Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Auderset, Alexandra; Moretti, Simone; Taphorn, Björn; Ebner, Pia-Rebecca; Kast, Emma; Wang, Xingchen; Schiebel, Ralf; Sigman, Daniel M; Haug, Gerald H; Martínez-García, Alfredo (2022): Cenozoic TEX86-derived global SST compilation including new data from ODP/DSDP Sites 72-516, 90-588, 108-667, 114-704, 117-730, 121-754, 184-1146 and 208-1263 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.943369, In: Auderset, A et al. (2022): Cenozoic foraminifera-bound nitrogen isotope records, TEX86-derived global SST compilation, and GTS-12 adjusted age models from multiple ODP/DSDP sites [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.943130

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Cenozoic global TEX86-derived sea surface temperature (SST) compilation from all published marine TEX86 records and new data measured in this study (ODP/DSDP Sites 516, 588, 667, 704, 730, 754, 1146 and 1263). This table contains all GDGT measurements, calculated indices, SSTs and SST gradients.
Keyword(s):
Cenozoic; Eocene; GDGT; latitudinal temperature gradient; Miocene; Oligocene; Paleocene; Pleistocene; Pliocene; Sea surface temperature; SST; TEX86
Source:
Auderset, Alexandra; Martínez-García, Alfredo; Tiedemann, Ralf; Hasenfratz, Adam P; Eglinton, Timothy Ian; Schiebel, Ralf; Sigman, Daniel M; Haug, Gerald H (2019): Gulf Stream intensification after the early Pliocene shoaling of the Central American Seaway. Earth and Planetary Science Letters, 520, 268-278, https://doi.org/10.1016/j.epsl.2019.05.022
Bijl, Peter K; Bendle, James A; Bohaty, Steven M; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E; McKay, Robert M; Röhl, Ursula; Olney, M; Sluijs, Appy; Escutia Dotti, Carlota; Brinkhuis, Henk; Expedition 318 Scientists (2013): Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences of the United States of America, https://doi.org/10.1073/pnas.1220872110
Bijl, Peter K; Schouten, Stefan; Sluijs, Appy; Reichart, Gert-Jan; Zachos, James C; Brinkhuis, Henk (2009): Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature, 461, 776-779, https://doi.org/10.1038/nature08399
Boscolo-Galazzo, Flavia; Thomas, E; Pagani, M; Warren, Courtney E; Luciani, Valeria; Giusberti, Luca (2014): The middle Eocene climatic optimum (MECO): A multiproxy record of paleoceanographic changes in the southeast Atlantic (ODP Site 1263, Walvis Ridge). Paleoceanography, 29(12), 1143-1161, https://doi.org/10.1002/2014PA002670
Burgess, Catherine E; Pearson, Paul N; Lear, Caroline H; Morgans, Hugh E G; Handley, Luke; Pancost, Richard D; Schouten, Stefan (2008): Middle Eocene climate cyclicity in the southern Pacific: Implications for global ice volume. Geology, 36(8), 651, https://doi.org/10.1130/G24762A.1
Caley, Thibaut; Kim, Ji-Hoon; Malaizé, Bruno; Giraudeau, Jacques; Laepple, Thomas; Caillon, Nicolas; Charlier, Karine; Rebaubier, Hélène; Rossignol, Pascale E; Castañeda, Isla S; Schouten, Stefan; Sinninghe Damsté, Jaap S (2011): High-latitude obliquity as a dominant forcing in the Agulhas current system. Climate of the Past, 7(4), 1285-1296, https://doi.org/10.5194/cp-7-1285-2011
Cramwinckel, Margot J; Coxall, Helen K; Śliwińska, Kasia K; Polling, M; Harper, Dustin T; Bijl, Peter K; Brinkhuis, Henk; Eldrett, James S; Houben, Alexander J P; Peterse, Francien; Schouten, Stefan; Reichart, Gert-Jan; Zachos, James C; Sluijs, Appy (2020): A Warm, Stratified, and Restricted Labrador Sea Across the Middle Eocene and Its Climatic Optimum. Paleoceanography and Paleoclimatology, 35(10), https://doi.org/10.1029/2020PA003932
