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Summary: Regarding the rapidly growing airborne gravimetric data base worldwide,
an investigation to study efficient and stable geoid computations based on this type of data
was assessed to be important. The presented study comprehends different approaches to
compute a regional geoid from existing airborne gravimetry data and its combination with
further available data sets. The efficiency and quality of results for the different approaches
and data combinations are discussed.

The data sets used are: 1) Airborne gravimetry in the Skagerrak acquired during the
AGMASCO EU-project (MAS3-CT95-0014), 2) Marine gravity data in the Skagerrak ex-
tracted from the BGI data base, 3) UEGN94 absolute gravimetric network data.

The methods applied on this data sets are: 1) collocation, 2) collocation with regular-
ization, 3) approximation by radial multipole potentials, including point mass potentials.

For collocation and collocation with regularization kernel functions corresponding to
radial multipoles are used.

The concluding results of the investigation are: 1) collocation with regularization pro-
vides more accurate results than the standard collocation method using the same repro-
ducing kernel, 2) higher stability of solutions is achieved by including absolute gravimetric
network data, 3) the approximation by radial multipole potentials is recommended espe-
cially for fast computations of the geoid from airborne data without loss of accuracy.

Comparisons of all solutions worked out in this study with the geoid model for the
European nordic countries show a good agreement (mean deviation < 0.5 cm; rms < 5 cm).
This noise level corresponds to an estimated geoid accuracy of better than 10 cm for the
Skagerrak.

Key words: Airborne geoid — Collocation — Regularization — Reproducing kernels —
Radial multipoles
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1 Introduction

The geoid determination has recently reached a new level of development. With
modern satellite techniques at hand as altimetry and GPS, the geoid becomes “directly
observable”. Thus, we can “measure” it on any given set of points: over oceans by
means of satellite altimetry in combination with an ocean circulation model, over
continents with the help of GPS positioning and precise leveling (GPS-leveling). The
latest progress of geoid determination is connected with up-to-date developments in
airborne and space techniques and requires appropriate mathematical methods to
combine the different types of data with the highest possible accuracy. The intention
of this paper is to construct a regional geoid on the basis of airborne data using
different mathematical approximation methods. In particular, we will apply and
investigate variations of the collocation method developed in physical geodesy. The
remove-restore technique is used to get rid of the low frequency gravity field content.

The traditional gravimetric geoid determination is based on gravity anomalies Ag
which are given (by leveling) with respect to the geoid (which is unknown at this
stage and has to be determined using just these gravity measurements). With the
modern GPS technique today, the position of the gravity measurements (especially the
airborne) are known with respect to an Earth-fixed coordinate system and the geodetic
functional connected to this problem is the gravity disturbance dg (for definition of
Ag and dg c.f. Heiskanen and Moritz, 1967). Nevertheless, in this study we prefer
gravity anomalies, as traditionally used in geodesy, rather than gravity disturbances
because of their better compatibility with already existing measurements over land
and sea.

The airborne gravimetric data set used for this study was acquired in 1996 within
the scope of the EU-project AGMASCO (Airborne Geoid Mapping System for Coastal
Oceanography, EU-MAST project MAS3-CT95-0014). The main instruments used
were a LaCoste&Romberg ship and air gravimeter type S99 of the University Bergen
on board a Dornier-228 aircraft of the Alfred-Wegener-Institute for Polar and Marine
Research, Bremerhaven, plus several airborne and land based Trimble 4000 GPS
receivers. A detailed project description is found in Forsberg et al. (1997). The data
set was chosen because of the high quality of the airborne data set (root mean square
(rms) less than 2.5 mGal), its homogeneous distribution (15 km line spacing, 1 Hz
sampling, 6 km spatial resolution, 400 m mean altitude), the regional extent of the
area (150 ki x 250 km) and good ground control on the coastlines by GPS reference
stations and gravimetric networks. Thus, an appropriate subset of the UEGN94
network of absolute gravimetry (Boedecker et al., 1995) was additionally used.

2 Remove-restore technique for geoid
determination

In practice, the solution of the central problem in physical geodesy results in determin-
ing an equipotential surface W of the Earth’s gravity field in a body-fixed coordinate



system. The fundamental equipotential surface, the geoid, is defined by

W(z,y,z) = Wy = const . (1)
Wy is chosen such that the geoid surface is close to the mean sea surface. (The
reader should distinguish the concept of the “geoid” from the concept of the “quasi-
geoid” which are connected in practice with the application of “orthometric heights”
H or “normal heights” H7 respectively. The quasi-geoid is the surface obtained by
subtracting the normal height from the elevation of the surface points, and is no
equipotential surface.) The geoid computation requires the solution of Eq. (1). As a

geopotential surface
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spheropotential surface

orthometric —
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hight Geoid
W=Wp

)

geoid
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Figure 1: The basic geometry

result, if we compare the gravity potential W = W, at the point P on the geoid (see
Fig. 1)

W(P) =U(P)+T(P) = const =W, (2)
with the normal potential U = U, of the reference ellipsoid at the point @)

UQ) =Uy=W(P) =W, =const , (3)
we define the anomalous potential 7" as the difference between W, and the potential

U(P) of the reference ellipsoid at point P. The corresponding geoid undulation N is
found by means of the Bruns formula

T
N==
y

, (4)
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in combination with the definition of the gravity anomaly (by introducing the normal
gravity y):

Ag=g(P)=7(Q) =9r—7q - (5)
This results in the fundamental equation of physical geodesy:
or 10y
T = _Ag=— — ) 6
oh ~ ~oh 9=—(9p — 1) (6)

If Ag is known it is possible to solve the boundary value problem to find 7" and the
geoid undulation N (gravimetric geoid) above the reference ellipsoid.

Regional and local geoid computations usually are carried out using the remove-
restore technique where parts of the gravity field well known from other measurements
are subtracted (removed) before data approximation and are then added again (re-
stored) afterwards. Generally, these are the long wavelengths part, known from global
satellite based geopotential models and the short wavelengths part known from topog-
raphy. In other words the geoid height N is composed of (Forsberg and Tscherning,
1981)

N =Ny + Nr+ Ni (7)

where Nj;, Ny, Ng are the contributions of the global geopotential model, the terrain
effect of the topographic masses, and the residual geoid, respectively. Now the residual
geoid can be modeled from the gravity observations. According to Eq. (7) the gravity
anomaly Ag is split up into the same contributions

Ag=Agy + Agr+ Agr . (8)

Because the quantities Agy, and Agr can be computed by means of suitable models,
these effects are “removed” from the gravity anomaly

Agr = Ag — (Agm + Agr) 9)

to give the initial information Agg for the determination of Ng. Thus, the next step
will be a straightforward application of one of the known mathematical methods to
approximate the geoid undulations Ng using these new “observations” Agg. In the
sequel the constituents Ny, and Ny are restored to yield the complete geoid hight N.

If the gravimetric geoid for the whole Earth is determined by least-squares col-
location (Moritz, 1980) or by the variational method of physical geodesy (Neyman,
1979) the following basic requirement must be met:

%//Agdon{Ag}zO i (10)

That means the spherical harmonic expression of the potential 7" and the gravity
anomalies Ag must not contain terms of degree zero. The symbol M in Eq. (10)
denotes the average over the spherical Earth with the surface . Furthermore



M{T}=0 |, (11)

must hold for the anomalous potential 7. Generally these requirements (Egs. 10 and
11) are not fulfilled a priori, therefore in case of regional or local geoid determination
“centered measurements” Ag* are computed after having removed the contribution
of a global gravity model of high resolution. It is assumed that the influence of the
distant zones can be neglected. This requirement is fulfilled to a better approximation
with increasing accuracy and resolution of the removed global model.

The recent progress in determining high resolution global gravity field models has
been documented e.g. in Lemoine et al. (1998) and Gruber (2000). The highest
resolution of these models is up to terms of degree l,,,x = 360, corresponding to a
spatial resolution of A\/2 = 30 (half wavelength) according to
A 180°

2 lmax

In this paper we will use only gravity as input data. Therefore, we can determine
the gravimetric geoid only, which usually is characterized by a high resolution with
high relative accuracy but only moderate absolute accuracy. One of the explana-
tions for the latter is an insufficient accuracy of Wy (see Eq. 1). The combination
with GPS-leveling derived geoid heights could overcome this problem and would lead
to an absolute frame. Nevertheless, our main goal is to derive a regional relative
geoid model using gravity anomalies and the remove-restore technique. As the math-
ematical method for approximating the geoid we try different modifications of the
collocation method.

