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ABOUT THE INFLUENCE OF A POSSIBLE RELATIVE ROTATION
OF THE EARTH’S INNER CORE ON THE POLAR MOTION, THE
GEOMAGNETIC FIELD AND THE GRAVITY FIELD

H. Greiner-Mai, H. Jochmann, F. Barthelmes
GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg, D-14473 Potsdam, Ger-
many; e-mail: grm@gfz-potsdam.de

ABSTRACT

Provided that the figure axis of the inner core coincides with the dipole axis of the
geomagnetic field, the relative rotation of the oblate inner core with respect to the outer
core and the mantle can be determined. Because of the density difference between the
inner and outer core, this motion is accompanied by a mass redistribution causing long-
term variations of polar motion. Assuming standard density models, it is found that
variations of polar motion caused by the relative inner-core rotation are similar to the
decadal variations derived from pole coordinates. To examine the assumption on the
orientation of the figure axis, its angle with respect to the dipole axis is investigated.
The dynamo process is simulated by a prescribed electric current system within the
outer core. Coincidence of both axes can be reached, if the magnitude of the angular
velocity of the inner core is sufficiently high and if the current system is concentrated
in a thin sheet near the outer core-inner core boundary. Calculations of the gravity
potential show that the rotation of the inner core causes gravity changes which may
be detectable by modern satellite methods during the next decade.

1 INTRODUCTION

Precessional motions of an oblate inner core caused by mutual gravitational torques
between the inner core and mantle were investigated by SMYLIE et al. (1984) and
SzZETO and SMYLIE (1984, 1989). Assuming that the dipole field is frozen within
the inner core, they suggested that the relative retrograde precession of the inner
core resulting from their model can possibly be detected by a corresponding relative
precession of the geomagnetic dipole axis. With regard to decade fluctuations in the
Earth’s rotation and the geomagnetic dipole field, JOCHMANN (1989) investigated the
consequences of a relative precession of an oblate inner core on the inertia tensor of
the whole Earth and on polar motion. To have a measure of associated variations of
the moments of inertia, he identified the observed variations of the geomagnetic dipole
axis with that of the figure axis of the inner core. He obtained variations of polar
motion, which particularly agree with the observations. For example, he found that
the 30-year periods in the theoretical and observed variations have similar amplitudes,
while the amplitudes of the nearly 60-year periods disagree.



Concerning the hypothesis about the dipole axis, SCHMUTZER (1977, 1978) inves-
tigated the magnetic dipole moment M of the field B! produced by the rotation of
an electrically conducting sphere within a homogeneous magnetic field B®. In this
model, the inner core is surrounded by free space. SCHMUTZER found that the direc-
tion of the total dipole moment, M = M° 4+ M!, of the resulting field B = B? + B!
and the direction of the rotational vector w of the inner core coincide, if the magni-
tude of w is approximately 10~ 7 s~1. SCHMUTZERS’S (1978) result was confirmed by
GREINER-MATI (1997) for an improved physical model in which a prescribed electrical
current system within the outer core is responsible for the generation of a homogeneous
magnetic field inside and an axial dipole field outside the inner core if w = 0.

The assumed relative precession of an oblate inner core also influences the gravity
field. Associated variations can be computed by conventional methods. Consequently,
by the assumed relative precession of the oblate inner core the physical relation be-
tween the variations of three observable quantities is described: the polar motion, the
geomagnetic field and the gravity field. After a description of the theoretical models
used, we will discuss their consistency with data for the three quantities.

2 THEORETICAL MODELS

2.1 Alignment of the geomagnetic dipole axis

The investigation of GREINER-MAI (1997) is concerned with solutions of the in-
duction equation (e.g. KRAUSE and RADLER, 1980) for an electrically conducting
sphere rotating relative to a surrounding shell with the angular velocity w (w =
(g2 + wy? +w,%)Y/?). All vectors are defined in a mantle-fixed geocentric coordinate
system, x, y, z. In the shell, an axial magnetic dipole field is produced by electric
currents maintained by a prescribed electric field, E€, that replaces the dynamo pro-
cess. In order to relate this model to SCHMUTZER’s (1978) model, the structure of
E® must ensure that the field within the inner sphere is homogeneous if there is no
relative rotation. This can be achieved by a purely toroidal current density j®. The
adequate ansatz for E® is E®=E, f(r)sinv e, = curl[r Eyf(r) cosd ], where f(r) is a
prescribed dimensionless function defining the radial distribution of the currents. The
electrical conductivity of the outer core is o,, that of the inner core is 0g ~ o,; both
are in the order of 10°> Q~! m~!. The radius of the sphere is taken as ro = 1350 km,
that of the outer shell as a = 3450 km. The velocity field of the inner sphere is given
by u = w x r. Let E® be non-zero for r; < r < ry (source region), where r; > ry and
r9 < a. The induction equations are then given by

