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Introduction
Agriculture has been closely interwoven with human development for centuries and is now 
a core issue of the Anthropocene. The Neolithic (first agricultural) Revolution, and later the 
Green Revolution, transformed nature into a cultivated landscape and decisively shaped social 
landscapes, thus creating the basis for our modern society.

The Green Revolution in the 1950s and 1960s led to a significant increase in productivity 
through modern machinery, artificial fertilisers and highly bred crop varieties (Evenson & 
Gollin, 2003). At the same time, the impact on the environment, including on soils, water quality 
and biodiversity, has often been neglected. As the world’s population and the demand for 
agricultural products is growing further, the environmental impacts are not only becoming more 
acute, but also have long-term implications for food security itself. Global food systems will 
remain highly dependent on ecosystem services and abiotic factors, some of which are also 
changing for the worse, most notably climate (Foley et al., 2005; Wheeler & von Braun, 2013).

The planetary boundaries (PBs) framework (Rockström et al., 2009; Steffen et al., 2015) provides 
a coherent global-scale reference system to quantify the overall influence of these environmental 
impacts on the Earth system and on human societies. It defines boundaries for nine Earth system 
processes – among them climate change, freshwater use, land-system change and changes in 
biogeochemical flows such as nitrogen and biosphere integrity – which together demarcate a 
Holocene-like Earth status. The underlying normative, precautionary principle of the framework 
is that the PBs should not be transgressed. Otherwise, we threaten the safe operating space for 
humanity, and risk tipping the Earth onto a trajectory that departs significantly from Holocene 
conditions (which have enabled the emergence and sustenance of a human civilisation with 
billions of people) to minimise the risk of large-scale disruptions and destabilisation of our planet.

Modern practices of conventional farming (CF) are placing increasing pressure on many of 
the PBs; indeed, agriculture is the main driver of current PB transgressions (Campbell et 
al., 2017; Gerten et al., 2020). For example, CF practices compromise the integrity of the 
(terrestrial) biosphere through the cultivation of large monocultures and invasive tillage. 
Degradation of soils and other resources, such as freshwater influenced by nutrient leaching, 
leads to changes in the natural flow regime of rivers. Processes such as water extraction 
for irrigation of agricultural land have serious consequences for the aquatic and adjacent 
terrestrial ecosystems (Gerten et al., 2013), and represent transgressions of the freshwater 

Abbreviations:
CA	 Conservation agriculture

CF	 Conventional farming

CoP	 Community of practice
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RA	 Regenerative agriculture

SES	 Social–ecological system

SI	 Sustainable intensification
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PB. Agricultural practices can also adversely affect the status of the freshwater PB through 
changes in soil moisture. Tillage and soil degradation lead to a constant reduction in soil water-
holding capacity and net losses in root-zone soil moisture (Wang-Erlandsson et al., 2022).

Moreover, the widespread introduction of artificial fertilisers 
into a previously balanced nutrient cycle has greatly changed 
cultural and natural landscapes, with negative consequences for 
biodiversity, the climate (contributing to climate change through 
greenhouse gas emissions) and soil and water quality (Baessler & 
Klotz, 2006; Foley et al., 2005).

A further terrestrial PB directly affected by agricultural practices 
is land-system change, via conversion of natural areas into 
arable land at the cost of large contiguous ecosystems that are 
important for many functions of the Earth system. To stay within 
this and the other PBs, and to potentially reverse its current 
transgression, it is essential to increase productivity on the 
already existing agricultural land – to ensure food security while 
not putting Earth stability at further risk (Campbell et al., 2017).

