The 2023 MDPI Annual Report has
been released!
 
Article
Identification of Causal Relationships between Gut Microbiota and Influenza A Virus Infection in Chinese by Mendelian Randomization
by Qijun Liao, Fuxiang Wang, Wudi Zhou, Guancheng Liao, Haoyang Zhang, Yuelong Shu and Yongkun Chen
Microorganisms 2024, 12(6), 1170; https://doi.org/10.3390/microorganisms12061170 (registering DOI) - 8 Jun 2024
Abstract
Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection [...] Read more.
Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09 infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding therapeutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV infections, which could improve strategy for preventing and treating IAV infection worldwide. Full article
Article
Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems
by Changcheng Li, Haoran Li, Hao Yue, Jinfeng Lv and Jian Zhang
Sustainability 2024, 16(12), 4939; https://doi.org/10.3390/su16124939 (registering DOI) - 8 Jun 2024
Abstract
Hydrogen energy is now a crucial technological option for decarbonizing energy systems. Comprehensive utilization is a typical mode of hydrogen energy deployment, leveraging its excellent conversion capabilities. Hydrogen is often used in combination with electrical and thermal energy. However, current hydrogen utilization modes [...] Read more.
Hydrogen energy is now a crucial technological option for decarbonizing energy systems. Comprehensive utilization is a typical mode of hydrogen energy deployment, leveraging its excellent conversion capabilities. Hydrogen is often used in combination with electrical and thermal energy. However, current hydrogen utilization modes are relatively singular, resulting in low energy utilization efficiency and high wind curtailment rates. To improve energy utilization efficiency and promote the development of hydrogen energy, we discuss three utilization modes of hydrogen energy, including hydrogen storage, integration into a fuel cell and gas turbine hybrid power generation system, and hydrogen methanation. We propose a hydrogen energy system with multimodal utilization and integrate it into an electrolytic hydrogen–thermal integrated energy system (EHT-IES). A mixed-integer linear programming (MILP) optimization scheduling model for the EHT-IES is developed and solved using the Cplex solver to improve the operational feasibility of the EHT-IES, focusing on minimizing economic costs and reducing wind curtailment rates. Case studies in northwest China verify the effectiveness of the proposed model. By comparing various utilization modes, energy storage methods, and scenarios, this study demonstrated that integrating a hydrogen energy system with multimodal utilization into the EHT-IES offers significant technical benefits. It enhances energy utilization efficiency and promotes the absorption of wind energy, thereby increasing the flexibility of the EHT-IES. Full article
5 pages, 206 KiB  
Editorial
Digital Twins in Industry 4.0
by Sangchan Park, Sira Maliphol, Jiyoung Woo and Liu Fan
Electronics 2024, 13(12), 2258; https://doi.org/10.3390/electronics13122258 (registering DOI) - 8 Jun 2024
Abstract
Since Grieves [...] Full article
(This article belongs to the Special Issue Digital Twins in Industry 4.0)
18 pages, 4334 KiB  
Article
Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques
by Timothy Gordon Walmsley, Benjamin James Lincoln, Roger Padullés and Donald John Cleland
Energies 2024, 17(12), 2838; https://doi.org/10.3390/en17122838 (registering DOI) - 8 Jun 2024
Abstract
The process integration and electrification concept has significant potential to support the industrial transition to low- and net-zero-carbon process heating. This increasingly essential concept requires an expanded set of process analysis tools to fully comprehend the interplay of heat recovery and process electrification [...] Read more.
The process integration and electrification concept has significant potential to support the industrial transition to low- and net-zero-carbon process heating. This increasingly essential concept requires an expanded set of process analysis tools to fully comprehend the interplay of heat recovery and process electrification (e.g., heat pumping). In this paper, new Exergy Pinch Analysis tools and methods are proposed that can set lower bound work targets by acutely balancing process heat recovery and heat pumping. As part of the analysis, net energy and exergy load curves enable visualization of energy and exergy surpluses and deficits. As extensions to the grand composite curve in conventional Pinch Analysis, these curves enable examination of different pocket-cutting strategies, revealing their distinct impacts on heat, exergy, and work targets. Demonstrated via case studies on a spray dryer and an evaporator, the exergy analysis targets net shaft-work correctly. In the evaporator case study, the analysis points to the heat recovery pockets playing an essential role in reducing the work target by 25.7%. The findings offer substantial potential for improved industrial energy management, providing a robust framework for engineers to enhance industrial process and energy sustainability. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

