Magnetization reversal of an individual exchange-biased permalloy nanotube

A. Buchter, R. Wölbing, M. Wyss, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, D. Rüffer, F. Matteini, G. Tütüncüoglu, F. Heimbach, A. Kleibert, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, and M. Poggio
Phys. Rev. B 92, 214432 – Published 22 December 2015
PDFHTMLExport Citation

Abstract

We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and a temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18±2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by x-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 September 2015
  • Revised 26 November 2015

DOI:https://doi.org/10.1103/PhysRevB.92.214432

©2015 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

A. Buchter1, R. Wölbing2, M. Wyss1, O. F. Kieler3, T. Weimann3, J. Kohlmann3, A. B. Zorin3, D. Rüffer4, F. Matteini4, G. Tütüncüoglu4, F. Heimbach5, A. Kleibert6, A. Fontcuberta i Morral4, D. Grundler5,7, R. Kleiner2, D. Koelle2, and M. Poggio1

  • 1Department of Physics, University of Basel, 4056 Basel, Switzerland
  • 2Physikalisches Institut and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, 72076 Tübingen, Germany
  • 3Fachbereich Quantenelektronik, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
  • 4Laboratoire des matériaux semiconducteurs LMSC de l'institut des matériaux IMX et Section de science et génie des matériaux SMX, Faculté des sciences et techniques de l'ingénieur STI, Ecole polytechnique fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
  • 5Lehrstuhl für Physik funktionaler Schichtsysteme, Physik Department E10, Technische Universität München, 85747 Garching, Germany
  • 6Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  • 7Laboratory of Nanoscale Magnetic Materials and Magnonics LMGN, Institute of Materials IMX, Faculté des sciences et techniques de l'ingénieur STI, Ecole polytechnique fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 92, Iss. 21 — 1 December 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×