; and fourth with land use from 

2011. Then the outputs from the four land use were compared. We note that the rainfall (CHIRPS) and PET for the period 

2001-2012 were used with the 1972, 1986, 1998 and 2011 land use to identify hydrological impacts of changes in land cover 

explicitly. 

The WFlow result indicates that streamflow is affected by LULCC in both Dinder and Rahad Rivers. The effect of LULCC is 10 

much larger in Rahad than in Dinder.  In the Rahad basin, the simulated streamflow showed low peak flow with land use of 

1972 and high flow with land use of 2011. Woodland and shrubland are dominants in 1972 and occupied 35% and 30% of the 
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upper catchment area respectively. While cropland is the dominant land cover type in 2011 which occupied 68% .Woodland 

and shrubland have high porosity and they delayed the release of water to the catchment outlet. Woodland removal implies 

less infiltration due to a decrease in soil permeability and less interception of rainfall by the tree canopies and thus more runoff 

and high flow peaks. The daily streamflow of the Dinder and the Rahad as results from different LULC are shown in Fig. 6. 

Figure 7.a shows the simulated streamflow of the Rahad River as a result from land covers of 1972, 1986, 1998 and 2011. 5 

Annual streamflow increased by 75% between 1972 and 1986, but is followed by a decrease of 45% between 1986 and 1998. 

The increase of streamflow could be a result of a decrease in woodland by 60% from 35% in 1972 to 14% in 1986 associated 

with an increase in cropland and grassland. Cropland has increased by 44% from 18% in 1972 to 26% in 1986 and grassland 

has increased by 100% from 11% in 1972 to 22% in 1986. This increase of grassland thus decreases water infiltration due to 

soil compaction caused by grazing which causes both higher runoff and an increase in annual streamflow magnitude. During 10 

the period 1986-1998, cropland and woodland showed a significant increase by 113% and 53%, respectively, while the 

remaining categories showed declines. During the period 1998-2011, the annual streamflow increased by 65% and corresponds 

with results on increases in the percentage of bare land, cropland, and shrubland by 754%, 23% and 15%, respectively, while 

a decrease in woodland and grassland by 37%, and 94%, respectively.  

Similar to Rahad, the simulated streamflow of the Dinder River showed low peak flow with land use of 1972 and 15 

relatively high flow with land use of 2011. Woodland is dominant in 1972 and occupied 42% of the total catchment area. 

While cropland is the dominant land cover type in 2011 which occupied 47%. Figure 7.b shows the simulated annual 

streamflow of the Dinder River as a result from land covers of 1972, 1986, 1998 and 2011. Annual streamflow increased by 

20% between 1972 and 1986 but is followed by a decrease of 9% between 1986 and 1998. This could be a result of a decrease 

in woodland by 43% from 42% in 1972 to 23% in 1986 associated with an increase in shrubland, grassland and cropland by 20 

83%, 10% and 6%, respectively. During the period 1986-1998, cropland and woodland increased by 192% and 16%, 

respectively, while the remaining categories showed declines. Over the period 1998-2011, the annual streamflow increased by 

52% and corresponds with findings on increases in the percentage of bare land, cropland, and shrubland by 360%, 4% and 

71%, respectively, while a decrease in woodland and grassland by 50%, and 76%, respectively.  The decrease in percentage 

change of bare area over the period 1986-1998, beside the increase in woodland in both the Dinder and the Rahad basins 25 

indicate that the environment was recovering from the severe drought of 1984/1985. 

 

 

 

 30 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-128, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 20 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



15 
 

(a) 

 

(b) 

 

Figure 6. Daily streamflow results from the WFlow model at (a) Al-Gewisi station on the Dinder River and (b) Al-Hawata 

station on the Rahad River based on land use from 1972, 1986, 1998 and 2011 for the year 2012 as an example. 
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(a) 

 

(b) 

 

Figure 7. Annual streamflow results from the WFlow model at (a) Al-Gewisi station on the Dinder River and (b) Al-Hawata 

station on the Rahad River based on land use from 1972, 1986, 1998 and 2011 

 

4.3 Streamflow analysis with IHA   5 

Since both Dinder and Rahad are seasonal rivers (July-November) and its floodplains including the mayas are mainly 

depending on floods, the streamflow analysis is focused on the flows during the months of high flows and the indicators 

describing the hydrological high extremes. The investigated streamflow variables are a subset of the 32 indicators proposed 

by Richter et al. (1996) under the Range of Variability approach (RVA) that characterizes the natural flow regime of a river 

into five categories of magnitude, timing, duration, frequency and rate of change. In this section, we analyzed the modelled 10 

streamflow as a result from LULC of 1972, 1986, 1998 and 2011. 