Cramwinckel, Margot J; Huber, Matthew; Kocken, Ilja J; Agnini, Claudia; Bijl, Peter K; Bohaty, Steven M; Frieling, Joost; Goldner, Aaron; Hilgen, Frederik J; Kip, Elizabeth L; Peterse, Francien; Van der Ploeg, Robin; Röhl, Ursula; Schouten, Stefan; Sluijs, Appy (2018): Synchronous tropical and polar temperature evolution in the Eocene. Nature, 559(7714), 382-386, https://doi.org/10.1038/s41586-018-0272-2
de Bar, Marijke W; Rampen, Sebastiaan W; Hopmans, Ellen C; Sinninghe Damsté, Jaap S; Schouten, Stefan (2019): Constraining the applicability of organic paleotemperature proxies for the last 90 Myrs. Organic Geochemistry, 128, 122-136, https://doi.org/10.1016/j.orggeochem.2018.12.005
De Vleeschouwer, David; Petrick, Benjamin F; Martínez‐García, Alfredo (2019): Stepwise weakening of the Pliocene Leeuwin Current. Geophysical Research Letters, 46(14), 8310-8319, https://doi.org/10.1029/2019GL083670
Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem; Sluijs, Appy; Schouten, Stefan; Pagani, Mark (2014): Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proceedings of the National Academy of Sciences, 111(18), 6582-6587, https://doi.org/10.1073/pnas.1321441111
Frieling, Joost; Gebhardt, Holger; Huber, Matthew; Adekeye, Olabisi A; Akande, Samuel O; Reichart, Gert-Jan; Middelburg, Jack J; Schouten, Stefan; Sluijs, Appy (2017): Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum. Science Advances, 3(3), https://doi.org/10.1126/sciadv.1600891
Frieling, Joost; Sluijs, Appy (2018): Towards quantitative environmental reconstructions from ancient non-analogue microfossil assemblages: Ecological preferences of Paleocene – Eocene dinoflagellates. Earth-Science Reviews, 185, 956-973, https://doi.org/10.1016/j.earscirev.2018.08.014
Guitián, José; Phelps, Samuel; Polissar, Pratigya J; Ausín, Blanca; Eglinton, Timothy Ian; Stoll, Heather M (2019): Midlatitude Temperature Variations in the Oligocene to Early Miocene. Paleoceanography and Paleoclimatology, 34(8), 1328-1343, https://doi.org/10.1029/2019PA003638
Hartman, Julian D; Sangiorgi, Francesca; Salabarnada, Ariadna; Peterse, Francien; Houben, Alexander J P; Schouten, Stefan; Brinkhuis, Henk; Escutia, Carlota; Bijl, Peter K (2018): Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX<sub>86</sub>-based sea surface temperature reconstructions. Climate of the Past, 14(9), 1275-1297, https://doi.org/10.5194/cp-14-1275-2018
Hayes, Christopher T; Martínez‐García, Alfredo; Hasenfratz, Albin; Jaccard, Samuel L; Hodell, David A; Sigman, Daniel M; Haug, Gerald H; Anderson, Robert F (2014): A stagnation event in the deep South Atlantic during the last interglacial period. Science, 346(6216), 1514-1517, https://doi.org/10.1126/science.1256620
Hollis, Christopher J; Handley, Luke; Crouch, E M; Morgans, Hugh E G; Baker, Joel A; Creech, John B; Collins, Katie S; Gibbs, Samantha J; Huber, Matthew; Schouten, Stefan; Zachos, James C; Pancost, Richard D (2009): Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology, 37(2), 99-102, https://doi.org/10.1130/G25200A.1
Hollis, Christopher J; Taylor, Kyle W R; Handley, Luke; Pancost, Richard D; Huber, Matthew; Creech, John B; Hines, Benjamin R; Crouch, E M; Morgans, Hugh E G; Crampton, James; Gibbs, Samantha J; Pearson, Paul N; Zachos, James C (2012): Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models. Earth and Planetary Science Letters, 349-350, 53-66, https://doi.org/10.1016/j.epsl.2012.06.024