18 pages, 2634 KiB  
Article
Toward a Comprehensive Evaluation of Student Knowledge Assessment for Art Education: A Hybrid Approach by Data Mining and Machine Learning
by Shan Wang, Hongtao Wang, Yijun Lu and Jiandong Huang
Appl. Sci. 2024, 14(12), 5020; https://doi.org/10.3390/app14125020 (registering DOI) - 8 Jun 2024
Abstract
By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increases [...] Read more.
By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increases the burden on educators. Therefore, this study aims to use a machine learning model to build a model to evaluate students’ learning levels for art education. To improve the prediction accuracy of the model, SVM was adopted as the basic model in this study, and was combined with SSA, ISSA, and KPCA-ISSA algorithms in turn to form a composite model. Through the experimental analysis of prediction accuracy, we found that the prediction accuracy of the KPCA-ISSA-SVMM model reached the highest, at 96.7213%, while that of the SVM model was only 91.8033%. Moreover, by putting the prediction results of the four models into the confusion matrix, it can be found that with an increase in the complexity of the composite model, the probability of classification errors in model prediction gradually decreases. It can be seen from the importance experiment that the students’ achievements in target subjects (PEG) have the greatest influence on the model prediction effect, and the importance score is 9.5958. Therefore, we should pay more attention to this characteristic value when evaluating students’ learning levels. Full article
(This article belongs to the Special Issue ICT in Education, 2nd Edition)
Show Figures

Figure 1

14 pages, 670 KiB  
Review
Effect of the COVID-19 Pandemic on Respiratory Diseases and Their Economic Impacts
by Ananya Sivaraman Jayaraman, Ishita Darekar, Nidhi Vijayprakash Dadhich, Lakshmi Sai Manasvi Tadepalli, Yao Gongwang, Sunil Singh and Edem Gavor
Pathogens 2024, 13(6), 491; https://doi.org/10.3390/pathogens13060491 (registering DOI) - 8 Jun 2024
Abstract
COVID-19 is an airborne respiratory disease that mainly affects the lungs. To date, COVID-19 has infected 580 million people with a mortality of approximately 7 million people worldwide. The emergence of COVID-19 has also affected the infectivity, diagnosis, and disease outcomes of existing [...] Read more.
COVID-19 is an airborne respiratory disease that mainly affects the lungs. To date, COVID-19 has infected 580 million people with a mortality of approximately 7 million people worldwide. The emergence of COVID-19 has also affected the infectivity, diagnosis, and disease outcomes of existing diseases such as influenza, TB, and asthma in human populations. These are airborne respiratory diseases with symptoms and mode of transmission similar to those of COVID-19. It was speculated that the protracted nature of the COVID-19 pandemic coupled with vaccination could impact other respiratory diseases and mortality. In this study, we analyzed the impact of COVID-19 on flu, tuberculosis (TB), and asthma. Our analyses suggest that COVID-19 has a potential impact on the mortality of flu, TB, and asthma. These impacts vary across before the COVID-19 era, during the peak period of the pandemic, and after vaccinations/preventive measures were implemented, as well as across different regions of the world. Overall, the spread of flu generally reduced during the pandemic, resulting in a reduced expenditure on flu-related hospitalizations, although there were sporadic spikes at setting times. In contrast, TB deaths generally increased perhaps due to the disruption in access to TB services and reduction in resources. Asthma deaths, on the other hand, only marginally varied. Collectively, the emergence of COVID-19 added extra cost to the overall expenditure on some respiratory infectious diseases, while the cost for other infectious diseases was either reduced or somewhat unaffected. Full article
(This article belongs to the Special Issue Reviews of Infectious Diseases)
15 pages, 3785 KiB  
Article
Purification and Structural Analyses of Sulfated Polysaccharides from Low-Value Sea Cucumber Stichopus naso and Anticoagulant Activities of Its Oligosaccharides
by Lige Cui, Huifang Sun, Xiaolei Shang, Jing Wen, Pengfei Li, Shengtao Yang, Linxia Chen, Xiangyang Huang, Haoyang Li, Ronghua Yin and Jinhua Zhao
Mar. Drugs 2024, 22(6), 265; https://doi.org/10.3390/md22060265 (registering DOI) - 8 Jun 2024
Abstract
Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea [...] Read more.
Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing β-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-β(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight. Full article
(This article belongs to the Special Issue Polysaccharides from Marine Environment)
Show Figures