4.3.1 Magnitude of monthly flow 

The general pattern of median monthly flow of the Rahad River (Fig. 8a) at Al-Hawata station during 1972-1986 is that the 

median flow increased in all months of flow (July-November) with an average of 83% per month. In contrast, the median 

monthly flow decreased in all months during the period 1986-1998 with an average of 45% per month. Similar to the period 15 

from 1972-1986, the median monthly flow during 1998-2011 increased by an average of 65% per month. 

In comparison to Rahad, the Dinder median monthly flow (Fig. 8b) at Al-Gewisi station during 1972-1986 increased in all 
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months of flow by an average of 21% per month. In contrast, the median monthly flow decreased in all months during the 

period 1986-1998 with an average of 6% per month. Likewise, to the period from 1972-1986, the median monthly flow during 

1998-2011 increased by an average of 17% per month. Alterations of the monthly flow magnitude, particularly during the 

months of high flows (August-October) is likely affecting habitat availability on floodplains, which may lead to decrease 

and/or disappearance of native flora and increase in non-natives flora that might not be suitable for the herbivores wildlife that 5 

dwells in the DNP.  

 

 

 

(a) 

 

(b) 

 

Figure 8. The monthly median flow (a) for Rahad River and (b) for Dinder River 10 

 

4.3.2 Magnitude of river extreme floods 

Extreme floods are important in re-forming both the biological and physical structure of a river and its associated floodplain. 

Extreme floods are also important in forming key habitats such as oxbow lakes and floodplain wetlands.  The pattern of the 

extreme flow is vital for the filling of wetland mayas of the DNP. Therefore, annual flow maxima of 1, 7, 30 and 90-day have 15 

been investigated. The median maxima are presented in Fig. 9.  In general, all results have shown that the maxima’s are 

significantly affected by LULCC. In Rahad median flow maxima for 1, 7, 30 and 90-day intervals from the land use of 1986 

are 51 %, 56%, 67%, and 68%, respectively higher than the maxima’s from the land use of 1972. Likewise, median flow 

maxima for 1, 7, 30 and 90-day intervals from the land use of 2011 are 32 %, 33%, 36%, and 39%, respectively higher than 

the maxima’s from the land use of 1998. In contrast, median flow maxima for 1, 7, 30 and 90-day intervals from the land use 20 

of 1998 are 39 %, 39%, 42%, and 42%, respectively lower than the maxima’s from the land use of 1986. 

In the Dinder River the effect of LULCC on streamflow is not big as in Rahad River.  The median flow maxima for 

1, 7, 30 and 90-day intervals from the land use of 1986 are 19 %, 19%, 18%, and 18%, respectively higher than the maxima’s 

from the land use of 1972. Likewise, median flow maxima for 1, 7, 30 and 90-day intervals from the land use of 2011 are 

14 %, 13%, 14%, and 19% respectively higher than the maxima’s from the land use of 1998. In contrast, median flow maxima 25 

for 1, 7, 30 and 90-day intervals from the land use of 1998 are 11 %, 11%, 10%, and 10%, respectively lower than the maxima’s 

from the land use of 1986. Peak flows are the critical aspects of the lateral connectivity between the Rahad and the Dinder 

rivers and its floodplains. Reduction of the magnitude of these high flow peaks during dry years (less than average) may reduce 

the ecological function of the mayas wetlands areas as breeding, nursery and feeding habitat for wildlife. 
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(a) 

 

(b) 

 

Figure 9. Median flow maxima for 1, 7, 30 and 90-day intervals from the land use of 1972, 1986, 1998 and 2011 for (a) Rahad 

River and (b) Dinder River. 

