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Abstract 

Reliable estimates of daily, monthly and seasonal soil moisture are useful in a variety of disciplines. 18 

The availability of continuous in situ soil moisture observation records in Southern Africa barely 

exists. In this regard, process based simulation model outputs turns out to be a valuable source of 

climate information, which is needed for guiding farming practises and policy interventions at various 21 

spatio-temporal scales. Despite their ability to yield historic and future projections of climatic 

conditions, simulation model outputs often reflect a certain degree of systematic uncertainty hence it 

is very important to evaluate their representativeness of spatial and temporal patterns against 24 

observations. To this effect, this study presents an evaluation of soil moisture outputs from a 

simulation and satellite data based soil moisture products. The simulation model consists of a global 

circulation model known as the conformal-cubic atmospheric model (CCAM), coupled to the CSIRO 27 

Atmosphere Biosphere Land Exchange model (CABLE). The satellite based soil moisture products 

include; satellite observations from the European space agency (ESA) and satellite observation based 

model estimates from the Global Land Evaporation Amsterdam model (GLEAM). The evaluation is 30 

done for both the surface (0-10 cm) and root zone (10-100 cm) using in situ soil moisture 

measurements collected from two savanna sites, located in the Kruger National Park, South Africa. 

For the two chosen sites with different soil types and vegetation cover, the evaluation considers soil 33 

moisture time series aggregated to a monthly time scale from all the data sources. In order to reflect 

the inter-comparability of CCAM-CABLE simulation output, and GLEAM model estimates, a 

qualitative analysis of phase agreement, using wavelet analysis is presented. The onset and offset of 36 

the wet period, for the two specific sites, is calculated for each of the models and the soil moisture 

time series covariance between CCAM-CABLE and the GLEAM is discussed. Our results indicate 

that both the simulation and satellite observation based model outputs are generally consistent with 39 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-546
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 November 2018
c© Author(s) 2018. CC BY 4.0 License.



2 

 

the in situ soil moisture observations at the two study sites, especially at the surface. CCAM-CABLE 

and GLEAM inter-comparison also shows that the models are generally in phase, however with a time 

lag of about 12 and 20 days on average, for the surface and root zone respectively. In general the 42 

simulation compare well with the GLEAM model estimates, hence indicating that the key physical 

processes that drive soil moisture in CCAM-CABLE and GLEAM, at the surface and root zone, lead 

to an appreciable degree of mutual information. This is reinforced by a predominantly positive 45 

measure of covariance between the respective two soil moisture outputs. 

Keywords: Soil Moisture, atmospheric model, land surface model, flux tower, cross wavelet 

1 Introduction 48 

Accurate estimates of daily, monthly and seasonal soil moisture are important in a number of fields 

including, but not limited to, agriculture (McNally et al., 2016), water resources planning (Decker, 

2015), projection of precipitation (van den Hurk et al., 2012) and quantification of the impacts of 51 

extreme weather events such as drought (Sheffield and Wood, 2008), heat waves (Fischer et al., 2007; 

Lorenz et al., 2010) and floods (Brocca et al., 2011). Soil moisture has been identified as one of the 50 

essential climate variables (ECVs) by the Global Climate Observing System (GCOS) and the 54 

European Space Agency climate change initiative (ESA-CCI) (McNally et al., 2016). Soil moisture 

drives fluxes of heat and water at the surface and directly impacts local and regional weather patterns. 

It is a key parameter to consider in the partitioning of precipitation and net radiation. Precipitation is 57 

partitioned into evapotranspiration (ET), infiltration and runoff. Net radiation is partitioned into latent 

and sensible heat fluxes (Xia et al., 2015; Yuan and Quiring, 2017) at the surface. Root zone soil 

moisture plays a vital role in the transpiration process of ET especially in arid and semi-arid regions 60 

where most of the water loss is accounted for by transpiration during the dry period (Jovanovic et al., 

2015; Palmer et al., 2015). The temporal and spatial variation in soil moisture is controlled by 

vegetation, topography and soil properties (Xia et al., 2015).  Regions where soil moisture strongly 63 

influences the atmosphere is at a transition between wet and dry climates. This is associated with the 

strong coupling between ET and soil moisture which is a characteristic of these regions (van den Hurk 

et al., 2012; Lorenz et al., 2010).  66 

In situ data that is used as a reference in this study consists of surface and root zone soil moisture 

observations. The in situ data is mostly point based and when it comes to understanding general 

spatial patterns, this poses significant challenges which are associated with their limited spatio-69 

temporal coverage (Yuan and Quiring, 2017). Direct satellite observations, on the other hand, are 

presently only available for the surface. To obtain root zone estimate of soil moisture, through model 

estimates, satellite based surface soil moisture data is used in conjunction with other ground based 72 

observations. The modelled soil moisture data are largely dependent on accurate surface forcing data 

(e.g. air temperature, precipitation and radiation) and the parameterisation of the land surface schemes 

(Xia et al., 2015).  This is done in the frame work of physical based models whose accuracy may vary 75 

depending on the response of the models to the forcing data. Due to lack of publically available long 

term and complete in situ soil moisture measurements in Africa, and the world in general, global 

climate models (GCMs) are relied on to estimate the land surface states (Dirmeyer et al., 2013). The 78 

data produced by land surface-, hydrological- and GCMs have been widely evaluated for many 

continents and regions (Albergel et al., 2012; An et al., 2016; Dorigo et al., 2015; McNally et al., 

2016; Yuan and Quiring, 2017). The evaluations of these soil moisture data products in Africa are 81 

sparse, mainly due to the lack of publically available in situ observations (Sinclair and Pegram, 2010). 

The available studies include those conducted by McNally et al. (2016) and Dorigo et al. (2015a) 

evaluating ESA-CCI satellite soil moisture products over East and West Africa respectively. This 84 
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study is inspired by the notion that the knowledge about soil moisture characteristic patterns, for the 

study region, can reliably be obtained by making a connection between data from simulation 

experiments, theoretical or analytical models and in situ observation measurements. Satellite and 87 

model based soil moisture products, are capable of providing continuous observations at different 

temporal and spatial resolutions (Fang et al., 2016). Despite the in situ data being limited in coverage, 

it is very useful for the calibration and validation of modelled and satellite derived soil moisture 90 

estimates (Xia et al., 2015).  

The aims of this study are twofold. Firstly, it is to evaluate the ability of the simulated and estimated 

soil moisture products to capture the observed variability in soil moisture at specific locations. The 93 

evaluation is done at two soil depths namely; surface (SSM, i.e., 0-10 cm) and root zone (RZSM, i.e. 

