Skip to main content
Log in

The Use of Ultrasound to Measure Dislocation Density

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dislocations are at the heart of the plastic behavior of materials yet they are very difficult to probe experimentally. Lack of a practical nonintrusive measuring tool for, say, dislocation density, seriously hampers modeling efforts, as there is little guidance from data in the form of quantitative measurements, as opposed to visualizations. Dislocation density can be measured using transmission electron microscopy (TEM) and x-ray diffraction (XRD). TEM can directly show the strain field around dislocations, which allows for the counting of the number of dislocations in a micrograph. This procedure is very laborious and local, since samples have to be very small and thin, and is difficult to apply when dislocation densities are high. XRD relies on the broadening of diffraction peaks induced by the loss of crystalline order induced by the dislocations. This broadening can be very small, and finding the dislocation density involves unknown parameters that have to be fitted with the data. Both methods, but especially TEM, are intrusive, in the sense that samples must be especially treated, mechanically and chemically. A nonintrusive method to measure dislocation density would be desirable. This paper reviews recent developments in the theoretical treatment of the interaction of an elastic wave with dislocations that have led to formulae that relate dislocation density to quantities that can be measured with samples of cm size. Experimental results that use resonant ultrasound spectroscopy supporting this assertion are reported, and the outlook for the development of a practical, nonintrusive, method to measure dislocation density is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Hull and D. J. Bacon, Introduction to Dislocations, 5th edition (Elsevier, 2011).

  2. G. Xu, Dislocations in Solids, eds. F.R.N. Nabarro and J.P. Hirth, vol. 12 (Elsevier, 2004).

  3. U. Krupp, Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts (Wiley, 2007)

  4. G.S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, 2007).

  5. S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  6. S.J. Zinkle and Y. Matsukawa, J. Nucl. Mater. 329–333, 88 (2004).

    Article  Google Scholar 

  7. H. Wang, D.S. Xu, and R. Yang, Model. Simul. Mater. Sci Eng. 22, 085004 (2014).

    Article  Google Scholar 

  8. J. Coër, P.Y. Manach, H. Laurent, M.C. Oliveira, and L.F. Menezes, Mech. Res. Commun. 48, 1 (2013)

    Article  Google Scholar 

  9. A. Yilmaz, Sci. Technol. Adv. Mater. 12, 063001 (16pp) (2011).

  10. A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov, J. Mech. Phys. Solids 52, 1213 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. M.G. Lee, H. Lim, B.L. Adams, J.P. Hirth, and R.H. Wagoner, Int. J. Plasticity 26, 925 (2010).

    Article  MATH  Google Scholar 

  12. H.S. Leung, P.S.S. Leung, B. Cheng, and A.H.W. Ngan, Int. J. Plasticity 67, 1 (2015).

    Article  Google Scholar 

  13. D. B. Williams and C. B. Carter, Transmission Electron Microscopy, 2nd Ed. (Springer, Berlin, 2009), Ch. 27.

  14. F.A. Ponce, R. Sinclair, and R.H. Rube, Appl. Phys. Lett. 39, 951 (1981).

    Article  Google Scholar 

  15. F.A. Ponce, T. Yamashita, and S. Hahn, Appl. Phys. Lett. 43, 1051 (1983).

    Article  Google Scholar 

  16. P.E. Batson, N. Dellby, and O.L. Krivanek, Nature 418, 617 (2002).

    Article  Google Scholar 

  17. S. Yamada and T. Sakai, Microscopy 63, 449 (2014).

    Article  Google Scholar 

  18. N. Li, J. Wang, X. Zhang, and A. Misra, J. Miner. Met. Mater. Soc. 63, 62 (2011).

    Google Scholar 

  19. R.K. Ham, Philos. Mag. 6, 1183 (1961).

    Article  Google Scholar 

  20. B. D. Cullity, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, 2001).

  21. T. Ungár, Appl. Phys. Lett. 69, 3173 (1996).

    Article  Google Scholar 

  22. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  23. T. Ungár and A. Borbély, Appl. Phys. Lett. 69, 3173 (1996).

    Article  Google Scholar 

  24. T. Ungár, I. Dragomir, Â. Révész, and A. Borbély, J. Appl. Cryst. 32, 992 (1999).

    Article  Google Scholar 

  25. T. Ungár and G. Tichy, Phys. Stat. Sol. A 171, 425 (1999).

    Article  Google Scholar 

  26. M. R. Movaghar Garabagh, S. Hossein Nedjad, H. Shirazi, M. Iranpour Mobarekeh, and M. Nili Ahmadabadi, Thin Solid Films 516, 8117 (2008).