Figure 1

11 pages, 1074 KiB  
Article
Infrared Spectroscopy of Neutral and Cationic Benzonitrile–Methanol Binary Clusters in Supersonic Jets
by Xianming Xiong and Yongjun Hu
Molecules 2024, 29(12), 2744; https://doi.org/10.3390/molecules29122744 (registering DOI) - 8 Jun 2024
Abstract
The formation of nitrogen-containing organic interstellar molecules is of great importance to reveal chemical processes and the origin of life on Earth. Benzonitrile (BN) is one of the simplest nitrogen-containing aromatic molecules in the interstellar medium (ISM) that has been detected in recent [...] Read more.
The formation of nitrogen-containing organic interstellar molecules is of great importance to reveal chemical processes and the origin of life on Earth. Benzonitrile (BN) is one of the simplest nitrogen-containing aromatic molecules in the interstellar medium (ISM) that has been detected in recent years. Methanol (CH3OH) exists widely in interstellar space with high reactivity. Herein, we measured the infrared (IR) spectra of neutral and cationic BN–CH3OH clusters by vacuum ultraviolet (VUV) photoionization combined with time-of-flight mass spectrometry. Combining IR spectra with the density functional theory calculations, we reveal that the BN–CH3OH intends to form a cyclic H-bonded structure in neutral clusters. However, after the ionization of BN–CH3OH clusters, proton-shared N···H···O and N···H···C structures are confirmed to form between BN and CH3OH, with the minor coexistence of H-bond and O-π structures. The formation of the proton-shared structure expands our knowledge of the evolution of the life-related nitrogen-containing molecules in the universe and provides a possible pathway to the further study of biorelevant aromatic organic macromolecules. Full article
(This article belongs to the Section Physical Chemistry)
15 pages, 2121 KiB  
Article
Detection of Salmonella Reservoirs in Birds of Prey Hosted in an Italian Wildlife Centre: Molecular and Antimicrobial Resistance Characterisation
by Carlo Corradini, Andrea Francesco De Bene, Valeria Russini, Virginia Carfora, Patricia Alba, Gessica Cordaro, Matteo Senese, Giuliana Terracciano, Ilaria Fabbri, Alessandro Di Sirio, Fabiola Di Giamberardino, Pierpaolo Boria, Maria Laura De Marchis and Teresa Bossù
Microorganisms 2024, 12(6), 1169; https://doi.org/10.3390/microorganisms12061169 (registering DOI) - 8 Jun 2024
Abstract
In the European Union, salmonellosis is one of the most important zoonoses reported. Poultry meat and egg products are the most common food matrices associated with Salmonella presence. Moreover, wild and domestic animals could represent an important reservoir that could favour the direct [...] Read more.
In the European Union, salmonellosis is one of the most important zoonoses reported. Poultry meat and egg products are the most common food matrices associated with Salmonella presence. Moreover, wild and domestic animals could represent an important reservoir that could favour the direct and indirect transmission of pathogens to humans. Salmonella spp. can infect carnivorous or omnivorous wild birds that regularly ingest food and water exposed to faecal contamination. Birds kept in captivity can act as reservoirs of Salmonella spp. following ingestion of infected prey or feed. In this paper, we describe the isolation of different Salmonella serovars in several species of raptors hosted in aviaries in an Italian wildlife centre and in the raw chicken necks used as their feed but intended for human consumption. Characterisations of strains were carried out by integrating classical methods and whole genome sequencing analysis. The strains of S. bredeney isolated in poultry meat and birds belonged to the same cluster, with some of them being multidrug-resistant (MDR) and carrying the Col(pHAD28) plasmid-borne qnrB19 (fluoro)quinolone resistance gene, thus confirming the source of infection. Differently, the S. infantis found in feed and raptors were all MDR, carried a plasmid of emerging S. infantis (pESI)-like plasmid and belonged to different clusters, possibly suggesting a long-lasting infection or the presence of additional undetected sources. Due to the high risk of fuelling a reservoir of human pathogens, the control and treatment of feed for captive species are crucial. Full article
(This article belongs to the Special Issue Domestic Animals and Wildlife Zoonotic Microorganisms)
Show Figures

Figure 1

21 pages, 6251 KiB  
Article
Preparation and Evaluation of Inhalable Microparticles with Improved Aerodynamic Performance and Dispersibility Using L-Leucine and Hot-Melt Extrusion
by Jin-Hyuk Jeong, Ji-Su Kim, Yu-Rim Choi, Dae Hwan Shin, Ji-Hyun Kang, Dong-Wook Kim, Yun-Sang Park and Chun-Woong Park
Pharmaceutics 2024, 16(6), 784; https://doi.org/10.3390/pharmaceutics16060784 (registering DOI) - 8 Jun 2024
Abstract
Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility [...] Read more.
Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility while simultaneously maintaining the high aerodynamic performance of inhalable microparticles. This study explored using LEU in HME to improve dispersibility and maintain the high aerodynamic performance of inhalable microparticles. Formulations with crystalline itraconazole (ITZ) and LEU were made via co-jet milling and HME followed by jet milling. The LEU ratio varied, comparing solubility, homogenization, and aerodynamic performance enhancements. In HME, ITZ solubility increased, and crystallinity decreased. Higher LEU ratios in HME formulations reduced the contact angle, enhancing mass median aerodynamic diameter (MMAD) size and aerodynamic performance synergistically. Achieving a maximum extra fine particle fraction of 33.68 ± 1.31% enabled stable deep lung delivery. This study shows that HME combined with LEU effectively produces inhalable particles, which is promising for improved drug dispersion and delivery. Full article
Show Figures

Figure 1

10 pages, 1016 KiB  
Article
Anti-COVID-19 Vaccination Alters the Menstrual Cycle and Dose Accumulation Enhances the Effect
by Hospital Español de Pachuca Research Group, Roque D. Licona-Meníndez and Alberto N. Peón
Medicina 2024, 60(6), 956; https://doi.org/10.3390/medicina60060956 (registering DOI) - 8 Jun 2024
Abstract
Background and Objectives: New investigations have detected an enhanced probability for women to develop menstrual cycle alterations after anti-COVID-19 vaccination. Moreover, given that the protective immunity provided by anti-COVID-19 vaccination appears to wane quickly, booster vaccination has been recommended. Nonetheless, whether adverse [...] Read more.
Background and Objectives: New investigations have detected an enhanced probability for women to develop menstrual cycle alterations after anti-COVID-19 vaccination. Moreover, given that the protective immunity provided by anti-COVID-19 vaccination appears to wane quickly, booster vaccination has been recommended. Nonetheless, whether adverse events arise from such repeated immunization has not been studied. Materials and Methods: We studied the incidence of menstrual cycle alterations, the quantity of menstrual cycle alterations per subject, and of altered menstrual cycles in nonpregnant women of fertile age after anti-COVID-19 vaccination in a cohort of vaccinated female subjects by the means of a standardized questionary that was applied via telephone calls each month. Subjects that received up to four doses were studied for 6 months after each dose. We calculated the odds ratio for enhanced incidence, as well as quadratic functions for the tendencies. A sensitivity analysis excluding subjects taking hormonal birth control and those with polycystic ovary syndrome was performed. Results: Anti-COVID-19 vaccination enhanced the probability to develop menstrual cycle alterations (OR 1.52, CI at 95% 1.2–1.8, p < 0.0001) and, interestingly, such a tendency was enhanced when subjects received more doses (R2 = 0.91). Furthermore, the same trends repeated for the quantity of alterations per subject, and of altered cycles. Such an effect was further demonstrated to be independent upon the vaccine brand being applied, the birth control status, and the diagnosis of polycystic ovary syndrome. Conclusions: Vaccination is the most cost-effective measure for primary prevention and is considered to be safe. Nonetheless, in this article, we show data that suggest that repeated vaccination of adult female subjects may lead to an enhanced incidence of menstrual cycle–related adverse events, quantity of alterations per subject, and altered cycles. We therefore think that the development of new vaccine formulations that produce longer-lasting immunity is of paramount importance to reduce the potential for dose accumulation–dependent enhanced risk. Full article
(This article belongs to the Special Issue Public Health in the Post-pandemic Era)
Show Figures

Figure 1

23 pages, 1405 KiB  
Article
Multi-Endpoint Toxicological Assessment of Chrysin Loaded Oil-in-Water Emulsion System in Different Biological Models
by Pornsiri Pitchakarn, Pisamai Ting, Pensiri Buacheen, Jirarat Karinchai, Woorawee Inthachat, Boonrat Chantong, Uthaiwan Suttisansanee, Onanong Nuchuchua and Piya Temviriyanukul
Nanomaterials 2024, 14(12), 1001; https://doi.org/10.3390/nano14121001 (registering DOI) - 8 Jun 2024
Abstract
Chrysin is hypothesized to possess the ability to prevent different illnesses, such as diabetes, cancer, and neurodegenerative disorders. Nonetheless, chrysin has a low solubility under physiological conditions, resulting in limited bioavailability. In a previous study, we utilized an oil-in-water emulsion system (chrysin-ES or [...] Read more.
Chrysin is hypothesized to possess the ability to prevent different illnesses, such as diabetes, cancer, and neurodegenerative disorders. Nonetheless, chrysin has a low solubility under physiological conditions, resulting in limited bioavailability. In a previous study, we utilized an oil-in-water emulsion system (chrysin-ES or chrysin-NE) to encapsulate chrysin, thereby increasing its bioaccessibility and preserving its antioxidant and anti-Alzheimer’s properties. To promote the chrysin-ES as a supplementary and functional food, it was obligatory to carry out a safety assessment. Cytotoxicity testing showed that chrysin-ES was harmless, with no killing effect on 3T3-L1 (adipocytes), RAW 264.7 (macrophages), HEK293 (kidney cells), and LX-2 (hepatic stellate cells). The acute toxicity evaluation demonstrated that the 50% lethal dose (LD50) for chrysin-ES was greater than 2000 mg/kg BW. Genotoxicity assessments found that chrysin-ES did not induce DNA mutations in vitro or in vivo. Furthermore, chrysin and chrysin-ES exhibited anti-mutagenic properties against PhIP-induced and IQ-induced mutagenesis in the Ames test, while they inhibited urethane-, ethyl methanesulfonate-, mitomycin C-, and N-nitrosomethylurea-mediated mutations in Drosophila. The present study illustrates the safety and anti-genotoxicity properties of chrysin-ES, allowing for the further development of chrysin-based food supplements and nutraceuticals. Full article
(This article belongs to the Special Issue Advances in Toxicity of Nanoparticles in Organisms (2nd Edition))
Show Figures

Figure 1

15 pages, 1841 KiB  
Article
The Benefits and Challenges of Providing School Meals during the First Year of California’s Universal School Meal Policy as Reported by School Foodservice Professionals
by Monica D. Zuercher, Dania Orta-Aleman, Juliana F. W. Cohen, Christina A. Hecht, Kenneth Hecht, Michele Polacsek, Anisha I. Patel, Lorrene D. Ritchie and Wendi Gosliner
Nutrients 2024, 16(12), 1812; https://doi.org/10.3390/nu16121812 (registering DOI) - 8 Jun 2024
Abstract
States in the U.S. are newly implementing universal school meal (USM) policies, yet little is known about the facilitators of their success and the challenges they confront. This study evaluated the challenges and facilitators faced by school food authorities (SFAs) implementing California’s universal [...] Read more.
States in the U.S. are newly implementing universal school meal (USM) policies, yet little is known about the facilitators of their success and the challenges they confront. This study evaluated the challenges and facilitators faced by school food authorities (SFAs) implementing California’s universal school meal (USM) policy during its inaugural year (2022–2023) using an online survey. In March 2023, 430 SFAs reported many benefits, including increased meal participation (64.2% of SFAs) and revenues (65.7%), reduced meal debt (41.8%) and stigma (30.9%), and improved meal quality (44.3%) and staff salaries (36.9%). Reported challenges include product/ingredient availability (80.9%), staffing shortages (77.0%), vendor/distributor logistics issues (75.9%), and administrative burden (74.9%). Top facilitators included state funding (78.2%) and increased federal reimbursement (77.2%). SFAs with fewer students eligible for free or reduced-price meals (as opposed to SFAs with more) reported greater increases in meal participation and reductions in stigma but also more administrative burdens. Larger SFAs reported greater increases in revenues, staff salaries, and improvements in meal quality than smaller SFAs but also more challenges. Overall, California’s USM policy has enhanced student access to healthy meals while mitigating social and financial barriers. Understanding California’s experience can inform other jurisdictions considering or implementing similar policies. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

14 pages, 2009 KiB  
Article
Being Stung Once or Twice by Bees (Apis mellifera L.) Slightly Disturbed the Serum Metabolome of SD Rats to a Similar Extent
by Xinyu Wang, Xing Zheng, Xue Wang, Quanzhi Ji, Wenjun Peng, Zhenxing Liu and Yazhou Zhao
Int. J. Mol. Sci. 2024, 25(12), 6365; https://doi.org/10.3390/ijms25126365 (registering DOI) - 8 Jun 2024
Abstract
In most cases, the number of honeybee stings received by the body is generally small, but honeybee stings can still cause serious allergic reactions. This study fully simulated bee stings under natural conditions and used 1H Nuclear Magnetic Resonance (1H [...] Read more.
In most cases, the number of honeybee stings received by the body is generally small, but honeybee stings can still cause serious allergic reactions. This study fully simulated bee stings under natural conditions and used 1H Nuclear Magnetic Resonance (1H NMR) to analyze the changes in the serum metabolome of Sprague–Dawley (SD) rats stung once or twice by honeybees to verify the impact of this mild sting on the body and its underlying mechanism. The differentially abundant metabolites between the blank control rats and the rats stung by honeybees included four amino acids (aspartate, glutamate, glutamine, and valine) and four organic acids (ascorbic acid, lactate, malate, and pyruvate). There was no separation between the sting groups, indicating that the impact of stinging once or twice on the serum metabolome was similar. Using the Principal Component Discriminant Analysis ( PCA-DA) and Variable Importance in Projection (VIP) methods, glucose, lactate, and pyruvate were identified to help distinguish between sting groups and non-sting groups. Metabolic pathway analysis revealed that four metabolic pathways, namely, the tricarboxylic acid cycle, pyruvate metabolism, glutamate metabolism, and alanine, aspartate, and glutamate metabolism, were significantly affected by bee stings. The above results can provide a theoretical basis for future epidemiological studies of bee stings and medical treatment of patients stung by honeybees. Full article
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Manufacturing of 3D-Printed Hybrid Scaffolds with Polyelectrolyte Multilayer Coating in Static and Dynamic Culture Conditions
by Yanny Marliana Baba Ismail, Yvonne Reinwald, Ana Marina Ferreira, Oana Bretcanu, Kenneth Dalgarno and Alicia J. El Haj
Materials 2024, 17(12), 2811; https://doi.org/10.3390/ma17122811 (registering DOI) - 8 Jun 2024
Abstract
Three-dimensional printing (3DP) has emerged as a promising method for creating intricate scaffold designs. This study assessed three 3DP scaffold designs fabricated using biodegradable poly(lactic) acid (PLA) through fused deposition modelling (FDM): mesh, two channels (2C), and four channels (4C). To address the [...] Read more.
Three-dimensional printing (3DP) has emerged as a promising method for creating intricate scaffold designs. This study assessed three 3DP scaffold designs fabricated using biodegradable poly(lactic) acid (PLA) through fused deposition modelling (FDM): mesh, two channels (2C), and four channels (4C). To address the limitations of PLA, such as hydrophobic properties and poor cell attachment, a post-fabrication modification technique employing Polyelectrolyte Multilayers (PEMs) coating was implemented. The scaffolds underwent aminolysis followed by coating with SiCHA nanopowders dispersed in hyaluronic acid and collagen type I, and finally crosslinked the outermost coated layers with EDC/NHS solution to complete the hybrid scaffold production. The study employed rotating wall vessels (RWVs) to investigate how simulating microgravity affects cell proliferation and differentiation. Human mesenchymal stem cells (hMSCs) cultured on these scaffolds using proliferation medium (PM) and osteogenic media (OM), subjected to static (TCP) and dynamic (RWVs) conditions for 21 days, revealed superior performance of 4C hybrid scaffolds, particularly in OM. Compared to commercial hydroxyapatite scaffolds, these hybrid scaffolds demonstrated enhanced cell activity and survival. The pre-vascularisation concept on 4C hybrid scaffolds showed the proliferation of both HUVECs and hMSCs throughout the scaffolds, with a positive expression of osteogenic and angiogenic markers at the early stages. Full article
Show Figures

Figure 1

3 pages, 158 KiB  
Editorial
Radiation Damage in Biomolecules and Cells 3.0
by Mario P. Carante, Ricardo L. Ramos and Francesca Ballarini
Int. J. Mol. Sci. 2024, 25(12), 6368; https://doi.org/10.3390/ijms25126368 (registering DOI) - 8 Jun 2024
Abstract
Ionizing radiation is widely used in medicine, not only as a diagnostic tool but also as a therapeutic agent, since about half of cancer patients are treated with ionizing radiation, while most of them are irradiated with X-rays [...] Full article
(This article belongs to the Special Issue Radiation Damage in Biomolecules and Cells 3.0)
13 pages, 5975 KiB  
Article
Linear Contact Load Law of an Elastic–Perfectly Plastic Half-Space vs. Sphere under Low Velocity Impact
by Hao Yuan, Xiaochun Yin, Hui Wang, Yuanyuan Guo, Changliang Wang, Hao Zhou, Cheng Gao, Huaiping Ding and Xiaokai Deng
Appl. Sci. 2024, 14(12), 5018; https://doi.org/10.3390/app14125018 (registering DOI) - 8 Jun 2024
Abstract
The impact of contact between two elastic–plastic bodies is highly complex, with no established theoretical contact model currently available. This study investigates the problem of an elastic–plastic sphere impacting an elastic–plastic half-space at low speed and low energy using the finite element method [...] Read more.
The impact of contact between two elastic–plastic bodies is highly complex, with no established theoretical contact model currently available. This study investigates the problem of an elastic–plastic sphere impacting an elastic–plastic half-space at low speed and low energy using the finite element method (FEM). Existing linear contact loading laws exhibit significant discrepancies as they fail to consider the impact of elasticity and yield strength on the elastic–plastic sphere. To address this limitation, a novel linear contact loading law is proposed in this research, which utilizes the concept of equivalent contact stiffness rather than the conventional linear contact stiffness. The theoretical expressions of this new linear contact loading law are derived through FEM simulations of 150 sphere and half-space impact cases. The segmental linear characteristics of the equivalent contact stiffness are identified and fitted to establish the segmental expressions of the equivalent contact stiffness. The new linear contact loading law is dependent on various factors, including the yield strain of the half-space, the ratio of elastic moduli between the half-space and sphere, and the ratio of yield strengths between the half-space and sphere. The accuracy of the proposed linear contact loading law is validated through extensive Finite Element Method simulations, which involve an elastic–plastic half-space being struck by elastic–plastic spheres with varying impact energies, sizes, and material combinations. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 8533 KiB  
Article
Morphological and Molecular Identification of Phytophthora capsici Isolates with Differential Pathogenicity in Sechium edule
by Anell Soto-Contreras, María G. Caamal-Chan, Marco A. Ramírez-Mosqueda, Joaquín Murguía-González and Rosalía Núñez-Pastrana
Plants 2024, 13(12), 1602; https://doi.org/10.3390/plants13121602 (registering DOI) - 8 Jun 2024
Abstract
Chayote (Sechium edule) is a crop of great economic and pharmaceutical importance in Mexico. Chayote is affected by Phytophthora capsici, which causes plant wilt and fruit rot. Three isolates of P. capsici (A1-C, A2-H, and A3-O) were obtained from three [...] Read more.
Chayote (Sechium edule) is a crop of great economic and pharmaceutical importance in Mexico. Chayote is affected by Phytophthora capsici, which causes plant wilt and fruit rot. Three isolates of P. capsici (A1-C, A2-H, and A3-O) were obtained from three producing areas in Veracruz, Mexico. Morphometric characteristics of sporangia and the colony pattern on three different media were described. They were molecularly identified by amplification of the internal transcribed spacer region (ITS) and the partial sequence of cytochrome c oxidase subunit 1 (COI), sequences that were phylogenetically analyzed. The mating type, pathogenicity in S. edule fruits, and sensitivity to metalaxyl were determined. Isolate A1-C presented the largest sporangium; all sporangia were papillated, with different morphologies and pedicel lengths. All isolates showed different colony patterns: chrysanthemum (A1-C), stellate (A2-H), and petaloid (A3-O). The topology of the phylogenetic tree was similar for the ITS region and COI gene, the sequences of the three isolates clustered with sequences of the genus Phytophthora classified in group 2b, corroborating their identity as P. capsici. The mating type of isolates A1-C and A3-O was A2 and of isolate A2-H was A1. The pathogenicity test indicated that isolate A1-C was the most virulent and with intermediate sensitivity to metalaxyl. This work suggests that P. capsici isolates from various production areas in Mexico may exhibit morphological and virulence variability. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
23 pages, 10377 KiB  
Article
Enhancing Icephobic Coatings: Exploring the Potential of Dopamine-Modified Epoxy Resin Inspired by Mussel Catechol Groups
by Mohammad Sadegh Koochaki, Gelareh Momen, Serge Lavoie and Reza Jafari
Biomimetics 2024, 9(6), 349; https://doi.org/10.3390/biomimetics9060349 (registering DOI) - 8 Jun 2024
Abstract
A nature-inspired approach was employed through the development of dopamine-modified epoxy coating for anti-icing applications. The strong affinity of dopamine’s catechol groups for hydrogen bonding with water molecules at the ice/coating interface was utilized to induce an aqueous quasi-liquid layer (QLL) on the [...] Read more.
A nature-inspired approach was employed through the development of dopamine-modified epoxy coating for anti-icing applications. The strong affinity of dopamine’s catechol groups for hydrogen bonding with water molecules at the ice/coating interface was utilized to induce an aqueous quasi-liquid layer (QLL) on the surface of the icephobic coatings, thereby reducing their ice adhesion strength. Epoxy resin modification was studied by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance spectroscopy (NMR). The surface and mechanical properties of the prepared coatings were studied by different characterization techniques. Low-temperature ATR-FTIR was employed to study the presence of QLL on the coating’s surface. Moreover, the freezing delay time and temperature of water droplets on the coatings were evaluated along with push-off and centrifuge ice adhesion strength to evaluate their icephobic properties. The surface of dopamine-modified epoxy coating presented enhanced hydrophilicity and QLL formation, addressed as the main reason for its remarkable icephobicity. The results demonstrated the potential of dopamine-modified epoxy resin as an effective binder for icephobic coatings, offering notable ice nucleation delay time (1316 s) and temperature (−19.7 °C), reduced ice adhesion strength (less than 40 kPa), and an ice adhesion reduction factor of 7.2 compared to the unmodified coating. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration 2023)
Show Figures

Graphical abstract

22 pages, 2908 KiB  
Review
Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy
by Prashant Kumar Tiwari, Poojhaa Shanmugam, Vamika Karn, Saurabh Gupta, Richa Mishra, Sarvesh Rustagi, Mandeep Chouhan, Devvret Verma, Niraj Kumar Jha and Sanjay Kumar
Cancers 2024, 16(12), 2179; https://doi.org/10.3390/cancers16122179 (registering DOI) - 8 Jun 2024
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have [...] Read more.
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer. Full article
(This article belongs to the Special Issue Oncogenesis of Pancreatic Cancer: Where Are We)
Show Figures

Figure 1

19 pages, 9941 KiB  
Article
Framework to Develop Electric School Bus Vehicle-to-Grid (ESB V2G) Systems Supplied with Solar Energy in the United States
by Francisco Haces-Fernandez
Energies 2024, 17(12), 2834; https://doi.org/10.3390/en17122834 (registering DOI) - 8 Jun 2024
Abstract
Federal and state governments in the United States (US) are promoting the transition from traditional Diesel School Buses to Electric School Buses (ESBs). This would prevent the emission of deleterious air pollutants that affect students and communities while simultaneously contributing to a reduction [...] Read more.
Federal and state governments in the United States (US) are promoting the transition from traditional Diesel School Buses to Electric School Buses (ESBs). This would prevent the emission of deleterious air pollutants that affect students and communities while simultaneously contributing to a reduction in greenhouse gases, aiding in the fight against climate change. However, due to their significant size and long routes, ESBs require large batteries with significant electricity demand. If this additional electricity demand is supplied to hundreds of thousands of EBSs at peak consumption times, the strain on the grid may be detrimental, while transportation costs for schools could dramatically increase. Furthermore, if EBSs are charged using traditional hydrocarbon generation, the environmental benefits of these projects may be significantly reduced. Therefore, applying renewable energy presents a host of synergistic opportunities to reduce emissions while providing inexpensive electricity to schools. Solar energy is abundant in large portions of the US, potentially providing many schools with ample inexpensive and sustainable electricity to power their transportation equipment and meet other requirements at their facilities. This research developed a novel framework to integrate publicly available big data provided by federal and state agencies in the US, as well as National Laboratories, to provide stakeholders with actionable information to develop EBS grid-to-vehicle (V2G) systems across the US. Geographic Information Systems, data analytics and Business Intelligence were applied to assess and characterize solar energy generation and consumption patterns. The novel integration of the systems in the proposed framework provided encouraging results that have practical implications for stakeholders to develop successful and sustainable ESB V2G facilities. These results identified many schools across the US that would significantly benefit from the use of solar energy and be able to supply their local communities during idle times with renewable energy through V2G. The renewable energy resource would be capable of charging ESBs at a low cost for operational availability as required. The results indicate that the proposed ESB V2G system will provide significant benefits to both schools and their local communities. The feasibility of the proposed endeavor was validated by the results of the study, providing both school and solar energy stakeholders with insights into how to better manage such a complex system. Full article
(This article belongs to the Section D: Energy Storage and Application)
10 pages, 466 KiB  
Article
Influence of the Effective Reproduction Number on the SIR Model with a Dynamic Transmission Rate
by Fernando Córdova-Lepe, Juan Pablo Gutiérrez-Jara and Gerardo Chowell
Mathematics 2024, 12(12), 1793; https://doi.org/10.3390/math12121793 (registering DOI) - 8 Jun 2024
Abstract
In this paper, we examine the epidemiological model B-SIR, focusing on the dynamic law that governs the transmission rate B. We define this dynamic law by the differential equation B/B=FF, where [...] Read more.
In this paper, we examine the epidemiological model B-SIR, focusing on the dynamic law that governs the transmission rate B. We define this dynamic law by the differential equation B/B=FF, where F represents a reaction factor reflecting the stress proportional to the active group’s percentage variation. Conversely, F is a factor proportional to the deviation of B from its intrinsic value. We introduce the notion of contagion impulsef and explore its role within the model. Specifically, for the case where F=0, we derive an autonomous differential system linking the effective reproductive number with f and subsequently analyze its dynamics. This analysis provides new insights into the model’s behavior and its implications for understanding disease transmission. Full article
(This article belongs to the Special Issue Advances in Mathematical Biology and Applications)
11 pages, 852 KiB  
Article
Biotransforming of Poultry and Swine Slaughterhouse Waste as an Alternative Protein Source for Ruminant Feeding
by José de Jesús Perez-Bautista, Gregorio Alvarez-Fuentes, Juan Carlos Garcia-Lopez, Ricardo Martinez-Martinez, José Alejandro Roque-Jimenez, Navid Ghavipanje, Einar Vargas-Bello-Pérez and Héctor A. Lee-Rangel
Nitrogen 2024, 5(2), 518-528; https://doi.org/10.3390/nitrogen5020034 (registering DOI) - 8 Jun 2024
Abstract
The biotransformation of poultry (PSW) and swine (SSW) slaughterhouse waste might provide protein feedstuffs, ensuring efficient ruminant systems while safeguarding the environment. The present study aimed to evaluate the potential of PSW and SSW as alternative protein feed for ruminant animals. A total [...] Read more.
The biotransformation of poultry (PSW) and swine (SSW) slaughterhouse waste might provide protein feedstuffs, ensuring efficient ruminant systems while safeguarding the environment. The present study aimed to evaluate the potential of PSW and SSW as alternative protein feed for ruminant animals. A total of 24 lambs [25.4 ± 3.13 kg of body weight (BW), mean ± SD] were randomly allocated to one of three groups (n = 8): a control diet formulated with typical protein ingredients (CTRL) and two diets formulated with PSW or SSW meal as a protein source. Dietary inclusion of PSW or SSW did not alter (p = 0.05) dry matter intake or final BW. However, animals fed SSW showed the highest average daily gain (ADG, p = 0.04). In addition, substituting PSW and SSW improved the feed conversation ratio (FCR, p = 0.05). There were no diet effects (p = 0.05) on N intake, while fecal N excretion increased (p = 0.03) with SSW feeding. Compared to CTRL and PSW, ingestion of SSW decreased (p = 0.001) and retained N. The digestibility of crude protein and organic matter remained unchanged (p = 0.05). Additionally, there were no differences (p = 0.05) in potential microbial protein synthesis based on either protein content (SPMp) or energy content (SPMe). Similarly, potential metabolizable protein by protein (PMp) and potential metabolizable energy by protein (PMe) were not affected (p = 0.05). Overall, both PSW and SSW positively influenced the growth performance of ewe lambs. However, further studies are warranted to explore the impact of PWS or SSW feeding on rumen function, nitrogen pollution, and protein escaping the rumen into the intestine in ruminants. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop