Skip to main content
Log in

Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Anodic potential, morphology and phase composition of the anodic layer, corrosion morphology of the metallic substrate, and oxygen evolution behavior of Pb-Ag anode in H2SO4 solution without/with fluoride ion were investigated and compared. The results showed that the presence of fluoride ions contributed to a smoother anodic layer with lower PbO2 concentration, which resulted in lower double layer capacity and higher charge transfer resistance for the oxygen evolution reaction. Consequently, the Pb-Ag anode showed a higher anodic potential (about 35 mV) in the fluoride-containing electrolyte. In addition, the fluoride ions accelerated the detachment of loose flakes on the anodic layer. It was demonstrated that the anodic layer formed in the fluoride-containing H2SO4 solution was thinner. Furthermore, fluoride ions aggravated the corrosion of the metallic substrate at interdendritic boundary regions. Hence, the presence of fluoride ions is detrimental to oxygen evolution reactivity and increases the corrosion of the Pb-Ag anode, which may further increase the energy consumption and capital cost of zinc plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Clancy, C.J. Bettles, A. Stuart, and N. Birbilis, Hydrometallurgy 131–132, 144 (2013).

    Article  Google Scholar 

  2. A. Felder and R.D. Prengaman, JOM-US 58, 28 (2006).

    Article  Google Scholar 

  3. D.J. Mackinnon, J.M. Brannen, and P.L. Fenn, J. Appl. Electrochem. 17, 1129 (1987).

    Article  Google Scholar 

  4. C. Cachet, C. Le Pape-Rérolle, and R. Wiart, J. Appl. Electrochem. 29, 813 (1999).

    Article  Google Scholar 

  5. L. Muresan, G. Maurin, L. Oniciu, and S. Avram, Hydrometallurgy 40, 335 (1996).

    Article  Google Scholar 

  6. I. Ivanov, Hydrometallurgy 72, 73 (2004).

    Article  Google Scholar 

  7. B.S. Boyanov, V.V. Konareva, and N.K. Kolev, Hydrometallurgy 73, 163 (2004).

    Article  Google Scholar 

  8. H. Zhang, Y. Li, J. Wang, and X. Hong, Hydrometallurgy 99, 127 (2009).

    Article  Google Scholar 

  9. M. Tunnicliffe, F. Mohammadi, and A. Alfantazi, J. Electrochem. Soc. 159, C170 (2012).

    Article  Google Scholar 

  10. Q. Zhang and Y. Hua, J. Appl. Electrochem. 39, 1185 (2009).

    Article  Google Scholar 

  11. B.C. Tripathy, S.C. Das, and V.N. Misra, Hydrometallurgy 69, 81 (2003).

    Article  Google Scholar 

  12. H.T. Yang, Z.C. Guo, B.M. Chen, H.R. Liu, Y.C. Zhang, H. Huang, X.L. Li, R.C. Fu, and R.D. Xu, Hydrometallurgy 147–148, 148 (2014).

    Article  Google Scholar 

  13. X. Zhong, L. Jiang, X. Lv, Y. Lai, J. Li, and Y. Liu, Acta Metall. Sin. 51, 378 (2015).

    Google Scholar 

  14. J.S. Han and T.J. O’Keefe, J. Appl. Electrochem. 22, 606 (1992).

    Article  Google Scholar 

  15. X. Wu, Z. Liu, and X. Liu, Hydrometallurgy 141, 31 (2014).

    Article  Google Scholar 

  16. R.H. Newham, J. Appl. Electrochem. 22, 116 (1992).

    Article  Google Scholar 

  17. P. Ramachandran, K. Naganathan, K. Balakrishnan, and R. Srinivasan, J. Appl. Electrochem. 10, 623 (1980).

    Article  Google Scholar 

  18. P. Ramachandran and K. Balakrishnan, B. Electeochem. 12, 352 (1996).

    Google Scholar 

  19. M. Mohammadi and A. Alfantazi, J. Electrochem. Soc. 160, C253 (2013).

    Article  Google Scholar 

  20. Y.L. Guo, J. Electrochem. Soc. 138, 1222 (1991).

    Article  Google Scholar 

  21. Q.J. Sun and Y.L. Guo, J. Electroanal. Chem. 493, 123 (2000).

    Article  Google Scholar 

  22. J. Bisquert, H. Randriamahazaka, and G. Garcia-Belmonte, Electrochim. Acta 51, 627 (2005).

    Article  Google Scholar 

  23. G.J. Brug, A.L.G. Van Den Eeden, and M. Garcia-Belmonte, J. Electroanal. Chem. Interfacial Electrochem. 176, 275 (1984).

    Article  Google Scholar 

  24. V.A. Alves, L.A. da Silva, and J.F.C. Boodts, Electrochim. Acta 44, 1525 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51204208, 51374240), Hunan Provincial Natural Science Foundation, China (13JJ1003), China Postdoctoral Science Foundation (2013M540638) and the Fundamental Research Funds for the Central Universities of Central South University (2014zzts028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangxing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Yu, X., Jiang, L. et al. Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis. JOM 67, 2022–2027 (2015). https://doi.org/10.1007/s11837-015-1550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1550-1

Keywords

Navigation