(12)

3 General remarks on the linearization
of geodetic functionals

Next, according to Moritz (1980) we will start from the general view that each mea-
surement ¢ is a nonlinear functional which depends on the Earth’s gravity field, on
one or several points in space and on time ¢:

(= FX(t),W ()] . (13)
Here W (t) denotes the time-dependent gravity potential of the Earth that may be
represented as the sum of the time-dependent gravitational potential V' (¢) and the
potential ®(¢) of the centrifugal force
W(t) =V(t) + ®(t), (in practice: @(t) = const). (14)
The time-dependent vector X(t) consists of the time-dependent coordinates of the
point, where a measurement was made. If we shall assume ¢ = const, from Eqs. (13)
and (14) we get
¢ =F[X(t =const),W (t = const)] = F[X,W], t= const, (15)
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W (t = const) = V(t = const) + ®(t = const) =W =V + &, t=const, (16)

that will not differ from those in Moritz (1980) if the corresponding correction to
a convenient reference epoch is presupposed. Hence, we can formally work for each
t = const with time-independent vector X and potential W. So, denoting the number
of components of the vector X by p (X is an element of the p-dimensional Euclidean
space R?) we get

(=F[X,V+9] , (17)

or

¢=F[X, W] . (18)

The function V' belongs to some Hilbert space H of harmonic functions; for every fixed
t the functional F' is a mapping of the product space RP x H into the set R of real
numbers. For different kinds of measurements we shall obtain different functionals
F, which in the general case are nonlinear ones. Due to the fact that the potential
V' belongs to the infinite dimensional space H and the number of measurements
or functionals of V' are always finite, the inverse geodetic problem does not have a
unique solution. In other words, the determination of the Earth’s gravity field is an
“emproperly posed” or “ill-posed” problem.

Obviously, it will be complicated in practice to use Eq. (18) directly. The tra-
ditional way to solve nonlinear problems consists of their linearization by Taylor’s
theorem and the direct solution of the linear problem. Thus, the solution of a nonlin-
ear problem splits into two steps: linearization and solution of the system of linear
equations.

The linearization of nonlinear functionals can be provided (Moritz, 1980) by in-
troducing the approximations Xg for the vector X and U for the gravity potential W:

X =X, +6X | (19)
W=U+T |, (20)
X=X-X, , (21)
T=W-U |, (22)

where U is the normal gravity potential (e.g. of an ellipsoid of revolution); the
differences in Egs. (21) and (22) are considered to be small; 7" is the anomalous
potential. It can be derived from Egs. (18), (19) and (20) that the following expression
is valid

(=FXo+éX,U+T] . (23)
Taylor’s expansion of Eq. (23) gives



{=F[Xy,Ul+aTsX + LT (24)

neglecting the second and higher order terms. Here a is the column vector that
consists of the ordinary partial derivatives a of F[X, W] with respect to the compo-
nents X of the vector X; the approximate values X, and U are taken instead of the
unknown values X and W:

_OF[X, W]

ap = an (25)

Xo,U

The term a?6X is the scalar product and LT expresses the linear operator L acting
on the disturbing potential T (see, e.g., Egs. (4) and (6)). Then we note that the
simple difference

50 =F[X,W]-F[X,,U] |, (26)

represents the result of linearization: F[X, W] is the observation; F[Xg, U] is the
approximate value of F[X, W] computed with the initial values known a priori. The
quantity 0¢ is called “observed minus computed” and contains the information to
determine the unknowns X and 7. Let ¢ denote the number of observations. The
linearized system may be written now as

56, = al6X + LT
5y = al6X + LT

56, = al6X + L,T

(27)

In general, the normal potential U may be more complex than the potential of an
ellipsoid but the traditional old denotation U is kept. It is recommendable to use a
normal potential U as near as possible to W to minimize the linearization error.

4 Collocation, variational problem
and conditions of solvability

For simplicity, we rewrite the system of Eq. (27), which was found by linearization,
in the matrix form

£=AX+BT+n . (28)

Here X is the p-vector consisting of the components X; and £ is the ¢g-vector consisting
of the components ¢; (changing notation from §X; to X; and 6¢; to ¢;, resp., in
Eq. (27)). The matrix A of partial derivatives has the dimension (¢ x p) and B is the
linear operator, which can be formed from ¢ linear functionals L;. Thus, we put



gl a{ Ll

L= , A= , B= : (29)

assuming that A has a full rank and p < q. The ¢-vector n reflects the influence of
measurement errors (“noise” ); the vector X and the disturbing potential 7" in Eq. (28)
is going to be determined from the measurements £.

Let B=0, then Eq. (28) becomes

£=AX+n |, (30)

that is the system of linear equations in the traditional least-squares adjustment by
parameters. The model described by Eq. (28) may be treated as an extension of the
standard model of Eq. (30). The terms in Eq. (28) can be considered to belong to the
g-dimensional Euclidean space R? except BT, which includes the potential 7" treated
as an element of the infinite Hilbert space.

Now we turn to the solution of Eq. (30). We remember that an inverse problem
is called properly posed (according to Hadamar) if its solution satisfies the following
requirements:

existence,
uniqueness,
stability.

Generally Eq. (30) does not have an exact solution but under the condition

(£ —AX)" (£ - AX) =n'n=min |, (31)

a unique “least squares” estimate of the following form

X = (ATA) "ATe (32)

is possible to find if the matrix A has full rank and p < ¢. Eq. (32) is the solution of the
normal equation system. Thus the first two conditions for a properly posed problem are
satisfied by Eq. (32). The third requirement, stability, means that small changes of the
observations £ will only cause small changes of the estimation X i.e. the solution X
must be a continuous function of the vector £. The third requirement may be violated
in Eq. (32), then the corresponding problem transforms to an improperly posed (or
ill-posed) problem (Tikhonov and Arsenin, 1974). There are many examples in which
the construction of normal solutions leads to unstable results. A generalization of
Eq. (32) is the solution (weighted least-squares adjustment)

X = (A"CLIA) ATCLle | (33)

which is obtained also under the least squares principle

n’C_!n = min |, (34)
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with C,, being the (¢ x ¢)- covariance matrix of measurement noise.
For further use, we return to discuss a solution of Eq. (28) which may be repre-
sented in the following form

X = [AT (C +aCpn) ' A] AT (C +aCpn) ' | (35)

T = (BK)" (C+aCu) ' (£- AX) | (36)

and was obtained in (Moritz, 1980) as a solution of the variational problem

n"C_ln+ a||T||* = min . (37)

Here we introduce the following notations: « is the Tikhonov regularization parameter
(Neyman, 1979; Moritz, 1980) or weight factor constraining the variability of the
solution T ||T|| is the norm of the potential T in a suitable Hilbert space with
the kernel function K (P, (), which often allows the interpretation as a covariance
function of the anomalous potential 7; B is the linear operator from Eq. (29). The
(¢ x q)-matrix C = BKB” in Eq. (36) can be considered as the covariance matrix of
BT in Eq. (28) and has the elements

Cyy=LFL?K (P,Q) (38)

where LT and L? denote the linear operators L; and L; which are applied to the
variable points P and @, respectively. The (¢ X ¢)-matrix K results from the ker-
nel function K (P, Q) or the basic covariance function of 7', which agrees with our
information about the Earth’s gravity field in the studied area.

Thus we come to the solution (Egs. 35 and 36) of Eq. (28) as a solution of the
corresponding wvariational problem (Eq. 37) under the least-squares principle. The
collocation method is defined here as a special version of Eq. (37), i.e. taking o = 1 for
the Tikhonov regularization factor. For the solution of Eq. (28) a priori information
about the Earth’s gravity field therefore has to be introduced, describing the behavior
of the field which then is represented by the kernel function K (P, Q).

For the practical application of Eqs. (35) and (36) the following problems have to
be solved:

e The construction of an appropriate analytical kernel function K (P, Q).

e The choice of a suitable parameter o, when applying the general case collocation
with regularization.

In the next sections these problems are discussed with the further intention to con-
struct a regional geoid in the Skagerrak area.