10-100 cm), using long term in situ measurements. Much focus is directed to only two study sites that 

are located in the Kruger National Park. This is due to data constraints. Secondly, the goal is to inter-96 

compare simulated results of soil moisture against satellite based model estimates. This is done 

primarily at a regional level, where the absence of sufficient in situ observations over space and time 

presents a major challenge.  In particular, we look at spatio-temporal variations in simulated soil 99 

moisture data from a coupled land-atmosphere model i.e., conformal cubic atmospheric model 

(CCAM) coupled to the CSIRO Atmosphere Biosphere Land Exchange (CABLE) model against the 

three versions of the European Space Agency (ESA) satellite observations (i.e., active, passive and 102 

combined), and estimates from three versions of the global land evaporation Amsterdam model 

(GLEAM). The goal is to obtain a clear picture of how the CCAM-CABLE simulation, satellite 

derived soil moisture observations and model estimates fare against the in situ data, in capturing the 105 

seasonal cycles of soil moisture at a point, and to what extent the simulations and model estimates 

have mutual information at the regional level within inter-annual time scales. In particular the target is 

to obtain clear reflection of phase agreement between the respective soil moisture data products and if 108 

this is representative of local conditions. In a nutshell, the study seeks to uncover interesting patterns 

in the observed data, for the study region, and highlight the strengths as well as aspects of the 

simulation and model estimates which may benefit from continuous testing and improvements. 111 

Clearly the ability of models to capture seasonal cycles of terrestrial processes such as soil moisture is 

indicative of how well the physical processes that underlie the variability of soil moisture over space 

and time are represented. A comparison of satellite derived products with in situ observations also 114 

yield useful insight on the strengths and weaknesses of various remote sensing techniques that are 

used.  Arguably, a climate models’ ability to represent the seasonality of a system could be considered 

more important than its agreement with observations in absolute values (Fang et al., 2016). The 117 

CCAM-CABLE model is specifically parameterised for African climatic and vegetation conditions. 

Its ability to capture key terrestrial processes such as changes in soil moisture will render it ideal for 

use by the broader scientific community in understanding terrestrial processes on the continent. For 120 

the surrounding area of the study sites, where there are no in situ measurements, it will only suffice to 

reflect the extent at which two independent approaches for computing soil moisture co-vary, and 

hence possess mutual information. In particular, we want to uncover how the strength of the 123 

covariance differs between the different soil and vegetation types.    

2 Materials and methods 

2.1 Study sites and in situ observations 126 

As mentioned earlier, for this study in situ soil moisture measurements obtained from the CSIR 

operated network of eddy co-variance flux towers at the Lowveld region of Mpumalanga (i.e. 
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Skukuza), and Limpopo provinces (i.e. Malopeni), are used. It is worth reiterating at this point that a 129 

number of other soil moisture in situ measurements sites exist in the country that are not publically 

available. 

2.1.1 Skukuza 132 

The Skukuza flux tower site is a long term measurement site, located (25.0197° S, 31.4969° E) within 

the Kruger national park conservation area in South Africa (Fig. 1). The site falls within a semi-arid 

savanna biome 370 m above sea level, with a mean annual rainfall of 547 mm year
-1

, and minimum 135 

(during the dry season) and maximum (during the wet season) mean annual air temperatures of 14.5 

and 29.5˚C respectively. The vegetation is dominated by an overstory of Combretum apiculatum 

(Sond.), and Sclerocarya birrea (Hochst.) with a height of approximately 8-10 m, and a tree cover of 138 

approximately 30% (Archibald et al., 2009). The understory is a grass layer dominated by Panicum 

maximum (Jacq.), Digitaria eriantha (Steud.), Eragrostis rigidor (Pilg.) and Pogonarthria squarrosa 

(Roem. and Schult.). The soil is of the Clovelly form with a sandy loam texture (Feig et al., 2008). 141 

The Skukuza flux tower site is extensively described in previous studies including those by 

(Archibald et al., 2009; Scholes et al., 2001). In situ soil moisture data is collected 90 metres north of 

the tower, and the measurements are taken at two profiles which are 8 m apart. The sensors are 144 

located at four different depths on both profiles i.e., 5, 15, 30 and 40 cm (Pinheiro and Tucker, 2001). 

Time domain reflectometry (TDR) probes (Campbell Scientific CS615L) were used to measure soil 

moisture at a 30 minute temporal resolution. The half hourly measurements are averaged to a daily 147 

time period (using 80% data threshold) to match the resolution of the other soil moisture products. In 

this study the in situ data from the year 2001 to 2014 is used.  

2.1.2 Malopeni 150 

The Malopeni flux tower is located (23.8325° S, 31.2145° E) 130 km north west of the Skukuza flux 

tower (Fig. 1), at an elevation of 384 m above sea level. The site has a mean annual rainfall of 472 

mm year
-1

, and minimum and maximum mean annual air temperatures ranging between 12.4 and 153 

30.5˚C respectively. The site is dominated by broad leaf Colophospermum mopane, which 

characterise a hot and dry savanna (Ramoelo et al., 2014), Combretum apiculatum and Acacia 

nigrescens are also abundant at the site. The grass layer is dominated by Schmidtia pappophoroides 156 

and Panicum maximum. The soil at the site is predominantly of the shallow sandy loam texture. The 

soil moisture probes are located at four different profiles and depth. The sensors types and depths 

positioning are consistent between the Malopeni and Skukuza.  Soil moisture is collected at four 159 

different profiles (i.e. 16 sensors at four depths), and averaged to represent surface and root zone soil 

moisture at this site. The tower has been collecting data since 2008 to date, however data has not been 

collected between January of 2010 and January of 2012 due to equipment failure.  162 
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Figure 1. Maps indicating (a) South Africa, (b) Kruger national park (KNP), and flux tower sites; Skukuza and 

Malopeni, (c) the area considered for grid inter-comparison, with dominant soil types per grid cell, at a 165 
resolution of 25 km and (d) a description of soil types. The soil type’s data is obtained online from 

https://soilgrids.org. 

2.2 Satellite observations 168 

The European space agency climate change initiative (ESA-CCI ), satellite derived soil moisture 

datasets are used in this study (Liu et al., 2012; Yuan and Quiring, 2017). These global datasets are 

based on passive and active satellite microwave sensors, and provide surface soil moisture estimates 171 

at a resolution of ~25 km (i.e., 0.25˚) (Fang et al., 2016; Yuan and Quiring, 2017). The ESA-CCI 

merges soil moisture estimates from the active and passive satellite microwave sensors into one 

dataset (http://www.esa-soilmoisture-cci.org/), using the backward propagating cumulative 174 

distribution function method (Dorigo et al., 2015; Fang et al., 2016). The merged active and passive 

sensors are fully described in Fang et al. (2016), Dorigo et al. (2015) and (Liu et al., 2012). The 

merging of active and passive sensors is based on their sensitivity to vegetation density, as the 177 

accuracy of these product varies as a function of vegetation cover (Liu et al., 2012). 