—(11000) tcurl curl B+curl (ux B) = B, r < ry, (1)
—(p100q) teurl curl B4+curl B¢ = B, 7, < 1 < 19, (2)
—(moos)teurleurl B = B, rg <r < 71,79 <7 <a, (3)

curl B = 0, » > a, (4)

divB = 0, V r , ()



where g is the permeability of vacuum. The boundary conditions are the continuity
of the flux density, Bt=B~, and of the tangential component of the electric field,
E. =E where plus and minus denote the inner and outer side of the boundary,
respectively. The field B satisfying equation (5) can be split into poloidal and toroidal
parts B = B, + B,, which are defined by B, = curl curl rS and B; = curl rT. The
field u x B, which is not solenoidal, can generally be represented by three scalars,
ux B = curlrU + rV + grad W, from which the toroidal part is curlrU. Using
these definitions, equations (1)—(4) can be transformed into scalar equations. Then,

the poloidal scalar is derived from

tan»

(1ooo) TAS+U = 8§, <y, (6)

(100a) 'AS + Egf(r)cosd = S | 1 <71 <79, (7)
(poaa)_lAS =S, ro<r<r,rm<r<a (8)

AS 0, r>a. 9)

As shown by GREINER-MAI (1997), the scalar U can be analytically computed as a
linear function of S and w;. S and U are usually represented by spherical harmonics
given, for example, by

S=>" (St cosmp+ S5, sinmp) Puy(cosd). (10)

The associated boundary conditions at any surface r = const. are

0 oot = [2 sy (11)

c,s \+ — c,S
CHAMEC 5

nm)77 [E
which follow, respectively, from the continuity of the radial and tangential components
of B. The solution of equations (4) and (9) for » > a is a potential field regular at
infinity. The associated modes are given by

Ses = CspnTl (12)

The magnetic moment M is defined by the coefficients Cf° as follows:
AT o s
M = o (C1y, €y, Cho)- (13)
0

The further derivation of the governing equations for the spherical harmonic modes of
the fields S and U is outlined in GREINER-MAI (1997), who assumes w, = 0 without
loss of generality. Defining 7o = pooor3 and introducing the dimensionless quantities
x = r/ro (x is not the coordinate z), t; = t/7, and o; = 7ow; , he obtained the
following system of differential equations:

DSIO + aa;Sfl =0
DSfl + leszl - awSm =0



with D defined by

p=2_ 22 _nmrrl) 9 1
0 x2 X 0X x2 oty (15)
and
DSF =0 , 1 <x < x,, (16)
DSy, = 0 , 1< x<x, X <X < Xg, (17)
DSl() = —Cf(X) , X < X < Xo (18)

for the remaining region with ¢ = Eguoo,rs , X1 = r1/70, X9 = T2/79,%X, = a/rg. For
f(x) a quadratic function is assumed:

fx) = x=—x1)(x—%2) , X1 < X < X, (19)
flx) =0 , X <X, X > Xg . (20)

Solutions for the stationary case can then be derived analytically and are explicitly
given by GREINER-MAI (1997).

The orientation of the dipole moment M of the resulting external potential field is
described by the angles ¢p and ¥p, where ¢p is the angle between the projection of
M into the z-y plane and the z axis and ¥p is the angle between M and the z axis.
The angles can be computed from

s s )2 c )2
¢p = arctan (CH> , Yp = arctan (\/(CH) + () ) ; (21)

Ch Cro

where Ciy, C7; and Cf, are given by the solutions of (14)—(20). The associated
angels of the axis of rotation are ¢,, and 9,,. They involve into the solutions by a,
and «, and must be prescribed in this kinematic model. The calculations apply to the

