The 2023 MDPI Annual Report has
been released!
 
20 pages, 6246 KiB  
Article
A Two-Stage Automatic Container Code Recognition Method Considering Environmental Interference
by Meng Yu, Shanglei Zhu, Bao Lu, Qiang Chen and Tengfei Wang
Appl. Sci. 2024, 14(11), 4779; https://doi.org/10.3390/app14114779 (registering DOI) - 31 May 2024
Abstract
Automatic Container Code Recognition (ACCR) is critical for enhancing the efficiency of container terminals. However, existing ACCR methods frequently fail to achieve satisfactory performance in complex environments at port gates. In this paper, we propose an approach for accurate, fast, and compact container [...] Read more.
Automatic Container Code Recognition (ACCR) is critical for enhancing the efficiency of container terminals. However, existing ACCR methods frequently fail to achieve satisfactory performance in complex environments at port gates. In this paper, we propose an approach for accurate, fast, and compact container code recognition by utilizing YOLOv4 for container region localization and Deeplabv3+ for character recognition. To enhance the recognition speed and accuracy of YOLOv4 and Deeplabv3+, and to facilitate their deployment at gate entrances, we introduce several improvements. First, we optimize the feature-extraction process of YOLOv4 and Deeplabv3+ to reduce their computational complexity. Second, we enhance the multi-scale recognition and loss functions of YOLOv4 to improve the accuracy and speed of container region localization. Furthermore, we adjust the dilated convolution rates of the ASPP module in Deeplabv3+. Finally, we replace two upsampling structures in the decoder of Deeplabv3+ with transposed convolution upsampling and sub-pixel convolution upsampling. Experimental results on our custom dataset demonstrate that our proposed method, C-YOLOv4, achieves a container region localization accuracy of 99.76% at a speed of 56.7 frames per second (FPS), while C-Deeplabv3+ achieves an average pixel classification accuracy (MPA) of 99.88% and an FPS of 11.4. The overall recognition success rate and recognition speed of our approach are 99.51% and 2.3 ms per frame, respectively. Moreover, C-YOLOv4 and C-Deeplabv3+ outperform existing methods in complex scenarios. Full article
Show Figures

Figure 1

19 pages, 1977 KiB  
Review
How Adversarial REM Dreams May Facilitate Creativity, and Why We Become Aware of Them
by Nicolas Deperrois, Mihai A. Petrovici, Jakob Jordan, Lukas S. Huber and Walter Senn
Clin. Transl. Neurosci. 2024, 8(2), 21; https://doi.org/10.3390/ctn8020021 - 31 May 2024
Abstract
The importance of sleep for healthy brain function is widely acknowledged. However, it remains unclear how the internal generation of dreams might facilitate cognitive processes. In this perspective, we review a computational approach inspired by artificial intelligence that proposes a framework for how [...] Read more.
The importance of sleep for healthy brain function is widely acknowledged. However, it remains unclear how the internal generation of dreams might facilitate cognitive processes. In this perspective, we review a computational approach inspired by artificial intelligence that proposes a framework for how dreams occurring during rapid-eye-movement (REM) sleep can contribute to learning and creativity. In this framework, REM dreams are characterized by an adversarial process that, against the dream reality, tells a discriminator network to classify the internally created sensory activity as real. Such an adversarial dreaming process is shown to facilitate the emergence of real-world semantic representations in higher cortical areas. We further discuss the potential contributions of adversarial dreaming beyond learning, such as balancing fantastic and realistic dream elements and facilitating the occurrence of creative insights. We characterize non-REM (NREM) dreams, where a single hippocampal memory is replayed at a time, as serving the complementary role of improving the robustness of cortical representations to environmental perturbations. We finally explain how subjects can become aware of the adversarial REM dreams, but less of the NREM dreams, and how content- and state-awareness in wake, dream, and lucid dreaming may appear. Full article
(This article belongs to the Special Issue Sleep–Wake Medicine)
Show Figures

Figure 1

19 pages, 1714 KiB  
Article
A High-Performance Fractional Order Controller Based on Chaotic Manta-Ray Foraging and Artificial Ecosystem-Based Optimization Algorithms Applied to Dual Active Bridge Converter
by Felipe Ruiz, Eduardo Pichardo, Mokhtar Aly, Eduardo Vazquez, Juan G. Avalos and Giovanny Sánchez
Fractal Fract. 2024, 8(6), 332; https://doi.org/10.3390/fractalfract8060332 - 31 May 2024
Abstract
Over the last decade, dual active bridge (DAB) converters have become critical components in high-frequency power conversion systems. Recently, intensive efforts have been directed at optimizing DAB converter design and control. In particular, several strategies have been proposed to improve the performance of [...] Read more.
Over the last decade, dual active bridge (DAB) converters have become critical components in high-frequency power conversion systems. Recently, intensive efforts have been directed at optimizing DAB converter design and control. In particular, several strategies have been proposed to improve the performance of DAB control systems. For example, fractional-order (FO) control methods have proven potential in several applications since they offer improved controllability, flexibility, and robustness. However, the FO controller design process is critical for industrializing their use. Conventional FO control design methods use frequency domain-based design schemes, which result in complex and impractical designs. In addition, several nonlinear equations need to be solved to determine the optimum parameters. Currently, metaheuristic algorithms are used to design FO controllers due to their effectiveness in improving system performance and their ability to simultaneously tune possible design parameters. Moreover, metaheuristic algorithms do not require precise and detailed knowledge of the controlled system model. In this paper, a hybrid algorithm based on the chaotic artificial ecosystem-based optimization (AEO) and manta-ray foraging optimization (MRFO) algorithms is proposed with the aim of combining the best features of each. Unlike the conventional MRFO method, the newly proposed hybrid AEO-CMRFO algorithm enables the use of chaotic maps and weighting factors. Moreover, the AEO and CMRFO hybridization process enables better convergence performance and the avoidance of local optima. Therefore, superior FO controller performance was achieved compared to traditional control design methods and other studied metaheuristic algorithms. An exhaustive study is provided, and the proposed control method was compared with traditional control methods to verify its advantages and superiority. Full article
Show Figures

