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Introduction 1

1.1 Introduction to this Scientific Technical Report (STR)

Since several decades it is well-known that the observed decadal variations of the length of day (LOD)
and polar motion cannot be completely explained by geophysical processes in atmosphere, hydrosphere
and cryosphere and by external forces. Therefore, a significant part of them must be explained by pro-
cesses in the deep Earth’s interior. Observed correlations between decadal variations of the rotational
parameters and the geomagnetic field suggest that processes in the Earth’s core are responsible for
the excitation of rotational variations: one part of the angular momentum of the fluid motions in the
Earth’s core, generating also variations of the magnetic field, is transferred to the mantle by (different)
mechanisms of core-mantle coupling.

Physically possible are the electromagnetic (EM), topographic, viscous and gravitational coupling.
Which of them can contribute significantly to the Earth’s rotation depends on the values of the pa-
rameters of the core-mantle transition zone like the electric conductivity of the mantle respectively the
topographic height of the core-mantle boundary (CMB). The magnitude of the viscous torque is very
small also for extreme assumptions of the outer-core viscosity so that the viscous coupling as a possi-
ble mechanism will be conventionally ruled out. The other types of coupling are the subject of several
reports, where this STR deals with the EM coupling.

In this report, we will present the complete derivation of analytical expressions of the EM coupling
torque in dependence on the parameters of the fields contributing to it. For this, we choose a special set
of spherically harmonic (SH) base functions and present all major steps of the derivation. Our report will
be (i) closer to a lecture note than to a scientific paper and should give all readers the possibility to follow
the derivations with the related details in the appendix, and can be (ii) used as a formulary for scientists
working on this special field of investigation.

1.2 Introduction to the electromagnetic core-mantle coupling

EM core-mantle coupling torques are produced by two processes: (i) temporal variations of the geo-
magnetic field induce electric currents, 7, in the conducting part of the mantle, and (ii) currents produced
in the core cross the CMB and leak into the mantle. The currents in the mantle produce a Lorentz
force, 7 x B, on it by their interaction with the geomagnetic field, B. A theoretical description of these
processes was first given by Rochester (1960, 1962). In the following, different author contribute to the
development of a more comprehensive theory of the EM core-mantle coupling (e.g. Roberts, 1972; Stix
& Roberts, 1984; Greiner-Mai, 1987, 1993; Holme, 1998a,b, 2000; Greiner-Mai et al., 2007), where the
last uses partially the formalism developed here.

In the following, we explain by what our report differs from other investigation. In appendix B.4, we
show that the torque computation can be reduced to a surface integral over the CMB. This means that we
must know the geomagnetic field at the CMB. Because a non-zero conductivity is a precondition for the
existence of electric currents, we have to determine the geomagnetic field at the CMB from its observed
values at the Earth’s surface by an inverse solution of the induction equation of the mantle. Recently,
Ballani et al. (2002) developed an algorithm for a rigorous inversion of the mantle induction equation to
infer the poloidal geomagnetic field at the CMB from its values at the Earth’s surface. In this report, we
use the results of this so-called non-harmonic downward continuation (NHDC), and refer for details to
the literature. The formalism for the calculation of the EM torque is adapted here to this most modern
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method of field continuation to the CMB and differs therein from those used in earlier investigations of
EM coupling.

Another difference is that we use the orthonormal complex spherical harmonic (SH) base functions
(e.g. Varshalovich et al., 1989) for the SH representations (SHR) of the fields involved in the torque
computation. This enables us to apply related (existent) software, e.g. to solve numerically the coupling
integrals based on Clebsch-Gordan coefficients (see e.g. section 3.3). Usually, the SHR of the geo-
magnetic field at the Earth’s surface, the coefficients of which are our input data, are real functions and
are given in Schmidt’s normalization. The use of these field representations (and those derived from
them) requires a transformation between both variants of SHR. Beside of basic relations and angular
derivatives of the orthonormal SH needed for the torque computation, these transformations are given
in appendices A and E.

Finally, the toroidal magnetic field, BT, which generates the major part of the EM torque, must be
known at the CMB. To determine this B™ in the conducting part of the mantle, we have to solve the
induction equation for the toroidal field at least as an initial-boundary value problem, for which we have
inferred a boundary condition at the CMB from the poloidal geomagnetic field and the velocity field at
the top of the core, respectively, shown in chapter 3. For the velocity field, u, at the CMB, we use values
computed according to Wardinski (2004). In our report, we imply that the SH coefficients of w are given
as input data.
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Basic equations 2

In the following section, we shortly summarize the basic equations used for the derivation of the electro-
magnetic coupling (EM) torques between the Earth’s core and mantle. The EM torque is created by the
Lorentz force density, F'

F=3jxB, (2.1)
where j is the density of the electric current and B is the magnetic flux. With the definition of a torque,
it follows for the EM torque L,

L:/rx(ij)dV, (2.2)
\%4
where V is the volume of the conducting mantle. The induction equation is given by

rot B = o 7, (2.3)

where 1 is the permeability of the vacuum. This yields the following expression for the EM torque:

1
L=— [ rx(rot Bx B)dV. (2.4)

Ho
1%

2.1 Magnetic stress tensor and surface integral of the EM torque

In the next step we express the EM torque by a surface integral. For the derivation, we follow basically
Rochester (1962). First, we define the magnetic stress tensor M, and second, we derive a relation
between the integrand of eq. (2.4) and M. We apply afterwards the tensor divergence theorem to
transform the volume into a surface integral of the core-mantle boundary, 5. In this section, we use
Einstein summation convention for a reduced notation. We define the magnetic stress tensor as follows:

M = Mijj & €, (25)
1 1

Mjm = — <Bij - BkBk(;jm) . (2.6)
Ho 2

Here denotes e; an unit-base vector, ® the dyadic vector product and ¢;; Kronecker’s symbol. For the
comparison with the integrand in eq. (2.4), we need the expression

_ 1 B ) 1 (B By)
— (B, By + BB, — = Znn)
div M 1o ( ! Oz B k@xj T2 Omy, ) Ck

which reduces with
divB =0 (2.7)

to

PO B 1 9(BnBn)
divmM = % <Bj al‘j Bk 2 78]% ) €L. (28)

The detailed derivation for this expression is given in appendix B.1. For the term in braces in eq. (2.4),
we derived in appendix B.3 the following expression:

0 b 1 8(Ban)> o

rothB:<

Scientific Technical Report STR 08/06 3 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-08061



The comparison of eq. (2.8) with eq. (2.9) yields

1
divM:lu—(rothB):(ij). (2.10)
0
A symmetric tensor like M fulfills the condition (see appendix B.2)
rxdivM =div(r x M). (2.11)

With this condition, we can transform the volume integral in eq. (2.4) by the tensor divergence theorem
into a surface integral:

L:/rxdideV

div (r x M)

{O\<\<

(r x M) -nr?dQ, (2.12)

where the infinitesimal surface element in spherical coordinates is given by

dQ = sind dv dep, (2.13)

and €2 denotes the spherical surface integral. We can now express this surface integral by the magnetic
flux B using the definition of the magnetic stress tensor by eq. (2.6). The detailed derivation is given in
appendix B.4 and yields

2
L=— [(pr)(B-n)(B;(rxn) 2 dQ. (2.14)

2.2 Cartesian components of the EM torque

In the following, we derive the Cartesian components of the EM torque L, whereas we use the compo-
nents of the magnetic flux, B in spherical coordinates. The Cartesian components are realized for the
Earth in the geocentric coordinate system. In spherical coordinates is valid

r X B =—rB,ey +rBye,, (2.15)
where
ey = e, cos v cos g + e, cos¥sinp — e, sin?d, (2.16)
e, = —e;sinp + e, cos @, (2.17)
r=re,. (2.18)
This yields for a spherical Earth with n = —e,. and r x n = 0 the expression
L--L1 (r x B)B, r*d9, (2.19)
Ho
Q
L——> [ (“Bes+ Bye,)B,r*do. (2.20)
Ho
Q

With the relation between the Cartesian and spherical base vectors, we can derive the Cartesian com-
ponents of the EM torque. Using the expression

1
L=—— | B, {—Bv(eﬁ cos ¥ cosp + e, cos¥sing — e, sinﬂ)
Ho '
+Bg(fem sin ¢ + e, cos go)} r3doQ, (2.21)
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we can derive

1

L, =— [ B.(B,cosvcosp+ Bysinp)r®doQ, (2.22)
Ho J
1
L,=— [ B.(B,cosVsiny — By cosp)rdeQ, (2.23)
Ho A
L,= L B, B, sindr® dQ. (2.24)
Ho
Q

2.3 Poloidal / Toroidal decomposition

With respect to this decomposition, we mainly follow the notation of Krause & Radler (1980). The basic
idea for the poloidal and toroidal decomposition is the representation of a divergence-free vector field,
like the magnetic flux B, by two scalar functions S and 7. It is

B=B +B,
B = rotrot (rS) +rot (rT), (2.25)

where the scalar functions are normalized by

/ S(r,Q)dQ =0, (2.26)
Q
/ T(r,Q)dQ = 0. (2.27)
Q

In appendix B.5, we derive in eq. (B.18) and eq. (B.16)

rotrot(rS) = —rAS + grad(aarrS) (2.28)

rot(rT) = —r x grad T, (2.29)
and with these expressions, we find for eq. (2.25)
0
B =—-rAS+ grad(ar5> —r x gradT. (2.30)
r

We describe in appendix B.6 how to express eq. (2.30) in componental form in spherical coordinates
and we find:

1/ 1 9 0 1 02
- _- —~ (sin 99— - 2.31
By r (sinﬂ 00 (Smﬁaﬁs) * sin21989025>’ (2.31)
= _EAQ S7
r
10 /0 1 0
By = 30 (ar(TS)) + 7sin19%T’ (2.32)
1 9 /0 0

In addition, we present in appendix B.7 the SHR of the poloidal and toroidal parts of the componental
form of B.

Starting from egs. (2.22)—(2.24) and using the componental form of B in egs. (2.31)—(2.33), we end
up with the Cartesian components for the EM torque represented by the generating scalar functions S
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and T
L=~ [ aos(tleotw 62(S)Jr' 2(S)
0= o8|~ |co cosgpawar r sin o oo (7
Q
sing 0 g0 N e
[sinﬁ&pT cosﬁcoagpaﬁT})r dQ, (2.34)
1 1 . 0? 02
L, = o Aq S(r {cotﬂsmw&par(rS) COM’DGQ‘}GT(TS)]
Q
_|cosp O 0 2
[Sinﬂ&pT—&—COSﬁsmgpaﬂT})r d€, (2.35)
1 1 02 9]
L.=— | A - —sind—T |r?dQ. 2.
== Qs(ragoar(rs) 511119819 )T d (2.36)
Q

Furthermore, we can decompose the Cartesian components of the EM torque in poloidal and toroidal
contributions according to the generating scalar functions S and T'. The poloidal contribution to the EM
torque in egs. (2.34) — (2.36) is given by

1 62 2
L"=—— [ A i Q 2.37
° o QS(COtﬁCOS(p&DGT(TS)+Sm@8190r(rs)>rd , (2.37)
Q
12—~ L [ Ags(cotisimp-2o(r8) — cosp-2 (1) | de (2.38)
VT QS| co smgo&parr co8 oz (riS) Jrd@d, .
Q
=L / Ao S-L(rs)rdo (2.39)
= o 22 900r ' '
Q

The corresponding toroidal contribution to the EM torque in egs. (2.34) — (2.36) is given by

1 sing 0 0
Ll=——[A —T —cosdcos p—T |r*dQ 2.4
- o S(sinﬁ&p com?cosgp&9 )7‘ dQ, (2.40)
Q
_— cosgog . ﬁ 2
L,= o Aq S pr; a(pT—i—cosﬁsmg@aﬂT r=dQ, (2.41)
Q
L1 o,
L,=—— [ Aq Ssind—T7r=d. (2.42)
o oY
Q

These equations are the base for the analytical solutions for the Cartesian components of the EM torque,
which are derived in section 2.4.

2.4 Analytical solution for the componental form of the EM torque

2.4.1 Axial poloidal EM torque

To integrate eq. (2.39), we calculate the derivatives Aq S and %(7'5) using the SHR of S, which is given
by

S(r,Q) =3 Sjm(r)Yjm(Q). (2.43)
jm
Here, " denotes the double summation
jm
.jmax ]
2= > (2.44)
jm j=1 m=—j
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Using eq. (A.18), we find that

Aq S(r,Q) = An}j%m Yim(Q) ==Y 50 + 1)SjmYjm (). (2.45)

jm

In addition, we derive

(rS) where we use eq. (A.19):

8
92 92
8@6’1" (TS(T)) 37’8(,0 [ ]zm: Sjm jm(Q):l ’
- [rzsjmg’yjm(m} ,
= Z i m rsjm 7)) Yjm (Q). (2.46)

With these expressions, we are now able to integrate eq. (2.39) for a fixed r over the related spherical
surface, (2, applying the orthonormality of the SH:

[Z] J+ 1 jm ng(Q)] [zilab;(rskl(T))Ykl(Q) rdQ).

kl

With the substitution » = —/ and eq. (A.7) follows

/ Z Z 1)ivSm(r )6(1 (rSk - (1) Yjm Q)Y (Q) r dQ,
jm kv
- Z Z 5]k5m1/ (] + 1)iVSjm(r)%(?ﬂSk7V(r))’
jm kv
R Z + 1) Zsjm( )(;)T(TSJ _m(’l“)).

Moreover, we can use the definition of the complex conjugate of the coefficients given in eq. (A.41),
which leads to

2 Z mj(j+1)iSm(r )%(TSJ*W(’/‘)) (2.47)
jm

Using the product rule to perform the partial derivative,

D (18501)) = S3) 75 (1) 2.48)

yields

0
N Z m] ZSJ"I( ) Sj’rn( )+RCMBa Sj’yn( ) (249)

The relations between S;,,, and the Gauss coefficients in appendix E.2 are valid only for m > 0, therefore,
we derive the following expression using the definition of the complex conjugate of the coefficients given
in eq. (A.41) and the substitution v = —m:

Jmax

- Z{Z mj(j+1)i {s (1) S7,,(r) + RoweSjm (r )5 Sim (7 )}

3 v 1) [(—1>2ys;fu<r>sju<r> § Roun(~1)5,r) 33, (1) }

v=1
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This expression reduces with the substitution v = m to

2.7max j
—ZZm]]—Fl [

j=1m=1

0

(1) S (r) = S5 (1) 55,01,

where the SHR coefficients can be expressed by the related Gauss coefficients (see appendix E.2).
For a further simplification, which also shows that Lf € R, we need the following relation between any

a,beC:

i (ab® — a*b) = —2 Im(ab").

(2.50)

Applying this relation to the last expression of the axial poloidal EM torque leads to

—2T2 Jmax  J

p

j=1m=1

Z > mi(i+1) Im(S]m( )gs;m(r)>.

(2.51)

We perform the computation of the coupling torque at the CMB, hence » = Rgs, for which also the

Gauss coefficients are provided.