Figure 1: Angle ¥Jp as a function

10.00 - .
L | of w for x; = 1.000 and different
0.00|- values of x5 (9, = 45°)
101 101t 10°° 107
w[s1]
example ¢,, = 0°, 9, = 45° and selected values of w. To obtain results for different

extensions of the source region, selected values of x; and x, between the limitsx; = 1
and xo = x, are prescribed. The calculations show that ¢p = ¢, for large values of
w (independent on x). The main result for ¥ is shown in Fig. 1, where x; is fixed to
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1.0 and xo is variable: ¥p ~9,, = 45° is obtained for large values of w (> 107 s71)
and for x, = 1.001 (x; = 1.000). For the same order of w, lower values of Jp are
obtained for other radial distributions of E®. Therefore, we can produce the expected
result M || w(dp =~ 9,,) for large values w, if we choose a very thin source region
near the inner-core surface.

In the following section, we assume that the inner core is a rotational ellipsoid which
rotates about its figure axis with the angular velocity w. Further, we assume that the
position of this axis is indicated by the magnetic dipole axis, which moves relative to
the mantle (precessional motion of the axes). This means that w is time dependent.
Using the result of the stationary model in the next section, we therefore imply that
the angular velocity of this precessional motion is much lower than w (e.g. in the
order of the dipole drift wp ~ 107! s71). This is valid for w = 1077 s !, but for
w < 1072 s71, the problem should be re-examined by using time-dependent solutions
of the induction equations. A discussion of the model assumptions is given in section 3.

2.2 Influence on polar motion

The relative precession of the inner core with respect to the mantle is accompanied
by a mass redistribution that causes variations of polar motion and the length of day.
This effect is expected because the density difference at the boundary between inner
and outer core is large. According to SMYLIE, SZETO and ROCHESTER (1984) and
GREINER-MATI (1997), the variation of the direction of the geomagnetic dipole axis
possibly indicates a similar variation of the figure axis of the earth’s inner core. Using
this relation the relative precessional motion of the inner core can be determined and
the corresponding excitation function of polar motion and the length of day can be
evaluated. In JOCHMANN (1989) it was shown that it is sufficient to consider a simple
earth model with rheological properties described by the CHANDLER period and its
damping coefficient, because the time scale of inner-core motion is much larger than
the eigenperiods of more complicated models.

In the following, only the influence on polar motion is considered, because variations
of the length of day due to mass redistributions are negligible small (JOCHMANN,
1989). The polar motion is governed by the complex differential equation

m—i-am:iacy(m— [O’EU/O'CH]’([)), (22)

where m = my + im, are the pole coordinates, ooy = 5.28a~! and opy = 7.46a7" are
the Chandler and the Eulerian frequencies, o = 0.05a~! is the damping coefficient,
and

b = (Caz +icy2) /(C = A), (23)

is the excitation function. In (23), ¢;, and ¢,, are temporally varying components of
the inertia tensor of the earth. It can be decomposed into

I(t) =I,+L+ nIi(t)a (24)



where I;(t) describes the temporal variation of the inertia tensor due to motions of
the inner core and 7 is the density relation n = (p; — pe)/pi (p; is the density of the
inner core and p, that of the outer core at the inner core-outer core boundary). The
inertia tensor of the inner core I;(¢) becomes a diagonal tensor I, if the principal axis
of inertia of the inner core coincides with the z axis of the mantle-fixed coordinate
system. The inertia tensor corresponding to the actual position of the inner core is
obtained by a tensor transformation using a time-dependent transformation matrix
R(?):

Li(t) = R()LoR ™ (2). (25)

The elements of the R(t) depend on the geographical position of the dipole axis. With
the pole distance Yp and the longitude ¢p, the transformation matrix reads

costpcospp —sinpp sindpcospp
R(t) = | sinppcosdp cospp sindpsingp |. (26)
—sindp 0 cosIp

The time-dependent quantities ¥p and ¢p are obtained by replacing in (21) Cig, CT’
by the associated Gauss coefficients. Taking into account the relations (25) and (26),
the excitation function of the inner core is obtained from equation (23):

C;— A4, 1 . .
=-—a"5 sin 29p exp(ipp). (27)

»(t)

For evaluating equation (27), the flattening of the inner core and the density jump,
Ap = p; — pe, between inner and outer core must be known. SMYLIE et al. (1984)
determined the flattening according to Clairaut’s equation. The density jump must
be chosen according to theoretical earth models. In JOCHMANN (1989) the following
excitation function is published:

P(t) = 4.3787 - 10 ° sin 20p exp(ipp). (28)

This equation was evaluated using the inner-core flattening given by SMYLIE et al.
(1984) and the density jump given by BULLEN and JEFFREYS (1949) (Ap =
2.6 g/cm?®). GILBERT and DZzIEWONSKI (1975) published an earth model with a
smaller density jump (Ap = 0.597 g/cm?). The corresponding excitation function is
obtained, if we multiply (28) by 0.32.