Figure 1

19 pages, 10859 KiB  
Article
Reduced Order Modeling of System by Dynamic Modal Decom-Position with Fractal Dimension Feature Embedding
by Mingming Zhang, Simeng Bai, Aiguo Xia, Wei Tuo and Yongzhao Lv
Fractal Fract. 2024, 8(6), 331; https://doi.org/10.3390/fractalfract8060331 - 31 May 2024
Abstract
The balance between accuracy and computational complexity is currently a focal point of research in dynamical system modeling. From the perspective of model reduction, this paper addresses the mode selection strategy in Dynamic Mode Decomposition (DMD) by integrating an embedded fractal theory based [...] Read more.
The balance between accuracy and computational complexity is currently a focal point of research in dynamical system modeling. From the perspective of model reduction, this paper addresses the mode selection strategy in Dynamic Mode Decomposition (DMD) by integrating an embedded fractal theory based on fractal dimension (FD). The existing model selection methods lack interpretability and exhibit arbitrariness in choosing mode dimension truncation levels. To address these issues, this paper analyzes the geometric features of modes for the dimensional characteristics of dynamical systems. By calculating the box counting dimension (BCD) of modes and the correlation dimension (CD) and embedding dimension (ED) of the original dynamical system, it achieves guidance on the importance ranking of modes and the truncation order of modes in DMD. To validate the practicality of this method, it is applied to the reduction applications on the reconstruction of the velocity field of cylinder wake flow and the force field of compressor blades. Theoretical results demonstrate that the proposed selection technique can effectively characterize the primary dynamic features of the original dynamical systems. By employing a loss function to measure the accuracy of the reconstruction models, the computed results show that the overall errors of the reconstruction models are below 5%. These results indicate that this method, based on fractal theory, ensures the model’s accuracy and significantly reduces the complexity of subsequent computations, exhibiting strong interpretability and practicality. Full article
(This article belongs to the Special Issue Fractal Dimensions with Applications in the Real World)
Show Figures

Figure 1

16 pages, 4754 KiB  
Article
Dynamic Electrocardiogram Signal Quality Assessment Method Based on Convolutional Neural Network and Long Short-Term Memory Network
by Chen He, Yuxuan Wei, Yeru Wei, Qiang Liu and Xiang An
Big Data Cogn. Comput. 2024, 8(6), 57; https://doi.org/10.3390/bdcc8060057 - 31 May 2024
Abstract
Cardiovascular diseases (CVDs) are highly prevalent, sudden onset, and relatively fatal, posing a significant public health burden. Long-term dynamic electrocardiography, which can continuously record the long-term dynamic ECG activities of individuals in their daily lives, has high research value. However, ECG signals are [...] Read more.
Cardiovascular diseases (CVDs) are highly prevalent, sudden onset, and relatively fatal, posing a significant public health burden. Long-term dynamic electrocardiography, which can continuously record the long-term dynamic ECG activities of individuals in their daily lives, has high research value. However, ECG signals are weak and highly susceptible to external interference, which may lead to false alarms and misdiagnosis, affecting the diagnostic efficiency and the utilization rate of healthcare resources, so research on the quality of dynamic ECG signals is extremely necessary. Aimed at the above problems, this paper proposes a dynamic ECG signal quality assessment method based on CNN and LSTM that divides the signal into three quality categories: the signal of the Q1 category has a lower noise level, which can be used for reliable diagnosis of arrhythmia, etc.; the signal of the Q2 category has a higher noise level, but it still contains information that can be used for heart rate calculation, HRV analysis, etc.; and the signal of the Q3 category has a higher noise level that can interfere with the diagnosis of cardiovascular disease and should be discarded or labeled. In this paper, we use the widely recognized MIT-BIH database, based on which the model is applied to realistically collect exercise experimental data to assess the performance of the model in dealing with real-world situations. The model achieves an accuracy of 98.65% on the test set, a macro-averaged F1 score of 98.5%, and a high F1 score of 99.71% for the prediction of Q3 category signals, which shows that the model has good accuracy and generalization performance. Full article
Show Figures

Figure 1

19 pages, 28912 KiB  
Article
Multifunctional Anatase–Silica Photocatalytic Material for Cements and Concretes
by Valeria Strokova, Yulia Ogurtsova, Ekaterina Gubareva, Sofya Nerovnaya and Marina Antonenko
J. Compos. Sci. 2024, 8(6), 207; https://doi.org/10.3390/jcs8060207 - 31 May 2024
Abstract
The purpose of this research was to study the influence of multifunctional anatase–silica photocatalytic materials (ASPMs) with various photocatalytic and pozzolanic activities on the properties of white portland cement and fine-grained concrete. ASPMs were synthesized by a sol–gel method, during which the levels [...] Read more.
The purpose of this research was to study the influence of multifunctional anatase–silica photocatalytic materials (ASPMs) with various photocatalytic and pozzolanic activities on the properties of white portland cement and fine-grained concrete. ASPMs were synthesized by a sol–gel method, during which the levels of photocatalytic and pozzolanic activity were regulated by a certain amount of solvent. ASPMb, obtained with the use of a smaller amount of solvent, was characterized by increased pozzolanic activity due to the lower degree of coating of the surface of diatomite particles with titanium dioxide and the higher content of an opal–cristobalite–tridymite-phase and Bronsted acid sites. They promoted the reaction of diatomite with portlandite of cement stone and allowed significant decreases in the strength of cement–sand mortar to be avoided when replacing 15% of the cement with ASPMs. This allowed self-cleaning fine-grained concrete to be produced, which, after forced carbonization, simulating the natural aging of the product during operation, retained the ability of self-cleaning without changes. ASPMc, produced with the use of a larger amount of solvent with a more uniform distribution of titanium dioxide on the surface of diatomite, allowed fine-grained concrete with a high self-cleaning ability to be obtained, but with a lesser manifestation of the pozzolanic effect. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication and Application)
Show Figures

