The 2023 MDPI Annual Report has
been released!
 
22 pages, 11135 KiB  
Article
Multi-UAV Cooperative Localization Using Adaptive Wasserstein Filter with Distance-Constrained Bare Bones Self-Recovery Particles
by Xiuli Xin, Feng Pan, Yuhe Wang and Xiaoxue Feng
Drones 2024, 8(6), 234; https://doi.org/10.3390/drones8060234 (registering DOI) - 30 May 2024
Abstract
Aiming at the cooperative localization problem for the dynamic UAV swarm in an anchor-limited environment, an adaptive Wasserstein filter (AWF) with distance-constrained bare bones self-recovery particles (CBBP) is proposed. Firstly, to suppress the cumulative error from the inertial navigation system (INS), a position-prediction [...] Read more.
Aiming at the cooperative localization problem for the dynamic UAV swarm in an anchor-limited environment, an adaptive Wasserstein filter (AWF) with distance-constrained bare bones self-recovery particles (CBBP) is proposed. Firstly, to suppress the cumulative error from the inertial navigation system (INS), a position-prediction strategy based on transition particles is designed instead of using inertial measurements directly, which ensures that the generated prior particles can better cover the ground truth and provide the uncertainties of nonlinear estimation. Then, to effectively quantify the difference between the observed and the prior data, the Wasserstein measure based on slice segmentation is introduced to update the posterior weights of the particles, which makes the proposed algorithm robust against distance-measurement noise variance under the strongly nonlinear model. In addition, to solve the problem of particle impoverishment caused by traditional resampling, a diversity threshold based on Gini purity is designed, and a fast bare bones particle self-recovery algorithm with distance constraint is proposed to guide the outlier particles to the high-likelihood region, which effectively improves the accuracy and stability of the estimation. Finally, the simulation results show that the proposed algorithm is robust against cumulative error in an anchor-limited environment and achieves more competitive accuracy with fewer particles. Full article
Show Figures

Figure 1

11 pages, 653 KiB  
Review
The Gritti-Stokes Amputation: Is It Still a Reliable Technique in the 21st Century? A Narrative Review
by Marwan Garaud, Louis-Romée Le Nail, Bandar Hetaimish, Julien Berhouet and Ramy Samargandi
Medicina 2024, 60(6), 911; https://doi.org/10.3390/medicina60060911 (registering DOI) - 30 May 2024
Abstract
Lower limb amputation is a common surgical procedure performed worldwide. Many individuals require amputation due to various circumstances, with amputations occurring above or below the knee. Surgeons rely on published research to determine the most appropriate technique based on intraoperative and postoperative outcomes. [...] Read more.
Lower limb amputation is a common surgical procedure performed worldwide. Many individuals require amputation due to various circumstances, with amputations occurring above or below the knee. Surgeons rely on published research to determine the most appropriate technique based on intraoperative and postoperative outcomes. The Gritti–Stokes amputation (GSA) procedure, introduced in 1857, has shown positive results in terms of primary wound healing, reduced mortality rates during and after surgery, and accelerated healing and mobility. However, due to the need for highly trained surgeons and limitations in functional and cosmetic prosthesis fitting, concerns have been raised regarding its utility. Additionally, the procedure is underutilized in cases where it could potentially yield better results. This article provides a comprehensive review of the documented benefits of GSA, suitable candidate selection, limitations, various modifications, and a comparison with traditional approaches to lower limb amputation. The review is focused on evidence published in the last 100 years. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

21 pages, 11076 KiB  
Article
A Study on the Influence of Different Defect Types on the Corrosion Behavior of Q235/TA2 Composite Plates in a Marine Environment
by Jianbo Jiang, Nannan Li, Bingqin Wang, Fangfang Liu, Chao Liu and Xuequn Cheng
Metals 2024, 14(6), 652; https://doi.org/10.3390/met14060652 (registering DOI) - 30 May 2024
Abstract
The structural design of steel–titanium composite plates significantly affects their corrosion resistance. To investigate the impact of defects of different shapes and sizes on the corrosion behavior of steel–titanium composite plates, this study designed six types of defects and conducted a series of [...] Read more.
The structural design of steel–titanium composite plates significantly affects their corrosion resistance. To investigate the impact of defects of different shapes and sizes on the corrosion behavior of steel–titanium composite plates, this study designed six types of defects and conducted a series of characterization tests. The results showed that due to the galvanic interaction between carbon steel and titanium alloy, small defects initially accelerate corrosion, resulting in 50% to 200% more corrosion weight loss compared to large defects. However, in the later stages of immersion, the corrosion rate of small defects decreased by up to 35%, which was attributed to the accumulation of protective corrosion products. Additionally, there is an inverse relationship between the corrosion rate and the thickness ratio of the composite plate. The reduction in the area of Q345B also results in additional corrosion loss of up to 32%. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Second Edition))
Show Figures