In this article, we provide a preliminary analysis of the potential effects on soil ecology and 
crop yield of a global-scale transition to regenerative agriculture. Previous analyses have 
only focused on the biophysical potential of resource-efficient measures for increasing global 
agricultural production (Gerten et al., 2020; Springmann et al., 2018). Here, we quantitatively 
and conceptually advance the field by also considering potential social spreading dynamics 
that actually determine whether – and to what extent – farmers would adopt such practices. 
Although 11% of the world’s population are farmers, agriculture does not provide a good/stable 
livelihood for many. Economically, farmers are often dependent on government subsidies and 
have fluctuating incomes. This is due to numerous factors, such as the high cost of fertilisers, 
dependence on certain types of grains and unstable markets for their produce. In some 
regions, changing climatic conditions are altering the farmers’ environment to the extent that 
they must abandon their land because the soils are no longer fertile enough to be viable.

Sustainable agriculture
To overcome the negative consequences of conventional farming, alternative approaches have 
arisen in recent decades. These are often subsumed under the term sustainable agriculture, 
defined by the Food and Agriculture Organization (FAO) as “ ... the management and 
conservation of the natural resource base and the orientation of technological and institutional 
change in such a manner as to ensure the attainment and continued satisfaction of human 
needs for present and future generations. Such sustainable development ... conserves land, 
water, plant and animal genetic resources, is environmentally non-degrading, technically 
appropriate, economically viable and socially acceptable” (FAO, 1989, p. 65).

It is essential to 
increase productivity 

on the already existing 
agricultural land – to 
ensure food security 

while not putting Earth 
stability at further risk
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Various approaches have been developed and implemented to achieve this transformation (Oberč 
& Arroyo Schnell, 2020). One established approach is conservation agriculture (CA), which has 
its roots in conservation tillage as a solution that emerged from the “Dust Bowl” that affected US 
and Canadian prairies in the 1930s (Hobbs, 2007). In the 1970s and 1980s, this approach was 
complemented by the practice of intercropping and crop rotations and has been employed widely 
under the label CA since the 1990s. The FAO highlights three key principles of CA:

	� Minimisation of soil disturbances

	� Enhancement or maintenance of a protective organic cover

	� Cultivation of a wide range of plant species (FAO, 2011).

Over the years, CA has proved capable of halting and even reversing soil degradation, thus 
regenerating soil quality. Due to its historical origins in North and South America, CA is already 
widespread in these regions, while in Europe it is still mainly a niche activity. Part of the reason for 
this are the high upfront costs: converting land to CA is expensive, so are the required machines, 
so it must be possible to amortise the investment accordingly. In addition, yields are sometimes 
lower in the first few years and will only improve if certain conditions are available (Pittelkow et al., 
2015). For decades, subsidies have helped farmers in the United States to implement CA.

Nevertheless, CA has a number of advantages, such as the reduction of machinery use with 
savings especially in fuel consumption, the reduced use of expensive artificial fertiliser, and the 
higher resilience of CA to anthropogenic climate change compared with CF (Michler et al., 2019). 
An intelligent application of CA’s three core principles can also reduce the use of pesticides and 
herbicides; in particular, the right choice of cover and crop rotations plays a decisive role (Nichols 
et al., 2015; Pretty et al., 2006). Through these positive effects, CA can potentially reduce the 
strains on different PBs, especially those for freshwater and biogeochemical flows.