In this paper, we improve the results of JOCHMANN (1989) using polar motion data
corrected for the influence of atmospheric mass redistributions. According to equation
(28), a time series of the excitation function of the inner-core motion was evaluated
using pole distances ¥p and latitudes ¢p of the dipole axis of the geomagnetic field.
The quantities were derived from the Gauss coefficients calculated by using secular
variation coefficients according to HODDER (1981). In Fig. 2, the secular variations
of the excitation function of the inner-core motion and the rotation pole of the earth
(which is the same as the variation of the principle axis of inertia) are displayed. It
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is seen that both motions are similar for a limited period of time. Since the secular
motion of the pole of rotation is also influenced by other geophysical processes, a
perfect agreement between both motions cannot be expected. To get better insight
into relations between inner-core motion and polar motion, we calculate the amplitude
spectra of both processes. The periodic terms of the excitation function, obtained by a
two-dimensional Fourier analysis, are represented by elliptical motions of the principal
axis of inertia. From this analysis, the following relation results for each periodic term:

Y(t) = (A4 +iBy) exp(ivt) + (A- +iB_) exp(—ivt), (29)

where v is the angular frequency of the period considered. The semi-axes of the
elliptical motion described by (29) are

= |AL +iB|+|A_+1B_]|,
b = |Ay+iBy|—|A_+iB_|. (30)

The direction of the major semi-axis is obtained according to

L (arctan Z* + arctan= (31)
o — = | arctan — arctan—— | .
TaT g A, A

The quantities defined by (30) and (31) are indicative of the similarity of the periodic
constituents of excitation functions derived in different ways. Fig. 3 shows that the
amplitude spectra of the major semi-axis of the periodic constituents of both processes
contain several common periods. In Table 1, the parameters of these periodic terms
are gathered. It is seen that usually the semi-axes of the periodic terms of the excitation
function of inner-core motion are smaller than those of the excitation function of polar
motion (diminished by the influence of the atmosphere), although they agree within
their uncertainties. On the other hand, the differences of the direction angles are too
large for most periodic constituents, so that the relation between inner-core motion
and polar motion is not completely proven. Only, the 16-year period can be accepted
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Figure 3: Amplitude spectra of the excitation function of polar motion (left) and of
the excitation function of inner-core motion (right)

Period 67 36(40) 26 16
MO 1O e | a)|©@ Table 1: Parameters of
a[mas] | 56 | 46 | 36 | 10 | 26 | 11 | 15 6 periodic‘ co.nstituents. of
the excitation functions
blmas| | 2 | 9 |12 ] 4 | 4]0 |11 ]4 of polar motion (1) and
Ve 99 | 1 | 105 | 5 | b3 | 137 | 120 | 81 inner-core motion (2)

as being caused by inner-core motion. Improved results are expected in the future,
when higher-accuracy measurements of polar motion and the geomagnetic field are
available.

2.3 Influence on the gravity field

Provided that the figure axis of the oblique ellipsoidal inner core moves relative to the
earth, this motion causes changes of the gravity field. Knowing the density difference
between inner and outer core, the flattening of the inner core and the time variation of
the orientation of its figure axis in terms of ¢p(t) and ¥p(t) (Fig. 4), we can estimate
these changes and compare them with the accuracy of recent gravity-field models and
with the expected accuracy of planned satellite gravity missions (CHAMP, GRACE).

Figure 4: Aligned (left) and
oblique (right) ellipsoidal inner
core; Ty, T, and TP, T'D are do-
mains of inner and outer core,
respectively; ¥p, ¢p are the co-
latitude and azimuth of the fig-
ure axis zp of the inner core
with respect to the mantle-
fixed coordinate system

To simplify the calculations, we introduce a second geocentrical coordinate system
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which is fixed to the inner core. Its z axis is in alignment with the figure axis of the
ellipsoid, respectively, the geomagnetic dipole axis. To distinguish it from the z axis
of the mantle fixed coordinate system, it is hereafter referred to as zp axis; the zp
axis is then defined by the z-zp plane.

