Skip to main content
Log in

Buckling of multi-walled silicon carbide nanotubes under axial compression via a molecular mechanics model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper is concerned with the axial buckling behavior of multi-walled silicon carbide nanotubes (MWSiCNTs) based upon a molecular mechanics model. To this end, the mechanical properties of silicon carbide sheets are obtained according to the density functional theory within the framework of the generalized gradient approximation. Through establishing a linkage between the quantum mechanics and the molecular mechanics, the force constants of the total potential energy are obtained theoretically. A closed-form expression is proposed from which by knowing the chirality of the MWSiCNT, its critical buckling strain can be calculated as quickly and accurately as possible. The effects of chirality and number of walls on the critical buckling strain of MWSiCNTs are carefully investigated. It is concluded that with increasing the number of walls of nanotubes, their stability decreases. The effects of diameter and number of walls on the critical buckling strain of MWSiCNTs under axial load get more pronounced at lower diameters. Besides, it is found that the minimum critical buckling strain is related to nanotubes with \( (n,\frac{n}{2}) \) chiral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Iijima, Nature 345, 56 (1991)

    Article  ADS  Google Scholar 

  2. A. Fisher, B. Schroter, W. Richter, Appl. Phys. Lett. 66, 3182 (1995)

    Article  ADS  Google Scholar 

  3. K.W. Wong, X.T. Zhou, F.C.K. Au, H.L. Lai, C.S. Yu, Chem. Phys. Lett. 265, 374–378 (1997)

    Article  ADS  Google Scholar 

  4. W. Yang, H. Araki, C. Tang, S. Thaveethavorn, A. Kohyama, H. Suzuki, T. Noda, Adv. Mater. 17, 1519 (2005)

    Article  Google Scholar 

  5. A. Mavrandonakis, G.E. Froudakis, A. Andriotis, M. Menon, Appl. Phys. Lett. 89, 123126 (2006)

    Article  ADS  Google Scholar 

  6. M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A.N. Andriotis, Phys. Rev. B 69, 115322 (2004)

    Article  ADS  Google Scholar 

  7. M. Zhao, Y. Xia, F. Li, R.Q. Zhang, S.T. Lee, Phys. Rev. B 71, 085312 (2005)

    Article  ADS  Google Scholar 

  8. I.J. Wu, G.Y. Guo, Phys. Rev. B 76, 035343 (2007)

    Article  ADS  Google Scholar 

  9. M. Zhao, Y. Xia, R.Q. Zhang, S.T. Lee, J. Chem. Phys. 122, 214707 (2005)

    Article  ADS  Google Scholar 

  10. Y. Wang, X.X. Wang, X.G. Ni, H.A. Wu, Comput. Mater. Sci. 32, 141–146 (2005)

    Article  Google Scholar 

  11. B. Ni, S.B. Sinnott, P.T. Mikulski, J.A. Harrison, Phys. Rev. Lett. 88, 2055021 (2005)

    Google Scholar 

  12. L.C. Zhang, H.S. Shen, Carbon 44, 2608–2616 (2006)

    Article  Google Scholar 

  13. R. Ansari, M. Hemmatnezhad, H. Ramezannezhad, Numer. Methods Partial Differ. Equ. 26, 490–500 (2009)

    MathSciNet  Google Scholar 

  14. R. Ansari, R. Rajabiehfard, B. Arash, Comput. Mater. Sci. 49, 831–838 (2010)

    Article  Google Scholar 

  15. R. Ansari, H. Rouhi, S. Sahmani, Int. J. Mech. Sci. 53, 786–792 (2011)

    Article  Google Scholar 

  16. R. Ansari, S. Sahmani, H. Rouhi, Phys. Lett. A 375, 1255–1263 (2011)

    Article  ADS  Google Scholar 

  17. R. Ansari, S. Sahmani, B. Arash, Phys. Lett. A 375, 53–62 (2010)

    Article  ADS  Google Scholar 

  18. M. Rossi, M. Meo, Compos. Sci. Technol. 69, 1394–1398 (2009)

    Article  Google Scholar 

  19. L. Shen, J. Li, Phys. Rev. B 69(04), 5414 (2004)

    Article  ADS  Google Scholar 

  20. J.R. Xiao, B.A. Gama, J.W. Gillespie, Int. J. Solids Struct. 42, 3075–3092 (2005)

    Article  MATH  Google Scholar 

  21. T. Chang, H. Gao, J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  ADS  MATH  Google Scholar 

  22. T. Chang, G. Li, X. Guo, Carbon 43, 287–294 (2005)

    Article  Google Scholar 

  23. S.C. Fang, W.J. Chang, Y.H. Wang, Phys. Lett. A 371, 499–503 (2007)

    Article  ADS  Google Scholar 

  24. T. Chang, W. Guo, X. Guo, Phys. Rev. B 72, 064101 (2005)

    Article  ADS  Google Scholar 

  25. Y. Miyamoto, B.D. Yu, Appl. Phys. Lett. 80, 586–588 (2002)

    Article  ADS  Google Scholar 

  26. W.H. Moon, J.K. Ham, H.J. Hwang, Nanotechnology 3, 158–161 (2003)

    Google Scholar 

  27. B. Baumeier, P. Krüger, J. Pollmann, Phys. Rev. B 76, 085407.1–085407.8 (2007)

    ADS  Google Scholar 

  28. Y. Zhang, H. Huang, Comput. Mater. Sci. 43, 664 (2008)

    Article  Google Scholar 

  29. A. Mavrandonakis, G.E. Froudakis, M. Schnell, M. Muhlhauser, Nano Lett. 3, 1481 (2004)

    Article  ADS  Google Scholar 

  30. A.R. Setoodeh, M. Jahanshahi, H. Attariani, Comput. Mater. Sci. 47, 388–397 (2009)

    Article  Google Scholar 

  31. A.R. Setoodeh, M. Jahanshahi, H. Attariani. The international conference on MEMS and nanotechnology, ICMN’08 13–15 May 2008, Kuala Lumpur, Malaysia

  32. H.S. Shen, Int. J. Solids Struct. 41, 2643–2657 (2004)

    Article  MATH  Google Scholar 

  33. N.L. Allinger, J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Article  Google Scholar 

  34. U. Burkert, N.L. Allinger, Molecular Mechanics, ACS Monograph 177 (American Chemical Society, Washington, 1982)

    Google Scholar 

  35. A.R. Leach, Molecular Modeling Principles and Applications (Addison Wesley Longman Limited, London, 1996), pp. 131–210

    Google Scholar 

  36. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989)

    Google Scholar 

  37. L. Hedin, Phys. Rev. A 139, 796 (1965)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  39. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533–16539 (1996)

    Article  ADS  Google Scholar 

  40. S. Baroni, D.A. Corso, S. Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, http://www.pwscf.org/

  41. M. Topsakal, S. Cahangirov, S. Ciraci, Appl. Phys. Lett. 96, 091912 (2010)

    Article  ADS  Google Scholar 

  42. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Arroyo, T. Belytschko, Phys. Rev. B 69, 115415 (2004)

    Article  ADS  Google Scholar 

  44. Q. Lu, M. Arroyo, R. Huang, J. Phys. D Appl. Phys. 42, 102002 (2009)

    Article  ADS  Google Scholar 

  45. C.Q. Ru, J. Mech. Phys. Solids 49, 1265 (2001)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Mirnezhad, M. & Rouhi, H. Buckling of multi-walled silicon carbide nanotubes under axial compression via a molecular mechanics model. Appl. Phys. A 118, 845–854 (2015). https://doi.org/10.1007/s00339-014-8945-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8945-7

Keywords

Navigation