  27. T. Ungár, Mater. Sci. Eng. A 309–310, 14 (2001).

    Article  Google Scholar 

  28. F.R.N. Nabarro, Proc. R. Soc. Lond. Ser. A 209, 278 (1951).

    Article  MathSciNet  Google Scholar 

  29. J.D. Eshelby, Proc. R. Soc. London, Ser. A 197, 396 (1949).

    Article  Google Scholar 

  30. J.D. Eshelby, Phys. Rev. 90, 248 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Mura, Philos. Mag. 8, 843 (1963).

    Article  Google Scholar 

  32. F. Lund, J. Mater. Res. 3, 280 (1988).

    Article  MATH  Google Scholar 

  33. A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Article  MATH  Google Scholar 

  34. A. Granato and K. Lücke, J. Appl. Phys. 27, 789 (1956).

    Article  Google Scholar 

  35. G.A. Kneezel and A.V. Granato, Phys. Rev. B 25, 2851 (1982).

    Article  Google Scholar 

  36. A. Maurel, J.-F. Mercier, and F. Lund, J. Acoust. Soc. Am. 115, 2773 (2004).

    Article  Google Scholar 

  37. A. Maurel, J.-F. Mercier, and F. Lund, Phys. Rev. B 70, 024303 (2004).

    Article  Google Scholar 

  38. A. Maurel, V. Pagneux, D. Boyer, and F. Lund, Mater. Sci. Eng. A 400–401, 222 (2005).

    Article  Google Scholar 

  39. A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 72, 174110 (2005).

    Article  Google Scholar 

  40. A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 72, 174111 (2005).

    Article  Google Scholar 

  41. A. Maurel, V. Pagneux, D. Boyer, and F. Lund, Proc. R. Soc. Lond. A 462, 2607 (2006).

    Article  MathSciNet  Google Scholar 

  42. A. Maurel, V. Pagneux, F. Barra, and F. Lund, J. Acoust. Soc. Am. 121, 3418 (2007).

    Article  Google Scholar 

  43. A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 75, 224112 (2007).

    Article  Google Scholar 

  44. A. Maurel, V. Pagneux, F. Barra, and F. Lund, Int. J. Bifurc. Chaos 19, 2765 (2009).

    Article  Google Scholar 

  45. N. Rodríguez, A. Maurel, V. Pagneux, F. Barra, and F. Lund, J. Appl. Phys. 106, 054910 (2009).

    Article  Google Scholar 

  46. A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 80, 136102 (2009).

    Article  Google Scholar 

  47. A. Maurel, V. Pagneux, F. Barra, and F. Lund, Ultrasonics 50, 161 (2010).

    Article  MATH  Google Scholar 

  48. H.M. Ledbetter and C. Fortunko, J. Mater. Res. 10, 1352 (1995).

    Article  Google Scholar 

  49. H. Ogi, H.M. Ledbetter, S. Kim, and M. Hirao, J. Acoust. Soc. Am. 106, 660 (1999).

    Article  MATH  Google Scholar 

  50. H. Ogi, N. Nakamura, M. Hirao, and H. Ledbetter, Ultrasonics 42, 183 (2004).

    Article  MATH  Google Scholar 

  51. N. Mujica, M.T. Cerda, R. Espinoza, J. Lisoni, and F. Lund, Acta Mater. 60, 5828 (2012).

    Article  Google Scholar 

  52. A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy (Wiley, New York, 1997).

  53. L. D. Landau and I. M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1970).

  54. R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete (Wiley, New York, 2009).

  55. C. Espinoza, Magister thesis (U. de Chile, 2013).

Download references

Acknowledgements

We are grateful to A. Caro, M. Demkowicz, E. Donoso, D. Espíndola, C. Espinoza, N. Mujica, V. Salinas and A. Sepúlveda for useful discussions. We also acknowledge the support of Fondecyt Grant 1130382 and ANR-Conicyt Grant PROCOMEDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barra, F., Espinoza-González, R., Fernández, H. et al. The Use of Ultrasound to Measure Dislocation Density. JOM 67, 1856–1863 (2015). https://doi.org/10.1007/s11837-015-1458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1458-9

Keywords

Navigation