 5 

4.3.3 Timing of annual extreme floods 

Synchronization of annual flood with a variety of riverine and floodplain species life-cycle requirements is of likely high 

importance given the adaptation of species to their habitat. In Rahad River, date of the annual maxima as results from the land 

use of 1972, 1986, 1998 and 2011 occurred within the same three weeks (15 August – 02 September, Julian date (JD) 227–

245). The annual maxima from the land use of 1986 is 18 days earlier than the annual maxima from land use of 1972. This 10 

could be attributed to land cover degradation and deforestation due to the devastating drought of 1984/1985 result in 

accelerating the runoff response.  

In Dinder River, date of the annual maxima are not affected by LULCC and occurred within the same two days (11 September 

– 12 September, Julian date (JD) 254–255).  

4.3.4 Rate of change in flow 15 

The rate of change in flow can affect persistence and lifetime for both aquatic and riparian species (Poff et al. 1997), particularly 

in arid areas where streamflow usually changes rapidly in a very short time. Figure 10 shows the rate of flow-rises and flow-

falls for both Rahad and Dinder. The median rate of flow-rises (positive differences between consecutive daily values) in 

Rahad River has increased by 74% from 2.73 (m3/s) /day in 1972 to 4.73 (m3/s) /day in 1986. In 1998 the median rate of flow-

rises decreased by 50%, while increasing by 37% in 2011. Similarly, the median rate of flow-falls (negative differences 20 

between consecutive daily values) has increased by 88% from 0.12 (m3/s) /day in 1972 to 0.23 (m3/s) /day in 1986. In 1998 

the median rate of flow-falls decreased by 37%, while increasing by 22% in 2011. Likewise, the median rate of flow-rises and 

flow-falls in the Dinder River follow the same pattern of the Rahad flow, but no significant changes were observed. This result 

shows that the fluctuation in rate of change in streamflow is strongly linked to LULCC, especially when analyzing the 

streamflow as a result from land use after a period of drought (e.g. land use of 1986). 25 
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(a) 

 

(b) 

 

Figure 10. The rate of flow rises (a) and falls (b) as a response to land use of 1972, 1986, 1998 and 2011 for both Rahad and 

Dinder Rivers (negative sign in the vertical axis indicates downward direction of flow). 

5 Conclusion 

For assessing the changes in land cover, four remote sensing images were used for the years 1972, 1986, 1998 and 2011. The 5 

accuracy assessment with supervised land cover classification shows that the classification results are reliable. The land cover 

changes in the D&R are assessed by image comparison and the results showed that the dominant process is the relatively large 

decrease of woodland and the large increase of cropland.  Results of LULCC detection between 1972 and 2011 indicate a 

significant decrease of woodland and an increase of cropland. Woodland decreased from 42% to 14% and from 35% to 14% 

for Dinder and Rahad respectively. Cropland increased from 14% to 47% and from 18% to 68% in Dinder and Rahad 10 

respectively. The rate of deforestation is high during the period 1972-1986 and probably is due to the severe drought during 

1984/1985, expansion in agricultural activities and increased demand for wood for fuel, construction and other human needs 

due to the increase in population. On the other hand, increasing in woodland during the period between 1986 and 1998 is 

probably due to reforestation activities in the basin. Nevertheless, the magnitude of deforestation is still much larger than the 

reforestation. The cropland expansion over the period 1986 to 1998 is larger than the expansion over the period 1998 to 2011, 15 

suggests that most of the areas that are suitable for cultivation have most likely been occupied, or the land tenure regulations 

have controlled the expansion of cultivation by local communities. 

The results of the hydrological model indicate that streamflow is affected by LULCC in both the Dinder and the 

Rahad Rivers. The effect of LULCC on streamflow is significant during 1986 and 2011 particularly in Rahad River. This could 

be attributed to the severe drought during 1984/1985 and the large expansion in cropland in the Rahad catchment to 68% of 20 

the total area.  

The IHA analysis indicated that the flow of the Dinder and the Rahad Rivers was associated with significant upward 

and downward alterations in magnitude, timing and rate of change of river flows, as a result of LULCC. These alterations in 

the streamflow characteristics are likely to have significant effects on a range of species that depend on the seasonal patterns 

of flow. Therefore, alterations in the magnitude of the annual floods that decrease the water flowing to the mayas may reduce 25 

the production of native river-floodplain fauna and flora, and migration of animals that may be connected to mayas inundation.  
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