Figure 1

14 pages, 2520 KiB  
Article
Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons
by Hansol Kim, Sung Yun Woo and Hyungjin Kim
Biomimetics 2024, 9(6), 335; https://doi.org/10.3390/biomimetics9060335 - 31 May 2024
Abstract
To mimic the homeostatic functionality of biological neurons, a split-gate field-effect transistor (S-G FET) with a charge trap layer is proposed within a neuron circuit. By adjusting the number of charges trapped in the Si3N4 layer, the threshold voltage (V [...] Read more.
To mimic the homeostatic functionality of biological neurons, a split-gate field-effect transistor (S-G FET) with a charge trap layer is proposed within a neuron circuit. By adjusting the number of charges trapped in the Si3N4 layer, the threshold voltage (Vth) of the S-G FET changes. To prevent degradation of the gate dielectric due to program/erase pulses, the gates for read operation and Vth control were separated through the fin structure. A circuit that modulates the width and amplitude of the pulse was constructed to generate a Program/Erase pulse for the S-G FET as the output pulse of the neuron circuit. By adjusting the Vth of the neuron circuit, the firing rate can be lowered by increasing the Vth of the neuron circuit with a high firing rate. To verify the performance of the neural network based on S-G FET, a simulation of online unsupervised learning and classification in a 2-layer SNN is performed. The results show that the recognition rate was improved by 8% by increasing the threshold of the neuron circuit fired. Full article
(This article belongs to the Special Issue New Insights into Bio-Inspired Neural Networks)
Show Figures

Figure 1

11 pages, 3640 KiB  
Article
Fast Li+ Transfer Scaffold Enables Stable High-Rate All-Solid-State Li Metal Batteries
by Libo Song, Yuanyue He, Zhendong Li, Zhe Peng and Xiayin Yao
Batteries 2024, 10(6), 189; https://doi.org/10.3390/batteries10060189 - 31 May 2024
Abstract
Sluggish transfer kinetics caused by solid–solid contact at the lithium (Li)/solid-state electrolyte (SE) interface is an inherent drawback of all-solid-state Li metal batteries (ASSLMBs) that not only limits the cell power density but also induces uneven Li deposition as well as high levels [...] Read more.
Sluggish transfer kinetics caused by solid–solid contact at the lithium (Li)/solid-state electrolyte (SE) interface is an inherent drawback of all-solid-state Li metal batteries (ASSLMBs) that not only limits the cell power density but also induces uneven Li deposition as well as high levels of interfacial stress that deteriorates the internal structure and cycling stability of ASSLMBs. Herein, a fast Li+ transfer scaffold is proposed to overcome the sluggish kinetics at the Li/SE interface in ASSLMBs using an α-MnO2-decorated carbon paper (CP) structure (α-MnO2@CP). At an atomic scale, the tunnel structure of α-MnO2 exhibits a great ability to facilitate Li+ adsorption and transportation across the inter-structure of α-MnO2@CP, leading to a high critical current density of 3.95 mA cm−2 at the Li/SE interface. Meanwhile, uniform Li deposition can be guided along the skeletons of α-MnO2@CP with minimized volume expansion, significantly improving the structural stability of the Li/SE interface. Based on these advantages, the ASSLMBs using α-MnO2@CP protected the Li anode and can stably cycle up to very high charge/discharge rates of 10C/10C, paving the way for developing high-power ASSLMBs. Full article
Show Figures

Figure 1

18 pages, 3028 KiB  
Article
Dynamic Battery Modeling for Electric Vehicle Applications
by Renos Rotas, Petros Iliadis, Nikos Nikolopoulos, Dimitrios Rakopoulos and Ananias Tomboulides
Batteries 2024, 10(6), 188; https://doi.org/10.3390/batteries10060188 - 31 May 2024
Abstract
The development of accurate dynamic battery pack models for electric vehicles (EVs) is critical for the ongoing electrification of the global automotive vehicle fleet, as the battery is a key element in the energy performance of an EV powertrain system. The equivalent circuit [...] Read more.
The development of accurate dynamic battery pack models for electric vehicles (EVs) is critical for the ongoing electrification of the global automotive vehicle fleet, as the battery is a key element in the energy performance of an EV powertrain system. The equivalent circuit model (ECM) technique at the cell level is commonly employed for this purpose, offering a balance of accuracy and efficiency in representing battery operation within the broader powertrain system. In this study, a second-order ECM model of a battery cell has been developed to ensure high accuracy and performance. Modelica, an acausal and object-oriented equation-based modeling language, has been used for its advantageous features, including the development of extendable, modifiable, modular, and reusable models. Parameter lookup tables at multiple levels of state of charge (SoC), extracted from lithium-ion (Li-ion) battery cells with four different commonly used cathode materials, have been utilized. This approach allows for the representation of the battery systems that are used in a wide range of commercial EV applications. To verify the model, an integrated EV model is developed, and the simulation results of the US Environmental Protection Agency Federal Test Procedure (FTP-75) driving cycle have been compared with an equivalent application in MATLAB Simulink. The findings demonstrate a close match between the results obtained from both models across different system points. Specifically, the maximum vehicle velocity deviation during the cycle reaches 1.22 km/h, 8.2% lower than the corresponding value of the reference application. The maximum deviation of SoC is limited to 0.06%, and the maximum value of relative voltage deviation is 1.49%. The verified model enables the exploration of multiple potential architecture configurations for EV powertrains using Modelica. Full article
(This article belongs to the Special Issue Advanced Control and Optimization of Battery Energy Storage Systems)
Show Figures