The difference between active and passive sensors is that, passive sensors are dependent on radiation, 

i.e., sunlight and are only able take measurements during the daylight hours, i.e. these sensors are not 180 

able to take measurements at night. Active sensors however are independent of sunlight as they 

provide their own source of energy to illuminate the objects they observe, and are able to take 

measurements both during the day and at night. Active sensors as opposed to passive sensors are able 183 

to penetrate through; clouds, fog, vegetation and are not affected by bad weather conditions (Fang et 

al., 2016). A number of studies evaluated these products at a regional and global scale using in situ 
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data, and concluded that passive sensors have better performance over bare to sparsely vegetated 186 

regions, whereas the active sensors perform better in moderately vegetated regions (Dorigo et al., 

2015; Liu et al., 2012; McNally et al., 2016). Over densely vegetated areas such as tropical forests, 

neither product produces reasonable estimates. The dense canopy hinders signals reflected from the 189 

soil surface (i.e. for passive sensors) or back scattering of active radiation before it reaches the soil 

surface for active sensors (Liu et al., 2012). The merged data product is used in this study as it has 

better data coverage compared to the individual products. Missing data in satellite products is not 192 

unusual, since retrievals are normally at an interval of 2-3 days (Albergel et al., 2012). However, data 

from each of the different sensor types are also individually considered for the evaluation of long term 

seasonal cycles. 195 

2.3 Models for simulating soil moisture 

2.3.1 CCAM-CABLE 

The simulations produced by an ensemble of six downscaled global circulation models (GCMs), with 198 

an 8km spatial and six hourly temporal resolution, of the present-day climate, and future climate 

change over the Limpopo Province (Fig. 1c) are used in this study, focusing on periods from 2001 to 

2014. A variable resolution GCM (i.e., CCAM), developed by the Commonwealth scientific and 201 

industrial research organisation (CSIRO) in Australia (McGregor, 2005; McGregor and Dix, 2001, 

2008), is used to dynamically downscale the six GCMs. The six hourly data is averaged to daily. For 

purposes of this study CCAM was coupled to a dynamic land-surface model (i.e., CABLE) and run in 204 

online mode. Simulations of six GCMs from the coupled model inter-comparison project phase five 

(CMIP5), and assessment report five (AR5), of the Intergovernmental panel on climate change 

(IPCC), and for emission scenarios described by representative concentration pathways (RCPs) 4.5 207 

and 8.5 (RCP 4.5 and 8.5), were first downscaled to a 50 km resolution globally, and then to 8km 

resolution for the Limpopo Province. The simulations span the period 1960-2014. The downscaled 

GCMs includes the Community Climate System Model (CCSM4); the Norwegian Earth System 210 

Model (NorESM1-M); the Australian Community Climate and Earth System Simulator (ACCESS1-

0); the National Centre for Meteorological Research Coupled Global Climate Model, version 5 

(CNRM-CM5); the Geophysical Fluid Dynamics Laboratory Coupled Model (GFDL-CM3) and the 213 

Max Planck Institute Coupled Earth System Model (MPI-ESM-LR). This experiment follows earlier 

applications by Engelbrecht et al. (2015) and Muthige et al. (2018), therefore, details about bias 

correction, the multiple nudging strategy and the computation process can be found in the listed 216 

references.  

The CABLE soil submodule expresses soil as a heterogeneous system consisting of three component 

namely water, air and solid (Kowalczyk et al., 2006; Wang et al., 2011). Air and water contest for the 219 

pore space with the change in the volume fractions as a result of drainage, precipitation, ET and snow 

melt. In this model there is no exchange of heat between the soil and the moisture due to the vertical 

movement of water, as soil moisture is assumed to be at ground temperature. The soil is partitioned 222 

into six layers, with the layer thickness of 0.022 m, 0.058 m, 0.154 m, 1.085 m and 2.875 m from the 

top layer. The top layer contributes to evaporation, while plant roots extraction (i.e., transpiration) 

occurs water from all the layers depending on the availability  of soil water together with the fraction 225 

of plant roots in each of the layers (Wang et al., 2011). Soil  moisture is solved numerically using the 

Richard’s equation (Kowalczyk et al., 2006).     
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2.3.2 GLEAM 228 

Global Land Evaporation Amsterdam Model (GLEAM) version three (v3.1) is a set of algorithms 

used to estimate surface, root-zone soil moisture and terrestrial evaporation using satellite forcing 

data. Three data sets from the GLEAM namely; v3a, v3b and v3c are used in this study. The data is 231 

freely available at www.gleam.eu. Version 3a is based on satellite observed; air temperature, 

radiation, soil moisture, snow water equivalent, vegetation optical depth and a multi-source 

precipitation product. Versions 3b and 3c are satellite based with common forcing data excluding soil 234 

moisture and vegetation optical depth as these are based on different passive and active microwave 

sensors, i.e. ESA CCI for v3b and Soil Moisture and Ocean Salinity (SMOS) for v3c (Martens et al., 

2017). 237 

Each grid cell in GLEAM contains fractions of four different land cover types namely; open water 

(e.g. dam, lake), short vegetation (i.e. grass), tall vegetation (i.e. trees) and bare soil. These fractions 

are based on the global vegetation continuous field product (MOD44B) with the exception of the 240 

fraction of open water. The MOD44B product is based on the moderate resolution image 

spectroradiometer (MODIS) observations (Martens et al., 2017). Soil moisture is estimated separately 

for each of these fractions and then aggregated to the scale of the pixel based on the fractional cover 243 

of each land cover type. Root zone soil moisture is calculated using a multi-layered water balance 

equation which uses snow melt and net precipitation as inputs, and drainage and evaporation as 

outputs (Miralles et al., 2011). The depth of soil moisture is a function of land-cover type comprising 246 

one layer of bare soil (0-10 cm), two layers for short vegetation (0-10, 10-100 cm) and three layers for 

tall vegetation (0-10, 10-100, and 100-250 cm) (Martens et al., 2017). 

2.4 Analysis approach  249 

2.4.1 Statistical analysis 

The first part of the model evaluation focuses on, evaluating the monthly time series data of soil 

moisture products at the site level. The second part inter-compare modelled simulations and estimates 252 

at a regional level. Time series data for the sites were extracted from the soil moisture products, using 

the flux tower’s geographical coordinates. The satellite products present averaged soil moisture data 

per grid cell at the centre of the grid cells, as opposed to the CCAM-CABLE model that provides four 255 

points per grid cell located at the edges. We therefore employed the distance weighted average 

(DWA) technique on the CCAM-CABLE model simulations to estimate soil moisture values 

representative of the sites in the grid cells, where the observation sites are located. The DWA method 258 

proved to be more representative than the nearest neighbour (NN) method, as the DWA method 

interpolates at the exact location of the tower in the grid cell, by taking into account all the points of 

the grid cell. It is noteworthy, that a comparison between the in-situ observations and satellite 261 

products, in this study, puts much emphasis on phase agreement as opposed to that of magnitudes. 

This is with regard to the fact that satellite observations, and GLEAM model estimates are represented 

as spatial averages for each pixel, in which case an interpolation of such aerial averages to a point (i.e. 264 

site), does not add any further information that correspond to the site. This also renders a comparison 

in magnitude to be rather unfair. However, we anticipate data at the point and grid scales should still 

comparatively present qualitative features that are characteristic of the climatic system for the region, 267 

for example seasonal cycles. 