2.4.2 Axial toroidal EM torque

To integrate eq. (2.42), we have to calculate the derivatives Ag S and sin 19

51, where the first is calcu-

lated in section 2.4.1 and is given in eq. (2.45). The second derivative is calculated using the spherical

harmonic representation of 7",

Z T (7)Y ( (2.52)
and eq. (A.21):
snn?— Z Tjm(r)sind— 3 ()
im( 9o mY):
(] +m)? m2 _
- +1) M@n;_l)njl)m(m]- (2.53)

The integration over the spherical surface, €2, with a fixed r, in eq. (2.42) can now be solved by using the

orthonormality of the SH:

=t [Z J0+ DS ()Y

.UOQ m

2_[2

k
—(k+ 1)\/(2k+ 1)(2k —1)

(k+1)? =1
[ZZ G+1) \/2k+1)(2kz+3

5’(1@1)1(9))]7”2 d,

jm ki
o k — 2
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VY1) (Q) | r? A€,

Deutsches GeoForschungsZentrum GFZ



and with the substitution v = —{ and eq (A.7) follows

|:Z Z ( ] + 1 \/m Sjm(r) Tk —u(r) (_1)1163 (k+1) 5'm1/>

jm kv
2 _ 1/2
ZZ( k“%k%@k_m%wkw1>vaj<k._namy>},
jm kv
A1) —m?

Using the definition of complex conjugate coefficients in eq. (A.41) yields

2 el o
T 2= TN W @i+nei—y om0 TG-nm)

(+1)%—m?

U ey

(r)Tz;H)mm]. (2.54)

The relation between the Gauss coefficients and the SHR coefficients, given in eq. (E.6), is valid only for
m > 0. Therefore, we derive (see appendix C.1) the following expression for L7, where the summation
is only over m > 0,

2 Jmax ._ 1 5 *
Z] |:( 1) (QjJ(er(Q;DSjO(T)T(jl)O(T)

. [+ 1)2 .
- (+2) Qj_g;;(z;_mSjO(T)T(j+1)o(T))

J . i —m —1)2 — m?2 N
G- (\/ S 1)(2)]. S (VTG 2y (1)

(.7 +m — 1)2 2 *
. (] + 1)2 B m2 * *

We perform the computation of the coupling torque at the CMB, hence it is r = Rgys, for which also the
Gauss coefficients are provided.

2.4.3 Non-axial poloidal EM torques

Both non-axial poloidal components of the EM torque are combined in the following complex expression

L' =1L +il, (2.56)

where the components are given by egs. (2.37) and (2.38), respectively. This complex combination of
the z- and y-component leads to the expression:

1 o2 52
P = _% AQS[cotﬁa 59 (rS) (cosp + i sinp) + 560 (rS) (sing — i cos ) |r dQ. (2.57)
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With the relations between the exponential and the trigonometric functions,

e = cos p + i sin ¢, (2.58)
—ie" =sing — i cos , (2.59)

we can reduce eq. (2.57) to

1 2 2

) 0
p_ ip
L' = o (AQ S)e [cotﬁara(p (rS) 87’319
Q

(TS) rdQ. (2.60)

Moreover, we use the SHR of S, which is given by eq. (2.43), and perform the derivatives, where Aq S
is given by eq. (2.45). The other derivatives can be expressed by

2
af&p (rS) = %: il [Swi(r) + r%Sm(r)}Ykz(ﬂ), (2.61)

02 1 P
a9 "S) = %: 5 [ () + 7o Su )] [VE(E + 1) = [T+ De™ Yk 141) ()

—VE(k+1) =11 — 1)e™Y;, 1-1)(Q)] (2.62)

Here, we have used egs. (A.19) and (A.20) from the appendix A.1 and find with these derivatives for the
complex combined torque LF for a fixed r:

ro_" {_ S G+ 1)sjm(r>ewjm<m}{ [Z u(skl(m T ra‘isw))

Ho Q jm kl

i

.comYkl(Q)} {%Z(Skl( )+RCMB§ Swi(r )<\/k (k+1) =1+ 1)e™ Y, 111y (Q)

—VE(k+1) =1 — 1)e**Y;, (l_l)(Q))] } dQ. (2.63)
We introduce a few abbreviations for the further derivation:
0
Sk = (Sk-l(?“) + Tarskl(r))’ (2.64)
Wi = VE(kE+1) =10+ 1), (2.65)
W, = Vk(k I(1—1). (2.66)

In addition, we take into account (Varshalovich et al., 1989, Sec. 5.7),

cot WY (Q) = — % [\/k(k +1) =1+ 1)e Y, 141y (Q) + VE(k + 1) — (1 — 1)€Yy (H)(Q)] , (2.67)

to derive the expression,

rr=-_ {Z 307+ 1)Sjm (1) Yim (2 }{ 251@1{ e Yk 1) (Q)

Ho Q jm

— i i — i
+ WaeYe (1—1)(9)] t3 Zskl { me Y141y () = Wige ka(l—l)(Q)] } ds2,
kl
which reduces to

= {6+ 080 Vi@ T S vien@ pan. (268)
Q Jjm kl

Scientific Technical Report STR 08/06 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-08061



11

Now we use one symbol for the summation over all four indices and apply the definition of the complex
conjugate in eq. (A.7) to Y, (41, obtaining

b= / S 5G + DWW Spr) S Vi@~ DDV (2) a9
Jgmkl
ir .
= — % ( )(l+1) (] + 1) Wkl ]nL Skl /}/jm Yk‘ —(l+1)(Q) dQ7 (269)
jmkl o

where the integral over Q can be solved using the orthonormality relation given by eq. (A.6). The ex-
pression for L” reduces then to the following summation
P OT (1+1) -
L' =—— (-1) JjG+1) W

S (7”)84_
(m+1) ' —(m+1)s
Ho m

which can be further reduced changing the sign of the first factor by the definition of the complex conju-
gate SH in eq. (A.7):

ir L *
L= % Z JiG+1) W;r_(mﬂ) Sjm(r) j (m41)"
jm

In the next step, we re-substitute the used abbreviations and find:

e i Z GG+ D)VE(k+1) =101+ 1) Sjm(r)

jm
. 0
' {Sj (m+1)(7) + 7’55]' (m+1) (7’)} . (2.70)

The relation between the Gauss coefficients and the SHR coefficients, given in eq. (E.8), is valid only for
m > 0. Therefore, we derive (see appendix C.2) the following expression for L?, where the summation
is only over m > 0,

Jmax

' 0
L* = ZTZZ (j+1) {\/ 7+ 1)Sj0(r ( r&as;fl(r))
j=1

+Z[¢“+1 D)5 0) (5 () + Roww 355 ()

m=1

VITF D =m0 = D r) (85 e+ 755y i) | 2.71)

where jmax denotes the maximal degree of the SHR.

2.4.4 Non-axial toroidal EM torques

In analogy to the derivation of L in section 2.4.3, we define the complex combined non-axial toroidal
EM torque by

L' =L} +ilL,. (2.72)
The z- and y-components are defined in egs. (2.40) and (2.41), respectively. With these equations, the
expression for L™ reads

=" [aq S[ !
1o sin ¢
Q

(sing —i cos ) %T + cos¥(cos p + i singp) %T r2dQ. (2.73)

In the next step, we apply the egs. (2.58) and (2.59) and find

1 , i 0 0
L'=— [(AqgS)e'? —T + cosV—T|r?dQ. 2.74
140 ( & ) Lln 9 Op 09 ( )
Q
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For the further derivation, we express S, T and their derivatives by SH. The related SHR are given in
egs. (2.45), (2.52) and (A.19). Moreover, we represent L™ at r = Ry, which leads to

I~ B / {Z —j(j—i—l)Sjm(r)ij(Q)ew] [Z( — Ykl(Q)+cos19§9Ykl(Q)>Tkl(r)} 4o,

1o sin

Qomg I kl

and by using eq. (A.7) the expression above reduces to

l

9 1
g o (Q) — cos¥— Yk_l(Q)} dQ.

/Z 0+ DSy () Tu (Y (D5 (1) | 215 5

Jjmkl

In the next step, we split the integration over the two angular dependencies and represent the SH by
their definition, given in eq. (A.1). This leads to

27 ™

2
L' = How Z 3G+ 1S () Tra (r)(—1)" /ei(mHH)‘P/ij(cos ) [lPk _1(cos )

- 3 s

. .0
— cos ¥ sin 19%Pk _1(cos 19)] de dd. (2.75)
Applying eqg. (C.6) leads to
T 7’2 S l [
L' = m Z JG+1)Sim(r) Ty (r)(—1) 0, (l+1)/ P, (cos¥) {lPk 1(cos )
jmkl 0

. .0
— cos ¥ sin ﬁa—ﬁPk _i(cos 19)] dv,

which can further be reduced by performing Kronecker’s symbol and using the complex conjugate of 7'

T

= — Z] 3+ 1)Sjm(r) Ty () (r )/ij(cos ) [(m + 1) Py (1) (cos )
0

jmk

+ cos ¥ sin ﬁ%Pk (m+1)(cos 19)} do. (2.76)
For the integration over 19, we use the relation

K = (m + 1) Py (m+1)(cos V) + cosﬁsinz?%

- (221:91) [Uf —m o+ 1)(k = m)kPjs1ym(cos9) + (k+m+ 1) (k +m)(k + )Py1ym|, (2.77)

Py (m+1)(cos V)

which is derived in appendix C.3 and leads to

=-— ZJ (J + 1)Sjm(r) Ty (1) (1) (k=m+ 1)k = m)kij(cos V) Pl 1) m (cos )
(2k+1)
0

jmk

(k+m+1)(k+m)(k+1)
(2k+1)

Pjp(cos¥) P_1y m(cos 19)] sin 9 dd¢.

With the orthogonality relation in eq. (A.38), we find

(k—m+1)(k — m)k
(k +m+ 1)(k +m)(k +1)
0j (k=1) | »
(2k+1)
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which reduces by applying Kronecker’s symbol to

T r? » j—m)(j—m—-1)(—1), .
L :—%;J(J+1)Sjm(r) [(J )(](23'—1) U )Tu71><m+1>(7’)
i+m+2)G+m+1){+2),.,
+ G )((2JJ_|_3) U )T(j+1)(m+1)(T) : (2.78)

Due to the restriction of the relations between the Gauss coefficients and the SHR coefficients to indices
m > 0, given in eq. (E.6), we have to reformulate eq. (2.78) for non-negative m. Therefore, we derive
(see appendix C.3) an expression for LT, where the summation is only over m > 0,

S SR VT | IR
L'=-—- ]z:;j(] + 1){530(7“) [(Qj_l)T(j_l)l(T) + WT(J’HH(T)

+ Zl|:sjm(7,)<(] - m)(] -—m- 1)(.7 — 1) T(*;_l) (m+1)(r)

2 ((27 - 1))
yUtmt 2)((2];17;1)+ — TG+ <m+1>(r)>
_ S;*m(r)((j : m)(j(;jm 1_) SCELY PG

Here, jmax denotes the maximal degree of the SHR of the available geomagnetic field representation.
The coupling torque is computed at the CMB, hence itis r = Rgyg.
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Determination of the toroidal
magnetic field

The relation between the Gauss coefficients and the SHR of the field generating scalar S is given in
appendix E.2. In the sections above, we have expressed the different components of the EM coupling
torque with series of SH coefficients of the field-generating scalars S and T. The relation between the
so-called Gauss coefficients and S;,,, allows us to determine the poloidal components of the torque.
Moreover, we need to express the SH coefficients of the field-generating scalar of the toroidal magnetic
field, T', to compute the toroidal components of the coupling torque. This is not possible by the magnetic
field alone (and its downward continuation to the CMB), because the toroidal part of the magnetic field
vanish outside of a conductor, as we will show by the boundary conditions in the following sections.

For the determination of the toroidal magnetic field at the CMB, we have to formulate the boundary
value problem (BVP) for the field generating scalar, T', of the toroidal magnetic field. The related field
equation is the induction equation, which has to be solved for special boundary conditions. In the next
section, we present the induction equation, followed by the formulation of the BVP and the related
boundary conditions for T

3.1 Induction equation

The derivation of the induction equation in the
mantle and the fluid outer core is based on the so-

called Maxwell equations (e.g. Krause & Radler, Gauss coefficients (data)
1980, Chap. 2), /\
harmonic Rg
rot B = 07, (3.1) . o(n)
o=
div B = 0, 3.2 ‘
B =0, 32) e
__9 0
rot E = atB, (33) /\ l n
non—harmonic Ros ¢lda
and the Ohm’s law Clu
downward = continuation t|.
r
j=o0FE. (3.4) ] i ::
o # 0(weak) Cly
For the further derivation, we have to consider alj
the different domains, distinguished by the flow [ It
of the fluid outer-core relative to the mantle (see y
fig. 3.1). The geomagnetic field is described in a o £ 0(high) Ry

mantle-fixed coordinate system. Hence, we have

to consider in Ohm’s law for the core additional
contribution to the current density. The major ad-
ditional contribution is created by the interaction
of the geomagnetic field, described in the mantle
coordinate system, and the flow of the electrically
conducting fluid of the outer core. With the fluid-
flow velocity denoted by u, the contribution related to the large-scale flow is given by u x B. For general
description of this problem, we introduce in addition the contribution E* related to the turbulent flow in
the outer core. Hence, we have to derive separately the induction equations for the mantle and the fluid
outer core. We follow here mainly the approach presented by Greiner-Mai (1986).

Figure 3.1: Schematic sketch of the structure of the
Earth’s interior related to the electric
conductivity.
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The current density in the conducting part of the mantle following eq. (3.4) is given by
Ju = ouBy, (3.5)

where E,, denotes the electric field in the mantle. We can eliminate E,, in eq. (3.3) using the expression
above, which leads to

Next, we can represent the current density by eq. (3.1), which results in

1 1

rot( rot B) = —QB. (3.6)
Ho Om ot

Together with eq. (3.2), the set of induction equations for a conducting mantle is given for r € [Reys, Ry)
by:

1r0t<1 rot B) + QB =0,
Ho Om ot

divB =0,

where the radius of the CMB is denoted by R, and the upper bound of the conducting part of the
mantle is denoted by R, .

For the fluid outer core, the expression for the current density contains the above mentioned addi-
tional contributions beside E., the electric field in the outer core:

Jo =0c(Ec +u x B+ E°). (3.7)

In contrast to the mantle, we have to consider here also the velocity, u, of the conducting fluid in the
outer core moving relatively to the mantle. For a general description, we have to consider additionally
E*, which is associated with the turbulent flow in the conducting outer core. Analogous to the derivation
for the mantle, we can represent E; using egs. (3.4) and (3.1) to reformulate eq. (3.3), obtaining

1. . 0
rot(gcgc — (u x B+ FE )> = _ﬁB’
1 1 0
—rot| —rot B | — rot(u x B+ Ee) = —-—B. (3.8)
Ho Oc ot

Together with eqg. (3.2), the set of induction equations for the outer core is given for r € [Riss, Rows) bY:

1 1 0
rot( rotB) — rot(u x B+ Ee) =—-—B,
Ho Oc ot

divB =0.

Here, R denotes the radius of the spherical boundary between the liquid outer core and the solid inner
core.