Figure 1

23 pages, 5027 KiB  
Article
Multiomics Analysis of the PHLDA Gene Family in Different Cancers and Their Clinical Prognostic Value
by Safia Iqbal, Md. Rezaul Karim, Shahnawaz Mohammad, Ramya Mathiyalagan, Md. Niaj Morshed, Deok-Chun Yang, Hyocheol Bae, Esrat Jahan Rupa and Dong Uk Yang
Curr. Issues Mol. Biol. 2024, 46(6), 5488-5510; https://doi.org/10.3390/cimb46060328 (registering DOI) - 30 May 2024
Abstract
The PHLDA (pleckstrin homology-like domain family) gene family is popularly known as a potential biomarker for cancer identification, and members of the PHLDA family have become considered potentially viable targets for cancer treatments. The PHLDA gene family consists of PHLDA1, PHLDA2, and PHLDA3. [...] Read more.
The PHLDA (pleckstrin homology-like domain family) gene family is popularly known as a potential biomarker for cancer identification, and members of the PHLDA family have become considered potentially viable targets for cancer treatments. The PHLDA gene family consists of PHLDA1, PHLDA2, and PHLDA3. The predictive significance of PHLDA genes in cancer remains unclear. To determine the role of pleckstrin as a prognostic biomarker in human cancers, we conducted a systematic multiomics investigation. Through various survival analyses, pleckstrin expression was evaluated, and their predictive significance in human tumors was discovered using a variety of online platforms. By analyzing the protein–protein interactions, we also chose a collection of well-known functional protein partners for pleckstrin. Investigations were also carried out on the relationship between pleckstrins and other cancers regarding mutations and copy number alterations. The cumulative impact of pleckstrin and their associated genes on various cancers, Gene Ontology (GO), and pathway analyses were used for their evaluation. Thus, the expression profiles of PHLDA family members and their prognosis in various cancers may be revealed by this study. During this multiomics analysis, we found that among the PHLDA family, PHLDA1 may be a therapeutic target for several cancers, including kidney, colon, and brain cancer, while PHLDA2 can be a therapeutic target for cancers of the colon, esophagus, and pancreas. Additionally, PHLDA3 may be a useful therapeutic target for ovarian, renal, and gastric cancer. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
Show Figures

Figure 1

21 pages, 4109 KiB  
Article
Effects of Fucoidans on Activated Retinal Microglia
by Philipp Dörschmann, Florentine Hunger, Hannah Schroth, Sibei Chen, Georg Kopplin, Johann Roider and Alexa Klettner
Int. J. Mol. Sci. 2024, 25(11), 6018; https://doi.org/10.3390/ijms25116018 (registering DOI) - 30 May 2024
Abstract
Sulfated marine polysaccharides, so-called fucoidans, have been shown to exhibit anti-inflammatory and immunomodulatory activities in retinal pigment epithelium (RPE). In this study, we tested the effects of different fucoidans (and of fucoidan-treated RPE cells) on retinal microglia to investigate whether its anti-inflammatory effect [...] Read more.
Sulfated marine polysaccharides, so-called fucoidans, have been shown to exhibit anti-inflammatory and immunomodulatory activities in retinal pigment epithelium (RPE). In this study, we tested the effects of different fucoidans (and of fucoidan-treated RPE cells) on retinal microglia to investigate whether its anti-inflammatory effect can be extrapolated to the innate immune cells of the retina. In addition, we tested whether fucoidan treatment influenced the anti-inflammatory effect of RPE cells on retinal microglia. Three fucoidans were tested (FVs from Fucus vesiculosus, Fuc1 and FucBB04 from Laminaria hyperborea) as well as the supernatant of primary porcine RPE treated with fucoidans for their effects on inflammatory activated (using lipopolysaccharide, LPS) microglia cell line SIM-A9 and primary porcine retinal microglia. Cell viability was detected with a tetrazolium assay (MTT), and morphology by Coomassie staining. Secretion of tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1β) and interleukin 8 (IL8) was detected with ELISA, gene expression (NOS2 (Nitric oxide synthase 2), and CXCL8 (IL8)) with qPCR. Phagocytosis was detected with a fluorescence assay. FucBB04 and FVs slightly reduced the viability of SIM-A9 and primary microglia, respectively. Treatment with RPE supernatants increased the viability of LPS-treated primary microglia. FVs and FucBB04 reduced the size of LPS-activated primary microglia, indicating an anti-inflammatory phenotype. RPE supernatant reduced the size of LPS-activated SIM-A9 cells. Proinflammatory cytokine secretion and gene expression in SIM-A9, as well as primary microglia, were not significantly affected by fucoidans, but RPE supernatants reduced the secretion of LPS-induced proinflammatory cytokine secretion in SIM-A9 and primary microglia. The phagocytosis ability of primary microglia was reduced by FucBB04. In conclusion, fucoidans exhibited only modest effects on inflammatorily activated microglia by maintaining their cell size under stimulation, while the anti-inflammatory effect of RPE cells on microglia irrespective of fucoidan treatment could be confirmed, stressing the role of RPE in regulating innate immunity in the retina. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Retinal Degeneration and How to Avoid It 2.0)
Show Figures

Figure 1

13 pages, 1056 KiB  
Article
Impact of Pot Farming on Plant-Parasitic Nematode Control
by Silvia Landi, Beatrice Carletti, Francesco Binazzi, Sonia Cacini, Beatrice Nesi, Emilio Resta, Pio Federico Roversi and Sauro Simoni
Soil Syst. 2024, 8(2), 60; https://doi.org/10.3390/soilsystems8020060 (registering DOI) - 30 May 2024
Abstract
In the Pistoia Nursery-Ornamental Rural District (Italy), a leader in Europe in ornamental nurseries covering over 5200 hectares with over 2500 different species of plant, plant-parasitic nematodes represent a serious concern. The potential efficacy of a pot cultivation system using commercial substrates to [...] Read more.
In the Pistoia Nursery-Ornamental Rural District (Italy), a leader in Europe in ornamental nurseries covering over 5200 hectares with over 2500 different species of plant, plant-parasitic nematodes represent a serious concern. The potential efficacy of a pot cultivation system using commercial substrates to control plant-parasitic nematodes was assessed. On two different plant species, two different pot cultivation managements, potted plants, and potted plants previously cultivated in natural soil were compared to plants only cultivated in natural soil. The entire soil nematode structure with and without plants was evaluated. The relationship between soil properties and soil nematode community was investigated. All the studied substrates were free from plant-parasitic nematodes. Regarding free-living nematodes, Peat–Pumice showed nematode assemblage established by colonizer and extreme colonizer bacterial feeders, whereas Peat–Perlite included both bacterial and fungal feeders, and, finally, coconut fiber also included omnivores and predators. In farming, the substrates rich in organic matter such as coconut fiber could still play an important role in suppressing plant-parasitic nematodes because of the abundance of free-living nematodes. In fact, they are of crucial importance in both the mineralization of organic matter and the antagonistic control of plant-parasitic nematodes. Potting systems equally reduce virus-vector nematodes and improve the prey/predator ratio favoring natural control. Full article
Show Figures

