NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Atmospheric Circulation Anomalies During Two Persistent North American Droughts: 1932-1939 and 1948-1957We use an early twentieth century (1908-1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932-1939 (the Dust Bowl) and 1948-1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October-March) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April-September) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948-1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932-1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought.
Document ID
20120010485
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Cook, Benjamin
(Lamont-Doherty Geological Observatory Palisades, NY, United States)
Seager, Richard
(Lamont-Doherty Geological Observatory Palisades, NY, United States)
Miller, R. L.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 26, 2013
Publication Date
April 9, 2010
Publication Information
Publication: Climate Dynamics
Publisher: Springer-Verlag G.m.b.H. and Co. K.G.
Volume: 36
Issue: 12-Nov
Subject Category
Meteorology And Climatology
Report/Patent Number
GSFC.JA.00356.2012
Funding Number(s)
CONTRACT_GRANT: NSF ATM-06-20066
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available