For the further derivation, we need the induction equations for the mantle and core in their scalar
form (e.g. Krause & Radler, 1980, Sec. 14.2). For this, we use the poloidal and toroidal decomposition
in eq. (2.25). Applying this to eq. (3.6) leads to the following scalar induction equations for the conducting
mantle domain (r € [Rews, Ro):

1 1 d 0 0
AT — — —oy—(rT) | = =T 3.9
,LLOUM( e drgMar(7 )> ot’ (3.9)
1 0
AS = 8. (3.10)
OO ot
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The detailed derivation is given in appendix D.1.
For the fluid outer core, r € [Rs, Rows, We use for the derivation of the scalar induction equation (see
appendix D.1) the following definitions for field-generating scalars U, V, W and U¢, Ve, We,

(u x B)" = rot(rU), (3.11)
(ux B)" =7V +grad W, (3.12)
E°T =rot(rU°), (3.13)
Ef =rV° + grad W°, (3.14)

and we require the normalizations
/UdQ:/UedQ:/VdQ:/Veszo. (3.15)
Q Q Q Q

For the poloidal parts in egs. (3.12) and (3.14) more general decompositions are needed, because ux B
is not anymore divergence free. The scalar induction equations for the outer core read

1 1 d 0 0
AT — — —05— ¢ = — .
v ( ros drocar (rT)) +V+V 8tT, (3.16)
1
ASJrUJrUe:gS. (3.17)
HoOm ot

The poloidal induction equation for the mantle, eq. (3.10), is used to solve the problem of non-
harmonic downward continuation of the so-called Gauss coefficients. Moreover, the toroidal induction
equation for the conducting mantle domain, eq. (3.9), is the differential equation for the boundary value
problem (BVP), which is set up to determine the toroidal magnetic field at the CMB. In the general case,
we need for the derivation of the necessary boundary values also the toroidal induction equation (3.16).
For the further derivation, all mentioned equations have to be represented by spherical harmonics. The
related transformation for the spherical harmonic representation (SHR) is summarized in appendix D.2.
For the toroidal induction equation of the mantle we find:

2 2 1 d 0
ﬁij(T’t) + |:7’ - O'M(”I')d”I'O-M(r):| aij(Ta t)
i(j+ 1 1 d 9
_{J(J; ), raM(r)drUM(T)} Tym(r,1) = 100w (r) 35 Ty (7). (3.18)

Analogously, we find for the corresponding poloidal induction equation:

52 29 iG+1 o
S (r ) + =S (r ) — iU j ) LS im(rt). (3.19)
or ror r ot

Sim(r,t) = poou(r)

3.2 Boundary value problem for the toroidal magnetic field

In the following two sections, we derive the boundary conditions for the field-generating scalars S and T,
starting from the general continuity condition for the magnetic flux B, which is valid for the time scales
considered in geophysics. We summarize the boundary value problem (BVP) for this field-generating
scalars in section 3.2.3.

3.2.1 Boundary conditions at the surface r = R,

We model the surface between the isolating part of the mantle and its conducting part by a spherical
boundary at » = R, (see fig. 3.1). For this boundary, the continuity of the magnetic field, B, is valid,
from which follows the continuity of its orthogonal poloidal and toroidal parts:

[B"]"=0 and [B]' =0 (3.20)
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The notation [...]T is the short form for the difference between the related values infinitesimal above (+)
and below (—) of the considered boundary. For the further derivation, we have to express the poloidal
and toroidal magnetic field by the scalars S and T using the definitions in eq. (2.25), which leads to

+

[—r x grad T}f =0 and —rAS + grad rS) =0. (3.21)

-l
First, we derive the boundary condition at R, for the toroidal part of geomagnetic field, which reads
—7r X graud(TJr — T*) =0.

The expression is ¥ and ¢ independent due to the vector product of » and the differential operator grad,
which leads for a fixed r = R, to a constant value:

(T* —T~) = const.
Considering the integral condition (2.27), we can conclude that the constant is zero, i.e.
TH=T". (3.22)

The boundary at R, is defined as a boundary between the conducting part of the Earth’s mantle and the
isolating part. In addition to the continuity of the toroidal geomagnetic field at R,, it is forany » > R,

toju=0 = r1otB"=0, (3.23)

because outside of an electric conductor the current density, j,, vanishes. In appendix D.1 is shown that
from the last equation follows BT = 0. Therefore, T is identically zero and it holds

TH=T"=0. (3.24)
Due to the orthonormal definition of the SHR of T" in eq. (2.52), we find
+ -
15, =1;, =0 (3.25)

Now, we derive the boundary condition at R, for the poloidal part of the geomagnetic field, which
reads as follows (considering the splitting of the differential operators in egs. (A.14) and (A.16)):

19(,0 1 d(d 1 d T
|:—’l"<r28r(’f’ 87’S> +72AQS> + 87“(87‘TS>6T+TVQ<87’TS>}_ =0.

Applying all partial derivatives with respect to r leads to

+
|:—1<AQS>€7~+1VQ<6TS>:| =0.
T r or _

Due to the orthogonality of the both contributions, both have separately to fulfill the continuity condition:

[AQ S} i =0 and |:VQ <§TTS)} J_r =0 (3.26)

The first condition, which reads like
Aq (ST —87) =0,

leads for a fixed » = R,, with the condition in eq. (2.26) and the resultant condition, | Ag SdQ = 0, to
Q

St =5 (3.27)
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For the second condition, we apply the partial derivative with respect to r,

Val ST -8 ) +rVq QSJr - QS‘ =0, (3.28)
or or
where the first term is identically zero by the condition in eq. (3.27), and for a fixed » = R, the second
term in the brackets is constant. Taking into account the condition in eq. (2.26), which also holds for %S
due to the r-independent surface integral, it follows
d . O
Y gr_ 9 g 2
BTS 8rS (3.29)
With the orthonormality of the SHR of S in eq. (2.43), we can conclude
ooy _ 0

=5, and S5t =5 (3.30)

+
S or Im™ T oy

jm
Compared with egs. (B.26) to (B.28), these conditions correspond with the continuity of the radial and
tangential components of BF, respectively.

3.2.2 Boundary conditions at the core-mantle boundary » = R,

Like for the boundary conditions at » = R,, their derivation at the CMB is also based on the continuity
of the geomagnetic field B. Therefore, eq. (3.20) is also valid for the CMB at r = R (see fig. 3.1). For
the toroidal geomagnetic field and the related field-generating scalar T, we find like in section 3.2.1

T — 7 (3.31)

In contrast to the derivation before, the CMB is a boundary between two conducting domains, where the
conductivity is discontinuous. Therefore, the toroidal geomagnetic field exists on both sides and do not
vanish like in eq. (3.24). Using the same argument of the orthogonality of the SHR of T it follows
+ . —
T, =T;,, (3.32)

The derivation of the boundary conditions for the poloidal geomagnetic field is completely the same
like their derivation in section 3.2.1. Hence, egs. (3.27),(3.29) and (3.30) are also valid at the CMB. For
the SHR of the field-generating scalar S holds for r = Reys:

0 0
+ _ g- + -
STt o= Sjm and 5Sjm = Esjm.

At the CMB, we need for the computation of the toroidal geomagnetic field in the mantle either
a complete solution of the core induction equation (3.8) delivering T'(R.ys) or an additional boundary
condition, that is given by the continuity of the tangential component of the electric field, » x E. Due to
the lack of a suitable model of the Earth’s dynamo based on eqgs. (3.16) and (3.17), we use the latter,
which reads

[rx E]" =0, (3.33)
T X (E+—E_) =0.

Now, we express the electric field by the current density, 5, using eq. (3.4) and considering that £+ is
related to the current density in the mantle, given in eq. (3.5), and E— by the current density in the fluid
outer core, given by eq. (3.7). In addition, we take into account the Maxwell equation (3.1) which leads
to

1 1
T X { rotBJr( rotB(uxB)Eeﬂ—O.
HoOwm Ho0c
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For the further derivation, we split this condition into its toroidal and poloidal contributions. All field
quantities are expressed by the related field-generating scalars defined in egs. (2.25) and (3.11)—(3.14).
The toroidal part reads

r X rot rot(rT+) —

rot rot (’I“T_) +rV +grad W + rV® + grad We} =0.
HoOwm HoOc

We apply the relation in eq. (2.28) to rot rot(rT") and consider that the vector product » x r A vanishes
identically for any scalar A:

170 LA O ) -
rxgrad| —|=—0T)| ——|=—0T)| + poW + pugWe | =0. (3.34)
on | Or oc | Or
To fulfill the condition in eq. (3.34) at the CMB, » = R, the expression in the braces has to be constant.
Due to the general representation of (u x B) in egs. (3.11)—(3.12), it is only possible to set up two
normation conditions, which are given in eq (3.15) for V and U. The field-generating scalars W and
We are only determined except for arbitrary integration constants. It is possible to choose this additive
constants, that the following second boundary condition for T" holds:

1[0 T 18 *

— | =T — — | =T = ). .

~|gon| - 5| =) (3.35)
We introduce further approximations mentioned above to reduce the boundary condition and derive

a boundary value of the third kind for T'. First, we assume that W= is identically zero, which means we

neglect the contribution due to the turbulent flow. This corresponds with the restriction of our investigation

on decadal time scales. Turbulent contributions would variate on much shorter time and spatial scales

than considered here. Moreover, we assume

oul| O

2 =T
507

1%
|

Oc
which leads to

i
[;ﬂ(rT)] > —pgoy W + F. (3.36)
This simplification is based on the conception, that F' is determined to a large extend by the toroidal
geomagnetic dynamo field, which variates very slowly with time, whereas the variations on the decadal
time scale considered here, do not contribute to F. This assumption is analogous to the conventional
separation of B into a main and secular variation field, whereas the different sources of the geomagnetic
field are related to the specific field (dynamo processes to the main field, CMB surface flow to the secular
variation field). Therefore, we neglect F' for the further investigation. With these assumption, we can
only determine the time-variable part of 7. A time-independent part of T, related to the geomagnetic
dynamo field can not be determined by this approach. Consequently, constant differences between EM
and necessary mechanic torques should be eliminated (see section 4.3).

Following this line of argumentation, the second boundary condition for the field-generating scalar T’
specifies a boundary value of the third kind:

P +
{&(TT)} = —pooy W. (3.37)

Due to the orthogonality of the SHR, we can also conclude that the following relation holds:

9 +
[&,(Tij)} = —poom Wim. (3.38)
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3.2.3 Initial-boundary value problem for the field-generating scalar 7’

In this section, we summarize the initial-boundary value problem for the toroidal geomagnetic field in a
electrically conducting mantle, represented by the SHR of the field-generating scalar 7. In section 3.1,
the induction equation for the toroidal geomagnetic field is presented and its related SHR is given in
eqg. (3.18). In section 3.2.1 and 3.2.2, the related boundary conditions are derived (egs. (3.25), (3.32)
and (3.38)).

To obtain a compact form of the governing partial differential equation in eq. (3.18), we introduce the
following definitions:

2 1 d
o= [r — ) erM(T)} (3.39)
o JjG+1) 1 d
©:= [ r2 + T’O'M(T) dTO-M(T):|7 (3.40)
U = pooy(r). (3.41)

Moreover, we use a reduced notation for the partial derivatives and neglect all arguments of the field-
generating scalar, according to:

T :=Tjp(rt), (3.42)
0

T,:= aij(r, t), (3.43)
82

T,rr = ﬁij(T’ t), (344)
0

(3.46)

The initial-boundary value problem (IBVP) for the field-generating scalar T in the SHR for the toroidal
geomagnetic field in an electrically conducting mantle is set up by the differential equation

T +@T,r—0T-¥T,=0 (3.47)

and the boundary conditions
at r=R, TH=T"=0, (3.48)
at 7= Rous TH=T"  and  [(rT).]" = —100uWjm. (3.49)

In addition, we need to prescribe an initial value for T},,(r,t = 0). We discuss this problem in sec-
tion 3.4.2, where we also present the numerical methods, which we apply to solve the IBVP.

3.3 Calculation of the field-generating scalar 1V for a divergence
free velocity field at the CMB

For the calculation of the field-generating scalar W, we use a more special relation, derived from the
defining one in eq. (3.12). It is given by

AW =r-rot[r x (ux B)]. (3.50)

The equivalence of this expressions is shown in appendix D.3. For the further derivation, we use the
SHR of W presented in appendix D.3,

1 .
Wip, = ](]‘Fl)ﬂ/ r - rot ['P X (u X B)]ij(Q) dQ. (3.51)

Scientific Technical Report STR 08/06 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-08061



22

Here, Y}, denotes the complex conjugate of the SH base function. In the following, the basic idea is to
represent all quantities of the right-hand side by SH and use known relations between SH base functions,
their partial derivatives and the Clebsch-Gordan coefficients. The detailed derivation is presented in
appendices D.3 and D.4, which leads to

-1 Jjm jm
= 4D ;t k(k + 1) Sk (t) L, Pae(t) — K7L, Que(1)], (3.52)

jm

where the coupling coefficients are given by

1

K, = 5 [k(k 1) = s(s+ 1) = (G + 1)
[l ey o, @53
Lﬁ;t:%\/(k+s+j+2)(k+s—j)(k—s+j+1)(—k+8+j+1)

Here, C]".,, denotes the Clebsch-Gordan coefficients according to their definition in Varshalovich et al.
jm

(1989, Chap. 8). The relations between the coupling coefficients K7, and Liﬁt in egs. (3.53) and (3.54)
and the integral kernel in eq. (3.51) are derived in detail in appendix D.4.

3.4 Solving the BVP for the toroidal magnetic field

The basic idea for the solution of the BVP for the toroidal geomagnetic field in the mantle is to express all
derivatives in the describing differential equation by finite differences. This method can be numerically
implemented quite straight forward, which is presented in chapter 4. The reformulation of the BVP in the
simplified quasi-stationary case is summarized in section 3.4.1 and for the general case in section 3.4.2.

3.4.1 Solving the BVP for the quasi-stationary case

First, we focus on the assumption of the quasi-stationary case. That means we neglect the ¥-term (3.41)

in the describing differential equation (3.47). This assumption has different motivations: (i) to study the

most simple case of the induction equation, (ii) to be consistent with the assumptions made for the

determination of the fluid flow in the outer core and (iii) to provide a method to calculate an initial value

for the toroidal geomagnetic field through the whole electrically conducting part of the Earth’s mantle.
The partial differential in eq. (3.47) reads with the assumption of the quasi-stationary case

T +®T,-0T=0, (3.55)

which is reduced to an ordinary differential equation of second order in . Due to the quasi-stationary
case, only the boundary values W are time-dependent. We follow the common approach of finite differ-
ences (e.g. Ciarlet & Lions, 1990, Chap. I.1) to solve the ordinary differential equation (3.55). Therefore,
we introduce only a discretization for the radial direction:

r; = Rews + 1 Ar for i =0,...,%ma, (3.56)
where
ro = Rowe and Timax = R - (3.57)
With the notation
Ti =Tjm(ri) (3.58)
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we find for the partial derivatives with respect to r the approximation by the finite differences

1

Tir = A (Tig1 — Tiz1) (3.59)
1
Tirr & W(Tm —2T; + Ti1). (3.60)
This leads to the approximation of the reduced differential equation (3.55) by
1
@r? (Tiva — 2T+ Ti1) + P, IAr (Tig1 = Tim1) —©; T; =0. (3.61)

Here, the label i at ®; and ©; denotes that the related expressions in egs. (3.39) and (3.40) are calculated
at r = r;, respectively. Moreover, this equation is only valid for : € [1,4_, —1]. For the special casesi =0

and i = i.., We have to consider the boundary conditions of the BVP. The case for i =i _,_ is related to
the boundary condition (3.48) and the second relation in (3.57), i. e. we can conclude

T, =0. (3.62)

The second boundary condition in (3.49) reads in the reduced notation by applying the partial derivative
with respect to r
To+roTor = —poouWim

—1
To, =
" Rews

(oowWim + To) . (3.63)
Using eq. (3.63), we find an expression for Ty, which is needed for the discrete differential equation for
1 = 0 due to the quadratic approximation by eqgs. (3.59) and (3.60):

_ 2Ar
RCMB

To1 (oowWjm + To) + T1. (3.64)

With this expression, we can set up the discrete differential equation for i = 0 from eq. (3.61) as follows

2

" 1 1
Ar Rews

Ty — =— (100w Wim +To)) ~0yTo=0. (3.65)

2
2 (Tl - TO) Ar Rows

The discretization of the ordinary differential equation for the quasi-stationary case of the BVP is realized
by egs. (3.61), (3.62) and (3.65), which also consider the boundary conditions. This equations set up a
system of linear equations for T; and can be rewritten in a matrix notation using the definition

T=[To, -, Tinal > (3.66)

which leads to

AT=R. (3.67)

The matrix A and the related vector of the right-hand sides are defined in appendix D.6 in eqs. (D.61)
and (D.62), respectively. On this formulation is based the implementation of the BVP, which is presented
together with an example in section 4.1.

