日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

Data Publication

Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years

Authors
/persons/resource/Georg.Feulner

Feulner,  Georg
Potsdam Institute for Climate Impact Research;

/persons/resource/mona.bukenberger

Bukenberger,  Mona
Potsdam Institute for Climate Impact Research;

/persons/resource/petri

Petri,  Stefan
Potsdam Institute for Climate Impact Research;

URL
There are no locators available
フルテキスト (公開)
There are no public fulltexts stored in PIKpublic
付随資料 (公開)
There is no public supplementary material available
引用

Feulner, G., Bukenberger, M., & Petri, S. (2023). Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years. doi:10.5880/PIK.2022.003.


引用: https://publications.pik-potsdam.de/pubman/item/item_28368
要旨
The atmospheric concentration of CO2 at which global glaciation (snowball) bifurcation occurs, changes throughout Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective, but also an important prerequisite for understanding past Snowball Earth episodes as well as the conditions for habitability on Earth and other planets. Here we use the coupled climate model CLIMBER-3α in an Aquaplanet configuration to scan for the Snowball bifurcation point for time slices spanning the last 4 billion years, thus quantifying the time evolution of the bifurcation and identifying a qualitative shift in critical state dynamics.