The gravity potential difference between an oblique and an aligned ellipsoidal inner
core with the density distributions p.(r) (outer core) and p;(r) (inner core) is

AV = Vp-Vi

with Vo=V (Ip =0) /pe ldr—l—/pi(r)r*1 dr
: (32)
and Vo =V(ep,¥p) = /pe r)r 'dr + /pi(r)r’ldr.
b ro

In the following, we 1) show that the calculation of the potentials according to (32) can
be reduced to an integration over a rotational ellipsoid homogeneously filled with mass
of density p = Ap, 2) calculate the potential for an ellipsoid in the coordinate system
fixed to the inner core (Fig. 4) and 3) transform the solution to the mantle-fixed
coordinate system, thus obtaining the associated perturbation of the gravitational
potential in the coordinate system conventionally used. The assumption in 1) seems
plausible, because an ellipsoidal inner core precessing within a surrounding with the
same density has no effect on the existent gravity field of the earth.

Beginning with 1), we consider more generally the relation for the difference of the
integration over two domains A and B:

/ f(a)da — / f()de = / fla)dz + / f(a)de — / f(a)de — / f(2)de.  (33)

A\B A~B A~B B\A

Applying (33) to (32), we must solve the following integrals over four difference regions:

AV = /pe(r)r_ldr— /pe(r)r_ldr+ /pi(r)r_ldr— /pi(r)r_ldr. (34)

1—“e\FeD FeD\FE Fq;\l“f) FiD\Fi

Because [ \T?=TP\T;and TP?\T,=T;\T? holds, we can write

AV = [ (o) = p@)r tdr— [ (pulr) = pi(e))r tar, (35)

rPAr; T;\rP

and with (33) it follows that

AV = / (pi(r) — po(r))rt dr — / (pi(x) — po(x))rdr . (36)

Ty

Equation (35) shows that the potential difference between an oblique and an aligned
inner core depends only on the difference of the density distributions p;(r) — pe(r) in
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the difference domains T'P? \ T; and T'; \ T'P?. Due to the small flattening of the inner
core, the integrations in (35) are in fact carried out over a thin shell (thickness ~ 3
km, Table 2). This shows that the density jump at the inner core-outer core boundary,
Ap, is significant rather than the density distributions in the full domains, and the
distribution p;(r) — pe(r) in (36) can be approximated by the constant density Ap.
The calculations can then be continued according to steps 2) (using (36)) and 3).

Usually, the geopotential is given in terms of the coefficients C,,, and S, of a
spherical harmonic expansion:

N n

V(r,@,9) = Z Z (Cpm cosme + Sy sinm) Py, (cos 9) . (37)

n=0m=0

These coefficients should not be mixed up with those used in section 2.1. With respect
to our problem, we must compute the coefficients of the potential AV

ACum(t) = ACum(pn(t),Ip(t))
ASyn(t) = ASun(en(t),9p(t))

in the mantle-fixed coordinate system. For this, we compute the potential coefficients
of the oblate inner core with respect to the above mentioned coordinate system fixed
to the inner core and transform them into the coordinate system fixed to the mantle.

In the coordinate system fixed to the inner core, the fully normalized zonal harmonic
coefficients C),o for the potential of a body with rotational symmetry and density p
are given by

2 T r(¥)
]. ! ! i ! ! ’ !
Cro = W ,/ / / pr "Py,(cos¥ ) r2(sind )dr dv dyp (38)

o'=0 ¢=0 r'=0

where M is the mass of the body and Ry is the reference radius. In our case, according
to (36), the integral must be solved for the region of the ellipsoidal inner core, the
density of which is Ap. The solution for p = Ap = const. is

a? — b? —1¢

)2
R? ) (20+1)(20+3)Val+1

where m = §7r Ap a®b is the mass of the ellipsoid with axes a and b. Since we are
interested to have the effect in respect to the potential of the whole earth, we must
take for M the mass of the earth. Because we assume an rotational ellipsoid as shape
for the inner core, only zonal coefficients (), of even degree n occur in the coordinate
system fixed to the inner core and in practice it is sufficient to consider the coefficient
020.