CA forms a basis for many other sustainable agriculture approaches, as does regenerative 
agriculture (RA), which was developed in the 1980s and shares CA’s principles for soil health. 
For instance, RA is also strict about the use of pesticides and herbicides, both of which are 
kept to a minimum. Where RA diverges is its broader focus on increasing biodiversity in general 
and creating a closed nutrient cycle in combination with livestock management at farm level. It 
includes additional approaches such as manure composting, rotational grazing and silvopasture 
in grassland management (Smith et al., 2021). In practice, RA and CA involve similar cropping 
systems and the terms are often used interchangeably. Some scholars and practitioners 
additionally ascribe a social dimension to RA (Müller, 2020). Some of the more holistic 
regenerative approaches transcend soil regeneration and additionally aim at “regenerating” 
the social aspects related to agriculture. For example, in terms of good livelihoods, social 
relationships and stable incomes (LaCanne & Lundgren, 2018), future perspectives, and (re)
building human–nature relationships (E. Gordon et al., 2022; Hes & Rose, 2019).
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Social mechanisms of a land-use transformation
Agricultural systems are intrinsically social–ecological (L. J. Gordon et al., 2017; Meyfroidt, 
2013). That is why a transformation towards agricultural systems respecting PBs while 
supporting livelihoods cannot be understood and enabled without considering the deeper 
societal processes driving the change. Developments in the emerging and transdisciplinary 
field of “transition studies” address the question of how such profound change can come into 
being (Holtz et al., 2015; Olsson & Galaz, 2012; Walker et al., 2004). Within the sub-field of 
land system transitions, scholars have highlighted the broad variety of drivers in additional to 
economic dynamics (Burton et al., 2020; Dessart et al., 2019; Maybery et al., 2005). While 
economic elements are certainly important, we focus on social contagion, social learning 
and social tipping points. We deem this to be a relevant lens for understanding diverse 
characteristics of transformative change (Conley & Christopher, 2001; Schneider et al., 2009).

Social contagion is a concept that helps to understand the phenomenon of novel practices, 
behaviours, opinions or ideas spreading in social networks (Lehmann & Ahn, 2018; Tsvetkova 
& Macy, 2014). It originates in the “theory of diffusion of innovations” postulated by Everett 
Rogers (1962), and in modern applications encompasses diverse forms of interaction-based 
contagion processes (Peres et al., 2010). Rogers described the agents picking up a novel trait 
in early stages as the system’s “innovators” and “early adopters”. During a social contagion 
process, a certain trait, for example regenerative farming behaviour, is passed from these “early 
acting agents” to another agent in one’s social network (to a certain probability, depending on 
their susceptibility). Scholars distinguish between simple and complex contagion; while both 
can be helpful for understanding such processes, the adoption of RA cannot be expected to 
spread like a virus or a piece of information, as a simple contagion process would suggest 
(Centola & Macy, 2007). The adoption of novel opinions and behaviour is better understood 
as complex contagion, implying the necessity of several interactions with novel practices for 
behavioural change (Kitzmann et al., 2022), such as via continuous interactions with one’s 
social environment, or in social learning contexts.

There is ample evidence that individuals tend to coordinate with others or to conform to the social 
norms that are prevalent in the social groups and networks they are associated with (Bicchieri, 
2016; Centola et al., 2018; Farrow et al., 2017; Nyborg et al., 2016). Conformity to social norms 
has many underlying mechanisms. It may be driven by fear of sanctions or a desire to do what 
is socially acceptable, perceived benefits to coordinating with others, and information implicit in 
social norms about what works or what is appropriate in certain contexts.

Social learning describes a class of related mechanisms that can be seen as the foundation of 
social contagion processes (Reed et al., 2010). For example, imitation of a successful strategy 
or practice can be classified as a form of “single-loop learning”: a process of behavioural change 
and improvement of action strategies with the aim to reach better outcomes, without necessarily 
challenging underlying assumptions, concepts, theories or value systems on the basis of which 
a given decision was made (Pahl-Wostl, 2009). In the context of RA, this could manifest as 
the adoption of RA practices to increase farm profitability through carbon capture credits or 
payments for ecosystem services. In contrast, behavioural changes driven by changes more 
deeply anchored in individual value systems can be conceptualised as double- and triple-loop 
learning processes (Gupta, 2016).
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Double-loop learning involves questioning variables, such as underlying goals, assumptions, 
problem framing, and individual priorities. For instance, this could be an action taken by a farmer 
who has asked themselves: do I want my agricultural practices geared towards maximising yields, 
or building up humus for healthier soils? In a triple-loop learning process, a learner proceeds one 
step further and additionally questions values and normative beliefs underlying those factors, 
which in turn can lead to an adjustment of one’s world views (Tosey et al., 2012). Therefore, 
triple-loop learning has the potential to alter human–nature relationships at a deep level, as 
well as reshape the “reference framework” considered when laying out an action strategy. A 
sense of deeper connectedness with one’s land, as sketched in the concept of “environmental 
stewardship”, can be regarded as an outcome of a triple-loop learning process and act as a 
foundation for novel land-use decisions. Individually held values regarding a given farming 
practice have been found to impact land-use style (Dessart et al., 2019; Gosnell et al., 2019). 
Value shifts can be facilitated through networks and group contexts, such as farmer communities 
of practice (CoPs) like Costa Rica Regenerativa or the Climate Farmers.

Learning processes can take place locally and non-locally. Direct exposure to a novel farming 
system (e.g., by means of a neighbouring farm) can be the decisive factor (Schneider et al., 
2009), but geographical proximity is not a necessary precondition for learning to take place. For 
example, CoPs can act as social networks connecting farmers and thereby providing learning 
spaces non-locally (Conley & Christopher, 2001; Morgan, 2011; Wenger, 1998). Another example 
is the influence that family members living abroad can have on a farmer’s decisions, which is 
observed in Laos where Laotian relatives living in the diaspora had a decisive impact on rubber 
tree adoption in their original homeland (Junquera et al., 2020). Social learning processes have 
the potential to shape the learning environment, and could consequently have an impact on the 
social fabric of institutions, practices and norms. In turn, this deep impact could be an important 
accelerator for social tipping points.

Social tipping points can be critical levers within a social system as, when systematically targeted 
through certain interventions, they could trigger rapid social transitions (Otto et al., 2020; 
Winkelmann et al., 2022). On the one hand, purely social or socioeconomic tipping points can be 
identified (Doyle et al., 2016); same-sex marriage acceptance or the condemnation of smoking 
in public places are examples (Nyborg et al., 2016). On the other hand, within social–ecological 
systems research, there is the additional criterion of social shifts being linked to change in the 
ecological system (Milkoreit et al., 2018). Climate change mitigation has to date been at the 
centre of social tipping point research (Otto et al., 2020); however, the concept has also been 
applied to agricultural transitions (Smith et al., 2021).

Taken together, the concepts of social contagion, social learning and social tipping processes 
create a perspective of well-documented and well-investigated societal transition dynamics. 
They offer new ways of thinking about how agricultural systems could be transformed to more 
sustainable and regenerative approaches – at individual, societal and even global levels. Such 
concepts complement the purely biophysical aspects of transitions, by considering the social 
dynamics that could drive their implementation in the real world.
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Simulating a giant leap in agriculture
Following Earth4All’s overall transformative Giant Leap scenario (Dixson-Decleve et al., 2022), 
rapid change is needed, especially in agriculture, to transform the current mostly conventional 
farming systems into sustainable ones. To restore soil health and maintain food security in a 
rapidly changing global climate, measures such as those described in that scenario must be 
implemented quickly. Dietary habits can adapt comparatively quickly following changing social 
norms, while equilibrium processes in the biosphere, especially plant–soil interactions, can take 
comparatively long periods of time as a result of changes in agricultural management (Herzfeld et 
al., 2021a). Here, we simulate an idealised global transition, analogously referred to as the Giant 
Leap, parameterised as a step change within one year (2022) from CF to RA, assuming that RA 
practices are applied worldwide immediately (see Table 1). Our study uses the dynamic global 
vegetation and crop model LPJmL (Schaphoff et al., 2018; von Bloh et al., 2018). This preliminary 
analysis aims to roughly indicate the biophysical potential of a transition to RA in reducing the 
anthropogenic pressure on the terrestrial PBs that are being transgressed due to widespread 
conventional agricultural practices. The study extends an earlier analysis (involving a previous 
version of LPJmL) that showed how efforts to sustainably intensify agriculture can feed a global 
population of 10 billion within the PBs (Gerten et al., 2020). New features and management 
options enable us to focus attention on soil health and its wider implications for ecosystem 
resilience and food security (Lutz et al., 2019; Porwollik et al., 2021). Table 1 summarises the 
options relating to tillage, residue removal and crop covering within the Too Little Too Late and 
Giant Leap scenarios. Future climate change is not considered; instead, the last 10 years of 
climate inputs up to 2019 are repeated until 2035, as additional climate change would amplify 
several impacts and include additional feedbacks, making it difficult to assign to the underlying 
problem in each case (Herzfeld et al., 2021b).