The soil moisture products are first converted to the percentage volumetric soil moisture amounts for 

comparison purposes. As in Yuan and Quiring (2017) we assume that the soil moisture measurements 270 
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at the depth of 5 cm represent the 0–10 cm depth. In situ data at the depths of 15, 30 and 40 cm are 

combined using the depth weighted average method to represent the 10-100 cm depth using Eq. (1):  

    10 100

1

n

i

LT
SM SM i

SD




         (1) 273 

where 
10 100SM 

 is the weighted soil moisture, n  is the number of layers, LT  is the layer thickness 

calculated as the difference between the soil depths, SD  is the total soil depth of the soil profile and 

 SM i is the daily in situ soil moisture values at the i
th
 layer. Similarly the data at depths 2.2 and 5.8 276 

cm; and 15.4 and 40.9 cm from CCAM-CABLE are averaged to represent 0-10 and 10-100 cm 

respectively using Eq. (1). Daily data from all the soil moisture products is averaged to monthly 

where 80 % of the daily data is available. Months that do not meet the 80 % threshold are excluded in 279 

the analysis. Monthly soil moisture data and seasonal cycles are evaluated against measurements.  

Table 1. Overview of soil moisture datasets; satellite (grey) in percentage, modelled (blue), simulation (pink) 

and in situ observations (green) presented as a ratio (m
3 

m
-3

) of soil to moisture per unit area. 282 

Soil moisture 

product   

Spatial 

resolution (Km)  

Spatial 

coverage 

Soil depth (cm) Period  

ESA-Combined 25  Global 0-10 1978-2015 

ESA-Active 25 Global 0-10 1991-2015 

ESA-Passive 25 Global 0-10 1978-2015 

CCAM-CABLE 8 Regional  2.2, 5.8, 15.4, 40.9,  

108. 5, 287.2 

(bedrock) 

2000-2014 

Skukuza Point data Point  5, 15, 30, 40 2000-2017 

Malopeni Point data Point  5, 15, 30, 40 2008-2017 

GLEAM v3a 25 Global 0-10, 10-100 1980-2016 

GLEAM v3b 25 Global 0-10, 10-100 2003-2015 

GLEAM v3c 25 Global 0-10, 10-100 2011-2015 

 

To evaluate how similar the soil moisture simulation and model estimates are to in situ measurements, 

we use the stream flow plots, and the coefficient of determination (
2R ), as defined in Koirala and 285 

Gentry (2012). Additionally, we use the covariance computed on the residuals of the de-trended time 

series to inter-compare soil moisture products at a regional (or grid) scale. The “stl” package in R is 

used to de-trend (or decompose) the time series into its components (i.e. seasonal, trend and residual) 288 

as discussed in Cleveland et al. (1990).  
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The “SoilGrids” dataset from the international soil reference information centre (ISRIC) is used in 

this study, to map soil types (Fig. 1c). The data is available online (https://soilgrids.org), and is 291 

described in detail in a study by Hengl et al. (2017). This dataset has a spatial resolution of 250 m and 

is used in this study to partition the covariance between simulated and modelled soil moisture 

according to soil type per grid box. Soil is classified into 12 dominant types ranging between sand and 294 

silty clay as described in Fig. 1d. The soil types data is available at seven depth (i.e., 0, 5, 15, 30, 60, 

100 and 200 cm), here we only consider the data representing the surface (i.e., 0-5 cm). The 250 m 

dataset is resampled to 25 km, firstly by resampling to 1 km and then to 25 km, using the nearest 297 

neighbour method, to match the resolution of the soil moisture products. We acknowledge that 

resampling from fine to coarse resolution might introduce bias towards certain soil types. However, 

we believe that, the nearest neighbour method is suitable for resampling categorical data.     300 

2.4.2 Cross-wavelet analysis 

The cross-wavelet analysis as described in Rosch and Schmidbauer (2018) is applied in this study, 

and is computed in R using the “WaveletComp” package. The cross-wavelet method analyses the 303 

frequency structure of bivariate time series using the Morlet wavelet (Veleda et al., 2012). The 

wavelet method is suitable for analysing periodic phenomena of time series data, especially in 

situations where there is potential of frequency changes over time (Rosch and Schmidbauer, 2018; 306 

Torrence and Compo, 1998). This method has been used in other studies, such as those by Koirala and 

Gentry (2012), aiming to understand the climate change impacts on hydrologic response. Cross-

wavelet analysis provides suitable tools to compare the frequency components of two time series, and 309 

thereby drawing conclusions about their synchronicity at a given period and time. A continuous 

wavelet leads to a wavelet transform of a time series which preserves information of both time and 

frequency resolution parameters. The transform can be partitioned into imaginary ( Im ) and real ( Re ) 312 

parts, which provide information on both the phase and amplitude over time. This is a prerequisite in 

the investigation of coherency between two time series (Rosch and Schmidbauer, 2018).  

In a geometric sense the cross-wavelet transform is comparable with the covariance. Graphically the 315 

cross-wavelet spectrum provides the cone of influence and contour lines indicating significance of 

joint periodicity and for checks of consistency. Information on the synchronisation of two time series 

in terms of phase is also presented on the plot. Phase difference of the two time series at each time 318 

scale is given by: 

    , . ,Angle T S Arg Wave xy T S       (2) 

This equals the difference of individual phases, . .Phase x Phase y , when converted to an angle in 321 

the interval  ,  , this is indicated by arrows (Fig. 2) in the cross-wavelet power plot. The phase is 

computed using:  
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     (3)  324 

 

Figure 2. Phase interpretation between two time series x  and y . When series x  leads, y  lags and vice versa. 

This figure is inspired by a study by (Rosch and Schmidbauer, 2018).    327 

The cross-wavelet analysis in this study is performed between the CCAM-CABLE and GLEAM v3a 

products for periods between 2001 and 2014, since the technique only works on complete datasets 

(i.e., without missing values). The cross-wavelet is applied to non-stationary data using the default 330 

method (i.e., white noise) with the simulations repeated 10 times. In particular, in this study the cross-

wavelet analysis is used to study the periodicity of the soil moisture signal as simulated by the 

CCAM-CABLE and estimated by GLEAM v3a, and to quantify the phase difference (i.e., lag) 333 

between the simulations and estimates. 

2.4.3 Onset and offset of the wet period 

In addition to analysis of phase agreement as discussed above, we compare the simulation of the 336 

onset, and offset of the wet periods by the different soil moisture products. This analysis is performed 

on daily data for soil moisture product with complete data (i.e., CCAM-CABLE and GLEAM). 

Instead of using precipitation as discussed in Shongwe et al. (2015) and Liebmann et al. (2007), to 339 

identify the onset and offset of the rainy season, we use soil moisture data. This is computed using a 

cumulative quantity over time as  

   
1

day

n

A day S n S


           (4) 342 

where  S n is the daily soil moisture and S denotes the annual daily average. As in Liebmann et al. 

(2007) we start the calculation on the climatologically driest month, i.e., 1 July (Shongwe et al., 
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2009), and perform a cumulative sum over a period amounting to a year. The onset of the wet period 345 

is defined as the date on which the cumulative sum reaches a minimum, and the offset, as the date on 

which the cumulative sum reaches the maximum (Shongwe et al., 2015).  

3 Results and discussion 348 

3.1 Evaluation of seasonal soil moisture 

In this section we discuss how the respective outputs from CCAM-CABLE, ESA and GLEAM reflect 

the key features of soil moisture for the study sites. As highlighted in the introduction section, the 351 

variability of the simulation output, satellite derived data and satellite based model estimates is 

studied relative to the in situ measurements from the study sites. Much focus is placed on 

understanding how well the seasonality of the soil moisture is reflected by respective soil moisture 354 

data sets. It has also been mentioned in the introductory section that the in situ observations are taken 

from a semi-arid (i.e., Skukuza), and arid (i.e., Malopeni) savanna sites within the Kruger national 

park. The patterns of soil moisture at these sites are mainly driven by rainfall which is generally high 357 

during the summer season, and low in winter as shown in Fig. 3. The long term surface soil moisture 

at the respective sites, follow a pattern comparable to that of rainfall. For example, see the soil 

moisture patterns presented in Fig. 4 (i.e. long term cycles), and the monthly rainfall accumulation 360 

(Fig. 3).  

 

Figure 3. Long term measurements of average monthly precipitation (mm month
-1

) at Skukuza (2001-2014) 363 
and Malopeni (2008-2013) flux towers respectively, the average is computed using daily data with at least 80% 

available data. 

3.1.1 Long term seasonal cycles 366 

In general the pattern of the long term average for soil moisture from CCAM-CABLE simulation, 

ESA satellite observations and GLEAM model estimates are qualitatively comparable to that of in situ 

observations. Notably, the observed soil moisture signal, for both the surface and root zone, shows an 369 

increase in April and October. This is found to be consistent between both at the surface and root 

zone, whereas the observed rainfall signal shows a similar pattern but in March and November at both 

sites. This is potentially a signature of soil moisture retention, which relates to the persistence of dry 372 
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and wet periods at various soil depths (Seneviratne et al., 2006). In light of this, it is also interesting to 

see how both the simulation and the GLEAM products depict the onset and offset of the wet season, 

and such a discussion will be dealt with in section 3.2. It is also worth noting that the coupled CCAM-375 

CABLE model does not capture an increase in April strongly for Skukuza while it is completely 

missed for the Malopeni site. This is probably due to the fact that the CABLE hydrological scheme, 

within the version of cable used in this study, does not take into account soil resistance (Whitley et al., 378 

2016), this has strong implications on how well the simulation can be comparable with in situ 

observations in terms of magnitude. Despite this, the long term CCAM-CABLE monthly means of 

soil moisture are relatively comparable to in situ observation even on magnitude this can be seen in 381 

Fig. 4. GLEAM v3c, on the other hand, agrees with in situ measurements on the timing of the April 

soil moisture rise, but it reflects the November increase in soil moisture, a month earlier (i.e., 

October). The satellite products (i.e., the active, passive and combined ESA products) and GLEAM 384 

models (Fig. 4) displays the same signal as that of the observed soil moisture, indicating that this does 

not occur by chance. We can safely deduct that the bias in GLEAM v3c is potentially not induced by 

satellite based forcing data, however this calls for further investigations on the sensitivity of the model 387 

to its driving data at a high resolution. We anticipate that at high temporal resolution there is a strong 

variability on the in situ soil moisture signal which may not entirely be captured, by both CCAM-

CABLE and GLEAM due to their relatively low spatial resolution. The low resolution (8 km) in the 390 

case of CCAM-CABLE, in particular, potentially has strong implications on how representative the 

effective drivers of soil moisture such as soil texture and vegetation covers are for the specific sites.  

 393 

Figure 4. Seasonal variation in long term mean monthly surface (i.e., 0-10 cm) and root zone (i.e., 10-100 cm) 

soil moisture, based on in situ observations and a variety of soil moisture products. The in situ data is collected 

from two Skukuza (2001-2014) and Malopeni (2008-2013).   396 

Soil moisture is at its lowest during the dry periods (i.e., May to October) and high during the wet 

(i.e., November to April) periods. The GLEAM models (Fig. 4) are generally consistent with in situ 

measurements in estimating soil moisture both in terms of magnitude and phase, both at the surface 399 

and root zone. The magnitude of GLEAM v3a root zone estimates is lower than those of the other 

GLEAM models at the Skukuza site. This can be attributed to the unique multi-source weighted 

ensemble precipitation (MSWEP) data used to force GLEAM v3a (Martens et al., 2017), which is 402 

different to the precipitation forcing data used in GLEAM v3b and GLEAM v3c. We further observe 
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that the GLEAM models, satellite and in situ observations have the same length of the dry period, 

with the exception of the ESA-Active observation which has a shorter dry period. The ESA-Active 405 

satellite product is known to work best for moderate to densely vegetated areas as opposed to savanna 

sites such as Skukuza and Malopeni where tree cover is sparse (Dorigo et al., 2015) and the vegetation 

cover changes dynamically due to a combination of factors for example fires and rainfall  There is less 408 

difference between the ESA-Passive and ESA-Combined satellite products. Generally the ESA-

Combined and ESA-Passive have the least difference during the dry period for all sites. The ESA-

Combined product shows a strong increase in soil moisture in July which is not observed in the other 411 

soil moisture products. Looking at long term averages, it is still interesting to see that both the 

CCAM-CABLE and GLEAM models are able to capture the intrinsic seasonality of the soil moisture 

signal for the sites as reflected by both in situ and satellite observations. This is despite their being 414 

different both in the forcing data and model structure. Studies by (Wang and Franz, 2017) and 

(Seneviratne et al., 2010) suggest that local factors (e.g., vegetation, soil and topography) mostly 

control soil moisture variability at spatial scales lower than 20 km than meteorological forcing. For a 417 

fourteen year averaging period, undoubtedly the monthly means are sensitive to anomalously high 

precipitation, and hence soil moisture, in some months. It is therefore instructive to study how well 

the simulated and estimated patterns of soil moisture compare to the in situ data on a monthly basis 420 

for the respective years. 

3.1.2 Short term seasonal cycles 

This section presents both a qualitative and quantitative evaluation of the soil moisture signal from 423 

CCAM-CABLE simulation and GLEAM estimate at a monthly time scale. To circumvent possible 

bias that may emanate from missing values, monthly averages are presented for only months where 

there are observations above 80% data availability threshold. This implies that the number of data 426 

points (i.e., sample size), are not equal for all products. For example, GLEAM v3c has the shortest 

data set spanning between 2011 and 2014, as opposed to other data sets that range between 2001 and 

2014 for Skukuza, and 2008 to 2013 for Malopeni. Figures 5 and 6 for Skukuza and Malopeni 429 

respectively show that, there is generally a phase agreement which is also noted for long term 

averages in situ data and the soil moisture products. This is reflected for most of the years. In 

consistency with the long term pattern, discussed in section 3.1.1, there is a strong agreement in phase 432 

between the in situ surface soil moisture signal and that of the simulation, satellite derived products 

and satellite based model estimates. We further observe that in some instances, there is a lag between 

the simulations and observations. At the root zone, we observe a decrease in phase similarities 435 

between the simulation and model estimates and observations. Clearly this calls for further 

investigation into water drainage and soil moisture memory which is outside the scope of the 

discussion in this study. Furthermore, the soil moisture products compare best to in situ data, than 438 

they do to CCAM-CABLE, see appendix A Fig. A1 for Skukuza and Fig. A2 for Malopeni. 
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Figure 5. Comparison of monthly averaged modelled and satellite data (red line), with in situ observations 441 
(black line) of surface (0-10 cm), and root zone (10-100 cm) soil moisture at the Skukuza (2001–2014) site. The 

gaps in the observations represent months, where the daily data did not meet the 80% averaging threshold.  