11



5 Reproducing kernels applied to
collocation solutions

A classification of reproducing kernels K (P, Q) = K?(P, Q) according to their func-
tional and physical significance was done by Marchenko and Lelgemann (1999) on the
basis of the following general expression (Krarup, 1969):

n+1 +1
Z kd ( ) P, (cos¢pg) = Z k1 (—) P, (cosypg) . (39)
Here, ( is a point obtained by the Kelvin transformation To = R} /rq of the position
@ of a measurement with respect to the Bjerhammar sphere with radius Rp (see also
Hauck and Lelgemann, 1984); P, (-) is the Legendre polynomial of degree n and ¢pq
is the spherical distance between the radius-vectors rp and rg. The coefficients k&l

describe the asymptotic behavior of different kernels for 0 = R% /rprq = ) /TP, that
is (Neyman, 1979):

TPTQ

5 — c_ 1

n 712(Q“1) 712(Q“1) ’
and ¢ denotes the index of the corresponding Sobolev space Hf (do not confuse
this index ¢ with the number of observations in the last section). Sobolev spaces
are complete subspaces of the general Hilbert space and therefore Hilbert spaces by
themselves, namely Hilbert spaces with reproducing kernels K? (P, Q).

If the coefficients kI are chosen properly, closed analytical expressions can be ob-
tained for the kernel which is particularly suitable for practical applications. As shown
in the Table 1, the reproducing kernels applied in physical geodesy can be described
by singular harmonic functions. It is remarkable that they can be subdivided into
two parts:

¢ = const, (40)

e if (0 < ¢ < 1) the reproducing kernels are described by singular point harmonic
functions from zero up to second degree, representing a pole (point mass) a
dipole and a quadrupole potential, respectively.

e if (1.5 < ¢ < 2.5) the kernel function can be interpreted by special combinations
of line harmonic functions with different laws of line density distribution of the
form v = r4~1, forming two classes according whether (4 < 0) or (4 > 0).

The asymptotic, which corresponds to the reproducing kernel K7 (P, Q) with ¢ = 3/2
(see Table 1), is in agreement with G. Darwin’s (1884) law of density.

In further computations we will use reproducing kernels, which are described only
by singular point harmonic functions. In this case, by the application of Kelvin
transformation to the potential of multipoles (Marchenko, 1987) the expressions for
the corresponding kernel functions can be obtained in the form

wo)=c 3 (1) o™ Pulcosng) ()

12



Index ¢ of
Class (Type of Author ke = % .the
the singularity) Hilbert
space HY
Radial Multipoles
Radial quadrupole | Marchenko, 1987 kd = (3) g=20
. . Hauck and =
q — =
Radial dipole Lelgemann, 1984 kl=mn g=20.5
Pole (point mass) Krarup, 1969 l;% =1 g=1
Finite radial straight lines with the density v = rA=1
A=0 Moritz, 1980 k4 =1/n g=1.5
Hauck and 7
A=1 9=1 1 =1
Lelgemann, 1984 ka=1/(n+1) 7 b
A=0,A=-1 Tscherning, 1972 k4 =1/n(n—1) qg=2
A=-1, A=-2 Lauritzen, 1973 k4 =1/(n—1)(n—2) q=2

A=-1, A=-2, A=+B | Tscherningand | zq —1/(n _1)(n—2)(n+ B) | ¢=2.5
Rapp, 1974

Table 1: Various kernels used in geodetic applications
(Marchenko and Lelgemann, 1999)

where the spectral coefficients are given by the binomial coefficients. For ¢ one gets
g =1—m/2. For m = 0 we get the set k2 = 1 (Krarup’s kernel; potential of a simple
pole or point mass, respectively):

Ko(o,9) = co)_ o"P, (costpq) = % , L= \/1 +02—20cosypg , (42)
n=0

and for m = 1 the set k2 =n (n > 0) (Poisson’s kernel without term of the degree
zero; potential of a dipole):

L3 L

DN | =

Ki(o,¢) = co i no" P,(cospg) =

n=1

lM - 9] . (43)
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Closed expressions for all other point harmonic kernels K, (kernels corresponding to
radial multipoles) can be obtained recursively (Marchenko, 1998):

mKpy(o,9) = ¢ |(2m—1) % K 1(o,v)
— (m—1) Ko(o,9) Ko(o,¥) Km—2(0,9)| . (44)

and can be computed by use of the initial values resulting from Eqs. (42) and (43).
Thus, all functions K,, (P, @) are nothing else but certain combinations of the repro-
ducing kernels Ky (P, Q) and K, (P, @), characterized by the property that the solid
spherical harmonics from degree zero up to (m — 1) are not included.

Practical evaluations of the point reproducing kernels for basic and cross-
covariance functions (in least squares-collocation) can be found in Marchenko,
Abrikosov (1994) and Marchenko (1998, Section 15.2) in detail.

6 On the choice of a regularization parameter o

A solution (Egs. 35, 36) of the variational problem (Eq. 37) requires a choice of the
regularization parameter . According to Moritz (1980) this choice corresponds to a
different weighting between the square of the function norm ||T||*, and of the error
norm n"C_!n and, by this, one selects the degree of smoothing of the potential
field T. A larger factor o means a stronger smoothing of the solution and attributes
more variation to the noise vector n.

The collocation requires the inversion of a matrix with a dimension equal to the
number of observations, therefore any iterative process for an optimum determination
of o leads to a time consuming procedure if the number of observations is large. For
this reason we use in this study two values of a for comparison:

a=1 |, (45)
and
Trace (C Cpp)
=1 1 4
@ + \J + Trace (CunCnn) (46)

obtained by Abrikosov (1999) as the two extreme values fulfilling the following mini-
mization problem

HC““ — Cun (a)H =min (47)

where C,,,, is the a priori (“true”) covariance matrix and Cun is the a posteriori
covariance matrix, which is derived by applying the covariance propagation rule to
the estimation f of the vector n of measurement noise. In comparison with other
approaches (Tikhonov and Arsenin, 1986; Morozov, 1987; Neyman, 1979, Scales,

14



1985), Eq. (46) admits the estimation of « prior to matrix inversion in Egs. (35),
(36) presupposed that the kernel function K (P, Q) was derived in good agreement
with the initial information about the regional gravity field. Thus the relationships
of Egs. (42)—(44) and (46) allow a solution according to Eq. (35) of the variational
problem (Eq. 37) under the additional condition of Eq. (47), which leads for o = 1
to a standard collocation solution and in the case of Eq. (46) to a solution which is
called here “collocation with reqularization”.

7 Geodetic application of potentials of
eccentric multipoles

7.1 General remarks

In addition to the determination of the anomalous potential by a set of kernel functions
(covariance functions) in Egs. (35) — (38), we introduce another set of non-orthogonal
functions and investigate their practical application to the solution of the gravity field
approximation problem.

First, instead of the principal fundamental solution of Laplace’s equation
(1/r , where r with respect to the origin), we consider the set {1/r;}, where r; are
the distances from the current point P to some non-centric points. These recipro-
cal distances are called the non-central fundamental solutions of Laplace’s equation.
Now we shall apply Maxwell’s differentiation (Hobson, 1931; Marchenko, 1998) to the
potentials {1/r;}, introducing the nabla operator

Vi=i—— +j—+k— |, (48)

and the operator of differentiation with respect to the fixed multipole axes ﬁ;, (j=
1,2,..n):
9 i 0 i 0 i 0 (ri o

We use the following notations in Eqgs. (48) and (49): (Z’,j’ , /Z’) are the orthonormal

base vectors in the local coordinate system P;(z'y’'z") with the origin located currently

at every fixed point P; (see Fig. 2) of the set {1/r;}; (u;, v}, w;) are the components

of the axes (unit vectors) ﬁ;, (j =1,2,...n) of a special non-central point object.

Now, we apply the differential operator (Eq. 49) to the set {1/r;} of the potentials
of multipoles of degree zero, located at an all-dense denumerable set of the fixed
points {P;} that belongs to an auxiliary surface 04 (Aleksidze, 1978). By this first
differentiation we find the potentials {V{} of eccentric dipoles, which are associated
with the same points (Fig. 2):

Vi= —M{% (l) = —M;j (hi- V') Tl . (50)



1.0 1

Figure 2: The local coordinate system P;(z'y’z’) and
non-central dipole with the axis h!

Secondly, by differentiating Eq. (50) we get the potentials {V;} of non-central
quadrupoles, etc. Such a sequential differentiation according to Maxwell’s method
gives on the whole the generalization of Eq. (50). As a result, it is possible to asso-
ciate these points { P;} with the potentials of non-central (eccentric) multipoles of the
general kind of arbitrary degree n. There are different forms of their representation
(Marchenko, 1987; Marchenko, 1998) which will not be discussed here.

Now the case P;(z'y'2") = O(zyz) is of special interest. Its application leads to
a remarkable representation of standard solid spherical harmonics by a superposition
of the two simplest potentials (Marchenko, 1998):

Any given solid spherical harmonic function V,, of degree n can be expressed by
a certain combination of the fundamental solution of the Laplace equation (point
mass potential) and the potentials of n central dipoles centered at the origin O of the
coordinate system. The dipole axes coincide with the axes of the given solid spherical
harmonic function V.

7.2 Potentials of radial multipoles and
their essential parameters

As a matter of fact, the normalized potential 3, = V,?/M! of one non-central multipole
of degree n has 2n linear-independent parameters, which characterize the directions
of the n multipole axes ( ihd .. hfl) (two parameters for one axis).

It would be very important for practical applications to find a simple analytical
form for these base functions. For this purpose we consider the special case, when all
n axes of each potential 4! have the same direction and coincide with the direction
OP; (see Fig. 2). In this way, by Maxwell’s differentiating in radial direction, we get
the potential of the radial multipole
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of degree n. In this case the direction of differentiation, the unit vector d; /d;, coincides
with the direction OF; and has the following components

T YA 2 2 a2
ui—di,vz—di,w,—di , (ui+vi+wi—1) . (52)
The parameter d; = d; , the distance of the multipole from the origin, is contained

in the basic expression for r; (see Fig. 2):

r; = /72 4 d? — 2rd; cos1; = \/(:Jc — )+ (y—y) + (2 —2) . (53)

Now, a first differentiation leads to the potentials {7} of radial dipoles (n = 1),
located at the points {F;}:

1 0
T N adz
The expression (54) is given for the coordinate systems O(zyz) and P;(z'y'z'), respec-

tively. On the other hand, taking into consideration Maxwell’s rule of differentiation,
we finally get

6i:—(cﬁ-V') <1>:rcos¢r,~—di_cosg0i

- LR (54)

- (d—; ) V’) @ri - T)iﬂ—l : (55)

Eq. (55) describes the main property of the potential of a non-central radial multipole
of degree n: every potential o} decreases proportionally to r; ™+ Such a potential
(without normalization) has only four parameters for each point P;: the moment M}?
and the three components (z;, y;, z;) of this point. So, in case of radial multipoles we
have only 2 axis-parameters (Eq. 52) instead of 2n for general multipoles without loss
of the qualitative property of the potentials of multipoles (see Fig. 3). As a result,
by sequential differentiating in accordance with Eq. (55) the following expression for
normalized potentials of radial multipoles of an arbitrary n can be found:

P, (cos p;)
= (56)

7

Uy
where P, (cos ;) are the Legendre polynomials. The angle ¢; is connected with the
local coordinate system P; (z'y'z'), (see Fig. 3). It can be proved that the basic
recurrence formula for Legendre polynomials (Heiskanen and Moritz, 1967) can be
used here for a straightforward computation of 4! as well. As a result, we derive the
recurrence formula

. .y . 1\2
il = (2n — 1) i, — (n— 1) _, (—) . (57)
T
for the potentials 7'. Now starting from the potentials ¥ and i, the whole set of the
potentials of radial multipoles from zero up to n degree can be calculated by Eq. (57).
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Figure 3: Sketch of the geometry for the potentials of two
radial multipoles of different degrees (n =0 and n = 2)

Obviously, the expansion of 7, into a series of solid spherical functions can be written
as

. [ k dic—n
! = 1; o) Py (cos ;) . (58)
where the standard formula for the binomial coefficients

k k!
(n) nl(k—n)! (59)
is used.

A special study of the properties and the parameters of the potential o} of an
arbitrary radial multipole was done especially regarding the Bjerhammar sphere op
in (Marchenko, 1987, 1998). The first essential parameter or the magnitude of ¥} at
the epicenter E (see Fig. 3) follows from the value of %! at the point E:
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(60)

because the potential of a radial multipole of degree n has its global maximum
at E, since everywhere on op the following inequality is valid o} (cosp; =1) >
9! (cosp; # 1), and its global minimum at the antipodal point E'. It is evident
that the local behavior of ¥ can be described additionally by the second essential
parameter &, (called here: “decreasing length”) of the potential of the radial multipole

1
2 REFI(1 — hy)n it

because any function ©(0) has a maximum at the point E(1; = 0). The curvature
kn(p; = 0) of the curve 9! = 9 (1);) at the epicenter £ may be adopted as a third
essential parameter of ¥} for (¢; = 0). The corresponding expression in the closed
form depends essentially not only on h;, but on the degree n as well

B = &) = 5 0 =0) = | (61)

%, _ (n+1)(n+2h) (62)
d%z ;=0 a ng—H 2(1 - hi)n+3 -

kn(E) = kn(pi=0) =

These parameters @ (1; = 0), &,, kn(E) represent three excellent characteristics of
the local structure of ¢'. Note finally that their definition is identical to H. Moritz
(1980) definition of the essential parameters of covariance functions: the variance, the
correlation length, and the curvature parameter. This is no surprise because the local
properties of the functions 4, are similar to the local properties of covariance functions
of the anomalous potential T". Moreover, these functions were used successfully in
Section 4 for the creation (by means of Kelvin transformation) of the corresponding
reproducing kernels.

Next, we need to use the following assertion (Marchenko, 1998), which has a direct
connection to the Runge-Krarup theorem (Krarup, 1969):

The set {t4} of the potentials of eccentric radial multipoles of degree zero (i.e.
potentials of point masses with sum of all masses being equal to zero, i.e. no degree
zero solid spherical harmonic) and the set {0t} of the potentials of eccentric dipoles
are non-orthogonal base systems in the Hilbert space Hi(3). On the whole, every set
of the potentials {0} }, if n > 1, is a linear independent and complete base system on
any subset of H}(X) not including all linear combinations of solid spherical harmonics
from zero up to degree n — 1.

Thus, there is a possibility of the approximation of the anomalous potential T’
by these (suitable) non-orthogonal potential functions in the domain ¥ outside the
Bjerhammar sphere op.

Tuﬂ:E:MﬁﬁP). (63)
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7.3 Approximation of geodetic functionals
Now, for practical applications we introduce according to (Marchenko and Abrikosov,
1994) a dimensionless potential 9, of radial multipole of n-degree as

b =0 " (64)

which is located at the same point P;. Substituting Eq. (64) into Eq. (56) we get

. r n+1
= (L) Patcose) (65)
T
Then, the expansion in Eq. (63) in view of Eq. (64) can be rewritten as
o
T(P) =3 B 6(P) (66)

where mz(") are some coefficients or the multipole moments; r is the geocentric distance

of an external point P. On the whole, we assume also that for each potential 9 an
appropriate degree n = n; associated with the point P; can be chosen.

Next, we shall derive several expressions for some geodetic functionals. First we
represent the geoid undulations as

NP)=—3 —t50n(P) | (67)

Ag(P) =Y =5 gi(P) (68)

as well as any other linear geodetic functionals. The functions ¢! = ¢ (P) can be
obtained from the fundamental equation of physical geodesy (Eq. 6, here in spherical
approximation) as

i (P) = 5. 250 (- 1)ui(p) (69)

where s; is the relative geocentric distance of a multipole at the point P;:

Then inserting Eqgs. (64) and (70) into the recurrence formula (Eq. 57), after
suitable manipulations we get the recurrence formulae especially for Egs. (66), (67),
and (68) separately

nqi2 ﬁ; = (2n—1) (cosyy; — ;) ﬁfl,l —(n—-1) @z,z, (71)
i 1
UO - a,
1
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nq; 9. = (2n—1) (cosyy; — ;) (97;;-1 —(n—-1) 9, +
+2n (cosp; — 5;) 0% — (2n — 1) 9°_,, (72)
oty cosi; — s
Osi @ ,
¢ = \/1+s§—2si cos; . (73)

It is evident that a practical application of these last expressions requires a solu-
tion of the special inverse problem (Marchenko, 1998): “For a given set of geodetic
measurements (treated before as linear functionals of the anomalous potential T) we
want to find some appropriate (and approximating) finite set of radial multipoles i.e.
the values of moments, locations, and degrees for the further approximation of 7" in
the frame of a linear problem only.”