Table 1. The Too Little Too Late and Giant Leap scenarios simulated by LPJmL, with the Giant Leap diverting from 
Too Little Too Late in 2022 with a global transition to RA with the listed measures. 

Scenario 
		

Too Little  
Too Late 

Giant  
Leap

Timespan 
(years)

1901–2035 
 

2022–2035

Crop residue 
management

Residue 
removal 

No residue 
removal

Tillage 

Conventional 
tillage 

No tillage

Cover 
cropping

No cover 
cropping 

Cover 
cropping

Climate 
scenario

No additional 
future climate 
forcing

No additional 
future climate 
forcing
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Biophysical effects of regenerative agriculture
One effect seen in the model is that soil evaporation quickly decreases when soil cover by 
plant litter increases after harvest. Soils contain higher moisture levels, including root-zone soil 
moisture – making more water available to the plants. Transpiration also increases in many areas 
as a result of water uptake, and the rates are even higher when crops are cultivated in given 
areas. The net impact on soil moisture therefore varies depending on the prevailing conditions 
in any given region, though most regions do see higher plant-available soil moisture. On a 
global scale we find a net increase in root-zone soil moisture of about 4.3% on all land in the 
Giant Leap compared with Too Little Too Late. This makes conservation agriculture a suitable 
countermeasure in regions where transgressions in the Green Water PB in terms of dry baseline 
departures can be observed (Wang-Erlandsson et al., 2022).

Figure 1. Evaporation and transpiration flux changes (in %) and corresponding 
difference in the root-zone soil moisture on agricultural land of the Giant Leap over 

Too Little Too Late for simulation year 2035, simulated by LPJmL.
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In addition to water fluxes, carbon fluxes are also simulated to change considerably. The 
assumed constant soil cover and absence of any soil turnover leaves soil less exposed to the 
atmosphere, whereby less carbon is oxidised and thus emitted as CO2. The additional crop 
residue/litter biomass shifts the balance of soil carbon processes in favour of a temporary 
accumulation of soil organic carbon.

As a result, the soil carbon stocks start to increase already in the first years after the simulated 
global transition to RA compared with Too Little Too Late. Increases are especially pronounced 
in the tropics as well as in presently intensively farmed areas such as the eastern United States, 
India or Eastern China as shown for the year 2035 (with constant climate) in Figure 2. Already 
by 2035, after 13 simulation years in our stylised experiment, cumulative carbon sequestration 
would thus reach a global total of about 26 GtC in the Giant Leap scenario.

Figure 2. Soil carbon increase on agricultural land of the Giant Leap over Too Little Too Late for the year 2035.

An increase in the amount of soil carbon has several effects on the soil. It is an indicator for the 
increase of micro- and macro-organisms in the soil, and for the general increase of the water-
holding capacity (as an additional benefit for a net increase in root-zone soil moisture) and the 
fertility of the soil (Stockmann et al., 2013). Soil biodiversity increases thanks to the undisturbed 
natural soil structure and the long-term naturally grown soil organic matter under no-till 
conditions (Palm et al., 2014). Ecological resilience increases via the interplay of these factors, 
especially in the face of climate change (Michler et al., 2019).

Boosting soil fertility is a key to compensating for the negative yield effects of not tilling the soil, 
especially within the first years and in humid regions. Figure 3 shows that high yield increases are 
simulated to occur mainly in drier regions where water is scarce and therefore reducing evaporation 
has a great benefit. Even though these simulations do not take into account the far-reaching 
impacts of climate change, it can be expected that a more resilient land-use system will perform 
better under more extreme climate conditions (Herzfeld et al., 2021b; Jägermeyr et al., 2016).
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In the Giant Leap some tropical regions show a negative effect on the yield where water-saving 
effects play a minor role and fertilisation is historically low, which is also in line with findings in 
other studies (Cusser et al., 2020). Cover crops in LPJmL are currently parameterised only as 
catch crops, that rather take up nitrogen instead of fixing additional nitrogen and passing it on 
to the main crops in mineralised form during decomposition, which is why positive effects from 
green manure might be underestimated in the simulations. Positive effects could be achieved by 
fixing additional atmospheric nitrogen and making it plant available in the beginning of the main 
season, which the current cover crop implementation does not simulate. Nevertheless, the overall 
global effect is positive with a net yield increase of about 5%, mainly due to the increases in dry 
areas such as the western United States, Spain or South Africa indicating that RA has a higher 
resilience to drought stresses potentially triggered by climate change.

Figure 3. Simulated yield changes in the Giant Leap compared with Too Little Too Late for 2035.

Social spreading dynamics – conceptualising how a 
turnaround to regenerative agriculture could unfold
The above spatially detailed – if highly hypothetic – modelling results draw a promising picture 
of the large potential that could be unlocked with a widespread transformation of existing, 
conventional agricultural practices towards RA systems. However, as in many previous scenarios 
without explicit representation of social dynamics, they assume an immediate, worldwide “Giant 
Leap switch” whereby every farmer in the world would adopt RA practices irrespective of their 
current technological, economic, social and political setting. In reality, these transformations 
would be driven by social-cultural-political-economic dynamics, which evolve over time. They can 
be partly conceptualised (and eventually quantified) by the concepts of social contagion, learning 
and tipping points described above.
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There are certain world regions, mainly in the Americas, where CA as a practice is already 
widely accepted as a social norm in agriculture (see Figure 4). These regions, depicted in light 
green, can act as seeds of change, i.e. as pioneering places of social contagion and diffusion of 
innovation, from which RA can spread to other regions and farmers.

Figure 4. The yellow colours show areas in which the conditions for RA are favourable, and that have 
therefore been assessed as having a high likelihood for RA adoption. These conditions are based both 

on biophysical (humidity, crop types, water erosion) and social-ecological (farmer field size and income) 
factors. Spatial information of the conditions illustrated here stem from Porwollik et al. (2021).

Figure 5. Adjacent areas of CA-dominated localities that have a high likelihood of CA adoption 
through local learning processes (purple, with curved arrows), areas potentially subject to CA 

adoption through to non-local spreading processes (pink, with dashed arrows). Both trends for 
illustrative purposes only. The arrows indicate the direction of spread for selected examples.

Areas with CA-favourable conditions CA current spread
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The purple areas in Figure 5 depict neighbouring regions of current RA-dominated areas with 
supportive conditions for RA (i.e. yellow-zone regions that have borders with green zones). 
These purple-coloured areas are candidates for the adoption of RA through local spreading 
and contagion processes, such as social norm compliance-driven imitation or experimental 
social learning, for example by visiting neighbouring farms and witnessing the feasibility and 
advantages of RA first hand.

The pink colour in Figure 5 highlights that such spreading processes are not only limited to 
happening locally between neighbouring farms, but can also take place in a region or over even 
larger scales. They highlight examples of where RA could spread through non-local processes 
and social networks. International organisations and social farmer networks/CoPs provide non-
locally bound spaces for exchange and social learning, and therefore non-local spreading of 
RA. Both purple and pink areas are illustrations of possible spreading outcomes through local 
and non-local mechanisms. They are not underpinned by spatially resolved empirical data but 
illustrate the spreading potential based on case studies and the theories of change introduced 
above.

One example for both local and regional spreading processes is seen in West Africa, facilitated by 
Warc, an organisation with agricultural production and consulting services. Beginning operations 
of RA in Sierra Leone, the Warc group quickly won over more smallholder farmers in the region 
through extension programmes. Now, they operate over 5,000 ha in Sierra Leone and Ghana in 
cooperation with over 1,000 smallholder farmers. The success of the system strengthens their 
appeal: in Sierra Leone, they managed to sustain productive farming seasons without irrigation, 
using mainly crop-rotations and minimal soil disturbance. Other comparable organisations 

are the Rodale Institute and the Savory Institute (2022), which 
have worldwide regional hubs and offer training, workshops and 
extensionist services. Networks such as the Climate Farmers and 
Costa Rica Regenerativa have a similar approach, but put a special 
emphasis on connecting regenerative farmers and farms that 
already exist.

The concepts introduced in this article can help RA to spread 
through a variety of processes. To gain momentum over a larger 
scale, the transition also requires support from the surrounding 
conditions. For instance, it depends on the farmers’ political and 
institutional embeddedness, public opinion and the economic 
situation, and it might also be triggered by landscape-level system 
shocks such as the aforementioned Dust Bowl. If the system is 
ripe for change, the RA movement can potentially reach a social 
tipping point, which could accelerate widespread system change in 
agriculture – even beyond that provisionally illustrated in Figures 4 
and 5 (Smith/Donges et al., in prep).

If the system is ripe for 
change, the regenerative 

agriculture movement 
can potentially reach 
a social tipping point, 

which could accelerate 
widespread system 

change in agriculture

https://www.warcgroup.com/
https://rodaleinstitute.org/
https://savory.global/
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We aim to represent these different spreading processes using a model that links LPJmL 
(simulating biophysical changes and potentials as shown above) to an agent-based model of 
farmer social dynamics using the copan:CORE framework (Donges et al., 2020). Within the 
model, farmers are the agents of change, with an option of practising RA or CF, based on 
observing their neighbours’ strategies, interacting with them and learning from them according to 
the different (alternative) spreading principles presented above. LPJmL subsequently calculates 
how harvests and biophysical conditions will change at each site, and whether and to what 
extent farmers’ choices will help to maintain local and global planetary boundaries. These 
results finally inform farmers’ decision-making simulated in the agent-based model. This coupled 
modelling investigates spreading and adoption dynamics of RA beyond theoretical and qualitative 
foundations, and will complement the pure biophysical assessments of hypothetical potentials 
found in earlier global simulation studies (Gerten et al., 2020). Such assessments are central to 
operationalising knowledge about the benefits of RA systems and applying it to the real world.

Conclusion
In this deep dive, we have illustrated the potential of RA to address some of 
the most urgent challenges of our time in social–ecological land systems. 
Restoring and conserving healthy soils and creating resilient farming systems 
to provide food security, while adapting to climate change impacts such as 
droughts and extreme weather events, are central to a global food systems 
turnaround. Extending from the biophysical analysis, we also highlight the 
importance of social dynamics relating to the adoption of RA, and we lay out 
the potential of social contagion, social learning and social tipping points for 
a widespread land-use transformation. Finally, we stress the need to provide 
enabling conditions for RA practices to spread effectively.

In reality, the surrounding factors and conditions can also prove to be 
obstacles to such transformations: elements such as economic, institutional 
and political constraints, and distorted power structures manifested, for 
example, in a strong lobby of large conventional agri-food corporations, can 
hinder far-reaching transformative change. The potential of social diffusion 
processes thus depends on the institutional, political and economic climate 
in which they unfold. For this reason, the drivers of change are clearly not 
limited to farmers and their individual learning processes, but are distributed 
across individual actors and larger structures, which consequently also bear 
significant responsibility for supporting such transition processes.
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