 444 

Figure 6. Comparison of monthly modelled and satellite data (red line) with surface (0–10 cm) and root zone 

(10–100 cm) soil moisture in situ observations (black line) at the Malopeni (2008–2013). 

On account of missing values, the R
2
 values presented in Fig. 7 are based on different sample sizes, 447 

therefore, their interpretation is done with this issue in mind. The R
2
 values are generally high at 

Malopeni compared to Skukuza, indicating that the few months where there are observations, there is 

also a high comparability of the signal. It is however, inconclusive whether the simulations and 450 

estimates are more comparable at Malopeni relative to the case in Skukuza. In general, based on Fig. 

7, we learn that, all the soil moisture products are able to capture the variability in the observed soil 

moisture, mainly exceeding the R
2
 value of 0.5 (i.e. 50%) both at the surface and root zone. The 453 

CCAM-CABLE model mainly presents the lowest, but acceptable R
2
 both at the surface and root 
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zone, this is a further reflection that the simulated soil moisture signal is high in magnitudes compared 

to in situ observations. On the other hand, we find the agreement in the seasonality of CCAM-CABLE 456 

interesting in its own right regarding that the model is free running (i.e., it is not initialised with an 

observed initial state.  

 459 

Figure 7. Quantitative comparison between soil moisture products and observations at Skukuza (Red bars) and 

Malopeni (Green bars), at the surface (0-10 cm) and root zone (10-100 cm), using the coefficient of 

determination (R
2
).  462 

The ESA-combined satellite product is expected to present the best agreement with observations, 

since it is actual observed data from the sites, this expectation is realised with R
2
 values greater than 

0.65. Furthermore, the ESA data has been shown to generally capture soil moisture in different 465 

regions and climate zones of the world (Loew et al., 2013; McNally et al., 2016; Wang et al., 2016; 

Zeng et al., 2015). Our study confirmed in Figures 5-7 that the ESA combined product captures local 

conditions within reason/acceptable amount of certainty. In a study conducted by Yuan and Quiring 468 

(2017), assessing the performance of CMIP5 models, both at the surface and root zone concluded that 

the models performed well at the root zone, compared to at the surface. This is contrary to what we 

observe in this study, we generally observe better comparison between soil moisture products and in 471 

situ measurements at the surface than at the root zone. Based on the extent to which GLEAM products 

proved to be representative of the qualitative features of the soil moisture signal for different months 

and seasons, as driven by precipitation at the site, it is compelling to further resolve qualitatively, how 474 

the simulated output compare against each other for most of the time periods. To this effect, we next 

present the results from a cross-wavelet analysis of CCAM-CABLE simulation output and GLEAM 

estimates for the two study sites. 477 

3.2 Cross-wavelet analysis 

The cross-wavelet power spectrum (Fig. 8) reveals that, generally the time series of CCAM-CABLE 

simulations and GLEAM v3a soil moisture estimates are in phase, both at the respective sites and the 480 

soil depths investigated. This is indicated by the arrows generally pointing to the right, as illustrated in 

Fig. 2. The arrows are plotted between the white contour lines indicating areas of significance, and 

joint periodicity at 10 % (i.e., 90 % confidence level). This area of significance is generally between 483 
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the periods of 8 and 15 months (y-axis). Although the time series are in phase most of the time, in 

some instances there is a lag. This is identified by the direction of the arrows, in which case the 

arrows are inclined upwards or downwards at different margins. For example, between the year 2002 486 

and 2005 periods of about 12 months, we observe that GLEAM v3a leads and CCAM-CABLE lags 

by 6 days on average at the surface at Skukuza (Fig. 8a) and by 10 days at Malopeni (Fig. 8c). The 

cross correlation also shows that, there are other cyclical responses of the soil moisture signal with a 489 

periodicity of approximately two years. This becomes apparent for some years when The CCAM-

CABLE and GLEAM v3a signal have statistically significant periodic features which repeat after 28 

months. In this case CCAM-CABLE leads GLEAM v3a by 5 days on average. A plot of the phase 492 

differences, between CCAM-CABLE (red) and GLEAM-v3a (blue), for the years 2002 to 2014 

associated with soil moisture patterns with a characteristic period of 12 months, is illustrated in Fig. 

B1 in appendix B.  Between 2007 and 2011 we note that there is no lag between the two series, 495 

particularly for the annual cycles i.e., repeating features of the respective signals which repeat 

between 11 and 13 months for the surface.  

 498 

Figure 8. Cross wavelet power spectrum of surface (SSM, 0-10 cm) and root zone (RZSM, 10-100 cm) soil 

moisture between CCAM-CABLE, and GLEAM v3a at Skukuza (a, b) and Malopeni (c, d) respectively. The 

white contour lines indicate periods of significance at 10 %. The arrows pointing to the right indicates that the 501 
models are in phase, anti-phase point left, CCAM-CABLE leading GLEAM v3a is indicated by arrows pointing 

straight down. The dome shape (shaded areas) represents the cone of influence between 2001 and 2014. 

At the root zone we see a similar pattern as that of the surface soil moisture. Most statistically 504 

significant shared periodic feature between CCAM-CABLE and GLEAM v3a, on the soil moisture 

signal, have periods mainly between 10 and 16 months. This is true for the entire time series (i.e., 

2001-2014). The cross-wavelet analysis in this case picks the characteristic annual pattern of soil 507 
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moisture which is effectively repeated for different years. The time series are in phase for the whole 

analysis period generally without any lag between 2007 and 2012 for periods ranging between 9 and 

15 months. For the feature of the signal with a 12 month period, there is on average a time lag of 10 510 

and 19 days at Skukuza (Fig. 8b) and Malopeni (8d) respectively. We further note that the significant 

periodic features of the signal generally increase from the surface to root zone. This is potentially 

associated with differences in the drivers of soil moisture between the respective layers. Root zone 513 

soil moisture, for instance, is likely to respond to plants driven moisture demands in a slightly 

different manner in comparison to the surface layer. An accurate attribution of soil moisture patterns 

per layer to the respective drivers, in this context, is a rather complex problem and demands a separate 516 

investigation. The simulation and the models estimates show coherency in capturing periodic patterns, 

at least those that are recurrent on an annual time scale.  The cross-wavelet analysis successfully 

reveal that there is a similarity in the patterns of surface and root zone soil moisture over time at both 519 

sites albeit negligible differences across-sites for events that are recurrent on periods below or 

exceeding 12 months. The existence of a time lag or differences in phase in the soil moisture signal 

between the simulation and GLEAM model outputs, is likely a result of CCAM-CABLE being a free 522 

run model as highlighted in the section 3.1.2. A simulation model forced with a non-observed climate 

states is still anticipated to capture most of the characteristic feature of a climatic systems such as the 

seasons. Its output may not match satellite derived observations on certain aspects including inter-525 

annual variability. Next we will explore how these differences reflect on the onset and offset of the 

wet period calculated from the simulation and GLEAM models.  

The results in Fig. 4 indicated that the modelled and satellite derived soil moisture products generally 528 

capture the length of both the dry and the wet period. However, Fig. 8 shows that there is a lag 

between the time series of CCAM-CABLE and GLEAM estimates which indicate uncertainty in 

phase agreement. Figure 9 show that the GLEAM models have a relatively low uncertainly for the 531 

onset and offset of the wet period. This is expected as these models use similar forcing data. For 

example, GLEAM v3a and v3b agrees on the onset of the wet period during the following years; 

2003, 2004, 2005, 2009, 2013 and 2014. Furthermore, GLEAM v3a and v3b agrees on the offset of 534 

the wet period during 2010 and 2011. The CCAM-CABLE and GLEAM products predominantly 

differ by a factor not exceeding 30 days on the timing of the onset the wet period. There is a very 

noticeable uncertainty in the timing of the cessation of the wet period among all approaches. These 537 

analysis yield results that are consistent with those observed in Fig. 4. The study sites mainly 

experience summer rainfall, commonly occurring between November and April. The CCAM-CABLE 

model generally shows a consistent the length of the wet period at both study sites for most of the 540 

years. The GLEAM models generally present an early onset in October and offset in May. This is 

consistent with the difference in phase between CCAM-CABLE and other products presented in Fig. 

8.  543 

Looking at the agreement between in situ observation, CCAM-CABLE simulation output and the 

GLEAM model estimates, when it comes to the main periodicity of the soil moisture signal portrayed 

in Fig. 8 as well as the results of the onset and cessation of the wet period Fig. 9, we find it 546 

indisputable that the two modelling approaches are representative of the key features of the soil 

moisture signal. It is also interesting to note that the level of uncertainty between the two modelling 

approaches, as reflected by the onset of the wet period in Fig. 9, is within an acceptable level i.e., it 549 

predominantly lies within days not exceeding a month. The uncertainty gets more pronounced when it 

comes to the cessation of the wet period. This is indicative of differences in inter-annual variation of 

the soil moisture signal which is expected, to a certain extent, due to the different input data used and 552 

the mathematical structure of the models. Clearly there is need for an understanding of how the noted 
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uncertainty could be attributed to various factors from forcing data or soil moisture drivers. It would 

be very important to understand, in particular, as to how much uncertainty is inherent in the individual 555 

coupled model key components. An in-depth investigation of various sources of model uncertainty is 

indeed a topical issue (Fang et al., 2016) which deserves a lot of attention but such a discussion will 

not be dealt with in this study. It is interesting to establish whether the insight gained in understanding 558 

the level of inter-comparability of the soil moisture signal, at the two respective sites, will hold at the 

regional level i.e., we want to know if the mutual agreement between simulation and model estimates 

persists for the study regions indicated in Fig. 1c. A natural starting point is to look at the covariance 561 

between the simulated and estimated soil moisture signal for the region. 

 

Figure 9. Onsets (triangles) and offsets (circles) of the wet period at Skukuza and Malopeni as simulated by; 564 
CCAM-CABLE (2001-2014, red), GLEAM-v3a (2001-2014, green), GLEAM-v3b (2003-2014, blue) and 

GLEAM-v3c (2011-2014, purple). 

3.3 Regional inter-comparison  567 

In Fig. 10, a plot of covariance between soil moisture from CCAM-CABLE simulations outputs and 

GLEAM model estimates is portrayed. The covariance is computed from the residuals of the de-

trended series of both CCAM-CABLE and GLEAM models. For this analysis only data from 2011 to 570 

2014 is used, as it is common between all the soil moisture products. We generally observe in Fig. 10 

that at the surface (SMsurf, 0-10 cm), the covariance between the soil moisture CCAM-CABLE and 

GLEAM is high, compared to the root zone (RZSM, 10-100 cm), implying that shared information 573 

between GLEAM and CCAM-CABLE is predominantly more pronounced at the surface compared to 

the root zone. This signals differences in the representation of soil moisture drainage at the root zone 

between the simulation and satellite data based model estimates. In order to see if there are any major 576 

differences in the simulation and GLEAM models estimates that can be associated with differences in 

soil types, we further partition the covariance between the models at various soil types (Fig. 1c) of the 

grid. The results are presented in Fig. 11. 579 
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Figure 10. Covariance (cov) computed on the residuals of monthly time series (2011-2014) of surface 

(SMsurf, 0-10 cm) and root zone (RZSM, 10-100 cm) soil moisture, between CCAM-CABLE simulations and 582 
GLEAM models estimates. 

The dominant soil types in the region include loam, silt and clay (Fig. 1c). The dominant soil types 5 

(loam) and 6 (silt loam); and soil types 8 (silty clay loam) and 9 (clay) as presented in Fig. 1d are 585 

associated with the grassland and savanna biomes respectively, as shown in a study by Stevens et al. 

(2015), the grass land and savanna biomes are dominant in this study area.  
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 588 

Figure 11. The covariance of soil moisture, per soil type computed between the residuals of CCAM-CABLE 

and GLEAM-v3a (red), GLEAM-v3b (green) and GLEAM-v3c (blue) soil moisture products, a) boxplots 

showing the spread of the covariance per model and soil type, the horizontal lines in the box plots represent the 591 
median, and b) bar plots of the median of the covariance. 

The spread of the covariance, as grouped by soil types, is presented in Fig. 11a. In general, the 

covariance between the residuals of CCAM-CABLE and GLEAM models is positive. In particular, 594 

the spread of the soil moisture covariance generally ranges between 2 and 4. This is indicative that 

there exists mutual information or joint variation even on time scales shorter than seasons between the 

respective signals. Based on the inter-quartile range (i.e., height of the bars of the boxplots) we 597 

observe that there is a pronounced variability in soil moisture covariance between CCAM-CABLE 

and all the GLEAM products across different grid cells. However, across the soil types the spread is 

mostly comparable. The comparability is in the sense that all box-and-whisker plots have appreciable 600 

overlaps within the inter-quartile range. This indicates comparable spatial uncertainty on the 

covariance among soil types and models. Clearly, the averaging done for the soil classes also 

introduce a certain level of soil moisture covariance. It is therefore instructive to look at the patterns 603 

a) 

b) 
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central tendency as reflected by the median covariance of Fig. 11b. The covariance of the median 

values is a preferable measure as it is sensitive to outliers (i.e., values beyond the whiskers ends), as 

opposed to the mean per soil category.   606 

It is worth noting that median covariance between CCAM-CABLE and all the GLEAM models 

outputs occur mostly at the dominant soil types (i.e. 4-sandy clay; 5-loam; 6-silt loam and 7-silt). This 

is indicative that there is a fair amount of data points that lie further apart from their associated grid 609 

cell mean. This could mean that the respective distributions, for a specific grid cell whose covariance 

is calculated, have comparable synchronous points that lie apart from the mean or one of the soil type 

distributions is having such outlying points. The latter is likely to be predominant in the case where 612 

there are some time lags as demonstrated in Fig. 8. This alludes to differences in the representation of 

inter-annual variation by the simulation and GLEAM model estimates as highlighted in section 3.1. 

This indicates that despite the fact that there is joint variation between the simulation and GLEAM 615 

models there exists non-negligible variability within these respective soils types which can potentially 

be uncovered by studying responses to various soil moisture drivers as modelled through the 

respective approaches. As mentioned earlier, these dominating soil types are generally important for 618 

agricultural purposes which make it very relevant for further investigations. The least pronounced soil 

class covariance mean between the simulation and GLEAM models occurs in soil type 12 (silty clay). 

This is one of the least dominating types. In this case there are very few grid-points for a meaningful 621 

comparison against other categories. In summary, from the regional covariance calculation we learn 

that there is existence of joint variation at short time scales between the simulation and GLEAM 

estimates. Apart from this, there is a fairly modest level of model uncertainty between CCAM-624 

CABLE and GLEAM products, which is comparably reflected across all soil types. We strongly feel 

that attribution of its inherent sources merit a further investigation.     

4 Conclusions 627 

In this study, the ability of a process based simulation model (CCAM-CABLE), satellite data driven 

models estimates (GLEAM) and satellite observations (ESA-Active, -Passive and -Combined) are 

evaluated against site specific in situ observations from two flux tower sites namely, Skukuza and 630 

Malopeni. The sites are situated within the Kruger national Park in South Africa. The evaluation is 

done for two soil depths namely; surface (SSM, i.e., 0-10 cm) and root zone soil moisture (i.e. 10-100 

cm) with the objective of understanding how the respective data products capture characteristic 633 

patterns of soil moisture within a 25 km grid box that enclose the study sites. The evaluation includes 

an assessment of qualitative features of long term (i.e. multi-year) and short term (i.e., monthly) 

averages of the soil moisture signal relative to in situ measurements from each of the two flux tower 636 

sites. We learn that all the soil moisture products at all depths present higher magnitudes of soil 

moisture compared to observations, though the simulation output at Malopeni flux site, which is 

closer to observations in magnitude. The difference in magnitude may be attributed to difference in 639 

length scale between in situ measurements and the rest of the products. The study therefore placed 

much focus on features of the soil moisture signal which may be attributed to as responses to generic 

influences of the climatic systems for the region. The coefficient of determination (R
2
), however 642 

reveals that most of the soil moisture products for the sites have an appreciable level of similarity 

(mostly R
2 

> 0.5) at all depths. A qualitative analysis of the time averaged soil moisture signal, for all 

the products, indicates that satellite observation and satellite based model estimates capture most of 645 

the inter-annual structure of the soil moisture signal. We also learn from this study that all GLEAM 

models compare well with the in situ observation in reflecting the seasonality of soil moisture. In 

particular, the products portray that there is a more pronounced soil moisture, for the Southern 648 
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hemisphere during the period October-March relative to May-September. It is therefore 

recommendable that satellite derived model estimates be used as surrogate observations for forcing 

process based models. In particular, this can be done for instances where inter-annual variability as 651 

well as seasonal patterns of the soil moisture are of particular interest.   

The CCAM-CABLE simulation model effectively represents the seasonality of the soil moisture 

signal for the sites, however the simulation model fails to reflect short time scale effects such as the 654 

rise in soil moisture observed in April and November. The simulation strength in reflecting the 

changes in soil moisture across seasons demonstrates that it could be used to test the implications of 

long term land cover changes on soil moisture patterns.  There is however, a need for further 657 

investigation into the sensitivity of the simulation model’s hydrological scheme to changes in the soil 

moisture drivers within inter-annual time scales. 

The study also investigated the level of uncertainty between GLEAM models and the CCAM-CABLE 660 

simulation. In particular the wavelet analysis is used to reveal, at a qualitative level, how periodic 

features of the soil moisture signal compared between the simulation and the estimates produced by 

GLEAM models. In this case, the emphasis is on evaluating the extent to which both approaches have 663 

a joint variation or shared mutual information. The analysis has successfully revealed that both the 

simulation and model estimates equally reflect the periodic seasonal pattern of soil moisture, however 

there is a predominant time lag between GLEAM products and CCAM-CABLE. The time lag is 666 

mostly of a time scale not exceeding a month at all soil depths (i.e., it mostly lies between 5 and 20 

days) during the studied years (2001-2014). We conclude that the major difference in the long term 

and short term feature of the soil moisture signal, between CCAM-CABLE and GLEAM models 669 

estimates can be attributed to, among other factors, their difference in capturing inter-annual patterns 

of the soil moisture signal. This is also supported by the existence of a non-negligible level of 

uncertainty on the onset and offset of the wet period which is calculated for the CCAM-CABLE and 672 

all GLEAM models outputs.  

Despite the existence of uncertainty, we affirm that there is appreciable mutual information on the soil 

moisture signal from the simulation and GLEAM models. This is also reflected by the regional 675 

patterns of the covariance between the CCAM-CABLE and GLEAM-v3c signal. The covariance of 

soil moisture between CCAM-CABLE and GLEAM is obtained from the residuals of the de-trended 

soil moisture time series. It is found to be mostly positive for all soil and vegetation types. Looking at 678 

the spread of the covariance values within the study region, as well as their associated median values 

as grouped by soil types, we conclude that the extent of the shared features is not limited to the 

seasonal time scale. The covariance does not vary too strongly among the dominating soil types. In 681 

general the covariance matric ranges between 2 and 4.  

The difference in the soil moisture signal structure, at inter-annual time scale, between the simulation 

and GLEAM models, opens-up an interesting question relating to the extent to which the influence of 684 

different drivers of soil moisture is represented by the studied simulation and estimation approaches. 

To understand this, future research will benefit from investigating the influence of changes in soil 

moisture drivers, particularly change in vegetation cover and soil type, on soil moisture memory. It 687 

will also be interesting to unearth the effects of extreme weather and climate change induced pattern 

on the long term soil moisture pattern persistence. In this regard, it would be interesting to uncover the 

tipping or breaking points of trends in soil moisture. To this effect, we find the GLEAM products soil 690 

moisture patterns worth further investigation using various statistical approaches including machine 

and deep learning algorithms to gain a deeper understanding of soil moisture response to climatic and 

land management related effects.    693 
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5 Appendix A 861 

 

Figure A1. Comparison of monthly modelled and satellite products (red line) with CCAM-CABLE (blue line) 

surface (0-10 cm), and root zone (10-100 cm) soil moisture at the Skukuza (2001–2014) site. 864 

 

Figure A2. Comparison of monthly modelled and satellite products (red line) with CCAM-CABLE (blue line) 

surface (0-10 cm), and root zone (10-100 cm) soil moisture at the Malopeni (2008–2013) site. 867 
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6 Appendix B 

 

Figure B1. Phase difference between surface soil moisture simulated using CCAM-CABLE, and GLEAM v3a 870 
at Skukuza between 2001, and 2014 at period 12 at the surface. 
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