Figure 1

13 pages, 1738 KiB  
Article
Microbial Characterisation of a Two-Stage Anaerobic Digestion Process for Conversion of Agri-Based Feedstock in Biogas and Long-Chain Fatty Acids in a Circular Economy Framework
by Elisabetta Fanfoni, Erika Sinisgalli, Alessandra Fontana, Mariangela Soldano, Mirco Garuti and Lorenzo Morelli
Fermentation 2024, 10(6), 293; https://doi.org/10.3390/fermentation10060293 - 31 May 2024
Abstract
In addition to energy recovery, the anaerobic digestion of agro-industrial byproducts can also produce different high-value-added compounds. Two-stage and single-stage reactors were compared for microbial communities’ selection and long-chain fatty acid (LCFA) accumulation to investigate which microbial genera are most linked to the [...] Read more.
In addition to energy recovery, the anaerobic digestion of agro-industrial byproducts can also produce different high-value-added compounds. Two-stage and single-stage reactors were compared for microbial communities’ selection and long-chain fatty acid (LCFA) accumulation to investigate which microbial genera are most linked to the production of these compounds. The microbial communities present in the two reactors’ configuration in the steady state were characterised by 16S rRNA amplicon sequencing, while LCFAs were extracted and quantified from digestate samples by gas chromatography. The results showed the differentiation of the microbially dominant families in the two setups: Defluviitaleaceae and Clostridiaceae in the acidogenic and methanogenic reactor of the two-stage reaction respectively, while Dysgonomonadaceae in the single-stage set-up. LCFA accumulation was significantly detected only in the acidogenic reactor, with palmitic (2764 mg/kg), linoleic (1795 mg/kg) and stearic (1751 mg/kg) acids as the most abundant. The dominance of Defluviitaleaceae UCG 011, along with the low abundance of the LCFA oxidiser Syntrophomonas spp. in the acidogenic reactor, could be linked to the accumulation of such compounds. Therefore, the different microbial communities shaped by the two reactors’ configuration affected the accumulation of LCFAs, indicating that the two-stage anaerobic digestion of agro-industrial byproducts was more effective than single-stage digestion. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Graphical abstract

16 pages, 1217 KiB  
Article
Investigation of Antihypertensive Properties of Chios Mastic via Monitoring microRNA-21 Expression Levels in the Plasma of Well-Controlled Hypertensive Patients
by Maria Tsota, Panagiota Giardoglou, Evangelia Mentsiou-Nikolaou, Panagiotis Symianakis, Ioanna Panagiota Kalafati, Anastasia-Areti Kyriazopoulou-Korovesi, Lasthenis Angelidakis, Maria Papaioannou, Christina Konstantaki, HYPER-MASTIC Consortium, Kimon Stamatelopoulos and George V. Dedoussis
Non-Coding RNA 2024, 10(3), 33; https://doi.org/10.3390/ncrna10030033 - 31 May 2024
Abstract
Hypertension is a chronic, multifactorial disease, leading to high cardiovascular morbidity and mortality globally. Despite the advantages of pharmaceutical treatments, natural products have gained scientific interest due to their emerging phytotherapeutic properties. Chios mastic is a natural Greek product, consisting of bioactive compounds [...] Read more.
Hypertension is a chronic, multifactorial disease, leading to high cardiovascular morbidity and mortality globally. Despite the advantages of pharmaceutical treatments, natural products have gained scientific interest due to their emerging phytotherapeutic properties. Chios mastic is a natural Greek product, consisting of bioactive compounds which modify microRNAs’ (small, expression-regulating molecules) expression. In this study, we investigated the antihypertensive properties of Chios mastic through the assessment of miR-21 levels. Herein, plasma samples of 57 individuals with hypertension, recruited for the purposes of the HYPER-MASTIC study, were analyzed. This was a clinical trial with Chios mastic supplements in which the patients were divided into groups receiving high and low mastic doses and placebo supplements, respectively. miR-21 was significantly upregulated in patients compared to normotensive individuals. Mean changes in miR-21 levels were statistically significant, after adjusting for sex and age, between the placebo and low-dose group and between the low- and high-dose group. Post-intervention miR-21 levels were positively associated with night-time systolic blood pressure, pulse pressure, and central systolic mean arterial pressure and negatively associated with night-time pulse wave velocity in the low-dose group. Our findings suggest a potential implication of miR-21 in the association of Chios mastic with night-time blood pressure measurements. Full article
Show Figures

Figure 1

12 pages, 1598 KiB  
Article
In Vitro Activitiy of Rezafungin in Comparison with Anidulafungin and Caspofungin against Invasive Fungal Isolates (2017 to 2022) in China
by Simin Yang, Feifei Wan, Min Zhang, Huiping Lin, Liang Hu, Ziyi Zhou, Dongjiang Wang, Aiping Zhou, Lijun Ni, Jian Guo and Wenjuan Wu
J. Fungi 2024, 10(6), 397; https://doi.org/10.3390/jof10060397 - 31 May 2024
Abstract
The efficacy of different echinocandins is assessed by evaluating the in vitro activity of a novel antifungal, rezafungin, against invasive fungal isolates in comparison with anidulafungin and caspofungin. Using the broth microdilution (BMD) method, the susceptibility of 1000 clinical Candida isolates (including 400 [...] Read more.
The efficacy of different echinocandins is assessed by evaluating the in vitro activity of a novel antifungal, rezafungin, against invasive fungal isolates in comparison with anidulafungin and caspofungin. Using the broth microdilution (BMD) method, the susceptibility of 1000 clinical Candida isolates (including 400 C. albicans, 200 C. glabrata, 200 C. parapsilosis, 150 C. tropicalis and 50 C. krusei) and 150 Aspergillus isolates (100 A. fumigatus and 50 A. flavus) from the Eastern China Invasive Fungi Infection Group (ECIFIG) was tested for the antifungals including anidulafungin, rezafungin, caspofungin and fluconazole. The echinocandins showed strong activity against C. albicans that was maintained against fluconazole-resistant isolates. The GM MIC (geometric mean minimum inhibitory concentration) value of rezafungin was found to be comparable to that of anidulafungin or caspofungin against the five tested common Candida species. C. tropicalis exhibited higher resistance rates (about 8.67–40.67% in different antifungals) than the other four Candida species. Through the sequencing of FKS genes, we searched for mutations in echinocandin-resistant C. tropicalis isolates and found that all displayed alterations in FKS1 S654P. The determined MEC (minimal effective concentration) values against A. fumigatus and A. flavus for rezafungin (0.116 μg/mL, 0.110 μg/mL) are comparable to those of caspofungin (0.122 μg/mL, 0.142 μg/mL) but higher than for anidulafungin (0.064 μg/mL, 0.059 μg/mL). Thus, the in vitro activity of rezafungin appears comparable to anidulafungin and caspofungin against most common Candida and Aspergillus species. Rezafungin showed higher susceptibility rates against C. glabrata. Rezafungin indicates its potent activity for potential clinical application. Full article
(This article belongs to the Special Issue Advances in Antifungal Drugs)
Show Figures