Figure 1

17 pages, 3844 KiB  
Article
Mixed Riccati–Lyapunov Balanced Truncation for Order Reduction of Electrical Circuit Systems
by Huy-Du Dao, Thanh-Tung Nguyen, Ngoc-Kien Vu, Hong-Son Vu and Hong-Quang Nguyen
Energies 2024, 17(11), 2661; https://doi.org/10.3390/en17112661 (registering DOI) - 30 May 2024
Abstract
This paper proposes a novel algorithm, termed Mixed Riccati–Lyapunov Balanced Truncation (MRLBT), tailored for order reduction of Linear Time-Invariant Continuous-Time Descriptor Systems (LTI-CTD), commonly encountered in electrical and electronic circuit modeling. The MRLBT approach synergistically combines the advantages of balanced truncation (BT) and [...] Read more.
This paper proposes a novel algorithm, termed Mixed Riccati–Lyapunov Balanced Truncation (MRLBT), tailored for order reduction of Linear Time-Invariant Continuous-Time Descriptor Systems (LTI-CTD), commonly encountered in electrical and electronic circuit modeling. The MRLBT approach synergistically combines the advantages of balanced truncation (BT) and positive-real balanced truncation (PRBT) techniques while mitigating their limitations. Unlike BT, which preserves stability but not passivity, and PRBT, which retains passivity at the expense of larger reduction errors, MRLBT ensures the preservation of both stability and passivity inherent in the original system. Additionally, MRLBT achieves reduced computational complexity and minimized order reduction errors compared to PRBT. The proposed algorithm transforms the system into an equivalent Mixed Riccati–Lyapunov Balanced form, enabling the construction of a reduced-order model that retains the critical physical properties. Theoretical analysis and proofs are provided, establishing an upper bound on the global order reduction error. The efficacy of MRLBT is demonstrated through a numerical example involving an RLC ladder network, showcasing its superior performance over BT and PRBT in terms of reduced errors in the time and frequency domains. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 3586 KiB  
Article
Water-Soluble Fe(III) Complex Catalyzed Coupling Aquathermolysis of Water-Heavy Oil-Methanol
by Shijun Chen, Shu Zhang, Jinchao Feng, Xiaolong Long, Tianbao Hu and Gang Chen
Catalysts 2024, 14(6), 353; https://doi.org/10.3390/catal14060353 (registering DOI) - 30 May 2024
Abstract
In this experimental study, diverse water-soluble Fe(III) complexes were synthesized and employed to catalyze the aquathermolysis of heavy oil. A ternary reaction system comprising heavy oil, water, and methanol was established to facilitate the process. Viscometry, thermogravimetric analysis, DSC, and elemental analysis were [...] Read more.
In this experimental study, diverse water-soluble Fe(III) complexes were synthesized and employed to catalyze the aquathermolysis of heavy oil. A ternary reaction system comprising heavy oil, water, and methanol was established to facilitate the process. Viscometry, thermogravimetric analysis, DSC, and elemental analysis were utilized to thoroughly investigate the treated heavy oil. The findings reveal that, under optimal conditions of water, catalyst, and methanol dosage, the viscosity of heavy oil can be significantly reduced by up to 88.22% after reacting at 250 °C for 12 h. Notably, apart from viscosity reduction, the catalytic aquathermolysis also effectively removes heteroatoms such as sulfur, nitrogen, and oxygen, enabling in situ modification and viscosity reduction of heavy oil. This study demonstrates the potential of water-soluble Fe(III) complexes in enhancing the efficiency of heavy oil extraction and processing. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

