Skip to main content
Log in

Measuring the Stress Dependence of Nucleation and Growth Processes in Sn Whisker Formation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Sn whiskers/hillocks are believed to form due to stress in the layers, but the dependence on the stress has been difficult to quantify. We therefore used the thermal expansion mismatch between Sn thin films and Si substrates to induce controlled stress by heating. This enables us to measure the average stress in the layer (using wafer curvature) at the same time as we monitor the nucleation rate (using optical microscopy). Scanning electron microscopy of the surface after intervals of heating is also used to quantify the whisker volume as a function of stress and time. The results allow us to determine the dependence of the whisker nucleation rate and the growth rate on the applied stress. They also show that whisker formation is not the dominant mode of plastic strain relaxation in the Sn layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A.F. Bower, Prog. Surf. Sci. 88, 103 (2013).

    Article  Google Scholar 

  2. NASA, Tin Whisker (and Other Metal Whisker) Homepage, http://nepp.nasa.gov/whisker/.

  3. NASA Engineering and Safety Center, Technical Assessment Report, National Highway Traffic Safety Administration, Toyota Unintended Acceleration Investigation (Washington, DC: NASA Engineering and Safety Center, 2011).

    Google Scholar 

  4. B. Sood, M. Osterman, and M. Pecht, Circuit World 37, 4 (2011).

    Article  Google Scholar 

  5. S.M. Arnold, Paper Presented at the Proceedings of IEEE Electronic Components Technology Conference (1959), pp. 75–82.

  6. R.M. Fisher, L.S. Darken, and K.G. Carroll, Acta Metall. 2, 368 (1954).

    Article  Google Scholar 

  7. B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).

    Article  Google Scholar 

  8. K.N. Tu, Phys. Rev. B 49, 2030 (1994).

    Article  Google Scholar 

  9. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).

    Article  Google Scholar 

  10. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).

    Article  Google Scholar 

  11. J. Smetana, IEEE Trans. Electron. Packag. Manuf. 30, 11 (2007).

    Article  Google Scholar 

  12. X. Chen, Z. Yun, C. Fan, and J.A. Abys, IEEE Trans. Electron. Packag. Manuf. 28, 31 (2005).

    Article  Google Scholar 

  13. C.H. Pitt and R.G. Henning, J. Appl. Phys. 35, 459 (1964).

    Article  Google Scholar 

  14. K.N. Tu, Acta Metall. 21, 347 (1973).

    Article  Google Scholar 

  15. Z. Wan, A. Egli, F. Schwager, and N. Brown, IEEE Trans. Electron. Packag. Manuf. 28, 85 (2005).

    Article  Google Scholar 

  16. F. Pei and E. Chason, J. Electron. Mater. 43, 80 (2014).

    Article  Google Scholar 

  17. E. Chason, F. Pei, C.L. Briant, H. Kesari, and A.F. Bower, J. Electron. Mater. 43, 4435 (2014).

    Article  Google Scholar 

  18. F. Pei, C.L. Briant, H. Kesari, A.F. Bower, and E. Chason, Scripta Mater. 93, 16 (2014).

    Article  Google Scholar 

  19. H.P. Howard, J. Cheng, P.T. Vianco, and J.C.M. Li, Acta Mater. 59, 1957–1963 (2011).

    Article  Google Scholar 

  20. Y. Mizuguchi, Y. Murakami, S. Tomiya, T. Asai, T. Kiga, and K. Suganuma, J. Electron. Mater. 41, 1859 (2012).

    Article  Google Scholar 

  21. P. Sarobol, A.E. Pedigo, P. Su, J.E. Blendell, and C.A. Handwerker, IEEE Trans. Electron. Packag. Manuf. 33, 159 (2010).

    Article  Google Scholar 

  22. N. Jadhav, E. Buchovecky, E. Chason, and A.F. Bower, JOM 62, 30 (2010).

    Article  Google Scholar 

  23. P. Snugovsky, S. Meschter, Z. Bagheri, E. Kosiba, M. Romansky, and J. Kennedy, J. Electron. Mater. 41, 204 (2012).

    Article  Google Scholar 

  24. C.-H. Su, H. Chen, H.-Y. Lee, and A.T. Wu, Appl. Phys. Lett. 99, 131906 (2011).

    Article  Google Scholar 

  25. F. Pei, N. Jadhav, and E. Chason, JOM 64, 1176 (2012).

    Article  Google Scholar 

  26. M. Sobiech, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, and G.E. Ice, Appl. Phys. Lett. 94, 3 (2009).

    Article  Google Scholar 

  27. P. Sarobol, J.E. Blendell, and C.A. Handwerker, Acta Mater. 61, 1991 (2013).

    Article  Google Scholar 

  28. N. Jadhav, M. Williams, F. Pei, G. Stafford, and E. Chason, J. Electron. Mater. 42, 312 (2013).

    Article  Google Scholar 

  29. P.T. Vianco and J.A. Rejent, J. Electron. Mater. 38, 1815 (2009).

    Article  Google Scholar 

  30. P.T. Vianco and J.A. Rejent, J. Electron. Mater. 38, 1826 (2009).

    Article  Google Scholar 

  31. P. Sarobol, J.P. Koppes, W.H. Chen, P. Su, J.E. Blendell, and C.A. Handwerker, Mater. Lett. 99, 76 (2013).

    Article  Google Scholar 

  32. F. Pei, N. Jadhav, and E. Chason, Appl. Phys. Lett. 100, 221902 (2012).

    Article  Google Scholar 

  33. E. Chason, Thin Solid Films 526, 1 (2012).

    Article  Google Scholar 

  34. L.B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, 1st ed. (Cambridge: Cambridge University Press, 2009), pp. 86–93.

    Google Scholar 

  35. F. Pei, A.F. Bower, and E. Chason, J. Electron. Mater. submitted for publication (2015).

  36. J.W. Christian, The Theory of Transformations in Metals and Alloys (Oxford: Pergamon Press, 1965), pp. 422–479.

    Google Scholar 

  37. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Oxford: Pergamon, 1995), pp. 207–209.

    Google Scholar 

  38. W. Lange and D. Bergner, Phys. Status Solidi (b) 2, 1410 (1962).

    Article  Google Scholar 

  39. P. Singh and M. Ohring, J. Appl. Phys. 56, 899 (1984).

    Article  Google Scholar 

  40. F. Pei, E. Buchovecky, A.F. Bower, and E. Chason, Brown University, unpublished research (2015).

  41. E. Buchovecky (Ph.D. thesis, School of Engineering, Brown University, 2010).

Download references

Acknowledgements

The authors gratefully acknowledge the support of the NSF-DMR under Contract DMR1206138, useful technical support from Gordon Barr, and helpful discussions with Clyde Briant, Haneesh Kesari, and Allan Bower.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chason.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chason, E., Pei, F. Measuring the Stress Dependence of Nucleation and Growth Processes in Sn Whisker Formation. JOM 67, 2416–2424 (2015). https://doi.org/10.1007/s11837-015-1557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1557-7

Keywords

Navigation