The transformation of spherical harmonic coefficients (Cpm, Sum) =
(Crple, B,7), Snpla, B,)) with respect to a coordinate system rotated by the
angles «a, 3, is considered in KAUTZLEBEN (1965) and ILK (1983). We rearranged

m

Copp = 3— (

U (39)
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the formulas for numerical computation of rotation by the angles ¢ and ¢ (Fig. 4):

Crp(,9) = D (Crm cosmp + Spp, sinmep) AZ™ (1)
0

3
|

n (40)
Snp(9:9) = Y (Spm cosmp — Crm sinmep) BE™ (1)
m=1
with the transformation parameters
(n=p)!(n—m)!]*
AP = (=1)P [(2 = 00.,)(2 — do.m X
R CRET RIS ey e
J2 (41)

—1 —cos¥)? + (1 — cos V)’

m! p! s (
Pm+p ] 19 _
Z n (cos ) 2sin? ¥

j=j1 (m — )3 (p—J)!

(n—p)! (n—m)!f

(n+p)! (n+m)!

(—1 —cos¥)? - (1 — cosv)’ (42)
2sin’ ¥

B = (C1y [(2 502 o)

m! p! »
> ~ — PP (cos 1)
= (m =)l (p—J)!

with j1 = max(p +m — n,0) and Jo = min(m, p).

Parameter Value Source
Mass of the Earth M = 5.973698995 x 10?7 kg IERS - Standards
ﬁrfzgif; radius of spherical Ry = 6378136.49 m IERS - Standards
Major semi-axis of inner core a = 1229.5 km Ei}f;:{(;giK(H%SND
Flattening of inner core f= 4151.78 E{%Z;IiéTi??ﬁ)8A4l\;D

Minor semi-axis of inner core | b =a(1 — f) = 1226.54 km

DZIEWONSKI  AND
ANDERSON (1981)

Table 2: Numerical values for calculating the influence of the inner core on the gravity
field

Density jump at the inner

= -3
core outer core boundary Ap =0.5973 gem

The values we used to calculate the inner core influence are given in Table 2. Ac-
cording to equation (39), the numerical value of the coefficient Cy, with respect to the
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inner core fixed system is:

Ch = —1.240 x 1078

and the time variations of the transformed coefficients AC,,(¢p(t),9p(t)) and
ASpm(ep(t),9p(t)) (n=2, m =0,1,2) are shown in Fig. 5. The predicted rates

9p [degree]
bp [degree]
8 BEER

1900 1640 1980 1900 1940 1980

ACzoxlo‘m
o 0 NN
Do o b @

"1500 1940 1980
9 130} ‘ ‘ ‘ T g -374f
S-135} 1 g-arsf
qor 1 L -ss2f 1
-1451 7 N -38.6 1 : 3
(&l’-ls.o— ] 2 300k ] Figure 5: Predicted tempo-
-1551 ) ) . ) ) b -394FL, ) ) ) ) ] . . .
00 o0 om0 500 o0 580 ral variations of gravity due
3 23 to the precession of the el-
3 [ ]
-25¢ ] lipsoidal and oblique inner

271

ACy «10?
W W wwww
QOREFEPNN
SRURSRYRSRYI
NSy g™

i core in terms of spherical
209} . .
1900 1940 1980 1900 1940 1980 harmonic coefficients ACoy,
Calendar years Calendar years and ASs,,

of change over the last 10 years are given in Table 3. If we compare these values with
the accuracy of present gravity models, e.g. GRIM4 (SCHWINTZER et al., 1997), and
with the expected accuracy of the planned satellite missions CHAMP (REIGBER et al.,
1997) and GRACE (TAPLEY, 1997) (Table 4), it seems to be possible to check the
hypothesis of inner-core precession during the next decade. Nevertheless the problem
of separating the different influences on the low degree harmonic coefficients has to be
solved.

3 DISCUSSION OF THE MODEL ASSUMPTIONS

In more realistic studies of the influence of the inner-core rotation on the geomagnetic
field, the prescribed current system in the outer core should be replaced by a system
in agreement with recent dynamo models. In a next step of investigation, model ex-
tensions should be introduced, which self-consistently explain the relative rotation and
its influence on the geomagnetic field. This requires the use of numerical methods.
GLATZMEIER and ROBERTS (1996) show that the assumption of an angular velocity of
the relative rotation of about 107%s~! is consistent with recent dynamo models. The
relative rotation is then maintained by magnetic coupling between the inner core and

12



m 4 Com 4G m Model o(C/S) | o (4(C/S))

o] o] o]

0 | —4.74 x 10712 GRIM4 2x1070 | 4x10°12
1 | +5.69x 1012 | +1.24 x 1011 CHAMP | 2x 101! 1x 1012
2 | =199 x 1072 | +1.89 x 10712 GRACE 2 x 10712 1x10°13

Table 3: Predicted rates of change of Table 4: Estimated standard deviations
the normalized degree 2 spherical har- of the low-degree (n < 5) harmonic coeffi-
monic coefficients of the earth’s gravity cients and their rate of change for present
field caused by the hypothetic preces- and future gravity-field models; the esti-
sion of the inner core averaged over the mates for CHAMP and GRACE are based
last 10 years on 1 year of data for o(C/S) and 5 years

for o (%(C/S))

the flow of the overlying liquid outer core. Recent seismological investigations (SONG
and RICHARDS (1996)) have suggested that the inner core is rotating about its tilted
symmetry axis relative to the mantle with an angular velocity of the same order of
magnitude. The assumption of a fast relative rotation of the inner core about its tilted
symmetry axis has therefore received some confirmation. However, the decade varia-
tions of the position could not yet be found by dynamo simulations and seismological
investigations. This is also not considered in our model concerning the hypothesis
about the dipole axis, where stationary solutions are used. Changes of the direction of
the dipole axis should therefore be introduced in this kinematic model by a prescribed
time dependence of w. The expected result is a phase shift between theoretical and
observed variations of polar motion. JOCHMANN (1989) estimated a mean phase shift
of about 28 years for particular periods between 20 and 50 years, which is too short to
be explained only by magnetic diffusion in the outer core. Alternatively, he proposed
explanation of the phase shift by Alfvén wave propagation. Magnetohydrodynamic
disturbances caused by inner-core motion propagate with the Alfvén wave velocity
through the outer core. Using conventional parameters of the outer core, JOCHMANN
(1989) estimates an associated propagation time that agrees fairly well with the phase
shift mentioned above.

Particular periods of the polar motion can be explained by temporally varying gravi-
tational torques affecting the hypothetical inner-core motion. Provided that the grav-
itational torques can be derived from observations, we can determine the motion of
the symmetry axis of the inner core without use of the observed position of the dipole
axis, and may confirm the relation between the inner-core motion and that of the
geomagnetic dipole axis by comparing it with the result of the model. In a related
study, JOCHMANN (1991) investigated the influence of the gravitational attraction of
the sun and the moon on the motion of the inner core and found that the amplitude
of the 18.6 years period in the observed polar motion is associated with the retrograde
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motion of the moon’s node. A corresponding period is also found in the spectrum of
the theoretical polar motion calculated according to the motion of the observed dipole
axis. Within the uncertainty of the Fourier-analysis method, this period may be as-
sociated with the 16-year period mentioned in section 2.2. In addition, JOCHMANN
(1991) proved that long term variations of the external torques cause a secular vari-
ation of the relative motion between inner core and mantle with a period of about
320 years. The same period is discovered in the amplitude spectra of ¥p and ¢p by
JOCHMANN and GREINER-MATI (1996), and a similar period of 360 years is found by
ApAM (1983) in archaeomagnetic time series.

For the other periods, the kinematic model explains the influence on polar motion,
but not the generation of these oscillations by internal core processes. A possible
mechanism for the decade variations of the flow in the outer core is provided by
BRAGINSKY’s (1984) torsional oscillations, although the coupling with the inner-core
motion is not explained up to now. In self-consistent dynamo models, the decade
variations may be consequences of instabilities or transient processes constrained by
additional geophysical conditions. For an excitation by gravitational variations, there
is no evidence for these periods.

4 CONCLUSIONS

The results of our kinematic model show that the influence of the assumed relative
precessional motion of the inner core on the magnetic field and the polar motion
may cause observable changes of these quantities. Recent seismological studies and
numerical dynamo simulations have shown that the relative rotation of the inner core
about its figure axis with an angular velocity of about 10~° s~! may be real, while
decade variations of its precessional motion relative to the mantle could not yet be
found by these methods. The consistency of our kinematic model with the gravity
observations may be proved in the near future.
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