Figure 1

22 pages, 6038 KiB  
Review
The Biosynthesis, Structure Diversity and Bioactivity of Sterigmatocystins and Aflatoxins: A Review
by Wenxing Li, Zhaoxia Chen, Xize Li, Xinrui Li, Yang Hui and Wenhao Chen
J. Fungi 2024, 10(6), 396; https://doi.org/10.3390/jof10060396 - 31 May 2024
Abstract
Sterigmatocystins and aflatoxins are a group of mycotoxins mainly isolated from fungi of the genera Aspergillus. Since the discovery of sterigmatocystins in 1954 and aflatoxins in 1961, many scholars have conducted a series of studies on their structural identification, synthesis and biological [...] Read more.
Sterigmatocystins and aflatoxins are a group of mycotoxins mainly isolated from fungi of the genera Aspergillus. Since the discovery of sterigmatocystins in 1954 and aflatoxins in 1961, many scholars have conducted a series of studies on their structural identification, synthesis and biological activities. Studies have shown that sterigmatocystins and aflatoxins have a wide range of biological activities such as antitumour, antibacterial, anti-inflammatory, antiplasmodial, etc. The sterigmatocystins and aflatoxins had been shown to be hepatotoxic and nephrotoxic in animals. This review attempts to give a comprehensive summary of progress on the chemical structural features, synthesis, and bioactivity of sterigmatocystins and aflatoxins reported from 1954 to April 2024. A total of 72 sterigmatocystins and 20 aflatoxins are presented in this review. This paper reviews the chemical diversity and potential activity and toxicity of sterigmatocystins and aflatoxins, enhances the understanding of sterigmatocystins and aflatoxins that adversely affect humans and animals, and provides ideas for their prevention, research and development. Full article
(This article belongs to the Special Issue Recent Advances in Fungal Secondary Metabolism, 2nd Edition)
Show Figures

Figure 1

14 pages, 6772 KiB  
Review
The Need and Opportunity to Update the Inventory of Plant Pathogenic Fungi and Oomycetes in Mexico
by Juan Manuel Tovar-Pedraza, Alma Rosa Solano-Báez, Santos Gerardo Leyva-Mir, Bertha Tlapal-Bolaños, Moisés Camacho-Tapia, Elizabeth García-León, Victoria Ayala-Escobar, Cristian Nava-Díaz, Andrés Quezada-Salinas, Víctor Santiago-Santiago, Hugo Beltrán-Peña, Maria Alondra Hernandez-Hernandez, Karla Jenifer Juárez-Cruz and Guillermo Márquez-Licona
J. Fungi 2024, 10(6), 395; https://doi.org/10.3390/jof10060395 - 31 May 2024
Abstract
Mexico generates specific phytosanitary regulations for each product and origin to prevent the entry of quarantine pests and/or delay their spread within the national territory, including fungi and oomycetes. Phytosanitary regulations are established based on available information on the presence or absence of [...] Read more.
Mexico generates specific phytosanitary regulations for each product and origin to prevent the entry of quarantine pests and/or delay their spread within the national territory, including fungi and oomycetes. Phytosanitary regulations are established based on available information on the presence or absence of these pathogens in the country; however, the compilation and precise analysis of reports is a challenging task due to many publications lacking scientific rigor in determining the presence of a taxon of phytosanitary interest in the country. This review evaluated various studies reporting the presence of plant pathogenic fungi and oomycetes in Mexico and concluded that some lists of diseases and phytopathogenic organisms lack technical-scientific basis. Thus, it highlights the need and presents an excellent opportunity to establish a National Collection of Fungal Cultures and a National Herbarium for obligate parasites, as well as to generate a National Database of Phytopathogenic Fungi and Oomycetes present in Mexico, supported by the combination of morphological, molecular, epidemiological, pathogenicity, symptom, and micrograph data. If realized, this would have a direct impact on many future applications related to various topics, including quarantines, risk analysis, biodiversity studies, and monitoring of fungicide resistance, among others. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

20 pages, 2367 KiB  
Review
Therapeutic Potential of Fungal Polysaccharides in Gut Microbiota Regulation: Implications for Diabetes, Neurodegeneration, and Oncology
by Alexandru Stefan Barcan, Rares Andrei Barcan and Emanuel Vamanu
J. Fungi 2024, 10(6), 394; https://doi.org/10.3390/jof10060394 - 31 May 2024
Abstract
This review evaluates the therapeutic effects of polysaccharides derived from mushroom species that have medicinal and edible properties. The fungal polysaccharides were recently studied, focusing on their modulation of the gut microbiota and their impact on various diseases. The study covers both clinical [...] Read more.
This review evaluates the therapeutic effects of polysaccharides derived from mushroom species that have medicinal and edible properties. The fungal polysaccharides were recently studied, focusing on their modulation of the gut microbiota and their impact on various diseases. The study covers both clinical and preclinical studies, detailing the results and highlighting the significant influence of these polysaccharides on gut microbiota modulation. It discusses the potential health benefits derived from incorporating these polysaccharides into the diet for managing chronic diseases such as diabetes, neurodegenerative disorders, and cancer. Furthermore, the review emphasizes the interaction between fungal polysaccharides and the gut microbiota, underscoring their role in modulating the gut microbial community. It presents a systematic analysis of the findings, demonstrating the substantial impact of fungal polysaccharides on gut microbiota composition and function, which may contribute to their therapeutic effects in various chronic conditions. We conclude that the modulation of the gut microbiota by these polysaccharides may play a crucial role in mediating their therapeutic effects, offering a promising avenue for further research and potential applications in disease prevention and treatment. Full article
Show Figures