20 pages, 17506 KiB  
Article
Architectural Physical Acoustic Environmental Design Transformation of Academic Lecture Halls in the Universities—Taking the Hall of School of Architecture and Urban Planning of Yunnan University as an Example
by Yao-Ning Yang, Jie Zhou, Jing-Ran Song, Xin-Ping Wang, Xiao-Huan Xu, Yuan-Xi Li, Jun-Cheng Zeng, Ying Sa and Wei Jiang
Buildings 2024, 14(6), 1583; https://doi.org/10.3390/buildings14061583 (registering DOI) - 30 May 2024
Abstract
In recent years, multi-functional lecture halls have developed rapidly and become a symbol of contemporary public spaces and places. This kind of spatial facility that brings together the advantages of land intensiveness and multi-functional integration also faces feedback such as poor acoustic effects. [...] Read more.
In recent years, multi-functional lecture halls have developed rapidly and become a symbol of contemporary public spaces and places. This kind of spatial facility that brings together the advantages of land intensiveness and multi-functional integration also faces feedback such as poor acoustic effects. However, current research rarely involves the architectural design perspective, which is actually the root consideration of this problem; that is, how to set up corresponding spatial layout measures to optimize acoustic performance in a relatively economical and simple way. This study uses the academic lecture hall of the School of Architecture and Planning of Yunnan University as a case to try to solve these problems. The research is based on holistic considerations, starting from site selection, architectural design, aesthetic considerations, and environmental noise assessment, and combining simulation results with actual measurement results. Using a prediction–comparison–verification method, key acoustic parameters such as speech intelligibility, loudness, and reverberation time were calculated and evaluated to understand the acoustic design problems of the hall. The study found that the out-of-control reverberation time was the main cause of poor acoustic feedback, and based on this, optimization and transformation were carried out from an architectural perspective. Finally, a renovation suggestion was made that the application of sound-absorbing materials on the rear wall can achieve better acoustic effects inside the hall. Among the space combination methods, the combination of “rear wall, central ceiling, and front ceiling” has the best effect. Practical insights are provided for improving the acoustic performance of the multi-functional lecture halls while taking into account the acoustic design and feasible requirements. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 717 KiB  
Article
A Novel Approach to Dual Feature Selection of Atrial Fibrillation Based on HC-MFS
by Hong Liu, Lifeng Lu, Honglin Xiong, Chongjun Fan, Lumin Fan, Ziqian Lin and Hongliu Zhang
Diagnostics 2024, 14(11), 1145; https://doi.org/10.3390/diagnostics14111145 (registering DOI) - 30 May 2024
Abstract
This investigation sought to discern the risk factors for atrial fibrillation within Shanghai’s Chongming District, analyzing data from 678 patients treated at a tertiary hospital in Chongming District, Shanghai, from 2020 to 2023, collecting information on season, C-reactive protein, hypertension, platelets, and other [...] Read more.
This investigation sought to discern the risk factors for atrial fibrillation within Shanghai’s Chongming District, analyzing data from 678 patients treated at a tertiary hospital in Chongming District, Shanghai, from 2020 to 2023, collecting information on season, C-reactive protein, hypertension, platelets, and other relevant indicators. The researchers introduced a novel dual feature-selection methodology, combining hierarchical clustering with Fisher scores (HC-MFS), to benchmark against four established methods. Through the training of five classification models on a designated dataset, the most effective model was chosen for method performance evaluation, with validation confirmed by test set scores. Impressively, the HC-MFS approach achieved the highest accuracy and the lowest root mean square error in the classification model, at 0.9118 and 0.2970, respectively. This provides a higher performance compared to existing methods, thanks to the combination and interaction of the two methods, which improves the quality of the feature subset. The research identified seasonal changes that were strongly associated with atrial fibrillation (pr = 0.31, FS = 0.11, and DCFS = 0.33, ranked first in terms of correlation); LDL cholesterol, total cholesterol, C-reactive protein, and platelet count, which are associated with inflammatory response and coronary heart disease, also indirectly contribute to atrial fibrillation and are risk factors for AF. Conclusively, this study advocates that machine-learning models can significantly aid clinicians in diagnosing individuals predisposed to atrial fibrillation, which shows a strong correlation with both pathological and climatic elements, especially seasonal variations, in the Chongming District. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

15 pages, 2535 KiB  
Article
An In Vitro Human Skin Test for Predicting Skin Sensitization and Adverse Immune Reactions to Biologics
by Shaheda Sameena Ahmed, Mohammed Mahid Ahmed, Abbas Ishaq, Matthew Freer, Richard Stebbings and Anne Mary Dickinson
Toxics 2024, 12(6), 401; https://doi.org/10.3390/toxics12060401 (registering DOI) - 30 May 2024
Abstract
Biologics, including monoclonal antibodies (mAb), have proved to be effective and successful therapeutic agents, particularly in the treatment of cancer and immune-inflammatory conditions, as well as allergies and infections. However, their use carries an inherent risk of an immune-mediated adverse drug reaction. In [...] Read more.
Biologics, including monoclonal antibodies (mAb), have proved to be effective and successful therapeutic agents, particularly in the treatment of cancer and immune-inflammatory conditions, as well as allergies and infections. However, their use carries an inherent risk of an immune-mediated adverse drug reaction. In this study, we describe the use of a novel pre-clinical human in vitro skin explant test for predicting skin sensitization and adverse immune reactions. The skin explant test was used to investigate the effects of therapeutic antibodies, which are known to cause a limited reaction in a small number of patients or more severe reactions. Material and Methods: Immune responses were determined by T cell proliferation and multiplex cytokine analysis, as well as histopathological analysis of skin damage (grades I–IV in increasing severity), predicting a negative (grade I) or positive (grade ≥ II) response for an adverse skin sensitization effect. Results: T cell proliferation responses were significantly increased in the positive group (p < 0.004). Multiplex cytokine analysis showed significantly increased levels of IFNγ, TNFα, IL-10, IL-12, IL-13, IL-1β, and IL-4 in the positive response group compared with the negative response group (p < 0.0001, p < 0.0001, p < 0.002, p < 0.01, p < 0.04, p < 0.006, and p < 0.004, respectively). Conclusions: Overall, the skin explant test correctly predicted the clinical outcome of 13 out of 16 therapeutic monoclonal antibodies with a correlation coefficient of 0.770 (p = 0.0001). This assay therefore provides a valuable pre-clinical test for predicting adverse immune reactions, including T cell proliferation and cytokine release, both associated with skin sensitization to monoclonal antibodies. Full article
(This article belongs to the Special Issue Skin Sensitization Testing Using New Approach Methodologies)
Show Figures

Figure 1

29 pages, 25260 KiB  
Review
Advances in Organic Multiferroic Junctions
by Bogdana Borca
Coatings 2024, 14(6), 682; https://doi.org/10.3390/coatings14060682 (registering DOI) - 30 May 2024
Abstract
Typically, organic multiferroic junctions (OMFJs) are formed of an organic ferroelectric layer sandwiched between two ferromagnetic electrodes. The main scientific interest in OMFJs focuses on the magnetoresistive properties of the magnetic spin valve combined with the electroresistive properties associated with the ferroelectric junction. [...] Read more.
Typically, organic multiferroic junctions (OMFJs) are formed of an organic ferroelectric layer sandwiched between two ferromagnetic electrodes. The main scientific interest in OMFJs focuses on the magnetoresistive properties of the magnetic spin valve combined with the electroresistive properties associated with the ferroelectric junction. In consequence, memristive properties that couple magnetoelectric functionalities, which are one of the most active fields of research in material sciences, are opening a large spectrum of technological applications from nonvolatile memory to elements in logic circuits, sensing devices, energy harvesting and biological synapsis models in the emerging area of neuromorphic computing. The realization of these multifunctional electronic elements using organic materials is presenting various advantages related to their low-cost, versatile synthesis and low power consumption functioning for sustainable electronics; green disintegration for transient electronics; and flexibility, light weight and/or biocompatibility for flexible electronics. The purpose of this review is to address the advancement of all OMFJs including not only the achievements in the charge and spin transport through OMFJs together with the effects of electroresistance and magnetoresistance but also the challenges and ways to overcome them for the most used materials for OMFJs. Full article
(This article belongs to the Special Issue Advances of Nanoparticles and Thin Films)
Show Figures