Inglis, Gordon N; Farnsworth, Alexander; Lunt, Daniel; Foster, Gavin L; Hollis, Christopher J; Pagani, Mark; Jardine, Phillip E; Pearson, Paul N; Markwick, Paul J; Galsworthy, Amanda M J; Raynham, Lauren; Taylor, Kyle W R; Pancost, Richard D (2015): Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography, 30(7), 1000-1020, https://doi.org/10.1002/2014PA002723
Kast, Emma; Stolper, Daniel; Auderset, Alexandra; Higgins, John A; Ren, Haojia Abby; Wang, Xingchen; Martínez-García, Alfredo; Haug, Gerald H; Sigman, Daniel M (2019): Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science, 364(6438), 386-389, https://doi.org/10.1126/science.aau5784
Keating-Bitonti, Caitlin R; Ivany, Linda C; Affek, Hagit P; Douglas, Peter M J; Samson, Scott D (2011): Warm, not super-hot, temperatures in the early Eocene subtropics. Geology, 39(8), 771-774, https://doi.org/10.1130/G32054.1
Lawrence, Kira T; Pearson, Ann; Castañeda, Isla S; Ladlow, Caroline; Peterson, Laura C; Lawrence, Charles E (2020): Comparison of Late Neogene Uk′37 and TEX86 Paleotemperature Records From the Eastern Equatorial Pacific at Orbital Resolution. Paleoceanography and Paleoclimatology, 35(7), https://doi.org/10.1029/2020PA003858
Leutert, Thomas Jan; Auderset, Alexandra; Martínez-García, Alfredo; Modestou, Sevasti; Meckler, Anna Nele (2020): Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nature Geoscience, https://doi.org/10.1038/s41561-020-0623-0
Liu, Zhonghui; Pagani, Mark; Zinniker, David; DeConto, Robert M; Huber, Matthew; Brinkhuis, Henk; Shah, Sunita R; Leckie, R Mark; Pearson, Ann (2009): Global cooling during the Eocene-Oligocene climate transition. Science, 323(5918), 1187-1190, https://doi.org/10.1126/science.1166368
Naafs, Bernhard David A; Voelker, Antje H L; Karas, Cyrus; Andersen, Nils; Sierro, Francisco Javier (2020): Repeated Near‐Collapse of the Pliocene Sea Surface Temperature Gradient in the North Atlantic. Paleoceanography and Paleoclimatology, 35(5), https://doi.org/10.1029/2020PA003905
O'Brien, Charlotte; Huber, Matthew; Thomas, Ellen; Pagani, Mark; Super, James R; Elder, Leanne E; Hull, Pincelli M (2020): The enigma of Oligocene climate and global surface temperature evolution. Proceedings of the National Academy of Sciences, 202003914, https://doi.org/10.1073/pnas.2003914117
O'Brien, Charlotte L; Foster, Gavin L; Martínez-Botí, Miquel Àngel; Abell, Richard; Rae, James W B; Pancost, Richard D (2014): High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geoscience, 7, 606-611, https://doi.org/10.1038/ngeo2194
Pearson, Paul N; van Dongen, Bart E; Nicholas, Christopher J; Pancost, Richard D; Schouten, Stefan; Singano, Joyce M; Wade, Bridget S (2007): Stable warm tropical climate through the Eocene Epoch. Geology, 35(3), 211, https://doi.org/10.1130/G23175A.1
Petrick, Benjamin F; Martínez-García, Alfredo; Auer, Gerald; Reuning, Lars; Auderset, Alexandra; Deik, Hanaa; Takayanagi, Hideko; De Vleeschouwer, David; Iryu, Yasufumi; Haug, Gerald H (2019): Glacial Indonesian Throughflow weakening across the Mid-Pleistocene Climatic Transition. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-53382-0
Petrick, Benjamin F; McClymont, Erin L; Littler, Kate; Rosell-Melé, Antoni; Clarkson, Matthew O; Maslin, Mark; Röhl, Ursula; Shevenell, Amelia E; Pancost, Richard D (2018): Oceanographic and climatic evolution of the southeastern subtropical Atlantic over the last 3.5 Ma. Earth and Planetary Science Letters, 492, 12-21, https://doi.org/10.1016/j.epsl.2018.03.054
Rommerskirchen, Florian; Condon, Tegan; Mollenhauer, Gesine; Dupont, Lydie M; Schefuß, Enno (2011): Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system. Paleoceanography, 26, PA3216, https://doi.org/10.1029/2010PA002074