Figure 1

15 pages, 26642 KiB  
Article
Design and Evaluation of ScanCap: A Low-Cost, Reusable Tethered Capsule Endoscope with Blue-Green Illumination Imaging for Unsedated Screening and Early Detection of Barrett’s Esophagus
by Cheima Hicheri, Ahad M. Azimuddin, Alex Kortum, Joseph Bailey, Yubo Tang, Richard A. Schwarz, Daniel Rosen, Shilpa Jain, Nabil M. Mansour, Shawn Groth, Shaleen Vasavada, Ashwin Rao, Adrianna Maliga, Leslie Gallego, Jennifer Carns, Sharmila Anandasabapathy and Rebecca Richards-Kortum
Bioengineering 2024, 11(6), 557; https://doi.org/10.3390/bioengineering11060557 - 31 May 2024
Abstract
Esophageal carcinoma is the sixth-leading cause of cancer death worldwide. A precursor to esophageal adenocarcinoma (EAC) is Barrett’s Esophagus (BE). Early-stage diagnosis and treatment of esophageal neoplasia (Barrett’s with high-grade dysplasia/intramucosal cancer) increase the five-year survival rate from 10% to 98%. BE is [...] Read more.
Esophageal carcinoma is the sixth-leading cause of cancer death worldwide. A precursor to esophageal adenocarcinoma (EAC) is Barrett’s Esophagus (BE). Early-stage diagnosis and treatment of esophageal neoplasia (Barrett’s with high-grade dysplasia/intramucosal cancer) increase the five-year survival rate from 10% to 98%. BE is a global challenge; however, current endoscopes for early BE detection are costly and require extensive infrastructure for patient examination and sedation. We describe the design and evaluation of the first prototype of ScanCap, a high-resolution optical endoscopy system with a reusable, low-cost tethered capsule, designed to provide high-definition, blue-green illumination imaging for the early detection of BE in unsedated patients. The tethered capsule (12.8 mm diameter, 35.5 mm length) contains a color camera and rotating mirror and is designed to be swallowed; images are collected as the capsule is retracted manually via the tether. The tether provides electrical power and illumination at wavelengths of 415 nm and 565 nm and transmits data from the camera to a tablet. The ScanCap prototype capsule was used to image the oral mucosa in normal volunteers and ex vivo esophageal resections; images were compared to those obtained using an Olympus CV-180 endoscope. Images of superficial capillaries in intact oral mucosa were clearly visible in ScanCap images. Diagnostically relevant features of BE, including irregular Z-lines, distorted mucosa, and dilated vasculature, were clearly visible in ScanCap images of ex vivo esophageal specimens. Full article
(This article belongs to the Special Issue Novel, Low Cost Technologies for Cancer Diagnostics and Therapeutics)
Show Figures

Figure 1

12 pages, 1925 KiB  
Article
Explainable Precision Medicine in Breast MRI: A Combined Radiomics and Deep Learning Approach for the Classification of Contrast Agent Uptake
by Sylwia Nowakowska, Karol Borkowski, Carlotta Ruppert, Patryk Hejduk, Alexander Ciritsis, Anna Landsmann, Magda Marcon, Nicole Berger, Andreas Boss and Cristina Rossi
Bioengineering 2024, 11(6), 556; https://doi.org/10.3390/bioengineering11060556 - 31 May 2024
Abstract
In DCE-MRI, the degree of contrast uptake in normal fibroglandular tissue, i.e., background parenchymal enhancement (BPE), is a crucial biomarker linked to breast cancer risk and treatment outcome. In accordance with the Breast Imaging Reporting & Data System (BI-RADS), it should be visually [...] Read more.
In DCE-MRI, the degree of contrast uptake in normal fibroglandular tissue, i.e., background parenchymal enhancement (BPE), is a crucial biomarker linked to breast cancer risk and treatment outcome. In accordance with the Breast Imaging Reporting & Data System (BI-RADS), it should be visually classified into four classes. The susceptibility of such an assessment to inter-reader variability highlights the urgent need for a standardized classification algorithm. In this retrospective study, the first post-contrast subtraction images for 27 healthy female subjects were included. The BPE was classified slice-wise by two expert radiologists. The extraction of radiomic features from segmented BPE was followed by dataset splitting and dimensionality reduction. The latent representations were then utilized as inputs to a deep neural network classifying BPE into BI-RADS classes. The network’s predictions were elucidated at the radiomic feature level with Shapley values. The deep neural network achieved a BPE classification accuracy of 84 ± 2% (p-value < 0.00001). Most of the misclassifications involved adjacent classes. Different radiomic features were decisive for the prediction of each BPE class underlying the complexity of the decision boundaries. A highly precise and explainable pipeline for BPE classification was achieved without user- or algorithm-dependent radiomic feature selection. Full article
(This article belongs to the Special Issue Advances in Breast Cancer Imaging)
Show Figures