Figure 1

32 pages, 29566 KiB  
Review
Additively Manufactured Alnico Permanent Magnet Materials—A Review
by Saikumar Dussa, Sameehan S. Joshi, Shashank Sharma, Karri Venkata Mani Krishna, Madhavan Radhakrishnan and Narendra B. Dahotre
Magnetism 2024, 4(2), 125-156; https://doi.org/10.3390/magnetism4020010 (registering DOI) - 30 May 2024
Abstract
Additive manufacturing offers manufacturing flexibility for intricate components and also allows for precise control over the microstructure. This review paper explores the current state of the art in additive manufacturing techniques for Alnico permanent magnets, emphasizing the notable advantages and challenges associated with [...] Read more.
Additive manufacturing offers manufacturing flexibility for intricate components and also allows for precise control over the microstructure. This review paper explores the current state of the art in additive manufacturing techniques for Alnico permanent magnets, emphasizing the notable advantages and challenges associated with this innovative approach. Both the LPBF and L-DED processes have demonstrated promising results in fabricating Alnico with magnetic properties comparable with conventionally processed samples. The optimization of process parameters successfully reduced porosity and cracking in the LPBF processing of Alnico. The review further explored the significance of additive manufacturing process parameter optimization in managing the temperature gradient and solidification rate for a desired microstructure and enhanced magnetic properties. Other potential additive manufacturing methods suitable for the fabrication of Alnico were discussed, along with the challenges associated with the process. The insights provided also highlight how additive manufacturing holds the potential to replace post-processing techniques like solutionization, magnetic annealing, and tempering often necessary in Alnico production. Full article
Show Figures

Figure 1

17 pages, 3631 KiB  
Article
Identifying a Role of Polysaccharides from Agaricus Blazei Murill in Combating Skin Photoaging: The Effect of Antioxidants on Fibroblast Behavior
by Feiqian Di, Wenjing Cheng, Luyao Li, Chunhong Pu, Ruiliang Sun, Jiachan Zhang, Changtao Wang and Meng Li
Fermentation 2024, 10(6), 292; https://doi.org/10.3390/fermentation10060292 (registering DOI) - 30 May 2024
Abstract
Irradiation with ultraviolet A (UVA) plays an important role in the pathogenesis of skin photoaging since it increases oxidative stress and inflammation in the epidermis. There is an urgent need to screen, investigate, and apply the potential anti-photoaging active ingredients. Agaricus blazei Murill [...] Read more.
Irradiation with ultraviolet A (UVA) plays an important role in the pathogenesis of skin photoaging since it increases oxidative stress and inflammation in the epidermis. There is an urgent need to screen, investigate, and apply the potential anti-photoaging active ingredients. Agaricus blazei Murill (ABM) polysaccharides have a wide range of promising pharmacological applications. Previous studies have confirmed their antioxidant effect, but whether it has an anti-photoaging effect is unclear. In this study, two ABM polysaccharides (AB-J and AB-K) were obtained to discuss the potential photodamage-protective capacity. The free radical scavenging abilities in vitro, the safety assessment, and their protective effects and mechanisms on UVA-induced human fibroblasts (HSFs) were evaluated. The intracellular antioxidant enzyme levels and extracellular matrix proteins, such as COL-I and ELN, were significantly accelerated, and metalloproteinases (MMP-1, and MMP-9) were decreased by AB-J and AB-K. The Keap-1-Nrf2/ARE signaling pathway was activated, thus inducing the upregulated expression of downstream genes (Ho-1 and Nqo-1). The suppression of P38 and Jnk1 by AB-J and AB-K was speculated to be the inducer of the activation of the Keap-1-Nrf2/ARE signaling pathway. Owing to the excellent exhibition of AB-J, its safety assessment and the structural characterization are discussed further. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