Sangiorgi, Francesca; Quaijtaal, Willemijn; Donders, Timme H; Schouten, Stefan; Louwye, Stephen (2021): Middle Miocene Temperature and Productivity Evolution at a Northeast Atlantic Shelf Site (IODP U1318, Porcupine Basin): Global and Regional Changes. Paleoceanography and Paleoclimatology, 36(7), https://doi.org/10.1029/2020PA004059
Śliwińska, Kasia K; Thomsen, Erik; Schouten, Stefan; Schoon, Petra L; Heilmann-Clausen, Claus (2019): Climate- and gateway-driven cooling of Late Eocene to earliest Oligocene sea surface temperatures in the North Sea Basin. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-41013-7
Sluijs, Appy; Brinkhuis, Henk; Schouten, Stefan; Bohaty, Steven M; John, Cédric M; Zachos, James C; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S; Crouch, E M; Dickens, Gerald Roy (2007): Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 450(7173), 1218-1221, https://doi.org/10.1038/nature06400
Sluijs, Appy; Frieling, Joost; Inglis, Gordon N; Nierop, Klaas G; Peterse, Francien; Sangiorgi, Francesca; Schouten, Stefan (2020): Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge. Climate of the Past, 16(6), 2381-2400, https://doi.org/10.5194/cp-16-2381-2020
Smith, Rebecca; Castañeda, Isla S; Groeneveld, Jeroen; De Vleeschouwer, David; Henderiks, Jorijntje; Christensen, Beth A; Renema, Willem; Auer, Gerald; Bogus, Kara A; Gallagher, Stephen John; Fulthorpe, Craig S (2020): Plio‐Pleistocene Indonesian Throughflow Variability Drove Eastern Indian Ocean Sea Surface Temperatures. Paleoceanography and Paleoclimatology, 35(10), https://doi.org/10.1029/2020PA003872
Stokke, Ella W; Jones, Morgan T; Tierney, Jessica E; Svensen, H H; Whiteside, J H (2020): Temperature changes across the Paleocene-Eocene Thermal Maximum – a new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth and Planetary Science Letters, 544, 116388, https://doi.org/10.1016/j.epsl.2020.116388
Super, James R; Thomas, Ellen; Pagani, Mark; Huber, Matthew; O'Brien, Charlotte; Hull, Pincelli M (2018): North Atlantic temperature and pCO2 coupling in the early-middle Miocene. Geology, 46(6), 519-522, https://doi.org/10.1130/G40228.1
Vickers, Madeleine L; Lengger, Sabine K; Bernasconi, Stefano M; Thibault, Nicolas; Pagh Schultz, Bo; Fernandez, Alvaro; Ullmann, Clemens V; McCormack, Paul; Bjerrum, Christian; Rasmussen, Jan Audun; Hougård, Iben Winther; Korte, Christoph (2020): Cold spells in the Nordic Seas during the early Eocene Greenhouse. Nature Communications, 11(1), https://doi.org/10.1038/s41467-020-18558-7
Wade, Bridget S; Houben, Alexander J P; Quaijtaal, Willemijn; Schouten, Stefan; Rosenthal, Yair; Miller, Kenneth G; Katz, Miriam E; Wright, James D; Brinkhuis, Henk (2012): Multiproxy record of abrupt sea-surface cooling across the Eocene-Oligocene transition in the Gulf of Mexico. Geology, 40(2), 159-162, https://doi.org/10.1130/G32577.1
Wittkopp, Frederike (2017): Organic geochemical investigation of sediments in the Japan Sea: Tracking paleoceanographic and paleoclimatic changes since the mid-Miocene. PANGAEA, https://doi.org/10.1594/PANGAEA.881046
Zachos, James C; Schouten, Stefan; Bohaty, Steven M; Quattlebaum, T; Sluijs, Appy; Brinkhuis, H; Gibbs, Samantha J; Bralower, Timothy J (2006): Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data. Geology, 34(9), 737, https://doi.org/10.1130/G22522.1
Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui (2014): A 12-Million-Year temperature history of the tropical Pacific Ocean. Science, 344(6179), 84-87, https://doi.org/10.1126/science.1246172
Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui; Bohaty, Steven M; DeConto, Robert M (2013): A 40-million-year history of atmospheric CO2. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 371(2001), 20130096, https://doi.org/10.1098/rsta.2013.0096
Zhuang, Guangsheng; Pagani, Mark; Zhang, Yi Ge (2017): Monsoonal upwelling in the western Arabian Sea since the middle Miocene. Geology, 45(7), 655-658, https://doi.org/10.1130/G39013.1
Further details:
Torsvik, Trond H; Van der Voo, Rob; Preeden, Ulla; Niocaill, Conall M; Steinberger, Bernhard; Doubrovine, Pavel V; van Hinsbergen, Douwe J J; Domeier, Mathew; Gaina, Carmen; Tohver, Eric; Meert, Joseph G; McCausland, Phil J A; Cocks, L Robin M (2012): Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3-4), 325-368, https://doi.org/10.1016/j.earscirev.2012.06.007
Coverage:
Median Latitude: -8.609152 * Median Longitude: 41.051610 * South-bound Latitude: -64.280000 * West-bound Longitude: -172.800000 * North-bound Latitude: 87.867000 * East-bound Longitude: 170.833000
Date/Time Start: 1973-03-11T00:00:00 * Date/Time End: 2015-08-12T20:50:00
Minimum DEPTH, sediment/rock: 0.00 m * Maximum DEPTH, sediment/rock: 1003.24 m
Event(s):
29-277_Site * Latitude: -52.223800 * Longitude: 166.191300 * Date/Time: 1973-03-11T00:00:00 * Elevation: -1214.0 m * Penetration: 4.725 m * Recovery: 2.534 m * Location: Antarctic Ocean/PLATEAU * Campaign: Leg29 * Basis: Glomar Challenger * Method/Device: Composite Core (COMPCORE) * Comment: 45 cores; 425 m cored; 0 m drilled; 59.6% recovery
31-302_Site * Latitude: 40.335500 * Longitude: 136.900200 * Date/Time: 1973-08-02T00:00:00 * Elevation: -2399.0 m * Penetration: 5.315 m * Recovery: 0.901 m * Location: North Pacific/Japan Sea/CONT RISE * Campaign: Leg31 * Basis: Glomar Challenger * Method/Device: Composite Core (COMPCORE) * Comment: 16 cores; 145.5 m cored; 19 m drilled; 61.9% recovery
71-511_Site * Latitude: -51.004700 * Longitude: -46.971700 * Date/Time: 1980-01-15T00:00:00 * Elevation: -2589.0 m * Penetration: 6.32 m * Recovery: 3.844 m * Location: South Atlantic/PLATEAU * Campaign: Leg71 * Basis: Glomar Challenger * Method/Device: Composite Core (COMPCORE) * Comment: 68 cores; 616.5 m cored; 14.5 m drilled; 62.4% recovery
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEventAuderset, Alexandra
2AGEAgeka BPAuderset, AlexandraGeocode
3AgeAgeMaAuderset, Alexandra
4SiteSiteAuderset, Alexandra
5LATITUDELatitudeAuderset, AlexandraGeocode
6LONGITUDELongitudeAuderset, AlexandraGeocode
7Reference/sourceReferenceAuderset, Alexandra
8PaleolatitudePal-latAuderset, AlexandraPaleolat. at 60 Ma, based on paleolatitude.org, paleomagnetic ref. frame Torsvik et al., 2012 (default)
9PaleolatitudePal-latAuderset, AlexandraPaleolat. at 50 Ma, based on paleolatitude.org, paleomagnetic ref. frame Torsvik et al., 2012 (default)
10PaleolatitudePal-latAuderset, AlexandraPaleolat. at 40 Ma, based on paleolatitude.org, paleomagnetic ref. frame Torsvik et al., 2012 (default)
11PaleolatitudePal-latAuderset, AlexandraPaleolat. at 30 Ma, based on paleolatitude.org, paleomagnetic ref. frame Torsvik et al., 2012 (default)
12PaleolatitudePal-latAuderset, AlexandraPaleolat. at 20 Ma, based on paleolatitude.org, paleomagnetic ref. frame Torsvik et al., 2012 (default)
13PaleolatitudePal-latAuderset, AlexandraPaleolat. at 10 Ma, based on paleolatitude.org, paleomagnetic ref. frame Torsvik et al., 2012 (default)
14PaleolatitudePal-latAuderset, AlexandraAge-adjusted paleolatitude
