Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T01:07:31.578Z Has data issue: false hasContentIssue false

Desert wetlands record hydrologic variability within the Younger Dryas chronozone, Mojave Desert, USA

Published online by Cambridge University Press:  04 April 2018

Jeffrey S. Pigati*
Affiliation:
U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver, Colorado 80225
Kathleen B. Springer
Affiliation:
U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver, Colorado 80225
Jeffrey S. Honke
Affiliation:
U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver, Colorado 80225
*
*Corresponding author at: U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver, Colorado 80225 USA. E-mail address: jpigati@usgs.gov (J.S. Pigati).

Abstract

One of the enduring questions in the field of paleohydrology is how quickly desert wetland ecosystems responded to past episodes of abrupt climate change. Recent investigations in the Las Vegas Valley of southern Nevada have revealed that wetlands expanded and contracted on millennial and sub-millennial timescales in response to changes in climate during the late Quaternary. Here, we evaluate geologic evidence from multiple localities in the Mojave Desert and southern Great Basin that suggests the response of wetland systems to climate change is even faster, occurring at centennial, and possibly decadal, timescales. Paleowetland deposits at Dove Springs Wash, Mesquite Springs, and Little Dixie Wash, California, contain evidence of multiple wet and dry cycles in the form of organic-rich black mats, representing periods of past groundwater discharge and wet conditions, interbedded with colluvial, alluvial, and aeolian sediments, each representing dry conditions. Many of these wet-dry cycles date to within the Younger Dryas (YD) chronozone (12.9–11.7 ka), marking the first time intra-YD hydrologic variability has been documented in paleowetland deposits. Our results illustrate that desert wetland ecosystems are exceptionally sensitive to climate change and respond to climatic perturbations on timescales that are relevant to human society.

Type
Thematic Set: Drylands
Copyright
Copyright © University of Washington. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Published by Cambridge University Press, 2018. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, R.B., Clark, P.U., 1999. The deglaciation of the Northern Hemisphere: a global perspective. Annual Review of Earth and Planetary Sciences 27, 149182.10.1146/annurev.earth.27.1.149Google Scholar
Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., et al., 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527529.10.1038/362527a0Google Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., et al., 2006. The Greenland Ice Core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 32463257.10.1016/j.quascirev.2006.08.002Google Scholar
Asmerom, Y., Polyak, V.J., Burns, S.J., 2010. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geoscience 3, 114117.10.1038/ngeo754Google Scholar
Bakke, J., Lie, Ø., Heegaard, E., Dokken, T., Haug, G.H., Birks, H.H., Dulski, P., Nilsen, T., 2009. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience 2, 202205.10.1038/ngeo439Google Scholar
Ballenger, J.A.M., Holliday, V.T., Kowler, A.L., Reitze, W.T., Prasciunas, M.M., Miller, D.S., Windingstad, J.D., 2011. Evidence for Younger Dryas global climate oscillation and human response in the American Southwest. Quaternary International 242, 502519.10.1016/j.quaint.2011.06.040Google Scholar
Bell, J.W., Amelung, F., Ramelli, A.R., Blewitt, G., 2002. Land subsidence in Las Vegas, Nevada, 1935–2000: new geodetic data show evolution, revised spatial patterns, and reduced rates. Environmental and Engineering Geoscience 8, 155174.10.2113/8.3.155Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.10.1126/science.1065680Google Scholar
Carlson, A.E., Clark, P.U., Haley, B.A., Klinkhammer, G.P., Simmons, K., Brook, E.J., Meissner, K.J., 2007. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proceedings of the National Academy of Sciences of the United States of America 104, 65566561.10.1073/pnas.0611313104Google Scholar
Donahue, D.J., Linick, T.W., Jull, A.J.T., 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32, 135142.10.1017/S0033822200040121Google Scholar
Ebbesen, H., Hald, M., 2004. Unstable Younger Dryas climate in the northeast North Atlantic. Geology 32, 673676.10.1130/G20653.1Google Scholar
Elmore, A.C., Wright, J.D., 2011. North Atlantic deep water and climate variability during the Younger Dryas cold period. Geology 39, 107110.10.1130/G31376.1Google Scholar
Fenelon, J.M., Moreo, M.T., 2002. Trend analysis of ground-water levels and spring discharge in the Yucca Mountain region, Nevada and California, 1960–2003. United States Geological Survey Water-Resources Investigations Report 02-4178, 197.Google Scholar
Fisher, T.G., Smith, D.G., Andrews, J.T., 2002. Preboreal oscillation caused by a glacial Lake Agassiz flood. Quaternary Science Reviews 21, 873878.10.1016/S0277-3791(01)00148-2Google Scholar
Glover, K.C., MacDonald, G.M., Kirby, M.E., Rhodes, E.J., Stevens, L., Silveira, E., Whitaker, A., Lydon, S., 2017. Evidence for orbital and North Atlantic climate forcing in alpine Southern California between 125 and 10 ka from multi-proxy analyses of Baldwin Lake. Quaternary Science Reviews 167, 4762.10.1016/j.quascirev.2017.04.028Google Scholar
Harrill, J.R., 1976. Pumping and groundwater storage depletion in Las Vegas Valley, Nevada, 1955–1974. Nevada Department of Conservation and Natural Resources, Water Resources Bulletin 44, 170.Google Scholar
Harris-Parks, E., 2016. The micromorphology of Younger Dryas-aged black mats from Nevada, Arizona, Texas, and New Mexico. Quaternary Research 85, 94106.10.1016/j.yqres.2015.11.005Google Scholar
Haynes, C.V. Jr., 1967. Quaternary geology of the Tule Springs Area, Clark County, Nevada. In: Wormington, H.M., Ellis, D. (Eds.), Pleistocene Studies in Southern Nevada. Nevada State Museum of Anthropology, Carson City, Nevada, pp. 1104.Google Scholar
Haynes, C.V. Jr., 2007. Quaternary geology of the Murray Springs Clovis site. In: Haynes, C.V., Jr., Huckell, B.B. (Eds.), Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona. The University of Arizona Press, Tucson, pp. 1656.Google Scholar
Haynes, C.V. Jr., 2008. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proceedings of the National Academy of Sciences of the United States of America 105, 65206525.10.1073/pnas.0800560105Google Scholar
Jull, A.J.T., Burr, G.S., 2015. Radiocarbon dating. In: Rink, W.J., Thompson, J.W., Heaman, L.M., Jull, A.J.T., Paces, J.B. (Eds.), Encyclopedia of Scientific Dating Methods. Springer Publishing, New York, pp. 669676.10.1007/978-94-007-6304-3_101Google Scholar
Kirby, M.E., Knell, E.J., Anderson, W.T., Lachniet, M.S., Palermo, J., Eeg, H., Lucero, R., et al., 2015. Evidence for insolation and Pacific forcing of late glacial through Holocene climate in the central Mojave Desert (Silver Lake, CA). Quaternary Research 84, 174186.10.1016/j.yqres.2015.07.003Google Scholar
Lachniet, M.S., Denniston, R.F., Asmerom, Y., Polyak, V.J., 2014. Orbital control of western North America atmospheric circulation and climate over two glacial cycles. Nature Communications 5, 3805. http://dx.doi.org/3810.1038/ncomms4805.Google Scholar
Liu, D., Wang, Y., Cheng, H., Kong, X., Chen, S., 2013. Centennial-scale Asian monsoon variability during the mid-Younger Dryas from Qingtian Cave, central China. Quaternary Research 80, 199206.10.1016/j.yqres.2013.06.009Google Scholar
Ma, Z.-B., Cheng, H., Tan, M., Edwards, R.L., Li, H.-C., You, C.-F., Duan, W.-H., Wang, X., Kelly, M.J., 2012. Timing and structure of the Younger Dryas event in northern China. Quaternary Science Reviews 41, 8393.10.1016/j.quascirev.2012.03.006Google Scholar
Manga, M., 1999. On the timescales characterizing groundwater discharge at springs. Journal of Hydrology 219, 5669.10.1016/S0022-1694(99)00044-XGoogle Scholar
Maxey, G.B., Jameson, C.H., 1948. Geology and water resources of Las Vegas, Pahrump, and Indian Spring Valleys, Clark and Nye Counties, Nevada. Water Resources Bulletin 5. State of Nevada, Office of the State Engineer, Carson City, Nevada.Google Scholar
Meltzer, D.J., Holliday, V.T., 2010. Would North American Paleoindians have noticed Younger Dryas age climate changes? Journal of World Prehistory 23, 141.10.1007/s10963-009-9032-4Google Scholar
Morgan, D.S., Dettinger, M.D., 1996. Groundwater conditions in Las Vegas Valley, Clark County, Nevada. Part 2: hydrogeology and simulation of groundwater flow. United States Geological Survey Water Supply Paper 2320-B, 1124.Google Scholar
Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., Raisbeck, G.M., Yiou, F., Kubik, P.W., 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth and Planetary Science Letters 219, 325340.10.1016/S0012-821X(03)00722-2Google Scholar
Oster, J.L., Montanez, I.P., Sharp, W.D., Cooper, K.M., 2009. Late Pleistocene California droughts during deglaciation and Arctic warming. Earth and Planetary Science Letters 288, 434443.10.1016/j.epsl.2009.10.003Google Scholar
Pigati, J.S., Bright, J.E., Shanahan, T.M., Mahan, S.A., 2009. Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan Deserts, southeastern Arizona, USA. Quaternary Science Reviews 28, 286300.10.1016/j.quascirev.2008.09.022Google Scholar
Pigati, J.S., Latorre, C., Rech, J.A., Betancourt, J.L., Martínez, K.E., Budahn, J.R., 2012. Accumulation of “impact markers” in desert wetlands and implications for the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences of the United States of America 109, 72087212.10.1073/pnas.1200296109Google Scholar
Pigati, J.S., McGeehin, J.P., Muhs, D.R., Bettis, E.A.I., 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76, 114128.10.1016/j.quascirev.2013.05.013Google Scholar
Pigati, J.S., Miller, D.M., Bright, J., Mahan, S.A., Nekola, J.C., Paces, J.B., 2011. Chronology, sedimentology, and microfauna of ground-water discharge deposits in the central Mojave Desert, Valley Wells, California. Geological Society of America Bulletin 123, 22242239.10.1130/B30357.1Google Scholar
Pigati, J.S., Rech, J.A., Nekola, J.C., 2010. Radiocarbon dating of small terrestrial gastropods in North America. Quaternary Geochronology 5, 519532.10.1016/j.quageo.2010.01.001Google Scholar
Pigati, J.S., Rech, J.A., Quade, J., Bright, J., 2014. Desert wetlands in the geologic record. Earth-Science Reviews 132, 6781.10.1016/j.earscirev.2014.02.001Google Scholar
Pigati, J.S., Reheis, M.C., McGeehin, J.P., Honke, J.S., Bright, J., 2016. Hydrologic response of desert wetlands to Holocene climate change: preliminary results from the Soda Springs area, Mojave National Preserve, California. In: White, G. (Ed.), Proceedings of the 1st Death Valley Natural History Conference. Death Valley Natural History Association, National Park Service, Death Valley, California, pp. 219.Google Scholar
Polyak, V.J., Asmerom, Y., Burns, S.J., Lachniet, M.S., 2012. Climatic backdrop to the terminal Pleistocene extinction of North American mammals. Geology 40, 10231026.10.1130/G33226.1Google Scholar
Quade, J., 1986. Late Quaternary environmental changes in the upper Las Vegas Valley, Nevada. Quaternary Research 26, 340357.10.1016/0033-5894(86)90094-3Google Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., 1998. Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quaternary Research 49, 129148.10.1006/qres.1997.1959Google Scholar
Quade, J., Forester, R.M., Whelan, J.F., 2003. Late Quaternary paleohydrologic and paleotemperature change in southern Nevada. In: Enzel, Y., Wells, S.G., Lancaster, N. (Eds.), Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts. Geological Society of America Bulletin Special Paper 368, 165188.Google Scholar
Quade, J., Mifflin, M.D., Pratt, W.L., McCoy, W.D., Burckle, L., 1995. Fossil spring deposits in the southern Great Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada, during Quaternary time. Geological Society of America Bulletin 107, 213230.10.1130/0016-7606(1995)107<0213:FSDITS>2.3.CO;22.3.CO;2>Google Scholar
Quade, J., Pratt, W.L., 1989. Late Wisconsin groundwater discharge environments of the Southwestern Indian Springs Valley, southern Nevada. Quaternary Research 31, 351370.10.1016/0033-5894(89)90042-2Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., et al., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102. http://dx.doi.org/06110.01029/02005JD006079.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., et al., 2013. IntCal13 and Marine13 radio age calibration curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.10.2458/azu_js_rc.55.16947Google Scholar
Rosenthal, J.S., Meyer, J., Palacios-Fest, M.R., Young, D.C., Ugan, A., Byrd, B.F., Gobalet, K., Giacomo, J., 2017. Paleohydrology of China Lake basin and the context of early human occupation in the northwestern Mojave Desert, USA. Quaternary Science Reviews 167, 112139.10.1016/j.quascirev.2017.04.023Google Scholar
Severinghaus, J.P., Sowers, T., Brook, E.J., Alley, R.B., Bender, M.L., 1998. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141146.10.1038/34346Google Scholar
Shakun, J.D., Carlson, A.E., 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews 29, 18011816.10.1016/j.quascirev.2010.03.016Google Scholar
Slota, P.J., Jull, A.J.T., Linick, T.W., Toolin, L.J., 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29, 303306.10.1017/S0033822200056988Google Scholar
Soil Survey Departmental Staff. 1951. U.S. Department of Agriculture Handbook 18. U.S. Government Printing Office, Washington, DC.Google Scholar
Springer, K.B., Manker, C.R., Pigati, J.S., 2015. Dynamic response of desert wetlands to abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America 112, 1452214526.10.1073/pnas.1513352112Google Scholar
Springer, K.B., Pigati, J.S., Manker, C.R., Mahan, S.A., 2018. The Las Vegas Formation. United States Geological Survey Professional Paper (in press).Google Scholar
Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., et al., 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680684.10.1126/science.1157707Google Scholar
Steponaitis, E., Andrews, A., McGee, D., Quade, J., Hsieh, Y.-T., Broecker, W.S., Shuman, B.N., Burns, S.J., Cheng, H., 2015. Mid-Holocene drying of the U.S. Great Basin recorded in Nevada speleothems. Quaternary Science Reviews 127, 174185.10.1016/j.quascirev.2015.04.011Google Scholar
Stuiver, M., Grootes, P.M., 2000. GISP2 oxygen isotope ratios. Quaternary Research 53, 277284.10.1006/qres.2000.2127Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.10.1017/S0033822200013904Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., et al., 2008. A 60,000 year Greenland stratigraphic ice core chronology. Climates of the Past 4, 4757.10.5194/cp-4-47-2008Google Scholar
Vincent, J.H., Cwynar, L.C., 2016. A temperature reversal within the rapid Younger Dryas-Holocene warming in the North Atlantic. Quaternary Science Reviews 153, 199207.10.1016/j.quascirev.2016.10.005Google Scholar
Wagner, G., Beer, J., Masarik, J., Muscheler, R., Kubik, P.W., Mende, W., Laj, C., Raisbeck, G.M., Yiou, F., 2001. Presence of the solar de Vries cycle (205 years) during the last ice age. Geophysical Research Letters 28, 303306.10.1029/2000GL006116Google Scholar
Wagner, J.D.M., Cole, J.E., Beck, J.W., Patchett, P.J., Henderson, G.M., Barnett, H.R., 2010. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nature Geoscience 3, 110113.10.1038/ngeo707Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Canve, China. Science 294, 23452348.10.1126/science.1064618Google Scholar
Whistler, D.P., Burbank, D.W., 1992. Miocene biostratigraphy and biochronology of the Dove Spring Formation, Mojave Desert, California, and characterization of the Clarendonian mammal age (late Miocene) in California. Geological Society of America Bulletin 104, 644658.10.1130/0016-7606(1992)104<0644:MBABOT>2.3.CO;22.3.CO;2>Google Scholar
Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Colesar, P.T., Revesz, K.M., 1992. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255260.10.1126/science.258.5080.255Google Scholar