26 pages, 7459 KiB  
Article
Zircon U–Pb Dating and Lu–Hf Isotopic Composition of Some Granite Intrusions in Northern and Central Portugal: Constraints on the Emplacement Age and Nature of the Source Rocks
by Ana Gonçalves, Rui Teixeira, Helena Sant’Ovaia and Fernando Noronha
Minerals 2024, 14(6), 573; https://doi.org/10.3390/min14060573 (registering DOI) - 30 May 2024
Abstract
Freixo de Numão (FNG) and Capinha (CG) granites are prominent intrusions in the Douro Group (northern Central Iberian Zone, CIZ) and Beiras Supergroup (southern CIZ) metasediments, respectively. U-Pb dating revealed crystallization ages of 306 ± 2 Ma for FNG and 301 ± 3 [...] Read more.
Freixo de Numão (FNG) and Capinha (CG) granites are prominent intrusions in the Douro Group (northern Central Iberian Zone, CIZ) and Beiras Supergroup (southern CIZ) metasediments, respectively. U-Pb dating revealed crystallization ages of 306 ± 2 Ma for FNG and 301 ± 3 Ma for CG, whereas Lu–Hf systematics has shown ɛHft values ranging from −4.5 to +0.6 and from −5.5 to +0.3 in FNG and CG autocrysts, respectively, suggesting that they originate from heterogeneous crustal anatectic melts, but a direct mantle-derived material contribution can also be considered. The isotopic data of inherited zircon cores of both granites, with ɛHft values ranging from −16.8 to +8.4 in FNG, and from −19.4 to +10.1 in CG, are compatible with a derivation from heterogeneous Neoproterozoic metasedimentary sources, consisting of juvenile and recycled crustal materials, comparable to those of the wall rocks. However, the less evolved initial 176Hf/177Hf signature of magmatic zircons of both granites requires more immature metasediments/juvenile materials as main sources for the parental magmas. In fact, for FNG, the high Sr and Ba whole-rock content, and the upper Cambrian inheritance highlight the involvement of a metaigneous protolith in its genesis. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 3922 KiB  
Article
Supercritical CO2 Extraction of Terpenoids from Indocalamus latifolius Leaves: Optimization, Purification, and Antioxidant Activity
by Yadan Chen, Yanbin Wang, Liang He, Liling Wang, Jianchen Zhao, Zhenya Yang, Qin Li and Rui Shi
Foods 2024, 13(11), 1719; https://doi.org/10.3390/foods13111719 (registering DOI) - 30 May 2024
Abstract
This study aimed to investigate the efficacy of supercritical CO2 (SC-CO2) extraction in enhancing the extraction rate, purity, and antioxidant activity of Indocalamus latifolius (Keng) McClure (Poaceae) leaf terpenoids (ILLTs). Crude extracts obtained from leaves were subjected to qualitative and [...] Read more.
This study aimed to investigate the efficacy of supercritical CO2 (SC-CO2) extraction in enhancing the extraction rate, purity, and antioxidant activity of Indocalamus latifolius (Keng) McClure (Poaceae) leaf terpenoids (ILLTs). Crude extracts obtained from leaves were subjected to qualitative and quantitative analyses, revealing neophytadiene, phytol, β-sitosterol, β-amyrone, squalene, and friedelin as the primary terpenoid constituents, identified through gas chromatography–mass spectrometry (GC-MS). Compared with steam distillation extraction (SD), simultaneous distillation extraction (SDE), ultra-high pressure-assisted n-hexane extraction (UHPE-Hex), ultra-high pressure-assisted ethanol extraction (UHPE-EtOH), ultrasound-assisted n-hexane extraction (UE-Hex), and ultrasound-assisted ethanol extraction (UE-EtOH), SC-CO2 exhibited a superior ILLT extraction rate, purity, and antioxidant activity. Scanning electron microscopy (SEM) observations of the residues further revealed more severe damage to both the residues and their cell walls after SC-CO2 extraction. Under optimal parameters (4.5 h, 26 MPa, 39 °C, and 20% ethyl alcohol), the ILLT extraction rate with SC-CO2 reached 1.44 ± 0.12 mg/g, which was significantly higher than the rates obtained by the other six methods. The subsequent separation and purification using WelFlash C18-l, BUCHI-C18, and Sephadex LH-20 led to an increase in the purity of the six terpenoid components from 12.91% to 93.34%. Furthermore, the ILLTs demonstrated cytotoxicity against HepG2 cells with an IC50 value of 148.93 ± 9.93 μg/mL. Additionally, with increasing concentrations, the ILLTs exhibited an enhanced cellular antioxidant status, as evidenced by reductions in both reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 4702 KiB  
Article
Lubricating Greases from Fried Vegetable Oil—Preparation and Characterization
by Olga V. Săpunaru, Ancaelena E. Sterpu, Cyrille A. Vodounon, Jack Nasr, Cristina Duşescu-Vasile, Sibel Osman and Claudia I. Koncsag
Lubricants 2024, 12(6), 197; https://doi.org/10.3390/lubricants12060197 (registering DOI) - 30 May 2024
Abstract
Biobased greases are derived from renewable resources, are considered more environmentally friendly, and offer comparable performance to petroleum-based greases. In this study, lubricating greases from frying cooking oils were prepared, thus valorizing waste in order to obtain sustainable and environmentally friendly products. Twelve [...] Read more.
Biobased greases are derived from renewable resources, are considered more environmentally friendly, and offer comparable performance to petroleum-based greases. In this study, lubricating greases from frying cooking oils were prepared, thus valorizing waste in order to obtain sustainable and environmentally friendly products. Twelve batches (500 g each) were produced from sunflower and palm frying oils, with 20% by weight calcium/lithium stearate soaps prepared in situ and filled with 15 wt.% cellulose or lignin sulfate. The greases were rheologically characterized. Their consistency was assessed by the penetration test performed before and after working the greases. Dropping point determinations offered information about the stability at higher temperatures, and oil bleeding tests were performed. The average values of the friction coefficient (COF), the contact resistance, and the wear scar diameter were measured through mechanical tests. The greases prove to be comparable to those obtained from mineral oils, with good rheological properties, soft consistency, and good antiwearing behavior, e.g., in open or total-loss lubricating systems, like in open gears and certain food processing machinery; they are thermally stable andprone touse in low-loading working mechanisms. Full article
(This article belongs to the Special Issue Advances in Tribochemistry)
Show Figures

Figure 1

19 pages, 3723 KiB  
Article
Orbital Pursuit–Evasion–Defense Linear-Quadratic Differential Game
by Zhen-Yu Li
Aerospace 2024, 11(6), 443; https://doi.org/10.3390/aerospace11060443 (registering DOI) - 30 May 2024
Abstract
To find superior guidance strategies for preventing possible interception threats from space debris, out-of-control satellites, etc., this paper investigates an orbital pursuit–evasion–defense game problem with three players called the pursuer, the evader, and the defender, respectively. In this game, the pursuer aims to [...] Read more.
To find superior guidance strategies for preventing possible interception threats from space debris, out-of-control satellites, etc., this paper investigates an orbital pursuit–evasion–defense game problem with three players called the pursuer, the evader, and the defender, respectively. In this game, the pursuer aims to intercept the evader, while the evader tries to escape the pursuer. A defender accompanying the evader can protect the evader by actively intercepting the pursuer. For such a game, a linear-quadratic duration-adaptive (LQDA) strategy is first proposed as a basic strategy for the three players. Later, an advanced pursuit strategy is designed for the pursuer to evade the defender when they are chasing the evader. Meanwhile, a cooperative evasion–defense strategy is proposed for the evader and the defender to build their cooperation. Simulations determined that the proposed LQDA strategy has higher interception accuracy than the classic LQ strategy. Meanwhile, the proposed two-sided pursuit strategy can improve the interception performance of the pursuer against a non-cooperative defender. But if the evader and defender employ the proposed cooperation strategy, the pursuer’s interception will be much more difficult. Full article
Show Figures

Figure 1

12 pages, 1079 KiB  
Systematic Review
Closing the RCT Gap—A Large Meta-Analysis on the Role of Surgery in Stage I–III Small Cell Lung Cancer Patients
by Fabian Doerr, Sebastian Stange, Sophie Salamon, Konstantinos Grapatsas, Natalie Baldes, Maximilian Michel, Hruy Menghesha, Georg Schlachtenberger, Matthias B. Heldwein, Lars Hagmeyer, Jürgen Wolf, Eric D. Roessner, Thorsten Wahlers, Martin Schuler, Khosro Hekmat and Servet Bölükbas
Cancers 2024, 16(11), 2078; https://doi.org/10.3390/cancers16112078 (registering DOI) - 30 May 2024
Abstract
Introduction: Despite clear guideline recommendations, surgery is not consistently carried out as part of multimodal therapy in stage I small cell lung cancer (SCLC) patients. The role of surgery in stages II and III is even more controversial. In the absence of current [...] Read more.
Introduction: Despite clear guideline recommendations, surgery is not consistently carried out as part of multimodal therapy in stage I small cell lung cancer (SCLC) patients. The role of surgery in stages II and III is even more controversial. In the absence of current randomized control trials (RCT), we performed a meta-analysis comparing surgery versus non-surgical treatment in stage I to III SCLC patients. Methods: A systematic review of the literature was conducted on 1 July 2023, focusing on studies pertaining to the impact of surgery on small cell lung cancer (SCLC). These studies were evaluated using the ROBINS-I tool. Statistical analyses, including I² tests, Q-statistics, DerSimonian-Laird tests, and Egger regression, were performed to assess the data. In addition, 5-year survival rates were analyzed. The meta-analysis was conducted according to PRISMA standards. Results: Among the 6826 records identified, 10 original studies encompassing a collective cohort of 95,323 patients were incorporated into this meta-analysis. Heterogeneity was observed across the included studies, with no discernible indication of publication bias. Analysis of patient characteristics revealed no significant differences between the two groups (p-value > 0.05). The 5-year survival rates in a combined analysis of patients in stages I–III were 39.6 ± 15.3% for the ‘surgery group’ and 16.7 ± 12.7% for the ‘non-surgery group’ (p-value < 0.0001). SCLC patients in stages II and III treated outside the guideline with surgery had a significantly better 5-year survival compared to non-surgery controls (36.3 ± 20.2% vs. 20.2 ± 17.0%; p-value = 0.043). Conclusions: In the absence of current RCTs, this meta-analysis provides robust suggestions that surgery might significantly improve survival in all SCLC stages. Non-surgical therapy could lead to a shortening of life. The feasibility of surgery in non-metastatic SCLC should always be evaluated as part of a multimodal treatment. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Figure 1

14 pages, 485 KiB  
Review
Syncope in the Emergency Department: A Practical Approach
by Ludovico Furlan, Giulia Jacobitti Esposito, Francesca Gianni, Monica Solbiati, Costantino Mancusi and Giorgio Costantino
J. Clin. Med. 2024, 13(11), 3231; https://doi.org/10.3390/jcm13113231 (registering DOI) - 30 May 2024
Abstract
Syncope is a common condition encountered in the emergency department (ED), accounting for about 0.6–3% of all ED visits. Despite its high frequency, a widely accepted management strategy for patients with syncope in the ED is still missing. Since syncope can be the [...] Read more.
Syncope is a common condition encountered in the emergency department (ED), accounting for about 0.6–3% of all ED visits. Despite its high frequency, a widely accepted management strategy for patients with syncope in the ED is still missing. Since syncope can be the presenting condition of many diseases, both severe and benign, most research efforts have focused on strategies to obtain a definitive etiologic diagnosis. Nevertheless, in everyday clinical practice, a definitive diagnosis is rarely reached after the first evaluation. It is thus troublesome to aid clinicians’ reasoning by simply focusing on differential diagnoses. With the current review, we would like to propose a management strategy that guides clinicians both in the identification of conditions that warrant immediate treatment and in the management of patients for whom a diagnosis is not immediately reached, differentiating those that can be safely discharged from those that should be admitted to the hospital or monitored before a final decision. We propose the mnemonic acronym RED-SOS: Recognize syncope; Exclude life-threatening conditions; Diagnose; Stratify the risk of adverse events; Observe; decide on the Setting of care. Based on this acronym, in the different sections of the review, we discuss all the elements that clinicians should consider when assessing patients with syncope. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