15Latitude descriptionLatitude descrAuderset, AlexandraLatitude category (based on 'Age-adjusted paleolatitude'): "low latitude" for <=20, "mid latitude" for <=40, "transition" for <=50, "high latitude" for >50
16Acyclic glycerol dialkyl glycerol tetraether (peak area)GDGT-0 peak areaAuderset, Alexandra
17Monocyclic glycerol dialkyl glycerol tetraether (peak area)GDGT-1 peak areaAuderset, Alexandra
18Dicyclic glycerol dialkyl glycerol tetraether (peak area)GDGT-2 peak areaAuderset, Alexandra
19Tricyclic glycerol dialkyl glycerol tetraether (peak area)GDGT-3 peak areaAuderset, Alexandra
20Crenarchaeol (peak area)Cren peak areaAuderset, Alexandra
21Crenarchaeol regio-isomer (peak area)Cren' peak areaAuderset, Alexandra
22Acyclic glycerol dialkyl glycerol tetraether, fractional abundanceGDGT-0Auderset, Alexandra
23Monocyclic glycerol dialkyl glycerol tetraether, fractional abundanceGDGT-1Auderset, Alexandra
24Dicyclic glycerol dialkyl glycerol tetraether, fractional abundanceGDGT-2Auderset, Alexandra
25Tricyclic glycerol dialkyl glycerol tetraether, fractional abundanceGDGT-3Auderset, Alexandra
26Crenarchaeol, fractional abundanceCrenAuderset, Alexandra
27Crenarchaeol regio-isomer, fractional abundanceCren'Auderset, Alexandra
28Tetraether index of 86 carbon atomsTEX86Auderset, AlexandraCalculated according to Schouten et al. (2002)TEX
29Tetraether index of 86 carbon atoms, low-temperature regionTEX86LAuderset, AlexandraCalculated according to Kim et al. (2010)TEXL index (GDGT index-1)
30Tetraether index of 86 carbon atoms, high-temperature regionTEX86HAuderset, AlexandraCalculated according to Kim et al. (2010)TEXH index (GDGT index-2)
31Sea surface temperatureSST°CAuderset, AlexandraCalculated from TEX86L (Kim et al., 2010)SSTL
32Sea surface temperatureSST°CAuderset, AlexandraCalculated from TEX86H (Kim et al., 2010)SSTH
33Sea surface temperatureSST°CAuderset, AlexandraCalculated from TEX86 (Tierney and Tingley, 2014, 2015)SST predicted from Bayspar 5th percentile; prior_mean=28, prior_std=10, tol=0.15, n_samp=2500
34Sea surface temperatureSST°CAuderset, AlexandraCalculated from TEX86 (Tierney and Tingley, 2014, 2015)SST predicted from Bayspar; prior_mean=28, prior_std=10, tol=0.15, n_samp=2500
35Sea surface temperatureSST°CAuderset, AlexandraCalculated from TEX86 (Tierney and Tingley, 2014, 2015)SST predicted from Bayspar 95th percentile; prior_mean=28, prior_std=10, tol=0.15, n_samp=2500
36Branched and isoprenoid tetraether indexBITAuderset, AlexandraCalculated after Hopmans et al. (2004)
37RatioRatioAuderset, AlexandraCalculated%GDGT-0, calculated as %GDGT-0 = GDGT-0 / ( GDGT-0 + Cren )
38RatioRatioAuderset, AlexandraCalculated after Inglis et al. (2015)%GDGTrs, calculated as %GDGTrs = ( Cren' / ( GDGT-0 + Cren' ) ) * 100
39Methane indexMIAuderset, AlexandraCalculated after Zhang et al. (2011)
40RatioRatioAuderset, AlexandraCalculatedGDGT-2 / GDGT-3
41Average of ringsav ring#Auderset, AlexandraCalculated after Zhang et al. (2016)
42RatioRatioAuderset, AlexandraCalculatedGDGT-0 / Cren
43RatioRatioAuderset, AlexandraCalculatedGDGT-2 / Cren
44Cyclopentane rings in tetramethylated branched glycerol dialkyl glycerol tetraetherRings tetra#Auderset, AlexandraCalculated after Sinninghe Damsté (2016)
45Sample code/labelSample labelAuderset, Alexandra
46DEPTH, sediment/rockDepth sedmAuderset, AlexandraGeocode – Depth (m, mbsf, mcd)
47CommentCommentAuderset, Alexandra
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
156524 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)