For the choice of coordinates of the potentials (7) of point masses various ap-
proaches exist (see, for instance, Barthelmes, 1980, 1982, 1986, 1988; Meshcheryakov
and Marchenko, 1980; etc.).

Note now, that the considered essential parameters lead to the additional pos-
sibility to compute the geocentric distances d; of (7%). Actually, by estimating the
empirical value £P of the decreasing length from a preliminary analysis of the initial
data we can solve this problem on the basis of the 2nd essential parameter &, ana-
lytically for n = 0, v§ = 1/r; . Thus, substituting £™ into Eq. (61) instead of & we
come to the relationship (n = 0):

4 1
h; = 373 (cos EMP 4+ \/cos2 &emp — 8 cos 6P + 7) , (n=0) , (74)

for the relative geocentric distance h; of a separate point mass.

In addition to this example, we may try further to determine an optimal degree
n of the potentials . This problem can be solved also by means of the essential
parameters of 9. Some approaches were realized before as the so-called preliminary
multipole analysis (PMA), (Marchenko, 1987) and the sequential multipole analysis
(SMA), (Marchenko, Abrikosov, 1994). Both the PMA and SMA techniques use
initial data of the same type only. The idea of the SMA to find the horizontal
positions (long. and lat.) of the multipoles is the same as used for point masses in
(Barthelmes, 1980, 1982, 1983, 1986, 1988). As an example we describe one step of
the SMA algorithm, which contains the following sub-steps.

1. Input of the the initial set of the gravity data; : = 1.

2. Find the largest absolute value (maximum or minimum) of the gravity data
(step ); postulate this extremum as the epicenter F of the i-th radial multipole
with the polar coordinates (¥;, \;); estimate the empirical values of essential
parameters.

3. Determine the multipole parameters s;, n and m§”) by means of these coordi-
nates (9;, \;) and Eqs. (60) — (62) or Egs. (75) — (78).
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4. Compute the transformed data by removing the contribution of the potential
of the i-th multipole from the initial data.

5. Put ¢ =7+ 1 and return to step 2 if the desired accuracy is not achieved.

The relative distance s;, the degree n and the moment mz(") of one multipole (located

at the point P;) may be determined on the basis of the empirical “isotropic” (i.e.
independent of the azimuth) function (EIF), (Marchenko, 1987). We introduce the
EIF as any discrete function of the spherical distance v;, which is computed by means
of an averaging of the initial data over the azimuth. The EIF can be computed locally
inside a suitable spherical zone around the chosen epicenter (F). The empirical
local parameters of the EIF (by analogy to the parameters o% (v; = 0), &, kn(E))
can be determined numerically from the closest approximation of the EIF by one
of the analytical expressions for ¢/ with a certain optimal degree. As a result, the
approximation of the gravity field around a selected local extremum is provided by
the analytical “isotropic” function (AIF), AIF=%! for every step.

Thus, the base functions 9! and g lead to the following analytical expressions of
these essential parameters. The magnitudes at the epicenter are:

A 1 \"t! i oy 2si—1
w=0=(1=5) - m=0=F (75)

The decreasing length is:

fili =€) = 5 il =0) (76)

where f! corresponds to one of the geodetic functionals represented here in the form
of Eq. (66) or Eq. (67) or Eq. (68), etc. Eq. (76) is non-linear with respect to s;. It
(

i") does not appear

(m)

T

is obvious from Eqs. (75) and (76) that the multipole moment m

in these equations which leads to the determination of s; independently from m
The curvatures k,(E) for (¥; = 0) are:

i (n+1)(n + 25)
3%213 $i=0 T 2(1 - Si)n+3 ’ (77)
»g, n+1 n+3
3 =328 2s; -1 .
Oip |y—o 2(1 = s;)m 43 it (nt2s) (n 1o sz)] (78)

Thus, the determination of the multipole parameters can be realized (sub-step 3
mentioned before) in the following way:

e n = 0; Input of the empirical essential parameters of the EIF (magnitude,
decreasing length, curvature and coordinates (9;, \;) as well).

e Determine s; by means of the empirical decreasing length £ (with the fixed
degree n).
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e Determine the multipole moment mgn) for fixed s; and n; computations may be

based either on the magnitude of the EIF at the epicenter (and the curvature) or
on the local least-squares approximation of the gravity field by one potential o¢ .

e Put n =n+ 1 and return to point 2, if the optimal degree n is not achieved.

So, this procedure is an appropriate realization of the point 3 of the SMA algorithm,
which is based on the local properties of 9¢ only. As a result, we can establish
an optimal degree n and (di,ﬁi,)\i,mg")) of the radial multipole: either from the
iterative non-linear fitting of the EIF by the AIF or from the closest approximation
of the gravity data locally (around the epicenter). Again the next step of such an
optimization is the final total least-squares re-adjustment of the whole set {mgn)} in
the frame of a linear problem. Another version is the re-adjustment of certain subsets
of {m{™} during the SMA process.

As a result, the application of radial multipoles for the approximation of the
Earth’s gravity field in some area (local, regional or global) may include the following
steps.

1. Preparation of heterogeneous initial data sets for creation of a homogeneous
gravity data set (e.g. by inversion of the altimeter data to gravity anomalies,
etc.).

2. Preliminary construction of the gravity model (Eq. 66) by applying the SMA
technique.

3. Final total re-adjustment of the multipole moments {mz(-n)} for all sets of het-
erogeneous data.

Thus, a solution of the mentioned special inverse problem leads to an approximation
of the Earth’s regional gravity field by non-orthogonal harmonic functions and is
based here on their analytical representation by a set of potentials of eccentric radial
multipoles.

8 Airborne-only and airborne/UEGN94 combined
geoid solutions

To illustrate geoid computations on the basis of airborne point gravity anomalies in
the Skagerrak area at a (3' x 3') grid, let us consider solutions of this problem in
the frame of the approaches described above. First, we start from the operational
approach where the following basic methods were applied:

e Collocation method (Egs. 35, 36 with oo = 1)
e Collocation with regularization (Egs. 35, 36 and 46)
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59°N 1

58°N Figure 4:  Differences
0Ag between the initial
airborne and EGM96
(360,360) gravity anoma-
lies Ag (3370 point
values) in the Skagerrak
area; contour inter-
val: 5 mGal; 9 points

of UEGN94 gravimetric

57°N

‘ ‘ * D?"mark | ‘ network are shown by
6°E TE 8°E 9°E 10°E 11°E 12°E  asterisks
Statistics (3370 points) | Minimum | Maximum | Mean | rms Stal.lde.xrd
deviation
Initial airborne Ag
Set 1 of 3370 points -48.6 48.9 -3.2 | 139 13.5

Table 2: Statistics of the point Ag and residual §Ag airborne gravity
anomalies [mGal]

The following initial data sets in the Skagerrak area were used for further data
processing:

e Set 1: 3370 airborne gravity anomalies (mean accuracy = 2.4 mGal), which
cover a part of the Skagerrak region;

e Set 2: 3379 gravity anomalies consisting of Set 1, supplemented by 9 points of
UEGNY94 absolute gravimetric network (mean accuracy ~ 0.014 mGal), which
are surrounding the Skagerrak area.

The “remove-restore” procedure was applied to remove the contribution of the long
wavelength part of the Earth’s global gravity field from every data set using the model
EGM96 (360,360): 6Ag = Ag — Agrcmoes (Table 2). In order to avoid extrapolation,
grid values were predicted only for the area covered by observations (Fig. 4).
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As a result, the prediction of geoid heights d N were made for each set separately.
After solving this basic problem, the predicted geoid undulations were restored by
means of the EGM96 model: N = 6N + Nggmos. Because the mean height of the
predicted points is smaller than 10 m and the main part of the initial values of Ag
represents only airborne gravity anomalies, an application of terrain corrections was
omitted.

The empirical covariance function (ECF) was constructed (Table 3) on the basis
of the residual gravity anomalies 0Ag (Fig. 4) for the mean surface of their loca-
tion. Then, this ECF was approximated by some reproducing kernels or analytical
covariance functions ACF, derived in Section 5 from radial multipole potentials by
the Kelvin transformation, that provides the covariance propagation in R? to geoid
heights and other functionals of the anomalous potential.

The following ACF’s were sufficient for an application in the Skagerrak area:

1. Poisson kernel without harmonic of zero degree, which corresponds to radial
dipole kernel (Table 4, Fig. 5).

2. Special combination of Krarup/Poisson kernels without harmonic of zero
and first degrees, which corresponds to radial quadrupole kernel (Table 4).

Because of the slightly better fit of the dipole kernel, this one was selected for the
following solutions.

Region Variance [mGal?| Correlation length Parameter of Curvature
[degree]
Skagerrak 88.5421 0.122416 2.2618

Table 3: Essential parameters of empirical covariance function, constructed for the
mean surface of airborne gravity anomalies (altitude ~ 400m)

. Relative
Bjerhammar
Degree Sf:ale-factor c sphere accu- Correlation | Parameter
ACF o in E(21 (244) radius racy of length of Curva-
[m?/s%] [meters] ECF-fit [degree] ture
[%2]
Dipole 1 1.8257 - 10720 | 6344724.87 9.9 0.125221 3.2680
kernel
Quadrupole | o 1.9218 - 10722 | 6339266.01 10.0 0.129568 3.1339
kernel

Table 4: Parameters of the analytical covariance functions, constructed for the mean
surface of airborne gravity anomalies (altitude ~ 400m)
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Figure 5: Empirical (ECF)
s (dotted) and analytical
(ACF)  (solid)  covari-
ance functions [mGal?|,
. based on 3370 airborne
39 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ - 6Ag = (Ag — Agrcmos);
0.00 030 0.60 0.90 120 150 180 2.10 240 270 3.00 analytical funCtiOIl repre-
1 [degree] sented by dipole kernel.

cov(6Ag,6Ag")

To illustrate the results of geoid prediction by collocation and regularization tech-
niques we introduce the following abbreviations:

e AC1: Collocation solution for airborne geoid, based on Setl;
e AC2: Collocation solution for airborne/UEGN94 geoid, based on Set2 (Fig 6);
e ARI1: Regularization solution for airborne geoid, based on Set1;

e AR2: Regularization solution for airborne/UEGN94 geoid, based on Set2
(Fig 7).

The resulting geoids AC2 and AR2 shown in Figs. (6) and (7) were compared with
the solution of Forsberg (2000), computed for the Nordic countries, which is an im-
proved version of the geoid of Forsberg et al. (1997), now including the aerogravimetry
data also used in this study. As a result, Tables (6, 7) and Figs. (8, 9) reflect this
independent comparison and we come to the conclusions:

1. Including only 9 points of the UEGN94 absolute gravimetric network leads to a
better agreement in terms of the mean difference of the solutions AC2 and AR2
with Forsberg’s geoid,

2. Application of the regularization method based on Eq. (35), and Eq. (36) with a
relatively large value of a & 5 for the regularization parameter deduced accord-
ing to Eq. (46) provides smaller rms differences between the predicted geoid

heights rather than standard collocation (o« = 1) with the same reproducing
kernel (Tables 6, 7).

3. In view of the rms values, this conclusion holds for both the solutions includ-
ing and excluding the additional information from the UEGN94 gravimetric
network.

26



Statistics Minimum Maximum Mean rms Stafld?‘rd
deviation
Collocation method: Solution AC2
Predicted geoid | 36 cang 41.6638 | 39.3877 | 39.4048 |  1.1605
undulations N
Regularization method: Solution AR2
Predicted geoid | 56 779 41.6417 | 39.3867 | 39.4035 |  1.1509
undulations N
Differences between two solutions
AR1 - AC1 -0.1006 0.0932 -0.0004 | 0.0189 0.0189
AR2 - AC2 -0.1007 0.0925 -0.0010 | 0.0189 0.0189

Table 5: Statistics for final versions of airborne/UEGN94 geoids [m], computed at
3271 grid points (3" x 3')

Statistics of differences Minimum | Maximum | Mean s Standard
dN (3271 points) deviation

Collocation method: Solution AC1 (a=1)

dN = Forsberg’s grid
values N— predicted N -0.1914 0.1876 0.0123 | 0.0534 0.0520

Regularization method: Solution AR1 (o = 5.0724)

dN = Forsberg’s grid
values N— predicted N -0.1914 0.1772 0.0127 | 0.0467 0.0449

Table 6: Differences dN between Forsberg’s geoid grid (3’ x 3') and the predicted
values [m] based only on 3370 airborne gravity anomalies
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Figure 6:  Airborne/
UEGN94 geoid solution
AC2, based on the col-
location method with
dipole kernel; contour
interval: 0.1 m; 9 points
of UEGN94 network are
shown by asterisks

Figure 7:  Airborne/
UEGN94 geoid solution
AR2, based on the reg-
ularization method with
dipole kernel; contour in-
terval: 0.1 m; 9 points
of UEGN94 network are
shown by asterisks
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between AC2  geoid,
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grid (3’ x 3'); contour in-
terval: 0.025 m; 9 points
of UEGN94 network are
shown by asterisks

Figure 9:  Differences
between AR2  geoid,
based on the regulariza-
tion method with dipole
kernel and Forsberg’s
geoid grid (3' x 3'); con-
tour interval: 0.025 m;
9 points of UEGN9%4
network are shown by
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of solutions AR2 mi-
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val: 0.01 m



Statistics of differences Minimum | Maximum | Mean | rms Standard
dN (3271 points) deviation
Collocation method: Solution AC2 (o =1)
dN = Forsberg’s grid
values N— predicted N -0.1957 0.1938 | 0.0049 | 0.0543 0.0540
Regularization method: Solution AR2 (o= 5.0724)
dN = Forsberg’s grid
values N— predicted N -0.1914 0.1774 | 0.0059 | 0.0480 0.0476

Table 7: Differences dN between Forsberg’s geoid grid (3’ x 3') and the predicted
values [m] based on 3379 gravity anomalies, including 9 points of the UEGN94 gravi-

metric network

Statistics Minimum | Maximum rms
Collocation method:
0.051 0.147 0.066
Solution AC1
Regularization method:
0.052 0.148 0.069
Solution AR1
Collocation method:
0.050 0.14 0.065
Solution AC2 7
Regularization method:
0.052 0.148 0.068
Solution AR2

Table 8: Accuracy estimation of the predicted geoid heights [m)]

Statistics of differences Minimum | Masimum | Mean s Standard
dN (3271 points) deviation
Collocation method

Differences: 201120 | 0.1280 | 0.0074 | 0.0170 |  0.0153

sol. AC2—sol. AC1 ' ' ) ' )
Regularization method

Differences:

sol. AR2—sol. ARI -0.1136 0.1163 0.0068 | 0.0167 0.0152

Table 9: Contribution [m] of 9 points of the UEGN94 network to geoid solutions AC2

and AR2
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Figure 12: Differences
between geoid SMAZ2,
based on the approxi-
mation by radial multi-
pole potentials, and Fors-
berg’s geoid grid (3' x 3');
contour interval: 0.025 m

57°N

Statistics of differences Minimum | Maximum | Mean s Standard

dN (3271 points) deviation
Solution SMA1 -0.1850 0.2082 0.0221 | 0.0539 0.0491
Solution SMA2 -0.1653 0.2040 0.0196 | 0.0515 0.0476

Table 10: Differences dN between Forsberg’s geoid grid (3' x 3') and the predicted
values [m], based on the SMA1 and SMA2 regional models

The second part of airborne/UEGN94 geoid construction is based on the model
approach where the parameterization (Eq. 66) of the anomalous potential 7' was
fulfilled by means of:

e the radial multipole potentials of one chosen degree;

e a combination of radial multipole potentials of different degrees.