17 pages, 6481 KiB  
Article
A Full-Coverage Path Planning Method for an Orchard Mower Based on the Dung Beetle Optimization Algorithm
by Lixing Liu, Xu Wang, Hongjie Liu, Jianping Li, Pengfei Wang and Xin Yang
Agriculture 2024, 14(6), 865; https://doi.org/10.3390/agriculture14060865 (registering DOI) - 30 May 2024
Abstract
In order to optimize the operating path of orchard mowers and improve their efficiency, we propose an MI-DBO (multi-strategy improved dung beetle optimization algorithm) to solve the problem of full-coverage path planning for mowers in standardized quadrilateral orchard environments. First, we analyzed the [...] Read more.
In order to optimize the operating path of orchard mowers and improve their efficiency, we propose an MI-DBO (multi-strategy improved dung beetle optimization algorithm) to solve the problem of full-coverage path planning for mowers in standardized quadrilateral orchard environments. First, we analyzed the operation scenario of lawn mowers in standardized orchards, transformed the full-coverage path planning problem into a TSP (traveling salesman problem), and mathematically modeled the U-turn and T-turn strategies based on the characteristics of lawn mowers in orchards. Furthermore, in order to overcome the issue of uneven distribution of individual positions in the DBO (dung beetle optimization) algorithm and the tendency to fall into local optimal solutions, we incorporated Bernoulli mapping and the convex lens reverse-learning strategy in the initialization stage of DBO to ensure a uniform distribution of the initial population. During the algorithm iteration stage, we incorporated the Levy flight strategy into the position update formulas of breeding beetles, foraging beetles, and stealing beetles in the DBO algorithm, allowing them to escape from local optimal solutions. Simulation experiments show that for 18 types of orchards with different parameters, MI-DBO can find the mowing machine’s operation paths. Compared with other common swarm intelligence algorithms, MI-DBO has the shortest average path length of 456.36 m and can ensure faster optimization efficiency. Field experiments indicate that the algorithm-optimized paths do not effectively reduce the mowing machine’s missed mowing rate, but the overall missed mowing rate is controlled below 0.8%, allowing for the completion of mowing operations effectively. Compared with other algorithms, MI-DBO has the least time and fuel consumption for operations. Compared to the row-by-row operation method, using paths generated by MI-DBO reduces the operation time by an average of 1193.67 s and the fuel consumption rate by an average of 9.99%. Compared to paths generated by DBO, the operation time is reduced by an average of 314.33 s and the fuel consumption rate by an average of 2.79%. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 3999 KiB  
Article
The Indian Ocean Dipole Modulates the Phytoplankton Size Structure in the Southern Tropical Indian Ocean
by Xiaomei Liao, Yan Li, Weikang Zhan, Qianru Niu and Lin Mu
Remote Sens. 2024, 16(11), 1970; https://doi.org/10.3390/rs16111970 (registering DOI) - 30 May 2024
Abstract
The phytoplankton size structure exerts a significant influence on ecological processes and biogeochemical cycles. In this study, the interannual variations in remotely sensed phytoplankton size structure in the southern Tropical Indian Ocean (TIO) and the underlying physical mechanisms were investigated. Significant interannual fluctuations [...] Read more.
The phytoplankton size structure exerts a significant influence on ecological processes and biogeochemical cycles. In this study, the interannual variations in remotely sensed phytoplankton size structure in the southern Tropical Indian Ocean (TIO) and the underlying physical mechanisms were investigated. Significant interannual fluctuations in phytoplankton size structure occur in the southeastern TIO and central southern TIO and are very sensitive to Indian Ocean Dipole (IOD) events. During positive IOD events, the southeast wind anomalies reinforce coastal upwelling off of Java and Sumatra, leading to a shift toward a larger phytoplankton structure in the southeastern TIO. The anomalous anticyclonic circulation deepened the thermocline and triggered the oceanic downwelling Rossby waves, resulting in a smaller phytoplankton structure in the southwestern TIO. During the decay phase of the strong positive IOD events, the sustained warming in the southwestern TIO induced basin-wide warming, thereby maintaining such an anomalous phytoplankton size structure into the following spring. The response of phytoplankton size structure and ocean dynamics displayed inverse patterns during the negative IOD events, with an anomalous larger phytoplankton structure in the central southern TIO. These findings enhance our understanding of phytoplankton responses to climate events, with serious implications for ecosystem changes in a warming climate. Full article
Show Figures

Figure 1

10 pages, 2775 KiB  
Article
A Cellulose-Based Dual-Crosslinked Framework with Sensitive Shape and Color Changes in Acid/Alkaline Vapors
by Yuxin Sun, Xinye Qian, Yan Gou, Chunling Zheng and Fang Zhang
Polymers 2024, 16(11), 1547; https://doi.org/10.3390/polym16111547 (registering DOI) - 30 May 2024
Abstract
Cellulose detectors, as green sensors, are some of the defensive mechanisms of plants which combat environmental stresses. However, extracted cellulose struggles to fulfil these functionalities due to its rigid physical/chemical properties. In this study, a novel cellulose dual-crosslinked framework (CDCF) is proposed. This [...] Read more.
Cellulose detectors, as green sensors, are some of the defensive mechanisms of plants which combat environmental stresses. However, extracted cellulose struggles to fulfil these functionalities due to its rigid physical/chemical properties. In this study, a novel cellulose dual-crosslinked framework (CDCF) is proposed. This comprises a denser temporary physical crosslinking bond (hydrogen bonding) and a looser covalent crosslinking bond (N,N-methylenebisacrylamide), which create deformable spaces between the two crosslinking sites. Abundant pH-sensitive carboxyl groups and ultralight, highly porous structures make CDCF response very sensitive in acid/alkaline vapor environments. Hence, a significant shrinkage of CDCF was observed following exposure to vapors. Moreover, a curcumin-incorporated CDCF exhibited dual shape and color changes when exposed to acid/alkaline vapors, demonstrating great potential for the multi-detection of acid/alkaline vapors. Full article
(This article belongs to the Special Issue Smart Polymeric Materials for Soft Electronics)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop