Paper The following article is Open access

Thermal modelling and analysis of an oil-free linear compressor

, and

Published under licence by IOP Publishing Ltd
, , Citation M J Oliveira et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 90 012016 DOI 10.1088/1757-899X/90/1/012016

1757-899X/90/1/012016

Abstract

Gas superheating in the suction system may significantly reduce the volumetric and isentropic efficiencies of small reciprocating compressors adopted for household refrigeration. This paper reports a thermal modelling approach developed to predict superheating in an oil- free linear compressor. A simulation code based on the finite volume method was adopted to solve heat conduction in the solid components and gas flow inside the compressor shell. In order to reduce the computational cost, the compression cycle inside the cylinder was modelled with a transient lumped formulation, but in a coupled manner with the remainder of the solution domain. Comparisons between numerical and experimental results of temperature showed discrepancies in some solid components and in the gas path along the discharge system. However, the model was able to predict suction gas superheating in good agreement with measurements. A sensitivity analysis of the temperature distribution with respect to two design parameters was also carried out. The model is particularly useful for compressor design since no experimental calibration is required.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/90/1/012016