To illustrate the results of geoid prediction by means of Sequential Multipole Analysis
(SMA) techniques we introduce new abbreviations:

e SMA1: SMA solution for airborne geoid (with application of multipoles from 1
up to 8 degrees), based on Setl;

e SMA2: SMA solution for airborne geoid (with application of multipoles from 1
up to 8 degrees), based on Set2.
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Figure 13: Contribution
of 9 points of UEGN94
57N network (shown by aster-
isks) into geoid SMA2 at
. 3271 points of geoid grid
* Denmark (3" x 3'); contour inter-
6°E 7E 8°E oE 10°E 11°E 12°E val: 0.005 m
Statistics of differences Minimum | Maximum | Mean | rms Standard
dN (3271 points) deviation

Differences:

sol. SMA2—sol. SMA1 -0.0781 0.0477 0.0025 | 0.0103 0.0100

Table 11: Contribution [m] of 9 points of the UEGN94 network to the geoid solutions
SMA2

These solutions were chosen as the most appropriate versions from various approx-
imations (according to Section 7.3) either by means of radial multipole potentials of
one degree only or by means of a combination of them with different degrees. The
second approach provides on the whole a more stable process of the approximation
with a smaller number of such potentials. As a result, for data Set 1 and Set 2 it was
sufficient to create models consisting of 382 radial multipole potentials only. Statis-
tics of comparison are shown in Table 10, and reflects a good agreement with the
solutions of collocation and collocation with regularization (see Table 7). Table 11 il-
lustrates the contribution of 9 points of the UEGN94 network into the geoid solutions
SMAZ2. In spite of practically the same qualitative picture of Fig. 13 in comparison
with Fig. 10 and Fig. 11, here the contribution is smaller (Table 11 vs. Table 9). The
latter is also valid for the other solutions, which were omitted here.

Finally we should note the computational aspect of these two approaches. In the
case of collocation or collocation with regularization methods the basic matrix with
the dimensions 3370 x 3370 (for Set 1) or 3379 x 3379 (for Set 2) has to be inverted.
In the case of a direct approximation by radial multipole potentials we have to invert
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(on the re-adjustment step) the matrix with the dimension 382 x 382 only. Thus,
practically the same or even better results can be obtained much faster. In other
words, the last approach can be recommended especially for fast computations of the
airborne geoid without loss of accuracy. Because the number of radial multipoles is
only 10-20% of the total number of geodetic measurements the matrix inversion will
be 25 — 100 times faster.

9 Combined solutions based on airborne/marine
and airborne/marine/UEGN94 gravity data

In this section several geoid solutions were constructed on the basis of combined sets
of airborne, marine and UEGN94 gravity anomalies. The computations are carried
out for the same grid points (3’ x 3’) using the same approaches discussed in Section 8.
Therefore point marine anomalies (mean accuracy ~ 4.5 mGal) were added to Setl
and Set2 and the following initial data sets were generated for further data processing:

e Set 3 - 6886 airborne/marine gravity anomalies (mean accuracy ~ 3.6 mGal),
including Set1;

e Set 4 - 6895 gravity anomalies, including Set3 and supplemented by 9 points of
UEGNY94 absolute gravimetric network (mean accuracy ~ 0.014 mGal), which
are surrounding the Skagerrak area.

Fig. 14 illustrates the distribution of the initial airborne/marine/UEGN94 gravity
anomalies according to Set3 and Set4. The results of the application of the “remove-
restore” procedure to each data set (0Ag = Ag— Agramos) can be found in Table 12.

After the prediction of the values Ag and JN, the geoid undulations were re-
stored as N = 0N + Ngagumge Without terrain corrections. The essential parameters
(Table 13) of the ECF were computed on the basis of the residual gravity anomalies
dAg (Table 12).

Statistics (6886 points) | Minimum | Maximum | Mean | rms Sta?da.u"d
deviation
Initial airborne/marine
-52. 49. -4. . .
Ag: set of 6886 points 521 96 441145 13.8

Table 12: Statistics of the point Ag and residual §Ag airborne/marine gravity
anomalies [mGal]
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: . lation length
Region Variance [mGal?| Correlation leng Parameter of Curvature
[degree]
Skagerrak 98.7424 0.119889 3.9816

Table 13: Essential parameters of empirical covariance function, constructed for air-

borne and marine gravity anomalies
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Figure 15:  Empirical
(dotted) and analytical
(solid) covariance func-
tions [mGal?], based on
6886  airborne/marine
6Ag = (Ag — Agrams);
analytical function
represented by dipole
kernel



. Relative
Bjerhammar )
Degree| Scale-factor c sphere aceu- Correlation | Parameter
ACF . . racy of leneth £ C )
m in Eq. (44) radius ROF_fit g of Curva
[meters] T [degree] ture
[7%]
Dipole 1 1.8135-10720 | 6344996.17 11.2 0.122362 3.2848
kernel
Q“Edrull")le 2 | 1.5854-10722 | 6340467.24 12.3 0.122405 | 3.1537
erne

Table 14: Parameters of the analytical covariance functions, constructed for airborne
and marine gravity anomalies

In view of ECF fitting, the following ACFs turned out to be sufficient for fur-
ther practical application: Dipole kernel (Table 14, Fig. 15), which corresponds to
Poisson kernel without harmonics of degree zero, and Quadrupole kernel (Ta-
ble 14) or a special combination of Krarup/Poisson kernels without harmonics of
degree zero and degree one. Again, because of the slightly better fit of the dipole
kernel, this one was selected for the following solutions.

To illustrate the geoid prediction by collocation and collocation with regularization
techniques we again introduce the corresponding abbreviations:

e ASC1: Collocation solution for Airborne/marine geoid, based on Set3

e ASC2: Collocation solution for airborne/marine/UEGN94 geoid, based on Set4
(Fig. 16)

e ASR1: Collocation with regularization solution for airborne/marine geoid,
based on Set3

e ASR2: Collocation with regularization solution for airborne/marine/UEGN94
geoid, based on Set4 (Fig. 17)

Fig. 18 and Fig. 19 illustrate the comparison of ASC2 and ASR2 solutions with
the Nordic countries geoid (Forsberg, 2000). Table 16 and Table 17 reflect this inde-
pendent comparison and allow to make the following conclusions:

1. Including only 9 points of UEGN94 leads to a better agreement of the regular-
ization solution ASR2 with Forsberg’s geoid, in terms of the mean difference,

2. The regularization solutions ASR1 and ASR2 provide smaller rms geoid differ-
ences than the collocation solutions ASC1 and ASC2.

3. In the case of the combined solutions ASR1 and ASR2 we got a smaller regu-
larization parameter (o & 3) than for airborne-only solutions (a & 5) because
of the denser coverage with observed data.
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Figure 17:  Airborne/
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on the regularization
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Figure 18: Differences
between ASC2 geoid,
based on the collocation
method  with  dipole
kernel, and Forsberg’s
geoid;  contour inter-
val: 0.025 m); 9 points
of UEGN94 network are
shown by asterisks

Figure 19: Differences
between ASR2 geoid,
based on the regulariza-
tion method with dipole
kernel, and Forsberg’s
geoid;  contour inter-
val: 0.025 m; 9 points
of UEGN94 network are
shown by asterisks
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Figure 20: Contribution
of 9 points of UEGNY94
network (asterisks) to
geoid ASC1: differences
of solutions ASC2 mi-
nus ASCI1; contour inter-
val: 0.01 m

Figure 21: Contribution
of 9 points of UEGN94
network (asterisks) to
geoid ASR1: differences
of solutions ASR2 mi-
nus ASR1; contour inter-
val: 0.01 m



Standard

Statistics Minimum | Maximum | Mean rms o
deviation

Collocation method: Solution ASC2

Predicted geoid

) 36.7087 41.6511 39.3901 | 39.4071 1.1566
undulations N

Regularization method: Solution ASR2

Predicted geoid

) 36.7401 41.6460 39.3873 | 39.4042 1.1522
undulations N

Differences between two solutions

ASR1 — ASC1 -0.0565 0.0435 -0.0019 | 0.0116 0.0114
ASR2 — ASC2 -0.0888 0.0327 -0.0028 | 0.0126 0.0123

Table 15: Statistics for final versions of airborne/marine/UEGN94 geoids [m], com-
puted at 3271 points of geoid grid (3" x 3')

Statistics of differences dg .. . Standard
. Minimum | Maximum | Mean rms o
(3271 points) deviation

Collocation method: Solution ASC1 (o =1)

dN = Forsberg’s grid
values N— predicted N

Regularization method: Solution ASR1 (= 2.9877)

dN = Forsberg’s grid
values N— predicted N

-0.1984 0.1993 0.0105 | 0.0554 0.0544

-0.1920 0.1828 0.0123 | 0.0495 0.0479

Table 16: Differences dN between Forsberg’s geoid grid (3' x 3') and their predicted
values [m] based on 6895 gravity anomalies

In the following, airborne/marine/UEGN94 geoids were constructed using radial
multipole potentials to represent the anomalous potential 7. In contrast to the ap-
proximation of airborne data only (see Section 8) in this case some additional diffi-
culties arose, since a solution of the special non-linear inverse problem (Section 7.3)
requires to determine the locations of the eccentric multipoles from a preliminary
analysis of the initial gravity data. The direct creation of the empirical function
(EIF) leads to unstable results if the initial data are located at different levels (for
instance, airborne and marine heights).

40



Statistics of differences Minimum | Maximum | Mean | rms Standard
dN (3271 points) deviation
Collocation method: Solution ASC2 (o =1)
dN = Forsberg’s grid
values N— predicted N -0.2046 0.2042 | 0.0024 | 0.0574 0.0573
Regularization method: Solution ASR2 (o = 2.9877)
dN = Forsberg’s grid
values N— predicted N -0.1946 0.1857 | 0.0053 | 0.0512 0.0509

Table 17: Differences dN between Forsberg’s geoid grid (3’ x 3') and predicted values
[m] based on 6895 gravity anomalies, including 9 points of UEGN94 network

Statistics Minimum | Maximum rms

Collocation method:

0.050 0.136 0.062
Solution ASC1
Regularization method:

0.051 0.136 0.064
Solution ASR1
Collocation method:

0.049 0.133 0.061
Solution ASC2
Regularization method:

0.050 0.135 0.063
Solution ASR2

Table 18: Accuracy estimation of the predicted geoid heights [m)]

Statistics of differences Minimum | Maximum | Mean s Standard
dN (3271 points) deviation
Collocation method
Differences: ~0.1084 0.0601 | 0.0080 | 0.0147 | 0.0123
sol. ASC2—sol. ASC1 ' ' ) ' )
Regularization method
Differences: ~0.1082 0.0796 | 0.0071 | 0.0151 | 0.0133
sol. ASR2—sol. ASR1 ) ) ) ) )

Table 19: Contribution [m] of 9 points of UEGN94 network into geoid solutions
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Statistics of diff.erences Minimum | Maximum | Mean rms Standard

dN (3271 points) deviation
Solution SMA3 -0.1826 0.1869 0.0179 | 0.0474 0.0438
Solution SMA4 -0.1573 0.1960 0.0191 | 0.0481 0.0442
Solution SMA5 -0.2824 0.2137 | -0.0115 | 0.0607 0.0596
Solution SMA6 -0.2806 0.2099 -0.0056 | 0.0621 0.0618

Table 20: Differences dN [m] between Forsberg’s geoid grid (3' x 3') and solutions
based on radial multipole potentials

Statistics of differences Minimum | Maximum | Mean s Standard
dN (3271 points) deviation
Differences:
-0. . -0.0011 011 011
col. SMA4—sol. SMAS 0.0998 0.0073 0.00 0.0110 0.0110
Differences:

-0.0866 0.0355 -0.0059 | 0.0131 0.0117

sol. SMA6—sol. SMA5

Table 21: Contribution [m] of 9 points of UEGN94 network into geoid solutions

To illustrate this situation we decided to build the following models. At first, only a
re-adjustment of the multipole moments for solutions SMA1 and SMA2 was applied
without the determination of the locations of the multipoles (SMA). In this way the
following models have been created:

e SMA3: SMA solution for airborne/marine geoid (with application of multipoles
from 1 up to 8 degrees), based on Set3 (382 multipoles);

e SMA4: SMA solution for airborne/marine geoid (with application of multipoles
from 1 up to 8 degrees), based on Set4 (382 multipoles).

Secondly, the Sequential Multipole Analysis was applied and after final re-
adjustment we got two more SMA models:

e SMA5: SMA solution for airborne/marine geoid (with application of multipoles
from 0 up to 8 degrees), based on Set3 (490 multipoles);

e SMAG6: SMA solution for airborne/marine/UEGN94 geoid (with application of
multipoles from 0 up to 8 degrees), based on Set4 (490 multipoles).
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To our own surprise, the solutions SMA3 and SMA4 are in better agreement (see
Fig. 22, Table 20) with the Nordic countries geoid, although the SMA5 and SMAG6
models include much more (490 instead of 382) multipoles of different degrees. A
reduction of both airborne and marine data to a common reference level might have
been necessary before applying the sequential multipole analysis method. This is left
for further studies.

Among all solutions, these two multipole models (SMA3 and SMA4) are in best
agreement with the solution of Forsberg (2000) (see Tables 6, 7, 10, 16, 17 and 20).
Table 21 and Fig. 23 reflect the contribution of 9 points of UEGN94 network to the
solution SMA4. Fig. 24 illustrates this airborne-marine-UEGN94 geoid SMA4, com-
puted here by a simple re-adjustment of the “airborne” model SMA1, and represents
a small but real practical improvement.

10 Conclusions

Finally an additional comparison between airborne/marine/UEGN94 and airborne or
airborne/UEGN94 solutions was made and the corresponding statistics can be found
in Table 22. Here, only geoid SMA2 was based on the direct approximation by radial
multipole potentials with simple least squares adjustment by parameters which is
characterized by a value of rms &~ 4 — 5 cm. The best agreement (rms = 1.6 cm)
we get between the solutions ASR2 and AR2, which were based on collocation with
regularization and additional information from the UEGN94 gravimetric network.
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Statistics Min. | Max. | Mean | rms | St. dev.

Differences with respect to regularization solution (ASR2)

ASR2 — ACI (airborne) -0.131 | 0.133 | 0.007 | 0.027 | 0.026
ASR2 — ARI1 (airborne) -0.112 | 0.124 | 0.008 | 0.024 | 0.023
ASR2 — AC?2 (airborne/UEGN94) | -0.066 | 0.107 | 0.000 | 0.019 | 0.019
ASR2 — AR2 (airborne/UEGN94) | -0.055 | 0.104 | 0.001 | 0.016 | 0.016
ASR2 — SMA2 (airborne/UEGN94) | -0.166 | 0.194 | 0.014 | 0.042 | 0.040

Differences with respect to collocation solution (ASC2)

ASC2 — AC1 (airborne) -0.116 | 0.123 | 0.010 | 0.028 | 0.026
ASC2 — ARI (airborne) -0.104 | 0.136 | 0.010 | 0.032 | 0.030
ASC2 — AC2 (airborne/UEGN94) | -0.074 | 0.096 | 0.002 | 0.019 | 0.019
ASC2 — AR2 (airborne/UEGN94) | -0.069 | 0.122 | 0.003 | 0.024 | 0.024
ASC2 — SMA2 (airborne/UEGN94) | -0.176 | 0.258 | 0.017 | 0.050 | 0.047

Table 22: Statistics of differences between airborne/marine/UEGN94 and airborne
or airborne/UEGN94 geoids [m], computed at 3271 grid points (3’ x 3)

In summary we can conclude:

e Collocation with regularization provides a slightly better accordance in terms of
rms with Forsberg’s geoid than standard collocation with the same reproducing
kernel.

e Including additional information from 9 points of the UEGN94 absolute gravity
network leads to an almost perfect agreement in the mean level of the solutions
derived here compared to Forsberg’s geoid covering the Nordic countries.

e For this reason, collocation with regularization based on Eq. (46) can be recom-
mended for stable computations of airborne geoids, with the use of additional
absolute gravimetric data to get the reference level (an ideal situation would be
the inclusion of GPS-leveling).

e The approximation by radial multipole potentials can be recommended espe-
cially for fast computations of airborne geoids without degradation of accuracy
with respect to collocation.
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The independent comparison of the geoids derived here with the geoid solution
for the Nordic countries agrees on a level of 5 cm. This value corresponds to the
estimation of “relative geoid accuracies below 10 cm” in the Skagerrak area according
to Forsberg et al. (2000).

Note finally, that both in case of the model approach and in case of the colloca-
tion/regularization method only singular point harmonic functions have been applied.
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