3.4.2 Solving the BVP for the time-dependent case

In the general case, we have to consider the time-dependence of the partial differential equation (3.47)
of the IBVP, which reads
TH+@T,r—0T=0T,.

Beside the spatial discretization in eq. (3.56), we introduce now the discretization of the time by

t" =t + nAt for n=0,..., N, (3.68)
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where the time interval for the observed geomagnetic field is given by
[t°, 7] (3.69)

We choose the so-called Crank-Nicolson approach (e.g. Ciarlet & Lions, 1990, Chap. 1.2) for a quadratic
approximation in time and space to solve the IBVP. The spatial derivatives are approximated by egs. (3.59)
and (3.60) and the time derivative is set up as average of an implicit and explicit scheme, which reads

T?+1 — T:l 1 n+1 n+1 n+1 n n n
At = 2(Ar2Y, T =20 + T+ T, 2T+ T,
(I)i Tn+1 Tn+1 T T @l Tn+1 T 3.70
+ A + =) - o, \ i + 1), (3.70)
where we have used the reduced notation
Ti = Tjm(ri t"). (3.71)

This discretization of the partial differential equation is only valid for i € [1, 4. — 1] and we have again
to consider the boundary conditions for the special cases i = 0 and i = i,,. Moreover, eq. (3.70) is
only a relation between the solution for T} throughout the spatial domain and the solution for the next
time step, T!'*'. We have to tackle two different problems. First, we have to determine an initial value,
TY, throughout the spatial domain, and second, we have to set up a scheme, to realize a quadratic
approximation in time.

As mentioned in section 3.4.1, one reason to consider the quasi-stationary case is, to obtain a time-
independent solution, which will be used as initial value in the general case. For the given boundary
value at t = ¢°, we compute the quasi-stationary solution T for the field-generating scalar of the toroidal
geomagnetic field, where

T =[T8,..., T 7 (3.72)

defines the time-dependent vector of the field-generating scalars.

Moreover, we have to set up the Crank-Nicolson approach to realize the quadratic approximation
of the time derivatives. In contrast to the spatial derivatives, which are discretized by a quadratic ap-
proximation, in the Crank-Nicolson approach we set up a two-step scheme for the time derivative: (i)
by eq. (3.70) we compute the solution T?*l based on the result T} and (ii) we calculate the average
mid-point solution by T?‘J“% = (T + T7)/2. This average solution is then used as the "old’ solution
in eq. (3.70). More efficiently is this approach described in the matrix notation. Before we can set up a
system of equations, analogous to the derivation in section 3.4.1, we have to formulate the discretized
differential equation for the special cases i = 0 and i = i.,,, using the related boundary conditions. This is
completely analogous to the derivation in section 3.4.1 and we end up with the expressions in egs. (3.62)
and (3.65). We have only to consider the new notation, which expresses the time dependence by the
superscript n. In appendix D.7 are given the related matrix A and the vector of the right-hand sides R",
which is now time-dependent. We can write the Crank-Nicolson approach then in the matrix notation as
follows:

AT =R", (3.73)

where the vector of right-hand sides is a function of T". The details are given in egs. (D.71) and (D.73).
Moreover, we have to apply the averaging in time to determine the right-hand side for the next step by

Ts = %(T”“ +T). (3.74)

Therefore, the solution is determined by the Crank-Nicolson approach first for the next time step ¢"**
by eq. (3.73), and then approximated at a half time step back (t"*2) according to eq. (3.74). Hereby a
quadratic approximation in time is realized. The implementation of the IBVP is based on this formulation,
which is presented together with an example in section 4.2.
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Implementation of the BVP and the 4
calculation of the EM torques

Beside the theoretical description of the BVP in chapter 3, we present here the numerical implementation
of the BVP for the toroidal magentic field at the CMB. We consider first the quasi-stationary case, second
the time-dependent case and in the third section we present an example for the computation of the EM
coupling torques.

For the computation of the toroidal geomagnetic field at the CMB, we need the SHR of the poloidal
geomagnetic field and the fluid-flow velocity in the outer core at the CMB. Both quantities are used
here as prescribed values and we refer to the publications shown below, which present solutions to
these problems. Ballani et al. (2002) developed the non-harmonic downward continuation (NHDC) to
compute the poloidal geomagnetic field at the CMB, taking into account a radial conductivity profile for
the Earth’s mantle, o, (). We chose here for the examples in this chapter a profile, shown in Figure 4.1
and prescribed by

c for Row <7 <R,
-1
= 1 f <r<R, , 4.1
ou(r) cexp( )eXp(l—((Rs—r)/s)2> or RR<r<R (4.1)
0 for »>R,

where
Rows = 3485km, R, = 3670km, R, = 3694km, s = 24km,c = 10> Sm™" .

The NHDC provides the Gauss coefficients at
the CMB, which are combined by eq. (E.6) to the
SHR coefficients S;,,. For the required geomag-

netic field model at the Earth’s surface, used as ;E) 1.0 r
input for the NHDC, we chose the model C3*FM 2
from Wardinski & Holme (20086). ©
Moreover, we need to know the fluid-flow ve- §°-5 I
locity, u, in the outer core at the CMB. Wardinski é
(2004) has set up a fluid-flow inversion approach, §
where the time variable poloidal geomagnetic field 00 550 3600 3650 3700
is the main input. For details of this method, we Radius r (km)
refer to this work as well as to Wardinski et al.
(2008). Figure 4.1: Electric conductivity profile, which is

used for the examples in this chapter.

For the implementation of the BVP for the T .
The related function is given in eq. (4.1)

toroidal geomagnetic field at the CMB, we need
to calculate the time-dependent boundary value

function W (¢t). Its SHR coefficients W, are given in eq. (3.52), where the coupling coefficients Ki,’[;t
and L%’;t in egs. (3.53) and (3.54) are represented by Clebsch-Gordan coefficients. Those are com-
puted by the subroutines c1e0 and cle, written by Zdenék Martinec according to the related recursion
formulae in Varshalovich et al. (1989, Sec. 8.5-8.6). The quasi-stationary and the time-dependent case
require each a specific approach for the implementation, which are summarized in the following sec-
tions 4.1 and 4.2.
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-500000 -250000 0 250000 500000
Magnetic flux B (nT)

Figure 4.2: Components of the poloidal geomagnetic field for the calendar year 1990.0 at the CMB. From
top to bottom: By, By and B,.
4.1 Implementation of the BVP for the quasi-stationary case

In eq. (3.67) is given the set of equations in matrix notation, which describe the BVP in the quasi-
stationary case. The matrix of the system in eq. (D.61) has a tri-diagonal structure. For each vector of
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Velocity (km/a)

Figure 4.3: Fluid-flow velocity field in the outer core for the calendar year 1990.0 at the CMB. The colour
map shows the amplitude of the horizontal velocity and the arrows indicate the direction.

the right-hand side in eq. (D.62), which contains the time-dependent boundary value W;,,, the solution
is obtained by a special elimination approach. This is implemented into the subroutine tridag, taken
from Press et al. (1992, Sec. 2.4).

We are now able to calculate the SHR of the field-generating scalar 7, (t) for each time, based onto
the prescribed field-generating scalars S;,,,(t), P;jn(t) and Q;.,, representing the poloidal geomagnetic
field and the horizontal fluid-flow velocity at the CMB, respectively. As an example, considering the
conductivity profile (4.1), we present the related field quantities. Figure 4.2 shows the three components
of the poloidal geomagnetic field for the calendar year 1990.0, calculated by the NHDC at the CMB.
Here, the dipole structure of the r-component is not as dominate as at the Earth’s surface, what is
caused by the NHDC. The components of poloidal geomagnetic field are in the order of + 500000 nT,
which is about seven times larger than at the Earth’s surface.

Moreover, the fluid-flow velocity of the outer core at the CMB is required, which is presented in
Figure 4.3. This velocity field is computed by the fluid-flow inversion, as mentioned before, and is
provided by Ingo Wardinski. The amplitude of the horizontal velocity reaches 30kma ™. Beside this high
velocity eddies, it is clearly to see a westerly flow along the equator, which has a mean velocity of about
10kma~"'. In addition to the input quantities, we show in Figure 4.4 the resulting toroidal geomagnetic
field. Due to the fact, that B, is sole poloidal, only the angular components are presented. The spatial
pattern in both components of the toroidal geomagnetic field are completely different from the related
of the poloidal field. Moreover, the toroidal field components are in the order of + 70000 nT, which is
much smaller than the poloidal. We have to emphasize that by the chosen boundary value in eq. (3.38)
is only considered the varying, u-dependent contribution to the field-generating scalar 7. Therefore,
the resulting toroidal field represents only this contribution and we neglect some undetermined constant
contribution to the toroidal field.

4.2 Implementation of the BVP for the time-dependent case

The egs. (3.73) and (3.74) describe the Crank-Nicolson approach by a set of equations in matrix nota-
tion and an averaging of the solution vector, respectively. The related matrix of the system is given in
eqg. (D.71). In (D.73) is presented the relation to compute the vector of the right-hand sides. Solving the
system of equations leads to the solution for the next discrete time step, whereas the related vector of
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Figure 4.4: Components of the toroidal geomagnetic field for the calendar year 1990.0 at the CMB. From
top to bottom: Bj; and B,.

right-hand sides is not only depending on the time-dependent boundary value W, (t) but also on the
solution of the time step before. One consequence is that we have to prescribe an initial value for the
solution vector T for the first time step. Beside the most simple choice of a zero vector, we use the so-
lution of the quasi-stationary case. Numerically, we have only to set up a robust method for the solution
of the set of equations in (3.73). The matrix A is ill-conditioned, which requires a more robust technique
than before in the quasi-stationary case. We apply here a LU-decomposition with partial pivoting, which
is performed once at the begin, and the related back substitution, realized in the subroutines 1udemp
and lubksb taken from Press et al. (1992, Sec. 2.3).

In summary, for the Crank-Nicolson approach we have to perform first the solving of the system of
equation for related right-hand sides, and in a second step the averaging of the solution, according to
eqg. (D.73). With this two-step approach, we only advance by a half time step. So, we have to perform
numerically two times the number of steps as in the quasi-stationary case for the same time series of
boundary values.

For the numerical example, we chose the same input quantities as in the quasi-stationary case
(conductivity profile, poloidal geomagnetic field and fluid-flow velocity field at the CMB). Therefore, we
present in Figure 4.5 only the resulting toroidal geomagnetic field, again for the calendar year 1990.0 at
the CMB. A comparison of the toroidal geomagntic field components at the CMB for the quasi-stationary
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Figure 4.5: Components of the toroidal geomagnetic field for the calendar year 1990.0 at the CMB. From
top to bottom: B}, and B,

(Fig. 4.4) and the time-dependent (Fig. 4.5) case shows only small differences in the maximal ampli-
tudes, whereas the spatial patterns are similar. This differences, which reach up to 10 % of the absolute
values, are due to the time-dependent formulation of the BVP, which emphasize the importance to con-
sider the time-dependent case in the determination of the toroidal geomagnetic field.

4.3 Implementation of the computation of the EM coupling torques

In section 2.4, the analytical expressions for the axial and non-axial EM coupling torques are summa-
rized. For the poloidal and toroidal axial EM torques, we find in egs. (2.51) and (2.55) the related sum-
mation formulae, respectively. The poloidal and toroidal non-axial torques are combined in the complex
expressions, given in egs. (2.56) and (2.72). For these complex combinations, the related summation
formulae are given by egs. (2.71) and (2.79). All these equations are only dependent on the SHR of the
field-generating scalars S and T at the CMB. Therefore, the EM coupling torque computation reduces to
the summation of these coefficients according to the related equation above, and the related transforma-
tion of the SH coefficients in the normalization used in geomagnetism (Schmidt’s) and the orthonormal
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SHR used here.

The used geomagnetic field model C2FM from Wardinski & Holme (2006) is expressed by coefficients
up to maximum degree j... = 15. We consider only degrees and orders up 10 j... = 8 to ensure
that only the contribution of the core-generated geomagnetic field enter into the torque computation
(Greiner-Mai et al., 2007). In Figure 4.6, we compare the variation of the components of the EM coupling
torques based on the solution of the BVP for the toroidal geomagnetic field for quasi-stationary and
time-dependent case. The variation of each component of the EM coupling torque is determined by de-
trending. Beside the similar time-behavior in all components with only small differences in the extrema,
we observe a time lag between both results. The results based on the time-dependent formulation of
the BVP for the toroidal geomagnetic field at the CMB seems to be shifted by approximately six month.
Due to the time-dependent formulation, the EM torque has to act at the CMB ’later’ than in the quasi-
stationary case, to be consistent with the same observed geomagnetic field at the Earth’s surface.

We conclude from this simple calculation that it is quite important to consider the time-dependent
case in the determination of the geomagnetic field at the CMB for an electrically conducting mantle.
The presented approach allows us to calculate the EM coupling torques for realistic, but only radially
dependent conductivity profiles of the Earth’s mantle.
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Figure 4.6: Time series of the components of the EM coupling torques for the quasi-stationary and time-
dependent case. From top to bottom are shown: AL,, AL, and AL,, respectively.
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Spherical harmonics and related A
derivations

A.1 Definition of scalar spherical harmonics and basic relations

In this section, we shortly summarize the definition and basic relations of spherical harmonics (SH). The
most definitions are according to Varshalovich et al. (1989, Chap. 5) and we follow their notation, where
Y;., are the scalar spherical harmonics of degree j and order m, which are defind by:

Yjm(Q) = Py (cosd)e™. (A1)

Hereare i = v/—1, Q = (¥, ¢) and P;,, the associated Legendre functions, which are defined as follows:

Pim(cos9) = (—1)™ ] 2‘7; ! j;g' (sinﬁ)m%]jj(cosﬁ), (A.2)

1 di(cos® 9 — 1)/

—~

—~

Pj(cos¥) := 371 dcosv) (A.3)
For the degree and order of the SH and Legendre functions the co-domains
j=0,1,2,3,...,00, (A.4)
m=—4,...,0,...,] (A.5)
are valid. The SH are orthonormal on the unit sphere (Varshalovich et al., 1989, Chap. 5):
/ Vi ()Y, (Q) dQ = 65+ G- (A.6)
Q0

Here, « denotes the complex conjugate and ¢,; is Kronecker’s symbol. For the complex conjugate SH
the following relation holds:

Vi () = (=1)™Y; _n(Q). (A.7)
Using the definitions and relations above, we can derive explicitly the SH for different degrees, j, and
order, m. For degrees j = 0, 1,2 and the related order m, the SH are given by:

—_

Yoo = —, A.8

00 o (A.8)
3

Y10 =/ — cos 9, (A.9)
0
3 . ;

Y11 = —y/ = sind ¥, (A.10)
0

Yoo = i(3c05219—1) (A.11)

20 =\ 16 ; .
15 . ;

Yo1 = —y/ =— sin cos I ¥, (A.12)
0

1 /15 5
=/ — e, A1
Yoo 1\/ 3 sin de (A.13)

We summarize here also the differential operators in spherical coordinates and the related splitting
into angular and radial parts, which are given for the Nabla operator by

0 1
V- [er + 1 vﬂ], (A14)
or r
0 1 0
— | = - = A1
Ve [819 0t S 9 64 ’ (A-15)
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and for the Laplace operator by

1[0 (40
1 0 /(. .0 1 0
AQ = |:Sln19819 (Slnﬁa’ﬁ) =+ 7Sin2 196302] (A17)

The SH are eigenfunctions of the angular part of the Lapace operator so that
AqYjm () = —j(j + 1)Yjm () (A.18)

is valid.
Moreover, we show here the used derivative of SH with respect to the spherical coordinates ¢ and ¢
(Varshalovich et al., 1989, Sec. 5.8):

9
e

0 1 — i
%}/}m(g) = 5\/.7(.7 + 1) - m(m + 1) }/}(m+1)(Q)e v

Yjun(Q) = imY;un (), (A19)

— SVIGT = w1 ()6, (A.20)

(j+1)* —m?

. .0 )
sin—Y;,(Q) =3 WY(HUm(Q)

o9
j2_m2

U G e -

Y1y m(Q). (A.21)

A.2 Vector spherical harmonics

The vector spherical harmonics we have chosen here are defined as follows (Varshalovich et al., 1989)

SHI(©Q) = e, Yim(9), (A.22)
SHD(Q) = Va Vi (@), (A.23)
S (9) = Lo V(%) (A.24)

where e,, ey and e, are the spherical base vectors and the differential operator Vg, is given in eq. (A.15).
The operator L, is defined by

(A.25)

1
LQ:€TXVQ:|:8 0 19]-

99%° " sinv %e
Two vector spherical harmonics S\ (€2) and '), (2), with different degree, j # j', and different

im

order, m # m/, as well as different indices, A # X, are orthogonal, expressed by

A X\ *

[ s [si@] aa o, (A26)
Qo

where the dot denotes the scalar product of vectors. Moreover, we summarize the following expressions

for orthogonal vector spherical harmonics:

/ S5 @) [0 a9 = 856, (A27)
Qo
SQ) - [SE0(@)] a2 = 3G+ 1)d550mm, (A.28)
Qo
/ SINQ) - [S, ()] A= (G + 1) 8 (A.29)
Qo
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For the vector spherical harmonics, as defined here, we can easily derive the following expressions:

(A _ m [gM]"
SN = (0" [sh)]
e, x S (Q) = —8))(q),
e x S5 0(Q) =0,
()

(A.30)

(A.31)
(A.32)
(A.33)

A.3 Relation between representations in real and complex spher-

ical harmonics

With the definition of the complex SH in eq. (A.1) follows for a scalar function S the representation

S =3 Y Sn)Ym(9).

7=0 m=—j

(A.34)

In the literature, it is also common to use the real spherical harmonic representation of a scalar function,

which is given by

oo k
S(r, Q) =Y > [Si(r) cos(lp) + Sy (r) sin(lp)] Pu(cos ),

k=0 =0
where P, is the Legendre function in Ferrers-Neumann normalization,

dl

Pk:l (COS 19) = (sin ﬁ)l m

Py.(cos ),
and P, are the Legendre polynominals defined in eq. (A.3). The orthogonality is expressed by

2 (kDo o
2% + 1 (k— 1)1 ¥

/ Ppy(cos ) Py (cos ) sind) d =
0

in contrast to the orthogonality for the associated Legendre functions defined in eq. (A.2)

T

1

/ Pkl(COS ﬂ)Pk/l/ (COS ’19) sinddd = 2*5]44 5”/ .
™

0

We find the following relation between the Legendre function in the different normalization,
Pkl(COS 19) = )\klPkl(COS 19),
where )\, is given by

A (k+1)!

_ (_1\!
A = (=1) 2% +1(k—1)°

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

We compare now both expressions for S to find a relation between the real and the complex coefficients.

First, we split the summation in eq. (A.34), which yields

oo

S(r,mz[sjo(rmomw S S (@) + Y S, m)]
7=0 m=—j m=1

= 3 [500¥50(00 + 3 (819 + (@)

7=0 m=1
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With the definition of the complex conjugated in eq. (A.7) it is

%) =3 800 +Z 17, (1)) + Sy (1) (D) |

j=0

,_n

For a real scalar function S, the following relation holds:
(=1)™Sj —m(r) = S (A.41)

from which we derive

3=0 m=1
o0 J
=y [SJO(T)YJO(Q) +)° QRe(sjm(r)ij(Q))}
7=0 m=1
Using the definition of the scalar SH, we find
oo J
S(r, Q) = Z{sjo(r) c08(0) Py (cos ) + Y 2 [Re(Sjm(r))cos(mcp)ij(cos )
7=0 m=1

—Im (S} (r)) sin(me) Pj,, (cos 19)} },

0 J

Z — { e(Sjm(r)) cos(mep) — Im (S (1)) sin(map)] pjm(cos ). (A.42)

=0 m=1 Jm

The comparison of eq. (A.42) and eq. (A.35) yields the relation between the real and complex coefficients
of the SH representation for m > 0:

51 _ (2= 0mo) [ Re(Sim(r) A43
{S;mm} Ao {—Im(sjmm)}' (A43)
With that, we can derive the relation vice versa for m > 0:
/\ £ QS
Sim(r) = m(SC (r) — szm(r)). (A.44)

For m < 0 we can calculate the coefficients by eq. (A.41).
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Additional derivations for the EM B
torque formulation

B.1 Magnetic stress tensor

Here, we derive the divergence of the magnetic stress tensor using the definition of the divergence of a
tensor

3
div M =& [grad M| T, (B.1)

where the Levi-Civita tensor is defined by the extension of the Levi-Civita symbol, €., by

3
€ = (ckimer ® €] ® ey,) (B.2)

and Z is the identity tensor. With that, we find using Einstein’s summation convention

divM = Mkl,m (ek Ke® em) (ej b2y ej) >
= Mkl,7n§lj 5mj €k,
= My;, ; ex,

where the indices following a comma denotes the partial derivative with respect to the related base
vector. With the definition in eq. (2.6) it follows

1 0 0 10
=— B~ —Bj—==—(B,B,) | e B.
1% (B] 8£EjBk+Bk8$j B] ank (B B )) €L ( 3)
N———
=0

B.2 Symmetry property of a tensor of second order

In the derivation of the surface integral of the EM coupling torque, we need the following property of a
symmetric tensor of second order, M (see eq. (2.11)):
rxdivM = div(r X M)

To prove this property, we use the more general relation for any tensor of second order, 7', and a vector,
v:
diviv x T) =v x divT + gradv x 7. (B.4)

With the Levi-Civita tensor and the definition of the vector product between a vector, v, and a tensor, 7
by

ox T — F’(v @:r)r, (B.5)

where 2 indicates that the result is a tensor of second order, it follows in Einstein’s summation convention

2

vxT = |:<€7;jk;ei ®ej@er)(ve @ Tues@e)|

= €ijkVrTstdjr Ose; @ ey,

= €ik0iTree; @ ey,

Scientific Technical Report STR 08/06 39 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-08061



40

and we find

div(v X T) = €k (Uﬂ;ﬁ),s (ei Qe ® es) (en ® en),
= €ijk (Uj,];ct)755tn 6snei7
= €5k (Uj’];cn)meia

= €5V Tin n€i + €1V nTine;. (B.6)

From the first term of the right-hand side of eq. (B.4) we can derive the expression

3
vxdivT = |E(vses) ® (Tin men) |,

= (6,‘]‘}961‘ Ke;® ek) (Uses ® Tin ,nel)a
= eijkvs%n 7n(sjs 6klei7
= €V Tkn n€, (B.7)

which is identically with the first part of eq. (B.6). Moreover, the second part of eq. (B.4) yields

3

gradv x T = € (gradvT '),
= (eijre; @ e @ ey) (v (e ® e,)Tyu(e ® ey)),
= €311 0 TstOnt 651 Os €5,

= €ijkVj nTkn€i, (B.8)

which is identically with the second part of eq. (B.6) and the whole relation is proved. Now we apply
eqg. (B.4) to the position vector, », and the magnetic stress tensor, M. To prove the relation in eq. (2.11),
we have to show that the second term in eq. (B.4) vanishs for a symmetric tensor like the magnetic
stress tensor:

gradr x M = (m mel ® em) X (Mstes ® et),
= (5lm6l Y em) X (Mstes ® et)7

3

= <5IMT>,

= (eijne; ® e ® er) My (e @ ey),

= €10t OpsMstei,

= eijk/\/lkjei.
With the symmetry of M follows

My = My
and therefore
gradr x M = 0. (B.9)

B.3 Derivation of the eq. (2.9)

For the derivation of eq. (2.9), the definition of the rotation of an arbitrary vector T is needed:

3
rotT =& [grad TT] . (B.10)
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Using Einstein’s summation convention, this definition reads

With the relation

follows

rot B x B :2 [grad B"] x B,
= (€ijn€i ® €j ® en) Bop (€p ® €,) X (Bses),
€ijnBo pdipOno€i X (Bses) ,
= (€ijnDBn,jei) x (Bses),

3
=& [Gijan,jei} ® (Bses) )

= (eklmek Ke ® em) (Eijan,jei ® Bses) 5
= 6klmeijan,]’Bs(sliénwe/m

= eijneikan,ijek .
€ijn€imk = OjmOnk — 0jkOnm (B.11)

rot B X B = (0;m0nk — 0;50nm) Bn, j Bm €k,
= BkJBjek - BnA,anelm

0 0
= Bj—Brey — B,—B,ey,

7 O Oy,
P 19(BBy)
_ (B, LB, — = A0 o B.12
<B] O0x; Bi 2 Oz ) ek ( )

B.4 Derivation of the surface integral in eq. (2.14)

For the electromagnetic coupling torque L, we found in eq. (2.12) the surface integral

L

:/(er)~nr2dQ.
Q

With the definition of the vector product between a vector and a tensor, it is

(rxM)-n

= g’(r@M)r-n,

2
= |E(rses @Mjpe; ® em)} -n,

and with the definition of the magnetic stress tensor in eq. (2.6) follows in Einstein’s summation condition

2

1 1 =

= (qu,r-ep ® €4 ® er) rs€s X (lu (Bij - 2BkBk5]m) €; [ em>:| 'n,
0

[ 1 1
= |€pgrTs— (Bij — BkBkéjm> dgs OTjEp ® em} -n,
Ho 2

170 1
= — |€pgr <TQB7"BWL - Bk’Bkarm) €, ® em:| 'n,
Mo | 2
170 1
= — |(€épgrrqBr) Bm — (querBk5rm)] €, Ren - -n.
o | 2

Using the definition of the vector product yields

1 (B)?
(rxM) n=—|(rxB)(B-n)— 5 (rxmn)|, (B.13)
Mo |
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where the following relation has been applied:

TXN=Tses X e,
3
=& [rses ® ey,

= €ijr (€ @ ej R eg)rses @ en,
= €;kTs0js Oknei,
= €ijnT;€;. (B14)
We can now derive the surface integral in eq. (2.14):
1

_ (B)* 2
L—% {(pr)(B-n)—z(rxn)rdQ.
Q

B.5 Field-generating scalar functions

The field-generating scalar functions S and T fulfill egs. (2.28) and (2.29). Here, we proove this relations
in detail. With eq. (B.10) we find

rot(rT) = g[gradT(rT)},
=cijn(ei®e; @en)(rT), (ep®e,),
= €ijn(rT), ,0jp Ono €i,
= €ijn(rnTj +1n ;T)ei,

and with r,, ; = 0 follows

= Eij7zr7lrjei7 (B1 5)
= femjrnfjei.
(B.16)
This is identical with
rot (rT) = —r x grad T, (B.17)

by which eq. (2.29) is proved. With eq. (B.15) we can derive now for eq. (2.28)
rot rot ('I"S) = rot(eijnrnS,jei),

3
=& [gradT (eijnrnSJei)} ,
= €stu (es Rer® eu) (eijnrnS,j) ;

i,p

(ep ®ei),
= estu(€inTnS.5); 0t dui€s,
= €sti€ijn(TnS,7),; ,€s
= esti€ijn(Tn 1S, +T0S jt) €5,
and with eq. (B.11) follows
= (85j Otn — Osn 01j) (Tn 1S5 + S st ) €s,

=Tt ,tS,ses - Tss,ttes~

With the definitions of the gradient and Laplace operator, we obtain

rot rot ('rS) = grad(%rS) —rAS, (B.18)

by which eq. (2.28) is proved.
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B.6 Componental form of B in spherical coordinates
We start from eq. (2.30),
B=-rAS+ grad(iré’) —r xgrad T,

to derive the components of the magnetic flux B in spherical coordinates. We need for the further
derivation with the position vector r = re, the following differential operators in spherical coordinates
(e.g. Varshalovich et al., 1989, Chap. 1):

AS = aa (r aars) + Slmﬁ 6619 (blnﬂ(;%S) + @;{;& (B.19)
grad(i(rS)) _ % (;(rS))er Lo ( a @«s)) et o (;’T(rs))e@. (B.20)
Moreover, we need the relation
r x gradT = €71 ne€4,
which reads in spherical coordinates as
rxgradl = — T ind ngeﬁ + 17"8819Te9(,7
:Qﬁ%ﬂ—%h (B:21)

Considering the definition » = re,, we can now split the magnetic flux vector, B, into its spherical
components:

B 19,,0 1 9 8 1
B, = _T(rQ@T(T ES) + 55— Tsind 90 (smﬁ8 S) + 0 95 )
g (0
+ o (5 09)), (B:22)
10/0 1 0
Bﬂ T&?(a/r‘(rs)> + Sinﬂ%T’ (823)
1 0 /0 0
Furthermore, we can simplify B,. in eq. (B.22) as follows. With
19,0 1 , 02
8 0?
3 —S+ T@ 5
and
g (0 0 0 0
0 0?
QES + Ta 3
the expression (B.22) for B, reduces to
1 1 0 ,. 0 1 02 1
BT = *; |:Sln196'19(81n198195) Sln219878025 = 7; AQ S. (825)
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B.7 SHR of the components of the magnetic field

Starting from the equations for the vector components of B in appendix B.6, we can split them into
poloidal and toroidal parts, related to the field-generating scalars, defined in eq. (2.25) and express this
by the SHR of S and T, given in egs. (2.43) and (2.52). For the poloidal part, we find the following
expressions,

By =3 Ba[Sim(r)Yim()], (B.26)
jm
aro
Bj = 12 59 L} (rSjm(r ))ij(Q)], (B.27)
9
B:’ - Tsm19 Z 8<p [81’ (rSJm( ))ij(Q)}’ (B.28)
for the toroidal part we find
BT =0, (B.29)
P
By=——=> % [T (7)Y ()], (B.30)
jm
9
Bl =— Z g [Lim (1) Yjm ()] (B.31)

The relations between Gauss coefficients and the field generating scalar S in eq. (E.6) are only valid for
positive orders, m > 0, of the SHR. Therefore, we need also for the vector components of B expressions,
which consider only positive orders of the SHR. For eq. (B.26), we can apply eq. (A.18), which yields

1
By = =Y+ D)Sm (1) Yim(9),

jm
which leads to the decomposition for positive and negative orders:

Jmax J -1
B =130 004 D) [Sp¥ia(@) 4 3 SimIin@) + T S5 (4]

Jj=1

With the substitution —m = v in the second sum over m follows

15 G (S50 5n(®) + Y SV (@) 4 3 8501175090,
v=1

m=1

For all complex numbers a,b € C it is valid:
ab+ a*b* = 2Re(ab). (B.32)

This relation yields the final relation

Jmax

B} =~ > G+ [Sjo(r)yjo(ﬂ) +2) Re (sjm(r)yjm(sz)ﬂ, (B.33)
j=1 m=1
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where BY is expressed only by non-negative orders m.
For the 9¥-componet of B” in eq. (B.27), the application of the product rule leads to the expression

B = =[S (8000 7 (5 8im) ) 55 Ym0,

jm

which can be transformed with eq. (A.20) to

By = 2*17, {Z <5J‘m(r> +r (aarsjm(r))) <¢j(j 1) = mm+ 1) Y a1y () €%

jm

G F D —m(m = 1) Y 1) () )}

Due to the requirement m > 0 for the order of the SHR, we reformulate the last equation with the
substitution —m = v and we find

B — % ]Z [(Sjo(r) o (aé;gjo(r))) jG+1) (le(ﬂ) e —Y;1(Q) ew)

j=1

+y (Sjm(r) +r (;Sjm(r))> (\/j(j 1) —m(m+ 1) Y (myn)(Q) e

m=1

GG —mlm D) Y; g (@) )

VIGTD DY, (@) )} |

Further, we simplify this expression using the relation of complex conjugated coefficients and SH given
in eq. (A.7) and in eq. (A.41), respectively.

B> E_j (000147 (o500 ) VAT + 11 (Via(@) e + (v2000) " (7))

Z ( ]T)’L (;SJm(T))> (\/j(j =+ 1) — m(m + 1) )/](erl)(Q) 6_“0

m=

—jiG+1) — 1) Y} (m_1)(Q) eisa)

J

v Z(l)"(s;,,<r> +r(5r8) ) (VITF D =701

v=1

(1P @) = VITF D =0 DDy @) .
For all complex numbers a,b,c € C, it is valid:

abc + a*b*c* = 2Re(abe). (B.34)
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In addition, we use eq. (B.32) and the substitution v = m to derive

By =1 3 [(sjo(m T (aisjo(r)o Vil +1Re <Y3‘ 1) e_w)

j=1

* ZJ: Vili+1) = m(m +1) (Re (Sjm(T)Yj (m+1)(2) ew)

m=1

9 _
+ Re (TmSjm(T)Yj (m+1) () e‘“ﬂ))

VI = 1) (R S5 (17, oy ()€ )

+Re (r;Sj ()Y (m-1)(22) ew)ﬂ. (B.35)

The p-component of BF is given by eq. (B.28) and applying the product rule leads to

1 0 0
B, = g 2 (S5m0 + 5 Sm) ) 3= Yim ),

rsind

which can be simplified with eq. (A.19)

i

Bf =
?  prsind

Zm: m(Sjm(r) + rgsjm,(r))nm(a).

Due to the requirement m > 0 for the order of the SHR, we reformulate the last equation with the
substitution —m = v and we find

jmax ]

B = s 30 30 (i) 47585 ) V()

j=1m=1

_ iy(sj —u(r) + T%SJ —"("))Yf ‘”(Q)] '

With the relations for complex conjugate SH and coefficients in eq. (A.7) and (A.41), we derive the
following expression:

B; = i riim<5j (7’)+7‘%5j (1) Yim(Q)

rsind
j=1m=1

-3 y(sju(r) + r&,sjy(r))yj,,(sz)} :
v=1
Substituting now v = m and considering the relation
i(ab — a*b*) = —21Im (ab), (B.36)

which holds for all complex numbers a,b € C, leads to the final expression

Lo e

Bl = —— > m Im((Sjm(r) +r;sj7,L(r)) ij(Q)). (B.37)

j=1m=1

Analogous to the derivation of the poloidal components, we have to formulate related expressions
for the toroidal components. In this case, only the - and ¢-component exist and for the first we find by
applying eq. (A.19) on eq. (B.30)

1

B}, = Z 1 T (1) Vi (€2).

sin ¢
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To fulfill the restriction m > 0, we can follow the derivation of B, above, which leads here to

. jmaX .7
57— Sin2ﬁ 353 m <ij(r)1/jm(g)>. (B.38)

j=1m=1

For the last missing component B, eq. (B.31) leads to
. 0
By = =3~ Tim(r) 55 Yim(Q).
jm

The partial derivative can be resolved by eq. (A.20) and the equation reads:

B, =5 3 Tnlr) [m 1) — m(m + DY ) (e

_ \/](] + 1) — m(m — l)Y} (mfl)(Q)eikp .

We also face here the restriction, that m > 0 has to be satisfied. Therefore, we apply the splitting of the
second summation for m > 0, m = 0 and m < 0, and following the derivation of B, we obtain

Jmax

BL=-Y [Tjo(r)\/ﬂj T Re(V1 (2)e %)

Jj=1

+ (\/J'(J' +1) = m(m + 1) Re(Ljm (1) Y (m41) (2)e %)
m=1

VIGTD mm D Re(Tn (Y, <m_1><9>ew))] , (B.39)

where also eq. (B.34) is used.
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Spherical-harmonic representation C
of the EM torque

C.1 Additional derivations for the axial toroidal EM torque

In eq. (2.54), the summation over the index m is not restricted to m > 0 as assumed in the relation
between the Gauss coefficients and the complex field-generating scalar S. Here, we summarize the
derivation of eq. (2.55) and we split eq. (2.54) as follows:

7‘2 Jmax j ] - - 1)2 - m2
L= { - Sim ()T 1y (7
MOJZ ’mZ:() 2]+1)(2]—1) Gm (1) (1) (7)
; (G+1)2—m?
—U-2) W im (1)L (1) m ()

/ : (G +1)? )
(-1 [CES T + Sio(r)T(-1yo(r) — (1 +2) WSJO(T)TUH)()(T)

) —m—1)° X
NS M j<2y =TSm0 i)

m=—j

(o[ A g <r>T(;-+1>m<r>}

(27 +3)25+1)7"

We use the substitution m = —v and the relation for the complex conjugate coefficients in eq. (A.41) to
derive

Sj—u(r) = (=1)7"55,(r) (C.1)
Ti_(r) = (=1)""T;,(r) (C2)

Applying this relation to the last summation leads to
J ; 2 2
o G+rv—-1)"—v" y
2.0 W o =)

(G +1)?— v .
gy =)

s jrv—12-1v2
- z:: \/ (27 +1)(2j — 1) S5 (1) T2y (1)

U+ =2 .
(25 + 3)(2J +1) 7

-(—2)

- (-2 (7 )T(J—H) (1),

which reads with the re-substitution v = m as follows:

J Cm—1)2 — m2
=2 G- 1>\/ (”(;j - 1)(12)j 1y S ()T m0)

(]+1)2_m2 *

-(1-2) Wsjm(r>T(j+l)m(r)' (C.3)

With this findings, we can derive eq. (2.55) straightforward.
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C.2 Additional derivations for non-axial poloidal EM torques

Here, we want to derive eq. (2.71) from eq. (2.70). In the first step, we split the summation over m into
m > 0, m = 0 and m < 0, which reads as follows:

{Jmiuﬂ[zwuﬂ m(m +1)S;m (S*mﬂ()

m=1

B o .
+ 7585 mrn) (1 >+\/ 1)Sjo(r < T&nSj1(T)>

+ Z Vi +1) - m+1)S]m<S* i) (7 )+r§aS;(m+1)(r)>}}. (C.4)

m=—j

We substitute now m = —v in the last summation and use the relation egs. (C.1)—(C.2), which leads to

S VITHT =70 = 085050+ 7587 o0

=S VG e (1) (1) ((—1><“>sj (@)
v=1

—I—T( ) (v— 1)§S](U 1)( )>

This can be transformed with the re-substitution v = m to:

= Y VAT = D85 (0) (85 o) + 55 0 (5)

With this last expression and eq. (C.4), we can now derive eq. (2.71).

C.3 Additional derivations for non-axial toroidal EM torque

To perform the integration over ¢ in eq. (2.75) we apply the following expression,

2

, 2w forn =0
/ einedp =" T (C.6)
J 0 forn#0

which leads to a Kronecker symbol for the related indices.

Moreover, we need the relation for K in eq. (2.77) to perform the integration over ¢. For the derivation
of this relation, we follow Kautzleben (1965). He gives a few recursion formulae for Legendre functions,
from which we start here (Kautzleben, 1965, egs. 256 a, 259 a & 266):

Py (m+2)(cos ) — 2(m + 1) cot 9Py, (y41)(cos V) + (k +m)(k + m + 1) Py, (cos ) = 0, (C.7)
1

cos U Py, (cos ) = 1 ((k = m+ 1) Pgs1ym(cos ) + (k +m)P_1)m(cosv)), (C.8)

— (2]{: + 1) sin v P, (m+1)(COS 19)

= (k—=m)(k —m+ 1)Py1ym(cos?) — (k+m)(k +m+1)Py_1ym(cosd). (C.9)

Applying the first relation, eq. (C.7), and considering of the definition of the cot-function yields

0
cos ¥ sin Q%Pk (m+1)(cos V) + (m + 1) Py, (4,41 (cos )
= (m+1)(1 — cos? V) - Py, (smy1)(cos?) + (k —m)(k + m + 1) cos ¥ sin 9 Py, (cos ),

=sind | (m + 1) sin ¥ Py, (;41)(cos ¥) + (K — m)(k +m + 1) cos ¥ Py (cos9) | .
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We apply here egs. (C.9) and (C.8) and find:

| 0 () 1) Py (08 9) + (6 )6 470+ 1) Pty (05 )

+k-—m)(k+m+1) ((k —m + 1) Pg1ym(cos ) + (k +m)Py_1ym(cos 19)) ,

in o
= ;};rir 1 [(k’ —m+1)(k—=m)(=m — 14k +m + 1) Pyy1)m(cos?)

+(k+m+1)(k+m)(m+1+k—m)Pj_1),(cos?)|.

This can be simplified to

cos ¢ 511119819 Py (m41)(cos ¥) 4 (m 4 1) Py (sy41) (cos )
ind
;ilw:m+n@mmaﬂmwmm+@+m+b@+mw+nahmmmm,
which is the relation for K in eq. (2.77).
The last step to derive eq. (2.79) from eq. (2.78) is the restriction of the summation over m to positive
values. We split the summation over m into m > 0, m = 0 and m < 0:

2 Jmax

-1 —1) .,
:—*ZJ (J+1) {Z Sim(r ( )(](2]_1) G )T(jfl)(mwtl)(r)

+m+2 JAm+DG+2) ..,
LU )((2j+3) )(j )T(j+1)(m+1)(r)>

iG—1)2 . 1) +2)?
+ Sjo(r) (]((2]]_1)) T(—1)1(r) + (j(z?)(j?))) TG4y 1(7“)>

-1 )G —m—1)G—1) .
+ Z‘Sjm(r)<(ﬂ )(](2j_1) )(j )T(j—l)(m+1)(7")

i +m+2) (G +m+1)(5+2
L Gm )((;j—:—fi)—'_ )(j + )T(*;-+1)(m+1>(7‘))]~ (C.10)

We substitute now m = —v and use egs. (C.1) and (C.2) to reformulate the last summation, which leads
to

M-

Sjm<(j TV +r -1 -1

—1 25 + 1) (i—1) —(w=1)(T)
i —v+2)J—v+1)([G+2
L mve )((;j - 3)+ )(j +2) T(j+1)_(y_1)(r)>
- 2_: (O . V)(j(;j :_1)1)0 U (= )(”71) T(j-1) w-1)(r)

(G—v+2)§—v+1)(j+2) -
’ 2) +3) (=) Ty -y (r ))

This can be transformed with the re-substitution v = m to:

=S S;m(r)<(j+m)(j(2+jvibl—)1)(j— 1) Tj—1) (men ()

LG 2)((23'];77;)+ 1)(j +2) oo (ml)(r)) , (C.11)

With the last expression and eq. (C.10) we can derive eq. (2.79).
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Additional derivation for the D
toroidal magnetic field

D.1 Derivation of the scalar induction equations

Here, we derive the scalar form of the induction equation for the mantle (eq. (3.9)-(3.10)) and the outer-
core (eqg. (3.16)-(3.17)) domain. Due to the fact that the mantle equations are a simplified special case
of the outer core equations (reduction of the V, V°, U and U® related terms), we derive first the more
general case of the induction equation for the outer-core domain.

To derive the scalar toroidal induction equation for the outer-core domain, we split eq. (3.8) into
toroidal and poloidal parts. The toroidal part is given by:

L rot(1 rot BT> - rot((u X B)P + Eep> + QBT =0. (D.1)
Ho Oc ot

Here, we have considered that for any poloidal vector U” follows: rot U" is toroidal and vice versa
and aBF is poloidal if a is a scalar function of » only. Now, we apply the definitions in egs. (2.25) and
(3.11)—(3.14) to the toroidal equation above.

1 1 0
— 1ot < rot rot (T)) — 10t <1°V + grad W + rV* + grad We> + = rot(rT) =0
Mo Oc ot

With the following relations for the differential operator rot, any vector v and any scalar s (e. g. Bronstein
et al., 1997, Sec. 13.2.5),

rot(sv) = srotwv + grad s X v,

O
N
=z =

rot(v1 + vg) = rot v + rot vo, (D.3

rot (grad s) =0,

the toroidal induction equation reads:

1L rot rot rot (rT) + grad 1 X rot rot (’I‘T) — rot (rV) — rot (rVe) + g rot (rT) =0.
Ho [ Oc Oc ot

In addition to the relations in egs. (2.28)-(2.29), we consider (e. g. Krause & Radler, 1980, Sec. 13.3)
rot rot rot (TT) = r x grad (AT), (D.5)

which leads to the following toroidal induction equation:

[r X grad(AT)] + L {grad 1 X (—TAT + grad(arT>>}
o o or

HoOc c

0
+rxgradV +r x grad V® — a(r X gradT) =0. (D.6)

For the further derivation, we have to reformulate the second term in the equation above, which reads

with » = re,, a spherical symmetric conductivity o and its related partial derivative e, 21 = —r-1; 25t
1 1 0 1 0 0
— ——— 0 XPAT | — | r— =—o0¢ x grad| —7rT =
140 {(Trag 87‘00 " ) (rrog 87’00 Era <8rr ))}
1 19 0
—r x grad| — —oc—=—71T | |. (D.7)
1o T¢ roc. Or ~Or
Scientific Technical Report STR 08/06 53 Deutsches GeoForschungsZentrum GFZ

DOI: 10.2312/GFZ.b103-08061



54

We also consider that due to the sole r-dependence of the conductivity the following relation is valid:

1 0 0] 1 0 0
rr‘CEUC X grad<aTTT> =7r X grad(maTJcaTTT)

First, we exchange the second term in eq. (D.6) by eq. (D.7) and, secondly, we consider that the following
is valid for any scalar function a and b:

r x grada + 7 X gradb = r x grad(a + b).

This leads for the toroidal induction equation of the core domain to:

1 ) AN

r X grad( [AT —

Ho Oc
In a simplified notation, eq. (D.8) reads
r x grad f(r,Q2) =0.

Performing the vector product shows the sole r-dependence of the expression, which leads to f(r,Q) =
g(r). Based on the normalization of the field-generating scalars in egs. (2.27) and (3.15), we can con-
clude that

1 10 0 0
T-— 2626 +v+ve—Zrlan—o0.
/Q,uoac [A T 81"0087" (T )+ + ot }dQ 0

If [, TdQ =0 like in eq. (2.27) then it also holds that [, AT dQ2 = 0, seen when considering the splitting
of the Laplace operator according to eq. (A.16). From r x grad(f(r,2)) = 0, then it follows in this line of
argumentation that f(r,Q2) = g(r) vanishes identically, i.e. eq. (D.8) is only satisfied if

1 1 0 0 . 0
This leads to eq. (3.16) in sec. 3.1. If we neglect the additional term in the induction equation of the core
and exchange the conductivity of the core, o, by the r-dependent conductivity profile of the mantle,
ow(r), we can analogously find eqg. (3.9).
We split the induction equation for the core given in eq. (3.8) into its poloidal and toroidal parts, where
the poloidal part is given by:
1 1 P T T 0 P
—rot| —rot B | —rot (uxB) +E" )+ =B =0. (D.10)
1o o ot
Here, we consider in addition the definitions of the field-generating scalars in egs. (2.25) and (3.11)—
(3.14) and find

L rot <1 rot rot rot (rS)) —rot (rot(rU) + rot (rUe)> + 9 rot rot(rS) = 0.
Ho Oc ot

With the relation in eq. (D.3) and reversing the order of partial and temporal derivatives, the induction
equation reads:

1 . P _
ot [Mo o (rot rot rot(rs)) —rot(rU) — rot(rU°®) + rot (ratS)_ =0.

For the further derivation, we apply egs. (D.5) and (2.29), which leads to

1 9 \]
rot{ (r x grad AS) + 7 x gradU + r x grad U° — r x grad(S) =0.
Ho Oc ot ]
As discussed above, it is possible to move the sole r-dependent factor ﬁ into the grad operator, and
we reformulate the poloidal induction as follows:

1

Mo Oc

rot[rxgrad( ASJrUJrUegtS)] =0. (D.11)
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With the relation in eq. (2.29), we find in simplified notation for the equation above
rot[r x grad f(r, Q)] = —rot(rot v f(r,Q)) =

The term (rot 7 f(r, 1)) is sole toroidal and in Krause & Rédler (1980, Sec. 13.4) a relation for a toroidal
field AT is given, which reads: if rot A" = 0 in the whole region then A" = 0. Therefore, it holds

rotrf(r,Q2) =0=1r x grad f(r,Q),
which reduces the problem to that solved above for the toroidal field. With the same arguments like for
the toroidal part, we can conclude that the equation above is only valid, if

AS+U+UE—QS—0 (D.12)

Mo Oc

is fulfilled, taking into account the normalization of the field-generating scalars in egs. (2.26) and (3.15),
and its consequences for A.

D.2 SHR of the scalar induction equations

For the further derivation of the toroidal magnetic field and for the basis equation of the NHDC, we need
the spherical harmonic representation (SHR) of the scalar induction equations (3.9) and (3.10) for the
mantle. First, we focus on the toroidal induction equation and apply the SHR of the field-generating
scalar T'in eq. (2.52):

| AT 05 )5 T ) )

g,
Ho M i

0
-> 5 Lim (7 1)Ym (€2) = 0.
jm
We split now the Laplace operator into its radial and angular part, according to egs. (A.16) and (A.17).
Applying this relations and resorting the different terms in one summation leads to

5 { ooty [ (3 0 ) =3+ Dm0

HoOm

1 d
row(r) dr

O'M(’I“)%(TT]‘W(T, t))} — %ij(r, t)}YJm(Q) =0. (D.13)

Due to the orthogonality of the SH, we can conclude that each equation for any j and m has to be
satisfied. Implementing the radial derivatives we can find the equation:

L |20 0 i +1)
m [T aij(T’ b+ WT-“”(T’ t) - r2 Ty (r,t)
1 d ) 9
o) (Tl 475 Do)} = S0 =0 D14)

where a reordering with respect to the order of the partial derivatives of the coefficients 7}, leads to
eq. (3.18).

In the second part of this section, we derive the SHR of the poloidal induction equation in eq. (3.10)
for the mantle, applying eq. (2.43):

ZASert Z S]mrt im(Q) =0,

[
o M im

which can be further simplified using eq. (A.16) and considering eq. (A.18)

> {l(r) [:2 (;(Tﬁsjm(n £)) = 5(j + 1)Sjm(r, t))] - %Sjm(n t)}ij(Q) —0.

(o)
m HoOwm
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Due to the orthogonality of the SH, we can conclude that each equation for any j and m has to be
satisfied. This leads to:

92 20 JG+1 d
ijm(T, t) + ;ESjm(T, t) - ( -2 ) aSjm(T, t) = 07 (D15)

Sjm(ra t) - NOUM(T)

i.e.eq. (3.19).

D.3 SHR of the field-generating scalar 1/

Beside the equivalence of eq. (3.12) and (3.50), we present in this section the detailed derivation of the
SHR of the field generating scalar .
First, we consider the general definition

(ux B) =71V +grad W — r x grad U, (D.16)
following from egs. (3.11) and (3.12). Then we put u x B into the right-hand side of eq. (3.50) and obtain
r-rot[r X (u X B)} = r-rot[T X (rV—l—gradW —7r X gmdUﬂ7
=7 -rot[r x rV + 7 x gradW — r(r - gradU) + (v - r) grad U],

where the first term vanishes identically. In the last two terms, the e,-parts cancel each other and the
remaining term cancels by multiplication of rot-operator with ». With eq. (2.29) follows

- I“Ot[’l‘ X (u X B)} = —rrot rot(rW),

which can be rewritten considering eq. (2.28)

r-rot[r x (ux B)| = —r |:—T‘AW + grad((grrWﬂ,

=AW — rgrad(arW) .
or
According to the definition (A.16) and r = re,., it holds

r-rot[r x (u x B)| = ;(ﬁ;W) +AQW—T% (grw>,

=AqgW, (D.17)
showing the equivalence of the expressions in egs. (3.12) and (3.50).

For the derivation of eq. (3.51), we apply the angular Laplace operator on the SHR of W, according
to eq. (A.18),

Ao W(r,Q,t) = Z ij(’l", t) Ag ij(Q)a
== G+ D Wi, )Y ().

jm

Next, we divide this equation by —j(j + 1) and multiply it with Y77 (€2). Considering the orthogonality
condition in eg. (A.6), leads then to

jm

= ﬁ/ r~r0t[r X (uxB)]Yﬁn(Q)dQ
Q

For the further derivation, we reformulate the integral kernel by use of u,, = 0 at » = Rys, Obtaining

r-rot[r X (u X B)] = r-rot(urBr),
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which explicitly reads

r Brug sin 19) 3a<p (7’ BrUﬂ) .

1 0
[r 'rOt(u’r‘BT)}r - rsin v 619(

For the next step, we express the vector components on the right-hand side by the related field-generating
scalars, this are for the magnetic field

B, = _71AQ S, (D.18)

as defined in eq. (2.31), and the new definitions for the velocity field

0 1 9
v = 8719P+ sinﬁ%Q (D18)
_ 1L 9p 9, (D.20)

U = Sinv Op 09

which are similar to egs. (B.23) and (B.24) for the magnetic field (P ﬁlai( S), Q=T). The use of this
definitions leads to the following equation

-1 1 0 9] . .0
Wim = ji(j 1) / sinﬂ{(‘)ﬂ {— Aq S (&pP — smﬁaﬂQﬂ
Q

0 ) 1
_&p{ AQS(M +sm19890Q)]} m() 2. (©21)

Now, we apply the product rule for partial derivatives obtaining:

-1 1 0 0 ., 0
Wim = m/ e [_819 A S <8@P — 511119819@)
82 0 7] 0 1 0
”S(aﬁa P= 87981119 Q) Do AQS(&? +sinz98ch)

ras (L py L 82@ - (Q)dO (D.22)
272\ 900V sin 9 Op? ’ '

For the field-generating scalars, we choose the following SHR:

S(r,Q,t) Z S (7, 1) Vi (€2 (D.23)
P(r,Q,t) Z Py (r, )Y ( (D.24)
(r, 1) Z Qs (1, 1) Yot (). (D.25)

With eq. (A.18), we find

Ag S(r,Q,t) = Z —k(k+1)Sk(r, t) Y (). (D.26)
kil

In the further derivation, we use for simplification the notation without any arguments for the SHR of the
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field-generating scalars. With this representation, eq. (D.22) reads

-1 1
Wi = m/ SM{ (Z k(k + 1) S5 Vi (2 )( Z Py Y (2 smﬂaﬁ Z QatYar( ))
Q

£ 3 k(k 4 1S (@) [&98 > Pl - a% (mﬂaaﬂ > QstYst(m)]

kl

0
~ 59 (%j k(k +1)SkYi (2 ) (aﬁ Z PuYu() + — Z QutYsr (2 )

= 3 K+ D5uYi@) 5 2 P @) + ﬁa—@z > Q@) i @ada. @27

kl

After introducing the abbreviation

Kmax Smax

Sy ey (D.28)

klst k=1 l=—k s=1 t=—s
and resorting eq. (D.27) with respect to the field-generating scalars, we obtain
-1 1 0 0 o2
- | = 1 Py | = Y3 (Q) =Yt (Q) 4 Vi (Q) =——— Yo (Q
oy [ g 2 bk DSk P S5Vl 5 Yia(9) 4 Vi @) 5 Yeu(@)
Q

klst

M[jm

0 0 02

— %Ykl(Q)%nt(Q) - Ykl(Q)MDYst(Q)]

Q| (¥ ) sin (¥ ) = Via(@) 55 (s ()

0 1 0 1 92 N
- %mm)m%nt(m a9 g Yl ®)| V@) a0

0 0 0 0
Wim = GTD / g:t k(k+1 Skl{ {aﬁYkz(Q)&stt(Q) - &pYM(Q)stt(Q)]

sin ¥ Op

1 9 ) 1 02
Vi (Q) = Vir () +

Y5 (Q — — Y (Q)==Y;
t( )+ 880 sin219 kl( )BQOZ t

Qst|: 0 Y5 (Q) == 0

oY sind dp

+ sin 9> Yst(Q)ﬂ } Y7, (9)dQ. (D.29)

0
smg R )619< 99

We use the relation,

1 9? 1 0 0
Yi(Q) Aq Vi () = Y’”(Q)(smﬂ 9,2 Y (Q) + — 090 (SlnﬁaﬁYSt(Q)>) , (D.30)

to define the following coupling integrals,

m 0 0 1 0 0
iz = [ [ @) g5 ¥l + o 2 Vi @) V()
Q

09 09 sind dy
- Yu(®) Ag mm]mm) a. (031)
- 1 0 0 0 0
jm. _ il — _ —_ *
it = [ g | (O V(@) = V(@) ve@)| V@ a0, (032)

The calculation of the SHR of the field-generating scalar I is then described by

klst

which is equivalent with eq. (3.52).
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D.4 Derivation of the coupling integrals K/, and L},

In section 3.3, a relation between the field-generating scalars Wj,,, Sk, Ps: and @ using the coupling
jm

integrals KJ;”, and LJ", is given by eq. (3.52). Here, we present the derivation of the egs. (3.53) and
(3.54), based on the expression (D.31) and (D.32) in appendix D.3.
The coupling integral in eq. (D.31) is reformulated, considering the relation (A.18), as follows
; 0 0 1 0 0
jm -~ v - v *
Kl = [ | 510090 G50 @) + g gV @ V(@) v (@) a0
Q

~ sl 1) [ V(@) Yl Yy () 492, (D.34)
Q

For the last integral, we find in Varshalovich et al. (1989, Sec. 5.9.1, eq. 4)

. 2k+1)(25+1 -
/ Yir ()Y ()Y, (2) dQ = T4l Clo.0Chlve- (D.35)
Q
The relation
0 0 1 0 0 1 ru
%YMQ) aﬂyst(m + M%Ym(m%l@t(ﬂ) =3 ; [k(k+1)+5(s+1) —r(r+1)] Qpfs; Yiu (),
(D.36)

is given in Pé¢ & Martinec (1988, eq. 11) with

klst\/m Cros0 Chils:- (D.37)

Considering the expression (D.36) by the reformulation of the first integral in eq. (D.34) leads to

/ [59‘”“(“);95@(9” Y (Q)ainAs))]n’:n(ﬂ)dg

sind 0g M
Q
:/[;Z[k(k+1)+s(s+1)—r(r+1)]\/%(i$;)'l)C};%So Ty () Y75, (9) A,
Q Tuw
:;[k(k—kl)—&—s(s—&-l)—j(j-kl)]\/%ﬁsl—;l)C{C%Sociﬁt. D.38)

Next, we combine egs. (D.35) and (D.38) to determine the first coupling integral

2k +1)(2s+1) ~j0

ij _ ij
4’/T(2j+1) k0s0 Yklst

klst —

N —

[k(k+1)+s(s+1)—j(j+ 1)}\/

(2k+1)(25+ 1

BRI =y

70 jm
CkOsOCklst7

which can be simplified to

(2k+1)(2s+1)

C.0.0CL
47T(2]+1) k0sO0 Yklst

ym 1 L.
K, = 3 [k(k+1)—s(s+1)—j(G+1)] \/
In this way, we have determined the first coupling integral, given in eq. (3.53).
In the following, we summarize the derivation for the second coupling integral, given in eq. (3.54),
which is more extensive than for the first coupling integral. Therefore, we split this derivation into the
basic steps in this appendix, while we present the derivation of necessary relations in the appendix D.5.
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We start from eq. (D.32),

; 1 [0 0 0 0
jm _ *
Q

which can be reformulated, as shown in appendix D.5, to

L = / e, - {s,g?(g) x S ()| Y, () dS2. (D.39)
Q

There, we use the definition of the vector spherical harmonics in eq. (A.24). With the following relation
Sim(©) = i Vi +1) Y5, (), (D.40)

which is derived in eq. (D.45), later on we can write

Lim — _ / VR Ds(s + 1) e, - | Y5(Q) x Y3,(Q)| Y7, (2) d9. (D.41)

Here, ij(Q) denotes the vector spherical harmonics, as defined in Varshalovich et al. (1989, Sec. 7.3.1,
egs. 6 and 9). In appendix D.5, a relation is given for the integral kernel in terms of Clebsch-Gordan
coefficients. The application of eq. (D.58) on (D.41) leads to

jm 1 r U
Lz = / 5 2k (s 1) Gt V(o)

(k+s+r+2)(k+s—r)k—s+r+1)(-k+s+r+1)] .,
\/ R(E+ 1)(2k 1 1) s(s + D@25+ 1)(2r +3) Yim (1) d2. (D.42)

Tuw

Considering the orthogonality condition (A.6) and reducing the equation, we end up with

L]m o (2k+1)(28+1) Jj+10 C]m
klst — 2 47T(2j+3) k0s0 Yklst

Vk+s+j+2)k+s—k—s+j+1D)(-k+s+j+1),

which is equivalent with eq. (3.54).

D.5 Additional relation for the derivation of L/,

As explained in the section above, we summarize here the extensive derivation for different relations
of vector spherical harmonics, which are needed for the determination of L},",. First, we show the
equivalence of egs. (D.31) and (D.39), starting with

0 1 0
g () = 511119 @

S0 % SP(@) = [es 2

Yia()] x [, 35 ¥l — 05 2 ¥2u(0)

€ sinﬁ‘%
where only the definition (A.24) is used. Considering the vector products between the unit vectors e,
and ey leads to

O x SO —e. L [y 8 _ 9 9
SK (@) % S(@) = e | SV(@) 5LVl - (@) 5

a@)]. (D.43)

Hereby, the equivalence of the mentioned equation is shown.
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Furthermore, expression (D.40) is based on the definition of vector spherical harmonics in Var-
shalovich et al. (1989, Sec. 7.3.1, egs. 6 and 9)

—1

Y. ()= ——— (e, x V@) Yim(9). D.44
With the definition in eq. (A.24), this leads to
©) oy o S ;
Sim() =i/j(G +1) Y], (Q). (D.45)

To reduce the integral kernel in eq. (D.41), we use the relation given in Varshalovich et al. (1989,
Sec. 7.3.10, eq. 101)

3 k s r -
Ym@)x\yzt(mu/%<2k+1><2s+1>2{k : z;}C',;%so kst Y2,(9), (D.46)

rup 1

where the coefficient matrix denotes the Wigner 95 symbols as defined in Varshalovich et al. (1989,
Sec. 10.1). We need only the r-component of this expression, which is given by

k s r
k s r—1 Cr_loir Yru Q
{1 DT } k0s0 r@r 1) ()

- k z Trl r+10 (T—’_l)
{’f ) T}C’“OSO (r+1)(2r+1)Y”(m1’ (D.47)

. 3 ru
er [ YA x Y50 =iy e+ e+ 1) S G,

where the two remaining values for the summation over p, p = r — 1 and p = r + 1 are applied (by the
definition of Y!, (€)). In addition, we need expressions for e, - Y’ 1(Q) and e, - Y/}1(Q). With the

Jgm

relations from Varshalovich et al. (1989, Sec. 7.3.1, egs. 6, 7 and 10) we find

+1 1 r
r° T_lg = €r - YruQ a1 rYruQ
e Y (0) = e[| 5 T Va4 [ e @)

T /@) Yrul@), (549

and

1 r+1
YTEHQ) = ey |/ — V() — ) e, Yo (2
€y ru() 6[ %+ 1 T(T—‘rl)VQ () 2T+1e ()a

o (r+1)
D@, (D.49)

Here, we have considered the scalar product of e, with itself and with the angular nabla operator (A.15).
The most extensive derivation to find the required relation is now the reformulation of the summation of
Clebsch-Gordan coefficients. In a further step of the derivation, we have to determine the Winger 9;
symbols by tabulated values. With the relations

c o [2¢+1
ca%b+2() =(-1) 2%+ 5 CZ‘S%%, (D.50)
cO _(_1\a / 2c + 1 b0
CaObO_( 1) 2b+lca0607 (D'51)
taken from Varshalovich et al. (1989, Sec. 8.4.3, eq. 10), we find

W 2645
Cobeo = (=1 5,57 Cabrao (D.52)

Scientific Technical Report STR 08/06 Deutsches GeoForschungsZentrum GFZ
DOI: 10.2312/GFZ.b103-08061




62

which transforms according to eq. (23) of Varshalovich et al. (1989, Sec. 8.6.4) and the relations above

to
ch20 _ /2b+5 (a+b+c+2)(a+b—c+1)(a—b+c)(—a+b+c+1) (D.53)
a0cO 2c+1 Cubeo (a+b+c+3)a+b—c+2a—b+c—1)(-a+bt+c+2)’ '

To reformulate eq. (D.47), we choose now a = k, b =r — 1 and ¢ = s, which leads to

cr-10 /2 crH1o k+s+r+2)(k—s+r+1)(k+s—r)(-k+s+r+1) (D.54)
Choso = 2 +3 +3 Choso (k+s+r+)k—s+r)k+s—r+1)(-k+s+r) '

Now, we can express both terms in the summation in eq. (D.47) with the same Clebsch-Gordan coeffi-

cient and find
k s r —r
k s r—1;)——
111 r(2r+1)

3 Tu 'I"
r [ YA x W30 =1y e+ 1@+ 1) T G, G Yol@)
[2r—1 [(k+s+r+2)(k—s+r+1)(k+s—r)(-k+s+r+1)
2r+3 k+s+r+1)(k—s+r)k+s—r+1)(-k+s+71)
k s

{ } (r+1)
k s r+1
11 1 (r+1)(2r+1)

The Wigner 9;5-symbols in the equation above have to be determined for the further derivation. According
to Varshalovich et al. (1989, Tab. 10.9 ) for A = = 0 and v = 1 (which are used in the cited table) is the
first Wigner 95-symbol given by

{k s v }r\/(mswﬂ)(msrﬂ)(l@s+r)(k+$+7">_ (D.56)

(D.55)

P 6k(k + 1)(2k + D)s(s + 1)(2s + Dr(2r — )(2r 1 1)

The second Wigner 9j-symbol is for A = = 0 and v = —1 given by

(D.57)

{k = }:T+1\/(k+s+r+2)(/~f+8—T)(/f—8+7"+1)(—k+8+7°+1)

Loy 2\ 6k(k+1)(2k + 1)s(s + 1)(2s + 1)(r + 1)(2r + 1)(2r +3)

Here, we have also reduced the expressions as much as possible. With both last expressions for the
Wigner 95-symbols we can rewrite eq. (D.55), which then reads

. i 2k 125+ 1) = ri10
€ |:YII§I(Q) X Yst(Q):| = 75 T ; ck-g{s‘% klst Yru(Q)

(k+s+r+2)(k+s—r)(k—s+r+1)(=k+s+r+1)
k(k+1)(2k + 1)s(s + 1)(2s + 1)(2r + 3)

(D.58)
We have now everything prepared to derive Li’[;t from eq. (D.41), where we express the integral
kernel by eq. (D.58):

m P (2k+1)(2s+1 r
L‘]]clst = 2 ( \/)477_[_ ) |:Z Ck‘gi% klst

\/(k+s+r+2)(k+s—7')(k—s+7'+1)( k+s+r+1) /Y
Q

rTuw

k(k 4+ 1)(2k + 1) s(s + 1)(2s + 1)(2r + 3) ) dQ (D.59)

:6'rj5'u'm
With orthonormal condition (A.6), indicated in the equation above, we find for the indices » = j and

u=m

Lilsf_2\/ C?COSOC?clst

47 (25 + 3)
Vk+s+j+2)k+s—j)k—s+j+1)(-k+s+j+1), (D.60)

which is identical with the expression shown in eq. (3.54) in section 3.3.
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D.6 Matrix notation of the finite-difference approach

The matrix notation of the set of equations describing the discrete BVP in sec. (3.4.1) uses the definition
of T by eq. (3.66). We have thereby also defined the related vector of the right-hand sides, R. The tri-
diagonal matrix A, constructed by the coefficients of egs. (3.61), (3.62) and (3.65), has the dimension
Of (4max + 1) X (imax + 1), @and is given by

_All A12 0 0 0 “ee 0 1
A21 A22 A23 0 0 0
0 A32 A33 A34 0 ce 0
A= . S : ) (D.61)
0 0 0 0 0 v A A a1
L 0 0 0 0 0 NN Aimax+1 imax Aimax-l—l imax+1

where the non-zero elements are

Ay = _[ﬁ+ﬁ(% - o) +60],
A = [ﬁ + i%} ,

At = [@ + ﬁ@*] ,
A = —[ﬁ +0;.4],

Aiir = [(A%)Q - TL‘E‘*] ,

Aimax+1 imax+1 = 1 N

The vector of right-hand sides is given by

R=[Ro,...,Rins.] (D.62)
where
L
Ro = L00eom (g, - 2, (063
R;=0 for i€ [1,imm- (D.64)

D.7 Matrix notation of the Crank-Nicolson approach

Here, we determine the matrix elements of A, given in eq. (3.73). With the following abbreviations,

At

o = m, (D.65)
Atd;
Bi = N (D.66)
- A;I/@ 7 (D.67)
we can rewrite the discrete partial differential equation (3.70)
— (o + B)TER + (L4 20 + ) TP + ( + B) TP
= (i + B) Ty + (1= 205 — ) T7 + (o = B) Ty (D.68)
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This is only valid for ¢ € [1,4... — 1]. For the special cases i = 0 and i = i.., We have to consider the
boundary condition like in egs. (3.62) and (3.65) and find in the notation introduced above for i = i,

™ =0, (D.69)

Tmax
andfori =0

— (a0 + Bo) TP 4+ (1 + 200 +70) TEH + (a0 + 50)[

A
= (a0 Bo) T + (1~ 200 —0)T§ + (a0 + o) o

2A
22 V) + T

(roowW ) + T4 (D.70)

CMB

Now, we can define the tri-diagonal A matrix in eq. (3.73), which has the same dimension ((iy.. + 1) x
(imax + 1)) @nd structure as the matrix in eq. (D.61) by its non-zero elements

2Ar}
RCMB ’

A1y = [(142a0 +70) + (a0 + Bo)

Aoy = [oie1 + Bia]
A = [1 + 201 + 'yi_l] , (D.71)
Ajip1 = —[ai—1 + Bi1]
A+ Limat1 = 1
(D.72)

The time-dependent vector of the right-hand sides is determined by the relation
R"=BT" +F". (D.73)

Here, B is also a tri-diagonal matrix with the dimension (ip. + 1) X (im + 1). Its non-zero elements are
given by

2Ar

= [(1 =200 — 70) + (0 — ﬁo)RCMB] ;
B = [2a0],
Bii1 = [Olz 1= Bin 1]

[1 — 201 — Yi— 1} (D.74)
Biiy1 = [Oél 1+ Bie 1]

=1.

Blmax+1 imax+1 —

The following relation holds for the vector F

F* = [Fg,....,F. ", (D.75)
with
n o __ & no_ n+1) _ noo_ n+1
FO - R l:OéO,u‘OO—M(ij W]m ) ﬁOMOO—M(ij W]m )] ) (D76)
CMB
F'=0 for i€ [1,in- (D.77)

With this matrices and vector definitions, we can now write the Crank-Nicolson approach in the matrix
notation as given by egs. (3.73) and (3.74).
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Relations to magnetic E
measurements

E.1 Definition of the Gauss coefficients

Following the classical approach of Gauss (e.g. Jacobs, 1987, Chap. 4) to separate both sources of the
geomagnetic potential, ¢, in a source-free domain between the Earth’s surface and the ionosphere, we
can assume

o=¢+, ED

where ¢' and ¢° denote the internal and external potentials, respectively. The internal potential is related
to the sources in the Earth’s interior, whereas the external potential is related to the sources in the
ionosphere and magnetosphere. In the Schmidt's normalization, we find for the internal potential:

[e'e) j+ 7
&'(r, 9, p,t) = REZ(%) Z Gim (t) cos(mep) + hjm (¢ )sm(mgp)]p (cos®). (E.2)
7j=1 m=0

The Legendre function ij(cos 9) is here used in Schmidt’'s normalization. By eq. (E.2) are the Gauss
coefficients g, and h;,, defined.

E.2 Relation between Gauss coefficients and spherical harmonic
representation

A relation between real SH coefficients of .S in Ferrers-Neumann normalization and the magnetic mea-
surements by means of Gauss coefficients g, and h;,, is given by Ballani et al. (2002, eq. (21)):

1
S;m(’ra t) = EN]mREg]m(t)7 (E3)
1
Sjm(’ra t) = 5N]mREh]m(t)7 (E4)
where Schmidt’s normalization factor is
(j —m)!
Ny = 2 —0mo) —=. E.5

With eq. (A.44), we can derive the following relation between the complex and real SH coefficients
analogously to Greiner-Mai et al. (2004)

Sjm(r,t) = (2)\7&”0)(5“ (r,t) —i55,,(r,1)),
= s N G0 = i (1),

With A;,, given by eq. (A.40) follows

VR [ Gem) dr Gl
Sjm(r’t)_j@_(smo)\/@ 5m0)(j+m)!2j+1( —m)! (gjm() h]m(t))»

m Be 4m .
-y j\/(2 o) ) WO Rm ) =

This relation is valid for j € [1, jmax] and m € [0, j]. For negative m, we use the relation in eq. (A.41).
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List of symbols ‘ L

Symbol Explanation Page
A matrix of system of discretized equations of the BVP 23
B magnetic flux vector 3
B? poloidal magnetic flux 5
BT toroidal magnetic flux 5
B matrix of right-hand sides (Crank-Nicolson approach) 64
C set of complex numbers 8
C.l Clebsch-Gordan coefficients 22
dv infinitesimal volume element 4
dQ infinitesimal surface element (in spherical coordinates) 4
e; unit-base vector 3
E electric field 15
E. electric field in Earth’s outer core 16
Ey electric field in Earth’'s mantle 16
E* electric field associated with turbulent flow 16
2‘ Levi-Civita tensor 39
F Lorentz force density 3
F vector of boundary values (Crank-Nicolson approach) 64
Gim (t) Gauss coefficients of geomagnetic field 65
Bjm (t) Gauss coefficients of geomagnetic field 65
T identity tensor 39
J electric current density 3
Jc electric current density in Earth’s outer core 16
I electric current density in Earth’s mantle 16
K., coupling coefficients for SHR of field-generating scalar W 22
L electromagnetic core-mantle coupling (EM) torque 3
LF complex combination of non-axial components of the poloidal EM torque 9
LT complex combination of non-axial components of the toroidal EM torque 11
L, coupling coefficients for SHR of field-generating scalar W 22
magnetic stress tensor 3
Njm Schmidt’s normalization factor 65
P field-generating scalar of u 57
P, (cos ) associated Legendre function 35
Pri(cos ) associated Legendre function in Ferrers-Neumann normalization 35
Q field-generating scalar of u 57
st coupling coefficients for two Clebsch-Gordan coefficients 59
r position vector 4
r radial component of spherical coordinates 4
Reve radius of the core-mantle boundary (CMB) 7
Rics radius of the inner-core boundary (ICB) 16
R, outer radius of the conducting part of Earth’s mantle 16
R vector of right-hand sides related to A 23
R set of real numbers 8
S field-generating scalar of poloidal magnetic flux 5
SJ(Q(Q) vector spherical harmonics 36
T field-generating scalar of toroidal magnetic flux 5
T reduced notation of SHR coefficients Tj,, (r, t) 21
T, reduced notation of partial derivative of T 21
T reduced notation of second order partial derivative of T 21
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Symbol Explanation Page
T reduced notation of time derivative of T 21
T vector notation of discretized T 23
Uy component of surface fluid-flow velocity of outer core at Roye 57
Ug component of surface fluid-flow velocity of outer core at Roys 57
u surface fluid-flow velocity of outer core at Roye 16
U field-generating scalar of toroidal part of u x B 17
Ue field-generating scalar of toroidal part of E* 17
174 field-generating scalar of poloidal part of u x B 17
Ve field-generating scalar of poloidal part of E* 17
w field-generating scalar of poloidal part of w x B 17
we field-generating scalar of poloidal part of E¢ 17
Yim(Q) orthonormal scalar spherical harmonics 35
Y?m(Q) alternative vector spherical harmonics 61
o abbreviation for elements of A and B 63
Bi abbreviation for elements of A and B 63
Ys abbreviation for elements of A and B 63
i Kronecker’s symbol 3,35
€kim Levi-Civita symbol 39
v angular component of spherical coordinates 4
S} abbreviation in partial differential eq. (3.47) 21
Akl normalization factor between different Legendre functions 37
140 permeability of the vacuum 3
o electric conductivity 15
o electric conductivity of Earth’s outer core 16
Om electric conductivity of Earth’s mantle 16
® angular component of spherical coordinates 4
P abbreviation in partial differential eq. (3.47) 21
U abbreviation in partial differential eq. (3.47) 21
Q denotes spherical surface integral [, ...dQ 4
and abbreviation for angular spherical coordinates (¥, ) 35
Qcus spherical approximation of the core-mantle boundary (CMB) 3
Qo unit sphere 35
\Y nabla operator 35
Va angular part of nabla operator 35
A Laplace operator 36
Aq angular part of Laplace operator 36
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