Graphical abstract

14 pages, 2379 KiB  
Article
Microbial Evolution in Artisanal Pecorino-like Cheeses Produced from Two Farms Managing Two Different Breeds of Sheep (Comisana and Lacaune)
by Francesca Luziatelli, Renée Abou Jaoudé, Francesca Melini, Valentina Melini and Maurizio Ruzzi
Foods 2024, 13(11), 1728; https://doi.org/10.3390/foods13111728 - 31 May 2024
Abstract
“Pecorino” is a typical semi-hard cheese obtained with raw or heat-treated sheep milk using procedures to valorize the raw material’s chemical and microbiological properties. In the present study, using a high-throughput method of 16S rRNA gene sequencing, we assessed the evolution of the [...] Read more.
“Pecorino” is a typical semi-hard cheese obtained with raw or heat-treated sheep milk using procedures to valorize the raw material’s chemical and microbiological properties. In the present study, using a high-throughput method of 16S rRNA gene sequencing, we assessed the evolution of the microbiome composition from milk to Pecorino-like cheese in artisanal processes using milk from Comisana and Lacaune sheep breeds. The comparative analysis of the bacterial community composition revealed significant differences in the presence and abundance of specific taxa in the milk microbiomes of the Comisana and Lacaune breeds. Next-Generation Sequencing (NGS) analysis also revealed differences in the curd microbiomes related to dairy farming practices, which have a relevant effect on the final structure of the Pecorino cheese microbiome. Full article
(This article belongs to the Special Issue Microbiology of Milk, Dairy Products and Their Vegetable Substitutes)
Show Figures

Figure 1

18 pages, 2423 KiB  
Article
Preparation and Characterization of Prickly Ash Peel Oleoresin Microcapsules and Flavor Retention Analysis
by Zhiran Zhang, Ziyan Zhang, Xichao Li, Sen Zhou, Mengkai Liu, Shengxin Li, He Liu, Hui Gao, Aiyun Zhao, Yongchang Zhang, Liu Huang and Jie Sun
Foods 2024, 13(11), 1726; https://doi.org/10.3390/foods13111726 - 31 May 2024
Abstract
Prickly ash peel oleoresin (PPO) is a highly concentrated oil of Prickly ash essential oil and has a stronger aroma. However, its low water solubility, high volatility, difficulty in transport and storage, and decomposition by light, heat, and oxygen limit its wider application. [...] Read more.
Prickly ash peel oleoresin (PPO) is a highly concentrated oil of Prickly ash essential oil and has a stronger aroma. However, its low water solubility, high volatility, difficulty in transport and storage, and decomposition by light, heat, and oxygen limit its wider application. To solve this problem, this study used freeze-drying or spray-drying, with soybean protein isolate (SPI) or gum Arabic (GA), combined with aqueous maltodextrin (MD) as the encapsulating agents to prepare four types of PPO microcapsules (POMs). Spray-dried microcapsules with GA as the encapsulating agent achieved a high encapsulation efficiency (EE) of 92.31 ± 0.31%, improved the thermal stability of the PPO, and had spherical morphology. (Headspace solid-phase microextraction/gas chromatography–mass spectrometry) HS-SPME/GC-MS detected 41 volatile compounds in PPO; of these, linalool, β-myrcene, sabinene, and D-limonene were identified as key flavor components. Principal component analysis (PCA) effectively distinguished the significant differences in flavor between PPO, spray-dried SPI/MD microcapsules (SS), and spray-dried GA/MD microcapsules (SG). During 15 days of air-exposure, the loss of flavor from SG (54.62 ± 0.54%) was significantly lower than PPO (79.45 ± 1.45%) and SS (57.55 ± 0.36%). During the air-exposure period, SG consistently had the highest antioxidant capacity, making it desirable for PPO packaging, and expanding its potential applications within the food industry. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

14 pages, 1544 KiB  
Article
Enzyme-Treated Zizania latifolia Ethanol Extract Improves Liver-Related Outcomes and Fatigability
by Yu-Jin Ahn, Boyun Kim, Yoon Hee Kim, Tae Young Kim, Hyeyeong Seo, Yooheon Park, Sung-Soo Park and Yejin Ahn
Foods 2024, 13(11), 1725; https://doi.org/10.3390/foods13111725 - 31 May 2024
Abstract
Long-term hepatic damage is associated with human morbidity and mortality owing to numerous pathogenic factors. A variety of studies have focused on improving liver health using natural products and herbal medicines. We aimed to investigate the effect of enzyme-treated Zizania latifolia ethanol extract [...] Read more.
Long-term hepatic damage is associated with human morbidity and mortality owing to numerous pathogenic factors. A variety of studies have focused on improving liver health using natural products and herbal medicines. We aimed to investigate the effect of enzyme-treated Zizania latifolia ethanol extract (ETZL), which increases the content of tricin via enzymatic hydrolysis, for 8 weeks on liver-related outcomes, lipid metabolism, antioxidant activity, and fatigue compared to a placebo. Healthy Korean adult males aged 19–60 years were randomized into ETZL treatment and placebo groups, and alcohol consumption was 24.96 and 28.64 units/week, respectively. Alanine transaminase, a blood marker associated with liver cell injury, significantly decreased after 8 weeks compared to the baseline in the ETZL treatment group (p = 0.004). After 8 weeks, the treatment group showed significant changes in the levels of high-density lipoprotein and hepatic steatosis index compared to the baseline (p = 0.028 and p = 0.004, respectively). ETZL treatment tended to reduce antioxidant-activity-related factors, total antioxidant status, and malondialdehyde, but there was no significant difference. In the multidimensional fatigue scale, ETZL treatment showed a significant reduction in general fatigue and total-fatigue-related values after 8 weeks compared to the baseline (p = 0.012 and p = 0.032, respectively). Taken together, the 8-week treatment of enzyme-treated Zizania latifolia ethanol extract demonstrated positive effects on liver-related outcomes, lipid metabolism, and mental fatigue without adverse effects on safety-related parameters. Full article
(This article belongs to the Special Issue Application of Fermentation Biotechnology in Food Science)
Show Figures

Graphical abstract

18 pages, 2935 KiB  
Article
Matrix Effect on Singlet Oxygen Generation Using Methylene Blue as Photosensitizer
by Jianan Xu, Laurent Bonneviot, Yannick Guari, Cyrille Monnereau, Kun Zhang, Albert Poater, Montserrat Rodríguez-Pizarro and Belén Albela
Inorganics 2024, 12(6), 155; https://doi.org/10.3390/inorganics12060155 - 31 May 2024
Abstract
Methylene blue (MB) is a well-established and extensively studied photosensitizer for photodynamic therapy (PDT), since it can generate singlet oxygen with a high quantum yield upon irradiation within the phototherapeutic (600–950 nm) window. However, its activity can decrease due to the formation of [...] Read more.
Methylene blue (MB) is a well-established and extensively studied photosensitizer for photodynamic therapy (PDT), since it can generate singlet oxygen with a high quantum yield upon irradiation within the phototherapeutic (600–950 nm) window. However, its activity can decrease due to the formation of dimers or higher aggregates, which can take place in an aqueous solution at relatively high concentrations. The incorporation of this molecule into a matrix can avoid this aggregation and increase its activity relative to PDT. Silica porous nanoparticles are chosen here as a matrix to host MB. The size and pore geometry are tuned in order to decrease MB leaching while maintaining good singlet oxygen generation and colloidal stability for further applications in nanomedicine. In addition, phenyl functions are grafted on the pores of the silica matrix in order to avoid MB aggregation, thereby increasing the activity of the photosensitizer in the singlet oxygen generation. DFT calculations give insight in the structure of the aggregation of the MB units, and the roles of water and organic environments are investigated through time-dependent calculations on UV-vis spectra. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Inorganics)
Show Figures

Figure 1

15 pages, 4757 KiB  
Article
N-S-co-Doped Carbon Dot Blue Fluorescence Preparation and Baicalein Detection
by Yujia Cheng, Yan Huang and Guang Yu
Inorganics 2024, 12(6), 154; https://doi.org/10.3390/inorganics12060154 - 31 May 2024
Abstract
Carbon dots (CDs) have emerged as significant fluorescent nanomaterials due to their bright, stable fluorescence, good biocompatibility, facile synthesis, etc. They are widely used in various scientific and practical applications, particularly in combination with mesoporous, florescent, or magnetic nanomaterials to enhance their properties. [...] Read more.
Carbon dots (CDs) have emerged as significant fluorescent nanomaterials due to their bright, stable fluorescence, good biocompatibility, facile synthesis, etc. They are widely used in various scientific and practical applications, particularly in combination with mesoporous, florescent, or magnetic nanomaterials to enhance their properties. Recent research has focused on employing CDs and their composites in drug analysis, drug loading, biological imaging, disease diagnosis, and temperature sensing, with a growing interest in their biological and medical applications. In this study, we synthesized blue-fluorescent S, N-co-doped CDs (cys-CDs) using hydrothermal synthesis with L-cysteine and sodium citrate. These resulting cys-CD particles were approximately 3.8 nm in size and exhibited stable fluorescence with a quantum yield of 0.66. By leveraging the fluorescence quenching of the cys-CDs, we developed a rapid and sensitive method for baicalein detection, achieving high sensitivity in the low micromolar range with a detection limit for baicalein of 33 nM. Our investigation revealed that the fluorescence-quenching mechanism involved static quenching and inner-filter effect components. Overall, cys-CDs proved to be effective for accurate quantitative baicalein detection in real-world samples. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials)
Show Figures

Figure 1

13 pages, 4045 KiB  
Article
Ni and Co Catalysts on Interactive Oxide Support for Anion Exchange Membrane Electrolysis Cell (AEMEC)
by Katerina Maksimova-Dimitrova, Borislava Mladenova, Galin Borisov and Evelina Slavcheva
Inorganics 2024, 12(6), 153; https://doi.org/10.3390/inorganics12060153 - 31 May 2024
Abstract
The work presents novel composite catalytic materials—Ni and Co deposited on Magneli phase titania—and describes their complex characterization and integration into membrane electrode assemblies to produce hydrogen by electrochemical water splitting in cells with anion exchange membranes (AEMEC). Chemical composition, surface structure, and [...] Read more.
The work presents novel composite catalytic materials—Ni and Co deposited on Magneli phase titania—and describes their complex characterization and integration into membrane electrode assemblies to produce hydrogen by electrochemical water splitting in cells with anion exchange membranes (AEMEC). Chemical composition, surface structure, and morphology were characterized by XRD and SEM analysis. The activity in the evolution of the partial electrode reactions of hydrogen (HER) and oxygen (OER) was assessed in an aqueous alkaline electrolyte (25 wt.% KOH) using linear sweep voltammetry. The interactive role of the support was investigated and discussed. Among the tested samples, the sample with 30 wt.% Co (Co30/MPT) demonstrated superior performance in the OER. The reaction started at 1.65 V, and at 1.8 V, the current density reached 75 mA cm−2. The HER is most efficient on the sample containing 40 wt.% Ni (Ni40/MPT), where the current density reaches 95 mA at a potential of −0.5 V. The change in catalytic efficiency compared to that of the unsupported Ni and Co is due to synergism resulting from electronic interactions between the transition metal having a hyper-d-electron character and hypo-d-electron support. The pre-selected catalysts were integrated in membrane electrode assembly (MEA) using commercial and laboratory-prepared anion-conductive membranes and tested in a custom-made AEMEC. The performance was compared to that of MEA with a commercial carbon-supported Pt catalyst. It was found that the MEA with newly prepared catalysts demonstrated better performance in long-term operation (50 mA cm−2 at 1.8 V in a 60 h durability test), which, combined with the higher cost efficiency, gave credence to considering this combination of materials as promising for AEMEC applications. Full article
(This article belongs to the Special Issue Simulation-Aided Materials Design for Electrocatalysis)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop