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UBER ANWENDUNG VON ERGEBNISSEN DER LASERENTFERNUNGSMESSUNGEN ZUL
MONDE BEI AUFLOSUNG EINIGER PROBLEME DER ASTRONOMIE UND GEODYNAMIK

\'A K.Abalakin*),
e e e

. *) *) *)
V. N. Bojko “, M.A.Fursenko ‘, O.M.Gromowa “,
W.F.Lobanow**), L.I.Rumjanzewa*), A.A.Schirjajew*),
S.W.Sserowa*), A.N.Ssuchanowskij**

A bstract - The present paper deals with some problems

PespoMme -

related to applications of lunar laser ranging
results to improvement of parameters of the
theories of the Moon's orbital motion and rota-
tion (the Moon's physical librations) and to
determination of the polar motion, the Earth's
rotation variations and the continental drift
effects, The principles of the numerical ap-
proach to the LLR ephemerides computation have
been exposed in general features, Some examp-—
les of astronomical interest, i.e. the UTO

and GE determinations, are given.

B cTaTee pacCMOTpeHH HEKOTOpHEe MpOGJeMH, CBESSHHHE
C DpuJoxeHueym PEeSYJILTaTOB JaseprOf CBeTOJOKAINH
JysH X YTOYHEHED mapamMeTpoB Teopult OpGETAJBEMOTO
JBEXeHHS M BpameHER Jymu (reopms dmsmuecroft mépa—
mEr JiyHH) ¥ K OmnpeleJeHWD IBMXEHES SEMANX NOJICOB ,
Bapwama B yraoBo# CROpOCTH BpameHEA 3eMin K -
$exTOB, OCYCIOBJCHHANX CMEMEHWAMA KOHTRHEHTAJHHEHX
GJIOKOB., H3sJjaranrcs OCHOBH YHCJEHHOTO mOaXoma K
BHYHECJICHAD 3PeMepEn RJA JasepHof cmerosoramum Jy-—
EH. [IpmBORATCA HEROTOpPHE NpPMMEDPH, HMEKmAe aCTpPO—
HOMEYECKOe 3HAYeHWe - OlpelneJIeENe BCEMEDPEOT'O
BpeMeny UTO ¥ reomeHTpEuYecKoff rpammTanEoRHOR nmo-—
CTOAHHOK GE .
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Im Wesentlichen ist die Methode der Laserentfernungsmessungen
zum Monde (weiterhin als LEM-Methode bezeichnet) dem Radarverfahren
ahnlich und besteht in der Bestimmung der moglichst genauen Fortpflan
zungszeit der Lichtimpuls-Signale von der Erde zu dem Monde und zu- I
ruck (der sogenannten Zeitverzogerung).

Die LEM-Experimente bis an die Mitte von 1979 waren an 9 Be-
obachtungsstationen zu verschiedenen Zeiten erfolgreich durchgefuhrt
und namlich, an dem Lick Observatory (Kalifornien, USA), dem MacDo-
nald Observatory (Texas, USA), der Catalina Station (Arizona, USA),
der Observatoire Pic-du-Midi (Frankreich), dem Krimer Astrophysika-
lischen Observatorium der Akademie der Wissenschaften der UdSSR, der
Dodaira Station (Japan), der Agassiz Station des Smithsonian Astro-
physical Observatory (Massachusetts, USA), dem Mount Haleakala Obser
vatory (Hawaii, USA) und an der Orroral Valley Station (Australien),
zur Zeit auch die Orroral Station kurz genannt.

Das heutige zu weitlaufiger wissenschaftlicher Verwendung zu-
gangliche Beobachtungsmaterial besteht vorwiegenderweise aus den an
dem MacDonald Observatory gemachten Laserbeobachtungen (mehr als
2600 Normalpunkte umfassend), welche auf das Zeitintervall von Marz

1970 bis Marz 197% verteilt sind. Man kann diese Beobachtungsan-
gaben durch ¥ermittelung des U. S. National Space Science Data Cen-
ter (das COSPAR World Data Center - A) erhalten. Der grosste Teil
der bisher gewonnenen wissenschaftlichen Ergebnisse ist ausschlies-
slich auf diesen Daten gegrundet.

Fruher waren es verschiedenartige Abschatzungen von moglichen

Verwendungsperspektiven der LEM-Ergebnisse zur Auflosung von den zu
verschiedenen wiesenschaftlichen Untersuchungsgebieten gehorenden
Problemen durchgefuhrt, welche gezeigt haben, dass es moglich ist,
einige Parameter der orbitalen Erde- bzw. Mondbewegung wesentlich
verbesserh zu konnen, auch die Lagen der Mondretroreflektoren und
die Parameter der physischen Libration des Mondes zu bestimmen, Als
andere Anwendungsziele kann man auch Bestimmungen von Positionen der
Beobachtungsstationen auf der Erdoberflache, die Untersuchungen der
Erdrotation und der Bewegung der Erdpole sowie der Knderungen, die
in der gegenseitigen Lage der geotektonischen Schollen vorkommen,
u?d die Experimentalprufungen verschiedener Gravitationstheorien er-
wahnen,

Es ist selbstverstandlich, dass fur die erfolgreiche Auflos-
ung aller diesen wissenschaftlichen Probleme die Mondephemeri-
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den von hoher Genauigkeit notwendig sind. Die Losung dieses funda-
mentalen Problems wird zur Zeit hier im Institut fur theoretische
Astronomie folgenderweise durchgefuhrt:

Es werden zur adaquaten Beschreibung der Bain- und Drehbewe-
gungen des Mondes in womoglichst vollstandiger Ubereinstimmung mit
den LEM-Ergebnissen und mit den optischen Mondbeobachtungen die nu-
merischen Theorien konstruiert, Diese Theorien dienen als eine

Grundlage fur die Ephemeridenrechnung der topozentrischen Mond-
entfernungen D , die fur Durchfuhrung der LEM-Experimente am Krimer
Astrophysikalischen Observatorium notig sind, Diese Experimente wer-
den da von der von Dr J L Kokurin geleiteten wissenschaftlichen Grup-
pe des Peter-Lebedew-Instituts fur Physik mit dem 2.6 Meter Reflektor
durchgefuhrt, Die Bezeichnung "Numerische Theorien™ bedeutet, dass
es sich um das Verfahren handelt, bei welchem die geozentrischen
Mondkoordinaten durch die numerische Integration der die Mondbewegung
beschreibenden Differentialgleichungen unmittelbar berechnet werden.
Dabei wird es eine sehr effektive Methode benutzt, die von Bulirsch
und Stoer ausgearbeitet und in der "Numerischen Mathematik" beschrie-
ben wurde., In dem dynamischen gravitationellen Modell werden es die
Storungseinflusse von der Sonne und den sechs grossen Planeten des
Sonnensystems (Merkur, Venus, Mars, Jupiter, Saturn, Uran) sowie die
von den nicht-spharischen Gestalten der Erde und des Mondes verur-
sachten Storungen berucksichtigt, d.h. die zonalen Harmoniken in
den Reihenentwicklungen von betreffenden Gravitationspotentialen wer-
den bis zu der zweiten und der dritten Ordnung ins Acht genommen.
Falls die Anfangsbedingungen des Integrationsverfahrens genugend ge-
nau sind, ist es moglich, die Mondephemeride auf Grund der Bulirsch-
Stoerschen Methode mit dem maximalen Fehler von + 0.5 Meter in der
geozentrischen Mondentfernung zu berechnen. Die gegenseitige Ver-
gleichung von den in dem ITA berechneten numerischen Mondephemeriden
mit der Mondephemeride, die mit LURE 2A bezeichnet ist, hat die Ab-
weichungen in der Mondentfernung von + 60 Meter gezeigt.

Was die numerische Theorie der physischen Mondlibration be-
trifft, so ist sie auf der gleichzeitigen numerischen Integration des
gesamten Systems von den die Mondbewegung in der geozentrischen Bahn
beschreibenden Differentialgleichungen und den die Mondbewegung um
den Mondmassenmittelpunkt beschreibenden Eulerschen dynamischen Glei-
chungen gegrundet. Der Mond wird dabei als ein absolut starrer Kor-
per betrachtet., Es werden in der Reihenentwicklung des Mondgravita-
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tionspotentials die spharischen Harmoniken bis zu der vierten Ord-
nung einschliesslich berucksichtigt. Die Anfangsbedingungen fiir
die numerische Integration der Differentialgleichungen der Drehung
des Mondes werden auf Grund von den von Dr Eckhardt sowie von Dr
Kaula und Dr Baxa ausgearbeiteten analytischen Theorien der physi-
schen Mondlibration ermittelt.

Hier wollen wir eine Bemerkung machen, die den Unterschied
zwischen dem traditionellen selenographischen Bezugssystem und dem
selenodatischen Koordinatensystem, dessen Achsen mit den Haupttrag-
heitsachsen des Mondes zusammenfallen, betrifft. Dieser Unterschied
wurde von Dr Williams aus dem Jet Propulsion Laboratory entdeckt und
abgeschatzt. Namlich ist die Achse des kleinsten Haupttragheitsmo-
mentes ca. um 270 Bogensekunden in Lange ostwarts von Richtung des
Ersten Radius, d.h. der fundamentalen Richtung des selenographischen
Koordinatensystems, und um 75 Bogensekunden in Breite gudwarts ver-
schoben.

Um die Nominalzahlenwerte der Parameter zu verbessern, wird
die Methode der Differentialkorrektion angewandt, die auf der Auf-
losung von Bedingungsgleichungen fur Parameterverbesserungen mit
verschiedenen Ausgleichungsmethoden gegrundet ist, Als solche wer-
den, z. B., die Methode der kleinsten Quadrate, die Kollokationsme-
thode u. a. auserwahlt. Als Beispiel wird das Ergebnis der einma-
ligen Verbesserung der Anfangsdaten der Integration, die der numeri-
schen Theorie der Mondbewegung LURE 2A und der von Dr Eckhardt in
1971 ausgearbeiteten Theorie der physischen Mondlibration entspre-
chen ( £ = 0,63982, d.h. P =6.3126 x 1074, Y= 2.2737 x 1074,
Jd = 5552?721), angegeben. Es lauten namlich die Verbesserungen der
Parameter der Erd- und Mondbahn wie folgt: _

AC= +0.032 + 0,026, Ae'= - 0,027 + 0.014 ,

AT= + 0,032 + 0.029, AY“'= + 0,200 + 0.037,

o= + 2725 + 0186, Af = - 0.0009 + 0.0006

Ae = - 0,006 + 0.001, AT = - 0.6 + 0.3 -

AI‘O= + 961 £ 9v (Meter; ‘
dabei betragt der Gewichtseinheitfehler &p & 30 Meter, Hier wur-
de es von 1109 Normalpunkten Gebrauch gemacht, welche aus den anm
MacDonald Observatory ausgefuhrten Entfernungsmessungen zu Mondref-
lektoren "Apollo 11", "Apollo 14" und "Apollo 15" abgeleitet wurden,
Als Anhang werden einige Arbeitsformeln und -ansatze gegeben, welche

-
=

das zum Auflosen der gestellten Aufgabe dienende Algorithmenapparat
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illustriert, Hier werden einige Aspekte der Berechnung der topozen-
trischen Mondentfernungen D und der Koeffizientender Bedingungs-
gleichungen erlautert und Ergebnisse der Benutzung der Laserentfer-
nungsmessungen in den Untersuchungen der Erdrotation (die von Dr
Peter Bender ermittelten Differenzen von der Form UTO - UTO (BIH))
sowie bei der Verbesserung der fundamentalen astronomischen Konstan-
ten (der von Dr Jim Williamsberechnete Wert der geozentrischen Gra-
vitationskonstante GE) .

Zum Schluss sei es uns erlaubt, die wichtige Rolle von sol-
chen internationalen kooperativen Unternehmungen wie EROLD und MERIT
zu unterstreichen, welche sehr viel zu erfolgreichen geodynamischen
Untersuchungen beitragen.,

Es ist eine sehr angenehme Pflicht, unseren Kollegen vom Zen-
tralinstitut fur Physik der Erde der Akademie der Wissenschaften der
DDR fur ihre liebenswurdige Einladung und die herrlichsten Aufent-
halts- und Arbeitsbedingungen wahrend des 4. Internationalen Sympo-
siums "Geodasie und Physik der Erde" unseren innigsten Dank hier
auszusprechen.

Unsere Danksagungen sind auch an Prof, Dr Jean Kovalevsky,
Prof, Dr Milan BurEa, Prof, Dr Carrol O, Alley, Prof. Dr William M,
Kaula, Dr Odile Calame, Dr Barbara Kolaczek, Dr J, Derral Mulholland
Dr Peter Shelus, Dr Peter Bender, Dr Jim Williams fur ihre Unter-
stutzung und Mitarbeit gerichtet.
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ANHANG

Die Konfigurationsgeometrie in dem oben gestellten Problem
der Laserentfernungsmessungen zum Monde kann man mit der folgenden
Abbildung illustrieren, wo mit den Symbolen IS und Fi eine
terrestrische Beobachtungsstation und ein Mondreflektor bezeichnet
sind, ﬁt und I) 8ind die geozentrische Distanz des Mondmas-
senmittelpunktes bzw. die topozentrische Entfernung des Mondreflek-
tors, ?B 5 7\E . Cpl sind die geozentrischen Koordinaten der
Beobachtungsstation, 02(, {/ . 8ind die selenographi-
schen Koordinaten des Mondreflektors.

Die topozentrische Entfernung I) wird aus der Formel

D= (XY Zz>%' (1.4)

berechnet, wo

e — —

e ————————

—— e —

S
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FXW r'x([ +'JC~OCBT

D b K iy fe -

L) |zg +2 ~2p)

(2.4

()

und die rechtwinkligen . geozentrischen Mondkooxrdinaten 'ZI‘( 4 ‘j/( ?
’Z( durch die Formel

-

r
\/Jr( = vi-—-— 0008( MOL( Fh
LIZ’(J L/M'W C ‘

mit den geozentrischen aquatorialen Mondkoordinaten ch . S(
und der horizontalen Mondparallaxe ‘KC verbunden sind.

Sind OoC , s Z, die rechtwinkligen geozentrischen
aquatorialen Mondreflektorkoordinaten, so werden sie mit der For-
mel

T
\y =(R¢ ?(—e) r [—(,Q+ S+ A(.b)] P (J-{-Q) X
07 condy cond )
X F[4%0°-((+¢)+Q+G+ALD} Jcos rrind
mntr

durch die selenographischen Reflektorkoordinaten (R.([ ) { ’ 6’
ausgedriickt, wobei €  und Q mittlere Langen des Mondes und
des aufsteigenden Mondbahnknotens auf der Ekliptik bezeichnen, §,
ist die Schiefe der Ekliptik, J ist die Neigung des Mondaquators
gegen die Ekliptik, Q 0. » U bezeichnen hier die Komponen-
ten der physischen Mondlibratiom und A(b ist die Nutation in Lan-
ge. Den shnlichen Ansatz bekommt man auch fur die rechtwinkligen
aquatorialen Koordinaten der Beobachtungsstation

> o o= S won @' conNg
Ye|= %r(-S) P(‘je)W('x?) con @' MnAg (5.4)
< Mn @
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wo mit S die wahre Greenwicher Sternzeit, mit ‘x? A Lj/'
die auf das CIO bezogenen Polkoordinaten bezeichnet sind.,

Bezeichnet man mit P, und Pg Dbeliebige mit dem Mond
bzw. mit der Somne verbundene Parameter, 8O lauten die Bedingungs-

gleichungen fur die Parameterverbesserungen A'P wie folgt

D _ D :2(’6]) 2D

Bp + —— Apg

Pi,s
in welchen bei der Analyse von Laserentfernungsmessungen zum Mond
— /- 3 ‘1’ (7 QA)
p={(, e, V=ring, 0, £, T}
e '[" 4
Pgi= ;s ©
als Parameter und auserwahlt werden konnen.
P.L; Ps 'b‘D
Die Koeffizientey,d, n, die Differentialquotienten _'B—_ -

die in den Bedingungsgleichungen (6.A) auftreten, kann man auf
Grund von bestimmten mathematischen Modellen berechnen, die entwe-
der die Dynamik des betreffenden Himmelskorpers oder die betrachte-
te geophysikalische Erscheinung beschreiben. Stellt man, z. B.,
die Greenwicher Sternzeit als

S =UTC (1+Red”) + nbcore + 80 (8.4)

.dar, wo die Erdwinkelgeschwindigkeitsvariation XS den folgenden
Ausdruck

05 =y con (36525 T) + 15, mn (T 36525 T +
+ czcm(QTMOOT) + A2 Mn (%LWOOT) +

+C30n (2 86T + AHyain (21-86T)
D

BCA
bei der Parameterverbesserung A0,| steht, indem man die folgende

hat, so berechnet man den Differentialkoeffizient , der

Formel benutzt




(10.4)

x P (‘3’?) G ()

wo mit [’U. \ fm’] der geodatische Ortsvektor der Beobachtungs
station bezeichnet wird.

Das einfachste mathematische Modell, das die Verschiebung
der die Beobachtungsstation :B tragenden Kontfinentalscholle be-
schreibt, kann man durch den folgenden Ansatz

] o Uy
(11.4)

g —+ (U:] (T“‘To)

LWJ NO

darstellen, sodass der Differentialkoeffizient TB_ bei der
Uy
Verbesserung Awu 4 kann man auf Grund der Formel

r'_r‘ 01

?32 =(en PN F(-8)Blynaten| 0 | e
'y 0

1
&

.

berechnen. - —_

Die Symbole P und N dienen in den Formeln (10.A) und
(12.4) zur Bezeichnung der Prazessions- bzw. der Nutationsmatrix,
mit I,F wird die mit der Ableitung der Rotationsmatrix F ver
bundene Matrix von Lucas bezeichnet, so dass

Sl g o
=(F) = Le F) ,
wo OL ein gegebener Rotationswinkel ist.

Wie es oben schon erwahnt wurde, waren die am MacDonald Ob-
servatory gemachten Laserentfernungsmessungen zum Mond von mehre-
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ren wissenschaftlichen Untersuchungsgruppen an verschiedenen An-
stalten fur astrometrische und geodynamische Analyse benutzt. Ins-
besondere gelang es Herrn Dr Peter Bender aus dem Joint Institute [
for Laboratory Astrophysics zu Boulder, Colorado, die zwischen den
von dem BIH veroffentlichten Werten der Weltzeit UTO und den aus
den Laserentfernungsmessungen zum Monde bestimmten UTO-Werten be-
stehende Differenz in folgender Form |
UTO - UTO (BIH) = - 0,007 sin @ - 0.023 cos ® + |
+ 0,011 (t = 1)
darstellen, wo @ die Sonnenlange zur Zeit t bezeichnet und
= 1973 ist. o
Herr Dr Jim Williams aus dem Jet Propulsion Laboratory zu f}
Pasadena, Kalifornien, hat auf Grund derselben Laserentfernungs- i
messungen zum Monde den Wert der geozentrischen Gravitationskon- ‘ﬁ
stante GE , und namlich, QE = 398600.49 kn’ s~', ermittelt, /
indem efﬂ%einen Rechnungen den Massenwert vom Erde-Mond-System
E + M gleich 1/ 328 900.53 und die Mondmasse K gleich
1/81.3007 gesetzt und fiir die Lichtgeschwindigkeit C den Wert
299 792.458 km 8~ angenommen hatte.

o

Abbildung 1 : Die Geometrie des Problems
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LEAST-SQUARES ADJUSTMENT IN HILBERT SPACES’G

J. ADAM
Satellite Geodetic Observatory
H-1373 Budapest, Pf. 546,
Hungary

Abstract: The Hilbert spaces with their inner products are
used to describe methods of least-squares adjustment as ortho-
gonal projections on finite-dimensional subspaces.A unified
Hilbert space approach of the least-squares adjustment methods
A and B is suggested.Hence a new meaning to the intrinsic
connections of adjustment groups, which can be derived from
the geometry of Hilbert spaces is given,The interrelationships
between adjustment groups make the accordance and the content
congruency of the technically different solutions complete,

Finally, two examples are given, which demonstrate
the correctness of our treatment.We are convinced that Hilbert
space techniques in least-squares adjustment is an elegant and

powerful geodetic method.,
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ABSTRACT

Data of new types and of higher accuracy hold out the prospect
of determining the geoid to a higher accuracy. Over ocean areas
the geoid has uses in its relationship to tectonic features, in the
study of oceanographic features, in checking the accuracy of
assumptions made in oceanographic techniques, and in determining
the datum level for geodetic surveys.

On land, the uses of the geoid include investigations of
tectonic features, relating satellite observing stations to
terrestrial points, and providing the transformation between
terrestrial surveys and positions fixed by satellite techniques.
With increasing use of Doppler and, later, GPS systems, this last
application will assume great practical importance in the future.

Techniques for determining the geoid to an accuracy of 10-20 cm
depend on availability of suitable data. Over sea areas, a represent-
ation of the long wavelength geoid features can be obtained from
satellite geopotential models. A relative geoid for regional areas
is obtainable from gravity. For the continents, the major problem
is transforming the levelling network to a geoidal datum, after
which a gravimetric geoid can be calculated.
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1. INTRODUCTION

The data available for geoid determination over ocean areas has always
differed from that on land. Previously the data at sea was sparse anq 3
inaccurate, but now these areas have satellite altimetry coverage, which is
not available on land. In recent times, also, geopotential solutions from
satellite tracking have become available, giving a global coverage of

data for the first time.

The improved extent and precision of data provide the possibility of
determining a higher accuracy geoid. Current solutions have an accuracy
approaching *1-2 m (e.g. LERCH et al, 1978A;RAPP, 1979). The present paper
looks at the need for a geoid one order of accuracy higher, #0.1-0.2 m, and
the possible methods for realising this accuracy in calculating it. For
convenience this geoid will be referred to as the '"'10 cm geoid".

Many additional problems arise when trying to increase the accuracy of
the geoid determination. The presence of sea surface topography complicates
the solution in many ways.

Geodesy in general is in a transition between the 1 part in 10° precision of
the early satellite era, to 1 in 10® (ANGUS-LEPPAN, 1973). An improvement
in geoid determination is in line with this development.

2. THE NEED FOR A 10 cm GEOID

720 | Over the Oceans

The stimulus provided by the availability of satellite altimetry has
had a double effect. Initially it gave extra data on the geoid. In detail,
however, the measurement refers to the sea level surface which is displaced
from the geoid by a variable amount, the sea surface topography (SST), which
may amount to *2 m. It is of great value in oceanography and geodesy to
know the magnitude of SST and its variations over the ocean surface and with
time. As a result, the satellite altimetry has given rise to a need for an
accurate, independently determined ocean geoid.

Uses of the ocean geoid include:

Geodynamics. The geoid and its undulations can provide data
which is important in investigations of tectonic structural
features such as plate boundaries, ocean trenches, subduction
zones, sea-mounts, etc.

Oceanographic Features. In order to determine SST the three
sets of data required are the satellite orbit, satellite
altimetry and geoid height. (see e.g. MATHER, 1975). The SST
is related directly to parameters such as temperature, density
and motion of the water, and can thus show up features such as
ocean currents and eddies. Time-varying components of these
features as well as tides and seasonal variations can be
monitored. It can also be noted that for deducing the short-
term differential changes with time, e.g. tides, determination
of the geoid is not essential.
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Oceanographic Methods. The independent determination of SST by
geodetic methods, can provide a valuable check on the assumptions
made and the degree to which the theory fits practice in
oceanographic methods such as steric and geostrophic levelling.

Height Datum for Geodetic Surveys. The magnitude of SST at the

tide gauge which defines the levelling datum can be applied so as

to relate the geodetic levelling net to the geoid, rather than

the mean sea level at a particular station. At the same time this

makes it possible to relate the levelling nets for different

countries and continents. i

2.2 On Land

The use of satellite altimetry and the many new oceanographic applications
have diverted attention away from the geoid on land. Any inference that the
geoid is less important on land would be wrong. There are both scientific J
and practical functions for which the geoid is needed, and the practical
application in particular is growing. I

Geodynamics. As for sea areas, the relationship between the geoid
and tectonic features is important in various investigations. i

Relating satellite stations to ground surveys. A further scientific

use is in relating observing stations to ground surveys. These can [
serve to monitor their stability, to give the relative positions of
different stations and provide ground truth for space experiments
(e.g. WENZEL, 1979).

" Doppler and GPS. A practical use, which will undergo significant
growth in the next ten years, is in relating satellite-determined
positions on an ellipsoidal system to ground surveys, the heights
in which are based on the geoid. For this application the geoid-
ellipsoid separation is needed, to an accuracy related to that of
the satellite position determination.

3.  THE DEFINITION OF THE GEOID ' I

In aiming at the higher accuracy of 1 in 10® geodesy,a number of factors \
have to be reassessed. These include the fundamental definitions, the basis 1
and constants of the reference system, and the definition, accuracy and
limitations of the data. In making these assessments it becomes apparent
that SST is a factor which needs to be taken into account in many aspects.

When the geoid is determined to say 6 m it is satisfactory to assume
that it coincides with the mean sea level. The displacement between the two ‘
surfaces reaches *2 m at most. For the higher order geodesy (1 in 10%), a |
more precise definition of the geoid is needed. Clearly the geoid should be |

|
{
I
i
|

a level surface - a geopotential - and it should give the best mean fit to

the sea surface. The various surfaces proposed by the definition differ \
only in the data used and the method of sampling in deriving the mean fit T
(MATHER, 1975B; LELGEMANN, 1976). '
|
1
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Further requirements are that the surface chosen should still be
suitable for the operations in the traditional, lower precision geodesy
(1 in 10%), and that it should be acceptable to both oceanographers and
geodesists. It should be possible to monitor, accurately, changes in the
position of the geoid with time.

Each definition proposed refers to a level surface, at a selected
epoch for which SST sampled has an average of zero.

For the geodetic geoid, the SST is sampled at all the world's
levelling datums.

For the oceanic geoid, SST is sampled globally over the oceans,
on an equal area basis.

For the oceanic/geodetic geoid, SST is sampled globally over the
oceans on an equal basis, and at continental tide gauges. Only
these .continental areas containing a tide gauge are included in
the averaging process.

For the "geodetic boundary value soLution” geoid the level is
chosen so that SST has no zero degree harmonic. In practice
this differs from the previous definition only in using, for
the whole land area serviced by a levelling datum, the value
of SST at that datum.

All definitions except the oceanic geoid depend upon the set of tide
gauges at levelling datums, and the geoid could vary with changes in that
set. For this reason, and because it is arguably better to omit continental
areas, where there is no physical surface to define SST, the oceanic
definition is recommended. This is acceptable to geodesists provided the
SST is determined from satellite altimetry.

A set of satellite altimetry data suitable for this task does not exist
yet. The requirements are that the altimetry should be global and near-
simultaneous, but repeated at intervals throughout the year so that seasonal
influences can be eliminated.

With these geoids, it is necessary, after defining the surface, to
determine the value of the geopotential cn the. geoid. It is possible to
approach the problem from the other end, initially defining the geoid in
terms of its geopotential (see e.g. RAPP, 1980).

4, DATA FOR GEOID DETERMINATION

Types of data which may be used for determining the geoid, include:
surface gravity.
geopotential models derived from analysis of satellite tracking.
satellite altimetry.
astro-geodetic positions.
ground positions from satellites.

Characteristics of the data which are significant for geoid determination
are their accuracy, distribution’over the globe, resolution and the nature of
the errors, their wavelengths and correlations.
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S. DATA FOR THE GEOID IN OCEAN AREAS

The advent of satellite altimetry has stimulated @nve§tigaFions into the
determination of the geoid in ocean areas. The investigations include, for
example, those of MATHER (1974), CHRISTODOULIDIS (1976) apd RAPP (1979). The
review which follows is based mainly on a detailed investigation made by

RIZOS (1980A).

5.1 Surface Gravity

The basic equation for the determination of the geoid from gravity is
Stokes' Integral, which states that the geoid height, or geoid-ellipsoid
separation, N, at a point P, is given by (HEISKANEN & MORITZ, 1967, 94):

R
bl ij(w) g do (5.1)

Here, ¥ is the angle between the two geocentric radii, one to the
computation point P, and the other to the element of surface
do,

R is the geocentric radius,
Ag is the gravity anomaly,
f(p) is Stokes' function, given by:

f(y) = cosec (y/2) - 6 sin(y/2) + 1 - 5 cos ¥
-3 cosy &n {sin(y/2) + sin? (Y/2)} (5.2)

The integration in (5.1) is over the whole globe, requiring values of
Ag to be known at every point on the geoid.

The solutigm using (5.1) is complicated by several factors: it is
assumed that Ay represents values on the geoid, and that the geoid is
spherical, of radius R. Also, there must be no mass outside the geoid.

The procedure for taking these factors into account is complex and will not

be detailed in this paper. In the Molodenskii approach (HEISKANEN § MORITZ,
1967, Section 8.3) the gravity anomaly on the geoid is replaced by the

anomaly on the earth's surface and the geoid height is made up of two
components, the Stokesian term Ns’ which is predominant, and the non-Stokesian
correction term ¢ . For a particular point P,, the Stokes' integral is
evaluated by a system of quadratures: 1

m2R M

? 1
Ni = 3.24x10% (dm0) J.Zl(“’”“)j B e L o B Exky

where M is total number of gravity anomalies, L s
Ag. is the representative gravity anomaly for an (n"x m ) area

uij isoeither a) cos ¢; for the equiangular surface element
(n"x m”) defined by lines of latitude and longitude,
or b) sin Y;4, where the surface elements are based on
templates, tﬂe subdivision being defined by concentric
circles around Pi’ and

wij is the angular distance from Pi to the element of surface
area.

L D s =
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The requirements of the gravity anomalies used for computation are:

error of representation less than *3 mgal. (Requires 10 km spacing
of stations in non-mountainous country.)

gravity based on a standardisation network with stations spaced on
a 1000 km grid, and errors less than *0.1 mgal.

* systematic errors of gravity anomalies diminishing as wavelength
increases (for wavelength 4000 km, error below *0.05 mgal).

normal gravity computed from geocentric coordinates.

atmospheric attraction correction applied in determining gravity
anomalies (RUMMEL & RAPP, 1976; ANDERSON, 1976).

A further requirement is that the height of the gravity measurement be
referred not to sea level but to the geoid. The convenient assumption that
sea level is the geoid involves an errcr in height of up to 2 m. It has
been shown that, by modifying the geometry of the Telluroid in the Molodemskii
approach to the boundary value problem, the necessity to know the SST at the
observation point itself is avoided (RIZOS, 1980A, pp. 48-49). However the
indirect effect of SST through the evaluation of the quadratures leads to an
error in the geoid height estimated to be in the range #0.15-0.60 m.

Global coverage of gravity observations is incomplete. A few continental
areas, such as Awstralia, Europe and North America, have good coverage, which
also extends over their continental shelves. The oceans in the northern
hemisphere have a fair coverage, but in the southern hemisphere it is poor,
particularly south of 40°S where observations are very sparse.

The quality of surface gravity data is not yet of the standard required.
WENZEL (1979) has made an investigation in an area in which, comparatively,
the observations are of very good quality and coverage is dense. The area
extends between 31° and 78°N and 25°W - 42°E, covering Europe, the Mediterranean
Sea and part of the North Atlantic Ocean. Two sets of data were supplied, one
by the Defense Mapping Agency and the other by the International Gravity
Bureau. Each set was in the form of 1°x 1° mean anomalies. When compared,
the r.m.s. difference was *12 mgal, with discrepancies of up to 87 mgal.
There was evidence of differences being systematically distributed in parts
of the area.

5.2 Geopotential Models

Geoid determination through the geopotential model makes use of the
relationship expressed by Brun's equation (HEISKANEN § MORITZ, 1967, 85):
N = T/¥ (5.4)

where N is the geoid height,
T is the disturbing potential, and

Y is the normal gravity.
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The disturbing potential, T, is the difference between the gravitati9nal.
potential, W, and the normal gravitational potential of the'reference ellipsoid,
UG (HEISKANEN & MORITZ, 1967, Sections 1.9, 1.10). At a point P:

GM E' a L § (5.5)
W = — [—) G S .
P Rp n=0 Rp m=0 q=1 o0 oM

Here: GM is the product of the gravitational constant and the
mass of the earth,

R is the geocentric distance to P,
a 1is the radius of some arbitrary sphere,
n' is the highest degree to which coefficients Canm are known,

Comm are spherical harmonic coefficients which can be determined
from the analysis of orbital perturbation of satellites, and

S are harmonic functions defined by:

Slnm = an(sin¢) cos mA 3 S3nm = an(51n¢) sin mA (5.6)

where an(sin¢) is the Legendre function of degree n and order m.

Making use of (5.5) and (5.4) the geoid height can be expressed as:

2 )0 D 25l
O[EJ m-—z-o a‘zl Conn Sonm (5.7

where Cynn are the residual coefficients obtained after correcting
Ccmm for the harmonic representation of the normal gravitational potential UG'
This brief summary glosses over a number of factors and does not take
into account the effects of the atmosphere, though in practice this is
essential in determining the 10 cm geoid.

There are many examples of the use of a geopotential field model to
calculate geoid heights.

The odd-numbered Goddard Earth Models (GEM 9, GEM 7 etc.) use this
form of data (LERCH et al, 1977). Accuracies are approaching the one metre
level and further improvements can be expected as more laser tracking
observations become available. Substantial volumes of additional observations
from the latest generation of lasers will improve the positions of the
tracking stations as well as providing improved values for the harmonic
coefficients. The most serious defect in the current program is the globally
uneven distribution of satellite laser ranging stations, particularly the
lack of sufficient stations in southern latitudes.
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Satellite observations for geopotential, unlike other data for geoid
determination, are free from any relationship with the geometry of the sea
surface. They only provide low resolution, and cannot represent features of
wavelengths less than about 1000 km. The geopotential model needs to be
downward continued to the geoid, taking into account the mass of the atmosphere.
The theoretical development for this process requires care (RIZOS, 1980A,

pp. 139-142).

The main limitation of geopotential models from satellite observations
for geoid determination is their limited resolution. Various methods have
been proposed to improve resolution, including a low level, drag-free
satellite, satellite-to-satellite ranging, and use of gravity gradiometer.
Of these, the satellite-to-satellite ranging approach appears to offer the
most promise. Limited test observations have actually been carried out
between the GEOS-3 and ATS-6 Satellites (MARSH et al, 1977). For further
details see also HAJELA (1977), RUMMEL (1975) and RUMMEL (1976).

5.3 Satellite Altimetry in Combined Solutions

GEOS-3 satellite altimetry has also been used to improve geoid models,
for example GEM 10B and GEM 10C (LERCH et al, 1978c). The GEM 10C solution
combines three sets of data, the satellite tracking data used in GEM 9,
surface gravity (38400 1°x 1° mean gravity anomalies) and GEOS-3 altimetry
(28000 1°x 1° block means derived from 2300 passes). The accuracy appears
to have reached the sub-metre level.

The geoid height N is related to geoid and ellipsoid as follows:

Rg = N+ SST +A (5.8)
where R, is the height of the satellite above the ellipsoid, a
quantity determined from data on the satellite orbit, and

A is the corrected satellite altimeter reading.

In using satellite altimeter data for the geoid, the assumption is made
that SST = 0, so that the geoid height is merely the difference between
satellite height and altimeter reading.

Further progress in geoid determination will need to take into account
the different relationships of the data types with SST. The data from
satellite tracking is unaffected by the sea surface. However, surface gravity
data is affected by the sea surface and the geoid in an indirect manner,
the indirect effect being estimated at 0.15-0.6 m. Satellite altimetry data
refers directly to the sea surface rather than the geoid, this direct effect
being 1-2 m.
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6. DETERMINATION OF THE OCEAN GEOID

Calculating SST from satellite altimetry is one of thg most exacting
tasks of geodesy. For each point it involves Fhe Falcul?tlon, to a high
accuracy, of the radial position of the sate111Fe 1n.orb1t, the corregted
altimeter height above the surface, and the geoid height. ?he §ate111te
altimetry is needed for differencing, and can make no contribution to the

geoid height determination.

A procedure for the solution of the ocean geoid is to compute the SST
first using the geoid as derived from the geopotential model (RIZOS, 1980A,
pp. 37-51; 131-142; 259-260). Since this geoid includes only long wavelength
features, the SST derived by differencing from it will include correct long
wave information and, in addition, short wave SST superimposed on short wave
geoid information. If necessary the short wave signal can be eliminated by

appropriate filtering.

For regional SST studies, and where it is essential to separate the short
wavelength geoid and SST undulations, high precision relative ocean geoids
can be computed, provided there are gravity observations of sufficient accuracy
and density. This is possible because the effect of SST on the computed geoid
height is not direct, but comes in indirectly through the quadratures. This
effect is of long wavelength, so it will displace the regional geoid by an
amount which will be nearly constant over the region.

8. DATA FOR THE CONTINENTAL GEOID

The mean sea level determined at a tide gauge station will differ from
the geoid by the amount of the SST. If this mean sea level is adopted as
datum for a levelling network, all orthometric heights, including those of
gravimetric stations, will be affected by the error, of magnitude equal to

the SST.

Two additional sources of data are available on land: astro-geodetic
positions and satellite-geodetic positions.

8.1 Astro-Geodetic Positions

Deviations of the vertical with respect to the ellipsoidal normal are
generally accepted to have an accuracy of approximately #0.5 arcsec. They
yield geoid height differences which can be used to supplement data from other
sources. An example where such data have been successfully used is in the land
areas of the North Sea Region (MONKA et al, 1979; WENZEL, 1979) where it was
estimated to give geoid height differences with an accuracy of *0.02YS to
+0.04/S m, where S is in km. In this case data already existed for a large
number of stations, forming a high density network. The astro-geodetic geoid
determination was carried out using least squares collocation, in order to
avoid several disadvantages of the conventional techniques of astronomic
levelling in profiles or networks.

The basic relationship for the geoid from astro-geodetic position is:
dN = € dS (8.1)

where N is the geoid-ellipsoid separation,

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllIII.llll.lllIlllIIIIIIIIIIIIIII----——
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¢ 1is the deflection of the vertical at the geoid, that is
the deflection at the surface, corrected for curvature
of the vertical between the surface and the geoid, and

S 1is the distance.

In practice, where a limited number of astro-geodetic stations are to
be used, a linear variation of € between stations can be assumed. For.the'
difference of geoid-spheroid separation at two stations A and B, equation (8.1)

becomes:

= 8.2
ANAB e AS (8.2)

where € is the mean deflection %(EA+€B), and AS is the distance AB.

Because the determinations are tedious and expensive, even with new
automated instruments, it is unlikely that this method would be the first
choice in a new survey for geoid determination.

8.2 Sate}lite—Geodetic Positions

Systems which determine three-dimensional positions on a reference
ellipsoid, from satellite observations, can be used to deduce the geoid height
N, which is simply the difference between the ellipsoidal height and the
height derived from levelling:

N = h-H (8.3)

where h is the ellipsoidal height,
H is the orthometric height, and

N is, as before, the height of the geoid above the ellipsoid.

An example of this principle in the determination of N is given by LACHAPELLE
(1979).

At present, using commercial receivers in the Doppler-Transit system,
the observations at a single station take several days, and unless extra-
special techniques are used, the precision of a position is approximately
*1.5 m. The results are of value in determining the relationship between the
reference frames of the geodetic survey and the satellite systems. However
the method would not be economical for large scale determinations of geoid
height, at present.

Geodesists are watching with interest the development of the Global
Positioning System (GPS) designed to supersede the Doppler before 1990
(PARKINSON, 1979). Although designed for navigation there are possible modes
of use for precise position fixing which are being investigated (ANDERLE, 1979).
It has been reported that it will be possible to design convenient receivers,
to fix positions to a precision of a few centimetres, and in a very short time.
If these specifications are achieved, the surveyor will have a powerful new
tool for position fixing in every day surveys and the geodesist a precise and
economical method for geoid determination.

e S ——— - . e —
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Using such an instrument for geodesy, a field traverse would‘be comparable
in effort to a gravimeter survey. Station spacings on a 10 km gr1d_w9u1d be
feasible wherever the density of geodetic survey positions was sufficiently

high.

For each point fixed using the instrument, for which the geogetic position
was known, a geoid height would be known from equation §8.3). This could
lead to a very detailed and precise geoid. The conventlona} mgtho@s for
determining the geoid would not, however, be superseded as it is likely that

the GPS receiver will only yield very precise nelative positions. The_most
useful form of the GPS data for geoid determination would then be as differences

of geoid-ellipsoidal separation AN.

The changes brought about in practical surveying through widespread day-
to-day use of a system like the GPS, will also have their effect on geoid
determination. The rapid determination of positions in a geocentric-ellipsoidal
reference system will be very convenient and economical, but in order to relate
the positions to all the pre-existing ground survey points and to current
levelling results, geoid-ellipsoid separation N will be essential. So this
will lead to an additional call for a detailed geoid, at an accuracy related
to the precision of the best GPS position determinations.

9. GEODETIC LEVELLING DATUM

The geodetic levelling network for a continental area usually has one
tide gauge adopted as the fundamental station for height datum, but for
practical purposes the network may be deformed so as to fit mean sea level at
a number of tide stations. (See for example the Australian case described in
ROELSE et al, 1971.) Scientists prefer a free net adjustment, connected to
only one tide station. Although mean sea level at that station will differ
from the geoid by the amount of the SST, it can be assumed that the whole
height network is displaced by a constant amount.

In the case of Australia, the free network has been calculated (MITCHELL,
1972) and the SST at the fundamental tide station, Jervis Bay, calculated by
geodetic methods as (RIZOS, 1980A, p. 243):

SST at Jervis Bay: 0.2 #0.4 m

This compares with 0.3 0.2 m extrapolated from oceanographic values of SST
in the adjacent oceans.

The fact that the datum adopted for levelling is mean sea level and not
the geoid causes an error in orthometric heights of 1-2 metres and a corres-
ponding error in the gravity network of 0.3-0.6 milligals. It is a zero
degree effect which can be interpreted as the gravity datum being in error by
an absolute amount and the magnitude in terms of an absolute geoid height

error is given by:

R
= M{g, } .
Y Ag (9.1)
where R is the earth's mean radius,
Y, is the normal gravity,

M{ } denotes the mean value, and

L is the effect, in milligals, of the SST at each levelling
datum for the country or continent.

¥ - B
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Alternatively, this zero degree effect can be used to adjust the surface
chosen in the definition of the geoid. For example, rather than the '"oceanic"
definition based on satellite altimetry, the geopotential surface through the
tide gauge zero can be adopted. If the displacement between tide gauge mean
sea level and the geoid is unknown, the geoid definition can, in principle, be
modified to take this into account.

It is now accepted that geodetic levelling is subject to systematic
error, which may amount to a few decimetres per 1000 km (ANGUS-LEPPAN, 1979).
In the north-south direction this is estimated at (0.3 S)mm where S is the
length of the line in km. The systematic error in the east-west direction
is smaller, but not negligible. Taking these errors into account, it is not
justifiable to assume that a levelling network of dimensions 500 km square
or larger, has a constant datum error with respect to the geoid. Away from
the fundamental datum, the freely adjusted network will gradually warp.

In order to transform the levelling network to a datum surface which is
consistently on the geoid to within 10 cm, it is necessary to go one step
beyond the procedure described by RIZOS (1980A). SST must be determined at
tide gauges, at intervals along the coastline, to which the levelling is
connected. In order to maintain a precision of *10 cm, a suitable spacing of
the set of tide gauges is approximately 500 km. A levelling network adjusted
to this set of gauges, where the mean sea level has been corrected by SST to
give geoid height, should give heights accurately based on the geoid, which
in turn are the appropriate levels for gravity stations.

10. DETERMINING THE GEOID ON LAND

A major problem in geoid determination on land, the effect of SST on
the height datum, has been discussed in Section 9. This clears the way for
the calculation of the geoid by the gravimetric method, taking into account
the factors listed in Section 6.1. For a description of a careful determination
of the geoid in the North Sea Area, which could well be a model for future
operations see: MONKA et al, 1979, WENZEL, 1979. For the central area, mean
gravity anomalies were prepared for areas 6'x 10'.

The gravimetric data can be supplemented by astro-geodetic geoid height
differences where available. Similarly, the results of comparisons of Doppler
and geodetic positions provide supplementary data. The role of GPS data when
it becomes freely available, is discussed in Section 8.2.

Because satellite geopotential models provide smoothed,low-resolution
geoids, this data does not have a major role in geoid determination on land.
However it is valuable as an independent check on the geoid as determined by
other methods.

11. CONCLUSIONS

Researchers in geodesy, already used to handling large volumes of data,
will have to be prepared to deal with even larger volumes, if the 10 cm geoid
is to be realised. For this, the data needs to be also of the appropriate
precision.

The data requirements include:

Altimetry data for definition of the geoid. Assuming that the
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oceanic geoid is adopted, data will be all of the same type. The

ideal data would be from a satellite fitted with an altimeter of *
the precision of SEASAT, in polar orbit and with period such that

a global coverage could be achieved in a short time span. At

least two global sets, but ideally about six, would be required, ‘
evenly spaced through the year so that seasonal variations could |
be eliminated. For this reason (and others) geodesists should be

pressing for a successor to SEASAT, with appropriate orbital Lr
parameters for a global coverage. I

Surface Gravity. This is the only means of obtaining an accurate,
detailed geoid at sea. The high cost of obtaining the data is a

deterrent, but for regions of special interest it is worthwhile. il
Other areas where efforts should be concentrated are in improving
the accuracy, by completing the standard gravity networks, and ‘|
filling in the blank areas of the southern oceans. il

On land, efforts should be continued to bring the coverage,

universally,up to the levels achieved in Australia, Europe and |
North America, basically a 10 km spacing of stations in low
topography and denser coverage in mountains.

Geoid Heights. The operation described in Section 8.2 to bring
levelling networks onto the geoid datum, is an essential part of

the program to improve the accuracy of gravity data, and hence ,
the geoid. The requirement is the determination of SST at a
selected set of tide gauges, which are connected to the levelling
network.

Geopotential Models. High accuracy ranging to satellites for
improving the geopotential model appear to be a most effective
means of improving the geoid. Extensive programs of laser ranging,
with an accuracy of 10 cm or better, are required. !

GPS. When the new system is implemented fully, and if the

specifications promised for the receiving instruments are achieved,

a method of great economy and accuracy will be in the hands of the

geodesist. This will provide the means of determining the geoid P
to unprecedented accuracy and detail on land. It will, at the
same time, create a demand for the determination of a detailed, M
high accuracy representation of the geoid-ellipsoid separation.
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A contribution to the mixed boundary value problem

by

K. Arnold1)

Summary

The dates given beforehand are the geoid undulations on the oceans and the gravity

anomalies on the continents. There is derived a series development into certain
functions xn for the N-values on the Earth's surface the coefficients of which are

determined by integrating over the N-values on the oceans and the AgF-values on the
continents. This development is analog to the spherical harmonics development for the

potential in case the gravity values are given all over the Earth.

The functions Xn depend on the spherical harmonics by a successive procedure. This
is a solution of the mixed boundary value problem,

Further, an iterative procedure is developed to determine discrete values of N on the
continents from N-values on the oceans and AgF—values on the continents, according

to the mixed boundary value problem,

In the satellite altimetry and gravimetry, known quantities are the disturbing poten-
tial, T, on the oceans and the gravity anomalies, AgF, on the continents. From these
heterogeneous data, the expansion by spherical harmonics shall be determined for the

disturbing potential on the Earth's surface and in the external space.
(1) 1T = %Tn S (¢, .

In view of

(2) Mgy = -3 -£&1

it follows that

(3) dgp = 3 §(n—1>Tn STV VI

where R denotes the radius of the Earth, Sn(?,l) are the spherical harmonics, and
r, 9, A are the geocentric polar coordinates. Extending the expansion up to the
order n = ¥ , according to Brillouin one has

v v
W T = [[[2- %Tn S,/% am + [[[Agy -3 ) (n-1) 1 5, 72 Q2 awe
x, % n

(5) gt B _Dindoon

Ij AdW der DDR, Zentralinstitut flir Physik der Erde,
DDR-15 Potsdam, Telegrafenberg A 17
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® denotes the area of the oceans, while 2, Mmeans that of the continents.

2
(6) Q=£§-
/Mg

is the residual root mean square deviation for the disturbing potential on the
P
oceans, /ug being the corresponding value for the gravity anomalies on the continents.

The conditions for the minimum are
), g_g_' = 0, (@=0, 1,2, «c.) .
q

Instead of the spherical harmonics Sn(?,l), the functions Xn(q,l) are introduced by
setting

(8) T = Zn_'gn X(er2,r) .

Xn is obtained successively from Xn_1,

k—1
(9),(10) X, = uk[*{;6 Cx.p XP+LK], B =0, T51 258 ¢ o

(1) L = 8@ .

Now one has for the gravity anomalies
v 3X
= st 20 e
(12) L ke n:gng—r quth - 1t B T o
=0 =0
The function 7' to be minimized then becomes
) T o fro-35gx o Jgys Foo(28+3x )2 an
%, n=o0 A o, F n=o n{or R™n i

The minimum conditions

J
(14) —-’: = o 60k =0y TE2Ehte )

%,

yield the coefficients §, ;

(15) ?:-:5 L a{I;T X, de - i&dgF Y x) ik

Jn q is the Kronecker symbol,

1 n=4q
b T {o} {n#q}'
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According to (13) and (15), the functions X, satisfy the following condition.

(17) i{xn X, = + ifzv'(xn) p(x) Q® ax = 4y o
where

X
(18) y(x) = = +EX, -

The coefficients
(19) Oy x 0 Uy

for calculating the functions Xn from the spherical harmonics Sn are successively
derived from the following equations.

(20) oy = = ffI %y e - () pxp) € ax
x, x,

k=1
(1) ()2 « - 02 .+ f[ 12 am + ffvP(,) % a=
y };O P g_' X ==Iz X ’
kK > i
((2) W 1 O e s (@ =) 3
Ten e OR N, 2 ik

The coefficients gn of the expansion of the disturbing potential T by the functions
Xn are found by the relation

(23) §, = {‘[1 T X, dee - a‘(‘jdgF;«(xn) Q% dxe .
2

If required, the spherical harmonics may again be substituted for the functions Xn.

For an infinite extension, (¥ —-# o), Q is the corresponding quotient of the random
errors of measurement. Then @ does no longer depend on v and the functions Xn can a
priori be determined once and for all.

If, on the basis of the desired boundary value problem, the T-values shall be
determined at discrete points on the continents, then Molodensky's formula does good
service for the inversion of the Stokes formula. Let N be the geoid undulation, then
it follows that

2 N-N
(24)  @ap) + §Wo + 53 f| —Paw = o,

(25) e = 2RBRsiny .
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For the singularity in the nearest neighbourhood of the test point one has

N-N, A
(26) ff —5 sinydyda = 2 To [vy 4+ Vo 3/ + ers
4 e

(27) N-Ng = V4 4 € cCOSL +V, 5 e sinax +

+ v2.1 e2 cosza. + V2.2 e2 sinot cosex +

+V2.3 32 sinzoc 4+ eeo @

If the radius ¢ is chosen small enough, the integral (26) becomes zero. Then, if &
is the remaining part of the spherical surface s, after the exclusion of the nearer
neighbourhood of the test point within the radius @ , one obtains the following

equation.

2

2
(28) /%-%-gfisduiﬂ')w%%{f f,da + @gp)y = O .

A substitution of sums for the integrals gives

(29) g Ng + %co.k Nk+(AgF)o A0 k#0.

By separating, in the sum in (29), those areas where the N-values are known and un—

known, respectively, one obtains

(30) %an.p N, + gan_q N, + @gp), = O,

(31) n,p = 0’ 1’ 2, ooy F’
(32) qQ = F+1 ’ F+2, seey Kes
Setting

Oy = L n v ey,

for the known part, one obtains a linear set of equations for the determination of

the unknown N-values,

(34) )ﬁ'_an.p N, +b, = 0,

(35) n,p = 0, 1, 2, .eay F .,

This set of equations can be solved by the Ganss-Seidel iteration method. The con=-
vergence of the method is ensured because it can be shown that
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(36) I"n.n' > §|an.p| . Pén.
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The spacelike Molodenski problem including the rotational term
of the gravity potential
A. Bode and E. Grafarend

1)

0. Introduction

The spacelike Molodenski or geodetic boundary value problem has gained
new interest for a statement of the degree of approximation by an ad-
justment of threedimensional networks through collocation. The classi-
cal Molodenski problem is defined by a fumctional linearization of ab-
servables of type gravity and potential through an Zsotropic normal
field, e.g. gm/r where gm is the product of the gravitaticnal constant
and the mass of the earth, and r the distance of a telluroid point from
the mass centre. Typically an isotropic boundary operator appears in
such a linearization process, e.g. only a derivative of order zero and
order one with respect to r. There has been the unsolved problem how to
construct an unique solution for the more realistic case that the nor-
mal potential includes the centrifugal term, that is a normal potential
of type g/t + w?r2cos2¢/2. This anisotropic normal potential will be our
starting point, here: At first we rigorously construct the lZnearized
boundary operator for such a normal potential und prove that zero and
first order derivatives appear with respect to radius r and latitude o,
a generalization of the classical Stokes boundary operator.

Secondly the geodetic boundary value problem based on such a linearized
boundary operator is rigorously solved in the Hilbert space of spherical
harmonics, mainly by applying the technique of base representation by
Wigner 3j-coefficients. Finally the infinite dimensional system of
equations is rigorously solved by the technique of Neumann series, set

up around the Stokes solution. A convergency proof is given.

The problem we have solved here has attracted many geodesists; for in-
stance, it was mentioned as an wnsolved problem by F. Sanso (1977, 1978).
Similar technology to construct a solution was used by K. Arnold (1980)
who even used a more general normal field representation than ours.

This contribution is part of another one solely on telluroid mappings
based on the above normal gravity field.
1 Geoddtisches Ingtitut der Universitdt Stuttgart
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1. Representation of the boundary operator of the geodetic
boundary value problem

Geodesy will be based on Euclidean vector space structure. Topological
notions are given by mass-free and mass-filled regions, e.g. the exter-
nal space Re of the earth and the internal space Ri = R3/Re separated
by the boundary 3R, the surface. A boundary value problem will be called
a geodetic one, if for a given gravity vector {{;\(‘,W(g\c‘)},;\c‘eaR, the obser—
vational functional, we can find () X or the geometry space of the
boundary, (ZZ) W(X), ?\(«eRe’ or the gravity space of the external region,
subject to the Poisson equation div ;;(@ = div grad W(§) = - 4nGp(X) +
2q2, §Gli of a uniformly rotating body of velocity @ and mass density
p(p multiplied bei G, the gravitational constant, especially 11‘-1*21 W(;\(l) =
=0, r = ||x||- We refer to (¢) as the geometric part of the gbvp, where-
as to (Zz) as the physical part of the gbvp. Both, (Z) and (ZZ) make

the gbvp a free, nonlinear boundary value problem.

In order to IiZnearize the gbvp we decompose W=w + dw,where w is called
the normal potential, &w its disturbing counter part. Namely we choose
w iz gmr! + w2(x2 + y2)/2 such that G = g + 8g, w = Q leading to LW (x)
=292 = Iw(x), X€3R, L := div grad, the threedimensional Laplace opera-
tor, especially Léw(x) = O, xe€oR!

Due to fact that the geometry of the 'real boundary' is unknown, but some
approximate information 'where we are' is known, we introduce the bZjec-
ttve telluroid mapping T : P»p, p = T(P). (T maps a point P of the 'real’
boundary onto a point p of the approximate boundary, the telluroid,
one-to-one.) The tnverse telluroid mapping will be written P = T™!(p).

The known boundary data L(x%» W), W(x), XE3R, will be approximated by
linear series of B. Taylor 'around a known point p', namely

I(P) = x(B) + 8y(P) = xy(p) *+ (grad y) (p) &% + &y(P) (1.14)
W(P) = w(P) + sw(P) = w(p) + (grad w) (p) ax + éw(P) (1.1ii)
or

oy | IIW  DyoW  dygW 316w

Ay, 9 1W 9p W 92 3W y axy 976w

Ayg = Iz W d32W 933W axz 4 336W (1.2)
AW A WW W BgW B 6w |
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represented in an orthonormal (Cartesian) frame such that By, =Ty (P)-v; (P)
are the coordinates of the gravity anomaly vector A'Z(P,p), AW:=W(P) -w(p)
the potential anomaly, 8; = a/ax.l, 3ij = aiaj‘ We will refer to (1.2) as
the rmixed form of the linearized nonlinear boundary operator :

bx = §(P) = qu(p) is unknown in geometry space, 8y = grad éw and éw are
unknowns in gravity space. A version with unknowns only in gravity space
can be constructed in the following way: The matrix containing 3.w and

aijw is partitioned according to

=1

AXy 911W d12W 913w Ay; - 916w
AXo = 92 1W dp2W 92 gW s |Ayy = 926w (1 .3)
AXg a31W 9 32W d33W Ay = 336w

p

sw(P) - aiw(p)aijw(p)a.sw(P) =
J (1.9

m(P,p) - 2;W(p) IW(w)a; (P,p)

where aijw indicates the regular inverse of aijw. The summation conven-
tion over repeated indices is applied. Actually the first three equations
of (1.2) have been used to determine Ax, in return this result was put
into the fourth equation of (1.2) leading finally to (1.4) to which we
refer as the gravimetric form of the linearized nonlinear boundary ope-
rator: It contains only éw and grad éw as unknowns in gravity space. In
addition a shorter version of (1.4) is

EW - v;96W/dy; = &w - aw/dy;Ay; (1.5)

In order to be more precise we must state the application of the tellu-
roid mapping to make (1.4), (1.5) computable, e.g. we have to transform
anomalies as being two-point functions into one-point functions, for in-
stance &y := I(P) - v(p) = I(T"'(p)) - v(p) =: T(P) - v(p), and similarly
Léw(P) = axi/axlaxj/axlaiajsw(T_l(p)) =0 , x€3R. An example for a tellu-
roid mapping is [(P)/ [|T(P)[| = v(®)/]| v(P) ||, W(P) = w(p) leading to a
special form of (1.5), namely

_i
oW - y;98W/dy; = - Y3 OW/ sy Y (1.6)
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In terms of gravimetrical spherical coordinates the telluroid mapping of
this type can be written A(P) = AY(p), o(P) = (py(p), W(P) = w(p). For
the detailed computation of the linearized boundary operator (1.4),
(1.5), (1.6) we take adventage of the fact that, in geometrical spheri-
cal coordinates, the normal potential w := gmr-lﬂu2 (x2 +y2)/2= gmr'l +
+ w?r2cos?¢/2 = w(g,r) depends only on two coordinates ¢,r instead of

three, AyysZ:

Lemma 1.1 :

Let (1.4), (1.5), (1.6) be the linearized geodetic boundary operator on
a harmonic disturbing potential éw. Assume a telluroid mapping of type
A(P) = A(p), ®(P) = ¢ (p), W(P) =w(p). If w = w(o,r) = gmr = +

+ w2rcos2¢/2 is a choice of a normal potential, then (1.6) can be rigo-

rously represented in terms of geometrical spherical coordinates by
~[2 + B(1 - 3 8inp))éw + 3B sine cos® 36wW/3p — (1 ~ B)rddw/or =

e 2 1 o S AF, | 20,4
" ( B) + B( + 28) 81n“p 3B<s8in [(] I A.Y (1-7)

(a2 o ﬁ .*31ancp)l'/2

where

B := w2/gm~3, € := B(2 - B)

Corollary 1.1

If w? = 0, then the linearized geodetic boundary operator (1.7) reduces
to

- 2r Yow - asw/or = Ay (1.8)
known as the geodetic boundary operator of G.G. Stokes (1848).

Proof:

For the proof we acknowledge the fact that for the normal potential
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W= gmr'l + w2 (x2 +y2)/2 = gmr-1 + w2r2cos2¢/2 the normal gravity ' f
coordinates [1
|

v, = aw/ax = (- gmr’3 + w)x = (- gmr'a + w2)r Cos ¢ COs A (1.91) ﬁ
i

=3y, COS A

it

vz = awfay = (- gmr's + wl)y = (- gmr'?' + w2)r cos ¢ sin A (1.9i1) “”
=3 Yu Sin A " j
fi
Yy = W3z = - gir 2 = - g’ sin o (1.9iii) |
b
can be written in terms of two independent functions, namely y3 and vy, “i
= (- gmr'3 + w2)Tr cos ¢ such that
cos A = 3y /3y, » Sin A = 3y /3y, , O = 3v3/3yy
(1.10)
0 =23y)/3y3, O = 23yy/3v;
|
|
v; = 3yi/aya Yy 0 a€{3,4} (1.11) |
yialayi = aYi/aYa A 3/Byi = yaa/aya ] (1.12) ‘
!
J
Let us introduce geometrical spherical coordinates by ‘;
I
Yi = Ay Y2 T 9y Y3 =T . (1.13) |
|
|
33y, = dy /¥y, /3y, , ael3,4}, Be(2,3} (1.14) |
1
g/, = (ayu/ayﬁ)-l (2 x 2 matrix!) (1.15) 1
|
=9 o |
(gor - w?)r sin o (2gmr 3+ w2)cos o .f
oy /a3y, = . i (1.16)
e -gmrzcos(p ngrasinw 'i
-1 -1, -3 -2 !
_1 T o sin g  (2gnr ~ + w?)cos of (-2gmr a) |
(/oy} = (1.17) |

==y =3 s
2 "a “cos o (-gnr 3 + w?)r sin of (-2gmr 24) |
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- [gnt 3 - w2(1 - 3 cos2q)] (1.18)
In (1.18) o« is not an index. If we combine (1.12), (1.14) and (1 17)

for (1.6) we arrive at (1.7), q.e.d.

2. Solution of the geodetic boundary value problem by the
Hilbert-space-method

The geodetic boundary value problem has already been solved by integral
equation methods. However the practical realization of the results has
been proven to be very problematic.

Therefore we want to find the solution with an other method, which we
call Hilbert-space-method for the following reasons.

éw and Ay will be represented by harmonic series, that is as elements

of a Hilbert space with the solid spherical harmonics, or the surface
spherical harmonics, respectively as basis (subbasis). The coordinates
(coefficients) of Ay are assumed as known. Substitution of the harmonic
series for éw and Ay into the boundary operator, recombination of the two
sides of the boundary operator with respect to the basis and comparison
of the coordinates of the recombinated left and right hand side yields
the systemrs of equations for determining the coordinates of éw. This is
similar to the comparison of the coefficients of two polynomials.

Harmonic expansion for éw and Ay

Because the disturbing potential &w should satisfy the untransformed
Laplace differential equation,- 8w can assumed to be expanded in a harmo-

nic series.

6w = z (R/r)“ '3 Pr'ln(sinw) (afcosm + bMsinm) 2.1

& o . nm
P‘g(u) 12;1“‘1'— (1- uz)’z ad; w2 - "
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are the Legendre polynomicls, see for instance E.W. Hobson (1931, p. 91,

56.) .
The basis functions for 6w are the (3-dimensional) solid spherical harmo-=

ntcs

1
R . cosma
) PrT(smw) y {sinmA

After substituting (2.1) for éw into the boundary operator, which is defi
ned on the telluroid, r also must be taken on the telluroid, or more
exactly r = r(A,9) would have to be substituted. A rearrangement of the
boundary operator into a series of surface spherical harmonics would have

to be performed.
However for simplification purposes we approximate the telluroid with a
sphere of radius r = R. Hence let be R the radius of this sphere approxi-

mating the telluroid.

According to (2.1) we assume, that the gravity anomaly on the telluroid
Ay = ?"(p) - y(p) is developed into an approximating finite series of sur—
face spherical harmonics, which will be written as an infinite series.

@ q

Ay = 23 Pﬁ(simp) (cgcosmx + dmsinmA), 2R
n=0 m=0 =

cfll:zd;'ll::o,n>N.

The coordinates cﬂ A dg of Ay are assumed to be known!
Because Ay has been developed only on a surface, the basis functions for

Ay are the (2-dimensional) surjface spherical harmonics
: cosma
Asine) - {20
. n+1 .
Here the quotients (R/T) are unity.

Otherwise we have to take r = r(\,p) on the telluroid and Ay would not be
completely developed into a series of surface spherical harmonics, which we

assumed .
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Substitution of the series for éw and Ay into the boundary operator.
Basis representation of the boundary value operator

By multiplication with gm/r3 and other simple transformations the boun-
dary operator (1.7) takes the suitable form

[- (2 ﬂl‘- + w2) + 3w?sinlp)éw + 3w?sing cosp =— 36“ + (- % + w2)r 25 36w =

o Bo + B; sin2¢ + B, sin™y
. =

o e
Bnl bl 6 15 sin2io)

= (1-8)2,8; :=8(1+28), By := - 382 ,

L -3

ep =R 2B S cia 1__ee- ;B :=wl/gmr

The right hand side of (2.3) can be expanded by applying the binomial se-
ries on (1 - ¢ sin2¢) V2.

r.h. side of (2.3) = gn r 2( ¢ £. sin?ig)ay , 2.4)
e

£.:= (1 -¢) ~V2 é 8. (- VZ)"’J‘l .

e j=0 1J-1

(;xl):: ala - 1)-;1.!.-(0 -n+ 1) - (g):___ 0 forn<0

are the binomial coefficients.

2.1 Left hand side of the boundary operator (2.3)

Together with éw the following derivatives are to be substituted into
(2 c3) .

© n
26w/ar = - % z (m+ DERD™! £ PP@® cosm + b sinmy)
n=0 mo P

2 vy

38w/ 3p = ): (R/r)n Ly z dP'“(smcp)/dcp(a cosm) + bm sinmi)
n=0 m=0
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Hence products of the following form arise.

sin2p Pﬂ(simp) , sinp cose dP'I':(sinm)/dcp

They are to be transformed into a basis representation of the form
Ea??l; . We use two wellknown recurrence relations of the theory of har-

monic fumctions:

(2n+ PN = @+ MPD_ (W) *+ (0 -m+ DPL G, L

(1 - u2)dP(u)/du = (n + mPL(w) - nuP](w)

See I.S. Gradshteyn, I.M. Ryzhik (1965, p. 1005), E.W. Hobson (1931,
p. 108 (42)), W. Kertz (1973, p. 59), N.N. Lebedev (1973, p. 248
(702 10 S &7 28150

Setting p := sing and repeated application of the formulas (2.1.2)

yields

.2 i m m 5
sin By = o o5 * %pPn * TnezPmez 2 (SElhet)
m ,_(m+m-1)(n+m)
Pn-2 =" n - N(n + 1)
M on-mn+m (-m+ Dn+m+ 1)

n "~ (Zn-1)(2n+1) (2n+ 1)(2n + 3)

M on~m*+* Nn -m+ 2)

n+2 "~ (2w = 1)20n =+ " 3)
sing cos dPy(sine)/de = ap ,PT , + 1 PR+ yM PR, (2.1.3ii)
5 L m+ D +mm+m-1)

n-2 °° (2n - 1)(2n + 1)

m . (m+rD@m-m@n+m) nn-m+ Dn+m+ 1
B (Zn - D(Zn + 1) (zg ¥ 1%2:1 +m3) >
. e . D =mE Dip-m+ 2}

n+2 ° €2n + 13029 .3)

Obviously the ‘spectrum' becomes wider by multiplying éw with sinZ¢ or

36w/ 3p with sing cosep
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The formulas (2.1.3i-ii) yield

sin2¢ &w = @2 15409

z (R/r)n+ z sin2¢ Pm(arl cosmx + b sinm)) =
n=0 m=0

r @)™ e

z Tm Pm(a _pcosmx + blnll_2 sinmy) +
n=2 m=0 *

+

nt1 1 m m_.
nZO (R/T) miocn P’r'll(ancosmx + bnsmmA) +

+

T (R/r)r1+ o Pm(amzcosm)\ + b sinm)\)
n=0 m—O

sine cosy 3sw/3p = (2.1.4i1)

T (R/r)r1+ z sine cosed Pm(51ncp)/dcp(a cosm). + b sinmA) =
n=0 m=0

z (R/r)n 13 m Pm(a _pcosm + b sinmA) +
n=2 m-O

+

z (R/r)n 1% 5 B P (a{ncosmx + b sinm)) +
n=0 m= O

3 RT3 T oM Bl

n=0 m n+2

+

m &
cosma + br1+2 sinm))
Because of Prn O for m > v , we observe that a = b\": =0, m> v.

Substitution of (2.1.4i-ii) together with 3&w/3r in the form of (2.1.1)
yields for the left hand side of (2.3):

) (R/r)n' z mzr Pm(a _p COsmA + b o sinmd) +

n=2 m=0
TRt !, 2. .M m m _.
+ n-EO(R/I‘) mEO[ n-MNgnr  +o sn] Pﬂ(an cosmi + b sinm\) +
+ 2 (R/T)™ 3% z u)zt Pm(a 4 COSMA + b 5 sinm\) , (2.1:5)
n=0 m=0
M .. m My gl Ln—S)(n-m—U(n—m)
n S(an § Tn) 2= )I(Zne=es) ?
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saill + 1)(4n + 3) + 15m2 -
52 = 3(62 + oﬂ5 -(n+2)=- (n %gg v 1%%22 3 3% m F2'1'51)
+ 4 Sl +m+ 2
€ 1= 3ap * o) = 3 g (?Zr(1n++31)n(2n 2r(rsl) n+2

Hence the restriction of the left hand side of the boundary operator
(3.3) onto the sphere with radius r = R, approximating the telluroid,

has the basts representation

= Iy g
I {(?r" aﬁ_z + [(n-1)gmR 5l wzsg]ag + @2t™ a™ ) P™ cosm +

+
=0 m=0 B ML
-3 m,, m m,m m .
£ (mzrg bﬂ_z + [(n-DNgR ~ + wzsn]bn + wztn bn+2) Pn sinm}
(2.1.6)
a"=p"=0 RTINS, T,
\Y AV

where the cases n=0,1 are also included (see the first sum of the pre-

ceding expansions) .

2.2 Right hand side (2.4) of the boundary operator (2.3)

The following product must be transformed into a basis representation.

-]

(- f.uZJ) Ay =

j=07
© SN EY)
=(zfa I 3 pﬁ(u)(c’“ cosmx + d™ sinmy) , (2.2.1)
j=0 7 "n=0 m=0 8 't
SIS, o
U E=Esing. crox dn =0, n>N.

It is sufficient to show how the transformation works for the term

o X N n
2
(_Eofju J) ZO ZO cﬂ Pﬁ(u) cosm) (2.2.2)
J = n: m:
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At first the powers uzj can be expressed by Legendre polynomials:

. j
. o 2o 2L
H -KEO'"J‘,K sz(u) ’ ( )
1
23 + 1 , k=0
Tl 18
: 2 (4 +1) % £-2r+1 o
SR B RPN g

I denotes the product. (E.W. Hobson (1931, p. 44 (43) and others)

Hence the products uzj Pm can be reduced to linearcombinations of pro-
ducts of the forms PgK Pm which are again to be transformed into a ba-
sis representation. The coordinates of these basis representations are
essentially the Wigner 3j-coefficients.

The following expressions for determining these coordinates are based

on results taken from D.E. Winch, R.W. James (1973).

Between our definition according to E.W. Hobson (1931, p.91, 56.)
( 12m 5 d \n+m n

Pﬂl T v 2 2

piw) 3= i Ch = usgs @ s = )

and the definition with complex representation according to D.E. Winch,
R.W. James (1973, (2.1), (2.5)) exists the correspondence

YOO, = [(2n+ 1) i" —ILY2 pGy) ol (2.2.4)

+m)l

For products of surface spherical hammonics we take from D.E. Winch,
R.W. James (1973, (5.7), (5.8), (5.12), (5.18)) the representation

Y Yp = 221+ (0 Dn 72 90 (i) DAy (2.2.5)

valid: ifu+v+w=0,
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... :1, m nmst satisfy a triangle rule, which we will specify
only for our application,

Ywn . the complex conjugate of Y;’
And the Wigner 3j-coefficiente:

1 mime s
(uvw)‘

WA mn) [ - )L+ n)!m - V)Im V)0 - w)!n + w)!]72

TENHA-u-DIm-mrur)Im+ev-t)!n-1-v+ t)lt!

t
1+m-n-1t)!7171,
Y ... : t runs as long as positive factorials occur (must here not be
¥ specified more precisely).
L 4VS A(1,m,n) s !

1mn S s s gl = R R
(000) » (25:=1+m+n)

0 ,1+m+n odd
s - fdtmoplmen - it e n - iy

TI+m+n+ 1T

Taking (2.2.4) into account one obtains from (2.2.5)

pu eiu)\ . pY eiv)« Ll +1n)!(m + V)'

1 m =T =-wvr -

o5 n - w!.¥ e-ivAlmn, 1 mn
n(zn”)[TTw}’"‘P Gvwhoo

For u: = O the condition u + v + w = O yields w = - v. Hence we obtain

according to E.W. Hobson (1931, p. 99 (23))

PW=pV. »vn - v)! Pv

n n 7 (n o+ v)!
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It follows
Y- Y ey v 2T
(n 2 max{m-1, v}) A (1+m+n even)
(Gn+ 1) (BB GRG0 Q) (2.2.6)
From (2.2.6) results
PCZJK PIII: 3 %’: ; ;ax{—m, a %(n—m)} wx,ﬁ,v PnTZv 2 (2.2.7)

e B ka0 aln. + m) Y (n + 2v - m!
wK,n,v' iy [{Tm)%_]_z (n+2v + 1) (n +2v + m)!
2k N n+2v, 2k N n+2v
" Com m¥ogo 0 )

The basis representation of the right hand side (2.4) of the boundary
value operator now is obtained from (2.2.3), (2.2.7) in the following

steps.

= e A
j.=:ij wW(E  Xiey P'r]:cos mA)

n=0 m=0
N n m o
L NG f-vsz‘Inl)cosmA=
n=0 m=0 j=0 J
N n = © j !
= Z Z Cn ( Z f. Z TieS PZ pm) COS mMA =
n=0 m=0 j=0 J k=0 Yok M
g E m ( ;: £ % VIS I y
= C . Z - P b=
n=0m0 " j=0 J =0 J* > e %(n—m)} B h+2y) C€OS m
Nop- B
e D i A "

n=0 m=0 1 >_1 Vn, K. etk 1CoS Mk
K. 2 i(n—m) o} 0

= min(k,N}x) < 7(N-K)

SR R v c m & m p"‘
k=0 m=0 Ko > %(m—k) k+2Ko k+2Ko’Ko k COS mA
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@ Kk

= C'E P? CosS MA (242 28)

k=0 m=0

m & m J
" ol -t i 7 (- 5 (n-m) =

I'l,lco - lK l ) K—ll( I J» K,N,K

kS < J(N-K) i A 3, .2
cl ¢ = Z A y | i w e O1F

k < Z(m K) k+2KO =] J P G ok K2y Ko
c'llT(l ¢=0,m>N . (2.2.8ii)
Analogously the transformation of the dﬂ is obtained:

i O z(N k) @ L J @ v
A S . W ol

k Ko d]("‘ZKO j= lK I J K=[Kol J 5% K,k+2K‘0,K‘Q
dp:=0,m>N (2.2.9ii)

Hence the right hand side (2.4) of the boundary operator (2.3) has on
the sphere with radius r = R, approximating the telluroid, the bas<s

representation

L] n
gm R™2 20 ZO Pﬂ (C'E cos mA + d'ﬂ sin m\) , (2.2.10)
n=0 m=

c 2 - d'g according to (2.2.8i - 2.2.9ii).

For w : = 0 we must have
m m
¢l b:i=0)=c, d'ﬂ W :=0) = dﬂ (2.2.11)

Hence the coordinates of the right hand side can be expressed by the

coordinates of Ay in the following form.

o m

m
c'_ = c + w?éc

3 d'III: = dfll + wZGd’r‘l‘ (2.2.12)

n n n
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From (2.1.6) and (2.2.10) we obtain
my operator in the form (2.3) has on the sphere with radius
r = R, approximating the telluroid, the basis representation

© 7
© © T
L yan
n=0 m=0
(mzr a + [ (n=1)gmi~ 3+u? ‘s, i a + mzt’r’: ’Z+2) I{: cos mA +
Gl [ (n-1)gmR=3+w2s]] b+ wzt_ s 7 sinm } =
= g2y T Pm (¢!, cos mi + d' sin mi) , (2.5)
n=0 m=0
A 31 .
av—bv-o,m>v; (2.5i)

m
gl o according to (2.2.81 - 2.2.911), where

c'rg=d"’:=O,m>N !

. The systems of equations for determining the coordinates of the
disturbing potential &éw and their solutions.

From Lemma 2.1 follows immediately, that a ecomparieon of coordinates
with respect to the base functions P’:: cos mx and P'r'; sinmx leads to

Lemma 3.1

m

The equationg for determining the coordirates a o {2 b off the disturb—-

ing potential 6w are given by

o o 842y 10 2 =
w'r, a,_, * [ (n=1)gmR >+ sn] a, *w & an+2 =
= gmk~? c’: . (3.11)
m o
a _g:=0,n2<m (3.111)
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My LM m ,m o
mzr': bZ—Z + [(n—l)gmﬁ’"s*‘mzsn] bn iz wztn bn+2 =
= gni2 4", (3.2.1)
' =0, n=2<m (3.2ii)

n-2

Because the equations (3.1i - ii) are mathematically the same as
(3.21 - ii) we can restrict us in the following to treating only the
equations (3.1i - ii) and we will obtain analogous results for the

equations (3.2i - ii).

The equations (3.1i - ii) contain for every fixed m € {0, 1, 2, ...}
two systems of equations, depending on the fact whether n is even or
odd. The.range n? of the index n of the equations (3.1i), which are

contained in one of these systems, is uniquely determined by the zZndex
pair ' T ',i€e{1, 2}, e.g. 1 for n odd, 2 for n even. This is

essentially a result of the condition (3.1ii).

Definition 3.1

m even : © =1 : n¥:={m+1,m+3, Ny (a:_J:O) (3.31)
i52: n;:={mm+2z ...} (@ _, = 0) (3.3ii)

modd :i=1: n;:={(mm+2, ..} (a7 _, = 0) (3.3iii)
7 =2 n’E =m0, mi e 3L ) (az_l = 0) (3.3iv)

Now the characteristic systems of equations can be typified by

Gr : 51\{’;l ,%? = %'T (3.4)

it

where the index pair ' T ' indicates, that the rows of the matrix fo
contain the coefficients of the equations (3.1i) with n € n? . In ana-
logy the unknown vector %T and the right hand side g‘? are defined.
Every further application of the index pair ' T ' runs analogously.

For w : =0 we arrive at the classical solution of G.G. Stokes (1848):

L SR B RN s M LR Eim ’
c') (w:=0) ¢, ® (n-1)gmR an--ngzcna'> e (3.51)
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Taking the above formalism into account the Stokes solution can be

written in the form

M _ 4ig0 (R0 M 3.5ii
28 SWiddag GEgds o5 w ST

where diag (...) denotes a diZagonal matrix.

Example 3.1:
A nondegenerate system of equations, m =0, © = 2
Vi FES 0
(- &8+ w2sf) w2t B ol Tos s ag Fc';
R3
2 2 2 e 0. gm 0
w?r (+ ﬁ? + w?s)) w?t) as G ot
0 w?T) (3 E‘;-‘ +w2s)) Wt a) vl
R . g 1k R R
(3.6)
sg ==, & ="B/5 -3
o =2 MY = = iy7 ., 1 =124/7
a8 leads to a refinement of the termug: = gm r~! in the potential or

of gm, respectively.

All the matrices of the other systems of equations have the same
structure.

Nearly all matrices M? (incl. Mg) allow a regular splitting of type
(D’in)'1 M? = I? - A? , whre D? is a diagonal matrix, I? the correspond-
ing unit matriz, A? a 'regular’' tridiagonal matrix. What we call a

'regular' matrix will be defined in the following chapter 3.1.
We then call the corresponding systems of equations G? also regular.

In these cases one succeeds in proving the existence and computability

of unique solutions, which will be done in chapter 3.1. Obviously the

regularity of the A? can be interpreted as a generalized 'diagonal
dominance' of the M?
There are two exceptions of nonregular systems of equations, for the

cases m=0, i=1and m=1, i =1 . These cases will be discussed

in chapter 3.2.
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3.1 Solution of the regular systems of equations G? c

In the case n # 1 one receives after division of the equations (3.1i)
by the factor (n-1)gmR™3 the equivalent equations:

m ,m _m m
aﬁ gih (-rﬂ aﬁ_z -sﬁ a, i an+2) = c”n it NiE e K (3.1.1)
w? o R ,m
LR LR R v
T gR3(n-1)
a’ :=0,n2<m (see (3.1ii)).

n-2

By this transformation the equations G? have been changed into the

equivalent systems

G :=]-ADal=c? (3.1.2)

with the splzt matrices

(1’;‘ - A?) .= (D?)'l MT ; D? : = diag ((n—1)ng—3)'i“ (30 21]

(without the cases m=0, i =1 and m=1, i =1 , where in the
first row of the corresponding matrices gmR-3 is multiplied by (n-1) = 0)

and the right hand sides

N G 1M _,m 5
¢"; : = diag (R(n-1) 1)i €'y (3042ii)

The A? are again tridiagonal matrices. Their rows result from the row

vectors
A n m m m et
b e i Pn, tn] », nEn; . ((SEAIEYZiki)

In the following we also will use the respresentation
M dypag
Ay = o2B] (3.1.3)

when we want to point out, that the B, contain the factor w2.

We show that all the matrices A? are regular.

Definition 3.1.1

A (not necessarily finite) matriz A = [aij] will be called regular, if

the sums of the absolutes of the row elements are bounded by some
) SIS
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R E  PR: S . (3.1.41)

A (not necessarily finite) vector y = y1, Y2, ... will be called
bounded, if the absolutes of its coordinates are bounded by some B:
lielsher s oi= Ir T R (3.1.4ii)

(see L. Collatz (1964, p. 192, 14.4))

Lemma 3.1.1 :

The matrices Az are regular and o : = 0.9 + 10~ can be taken.
For the rﬂ, sﬁ, tg in (2.1.5i1) the estimates are valid:

T 2 2 .
el < 20e lﬁl <5, |n—_1—| <18 (n#+1) (3.1.51)
Taking

1

7.292 115+ 1075 [rad sec™!], gm : = 3.986 030 - 10°[km3 sec™?] ,
6 400 [km] ,

w

R

we obtain for the sums of the absolutes of row elements (3.1.2iii) of
the A? the estimation:

2 I’m Sm tm
m m m P w n n n
|8 Tnl + I8y spl + 18, ] = /i? o S o Ml e R
< 3.497-1073.25 = 8.74.1002 (n % 1) (3n..5ii)
Hence o« : = 0.9+ 10°! can be taken and the AT are regular matrices

according to definition 3.1.1, q.e.d.

The systems of equations E? can be written in the form

m_ ,m m Jm o m

RiCA ST TR

Hence we will have to search for the fizpoints of the operators T? :
Statements about solvability and representation of the solutions are
obtained from the following theorem of the mathematical fix point
theory.
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Theorem 3.1.2

Assume the matrixz A to be regular and the vector y to be bounded.

Then the equation g = Ag +y = : Tg has a unique solution Z .
The total step iteration Kooy © 7 T;z\:m converges for every bounded
starting vector g, to the unique solution g .

Corollary 3.1.2%

The unique solution g can be represented by a Newmann series, that is

3 =(I—A)’1Q:(I+A+A2+...) Y s
where I 1is the corresponding unit matriz and (I + A + A2 + ,..) is

a Newmann sertes.

Proof:
For the proof of Theorem 3.1.2 we must refer to the mathematical
literature, for instance L. Collatz (1964, p. 192, 14.4).

Starting with x : =y the total step iteration yields

A AT n-1
én-T%_]—(A + A +...+A+I)¥ .
Hence it follows

- lim,xvn=(I+A+A2+...)x=(I—A)'lx , q.e.d.
) 0 g

Supplement 3.1.217

From the proof of theorem (3.1.1) in L. Collatz (1964) it becomes
obvious, that g is the unique solution in the complete space of all
bounded vectors E = [&€1, &3, ...]1 . Starting with a bounded vector %,
the total step iteration remains in this complete space.

The consequence is, that a solution, which is different from the unique
bounded solution g, cannot be bounded. This is important for one of the

two nonregular systems (IJ: in chapter 3.2.
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The application of Lemma 3.1.1, Theorem 3.1.2 and Corollary 3.1.2i
to the systems of equations E? leads to the solutions of the equivalent
systems G? c

Theorem 3.1.4

Let the right hand sides g"ﬁ of the systems of equations gz be bounded.

Then the equivalent systems of equations Gz have unique bounded solutions

Qﬁ , which can be represented by a Neuwnmann series in the following way.

o = ’ A m m 2)=1
= (1] - A7y oM = (1T 4 AT+ (AD)2 % ...) diag (R=1)TV)G ") =
(31640

. i m
diag (R(n-1) l)i e+

w? {diag (R(n=1)"1)7 8g7 + Bm (1” = AG ©)~1 diag (R(n-1)~ 1)z g; F+

+

+

2 3 o ¥ __1m m o1
w* BY (17 = A0)7Y diag (Rtn=1)"1)7 &d7 (3.1.6ii)

i, . . m m m .
where 8¢ is defined by the representation g'i 5 w? 8¢ according
to (2.2.12), for Bg e (63 71365

Corollary 3.1.47

Breaking off of the series (3.1.61) with the first order term
Ag diag (R(n-1)"1) g'g ytelds for the coordinates of the solutions gg

the representation
A m m

t
UL L g 2 n m n m m
a = Sem gy = (o) /ﬁﬂ)( n 2 tog e +—== el verl s nEms
(SN 7Y
m SDRETE o :
where  JEH S e 0 (520 719)

for the first coordinates a: or a" » respectively.

m+1
Proof:

Up to (3.1.61) all is clear because of Lemma 3.1.1, Theorem 3.1.2,
Corollary 3.1.2i and Supplement 3.1.2ii.

Substitution of g' = gl w? % into (3.1.61) and rearrangement with

respect to the powers w? = 1, w?, w* leads straightforward to (3.1.6ii).

Taking into account the structure of Ai given in (3.1.2iii) we obtain
(3.1:7) and ((3x1.71); ' . quesdh '




i)

It is obvious that the first term in (3.1.7)

R m _ R m 2 1
~ 1 c'n e o, (Cn + W acn) (see (2.2.12))

contains the solution of Stokes R(n—1)’1c2 (see (3.51)).

Hence, as expected, the solution of the problem under consideration

results from Stokes' solution by adding some terms of the order O (w?).

More precisely the Jdifference to Stokes' solution is given by (3.1.61i).

m m
- C

i ST (3.5ii) represents the

The first term diag (R(n-1)"1)
solution of Stokes.

In the second term, which is of order O (w?), the first (second)
part is due to the change on the left (right) hand side of the boundary
operator.

The third term, which is of order O (w“), can be explained by
the mutual effect of the changes on the left and right hand side of the

boundary operator.

3.2 Solution of the nonregular systems of equations.

In the first row of the corresponding matrices gmR™3 is multiplied by
n-1) =0 (see (3.11)).

3.2.1 A not essentially degenerate system of equations,

m=1,1i=1

r(0 --@3 + w?2s]), w2tl 0 Fa} _C'l_
= S R !
w?r} 2 8+ w2s])  y2tl & . ol [ LI
| 3 R2 3
I vy I
0 241 pul iy
i : w°Ts (4 === w.s P hig2tl al c'l
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st=-3, tl=367,
r) =i Q% s}=-3, tl = 70/11

Because of f% = 0 the system of equations G% is (partially)
decomposed into the first equation with the index n = 1

2058 48! 2518 il il 572%
w?s] aj + wet] ag c'y B233)

and into the system of equations E}, which in (3.2.2) is located in
the lower right cormer (dotted lines).

The matrix ﬁ% corresponding to E% is again a tridiagonal
matrix. Its row indices n are different from 1. Hence in analogy
to the matrices treated in chapter 3.1, there exists a splitting
(5{)'1 ﬁ{ = (T{ - X{) with a tridiagonal matrix Al. Because the rows
of X} also satisfy the estimation (3.1.5ii), lemma 3.71.1 is valid, that
is K{ is regular. Hence the case m= 1, i = 1 is reduced to the

regular case discussed in chapter 3.1.
It follows from Theorem 3.1.4 and Corollary 3.1.4i, that the system E%
has a unique bounded solution, which can be represented by (3.71.6i-ii)
or (3.1.7).

_If the coordinate a} is known from the solution %% of 8{, then
a{ is uniquely determined by (3.2.3). Hence G{ has a unique bounded

solution ai.

For ai cannot be chosen just any value in contrast to what
is the case in the solution of Stokes' problem. This is caused by the
rotational term in the normal potential, by which the boundary operator

is no longer <sotropic.

3.2.2 An essentially degenerate system of equations, m=0 , i = 1
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s?:O, tg=-18/7,
=0, si=- 83, t}=140/33
Because the first colum of the corresponding matrix M} is the zero
vector, any value can be taken for al, as in the solution of Stokes'
problem. Hence the first column is not essential for the system of
equations GJ.
The omitting of the first column of M leads to the systems of equations

G:=2Mal=¢) , (3.2.5)

where in %(1) the first coordinate is ag -
h'dg is a lower triangle matrix, so that the following recurrence relation

leads to a unique solution of (3.2.5).

1 1
ad : = &n C'O ao ¢ = {E C'o - (2 E + szo aO}
} mztflJ R2 i i wztg R? 2 ¢ R3 ) i
(3.2.6)
o oiedii B 10! 21210740 B, ,250) 30
ad &= {&=c'0 - 4210 a - ((n-1 + w?s0) al} .
n+2 W20 R p = 9T, Ay = ((n=1) R3 wisp) ay

However without an additional condition for c'§ the solution (3.2.6) is
not usable, because for any c“l’ the solution (3.2.6) is in general not

bounded, that is, it camnnot lead to a convergent series for éw. The
unique bounded solution of GY is obtained, if c'{ satisfies a certain
condition.

Lemma 3.2.1 :

Let E‘l’ be the system of equatiorsthat is obtained from Gy by omitting
the first equation (in (3.2.4) 1in the lower right cormer given by the
dotted lines).

A solution g} of G} is bounded if and only if c'Q or e}, respectively,
satisfies the condition

e’ = w2tfal . (3.2.7)

- N
Then af is equal to the unique bownded solution ?z"l’ of GY, which is
determined by (3.1.61-ii), (3.1.7) or the recurrence relation (3.2.6).
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al in (3.2.7) is the first coordinate of 29 and 1t can be represented

according to (3.1.7) by

W = Eoo - 2@l sy s By vy (3.2.8)
3 2 3 g3 2 3 4

Proof:

Let the system C? be separated into the first equation

w2t a§ = c'9 (3.2.9)
and into the system G0 ’
The matrix Ml, corresponding to G , 1s exactly as the matrices
Mm treated in chapter 3.1, a trldlagonal matrix with row indices
dlfferent from 1. Hence a splitting (Do) 1 M0 = (I0 - Ao) exists with
a tridiagonal matrix A , which is regular, because its rows satisfy the
estimation (3.1.5ii), so that Lemma 3.1.1 is valid. It follows from
Theorem 3.1.4 and Corollary 3.1.4i that exactly one bounded solution
%? of 80 exists, which can be represented by (3.1.6i-ii) or (3.1,7).
Now let ao be a bounded solution of G0 . af is also a bounded
solution of GO, Wthh is unique according to the preceding statements.

This means that the coordinate ao is already uniquely determined by the
system G0 According to (3.1.7) we have (3.2.8) for af.
But aj must also satisfy equation (3.2.9). Substituting (3.2.8) for ag
into (3.2.9) yields condition (3.2.7).

Conversely, let a? be a solution of G} for a c', which satisfies
condition (3.2.7).
This solution must satisfy the recurrence relation (3.2.6), which leads
to a unique solution, so that %? is uniquely determined. Therefore é?
must coincide with the unique bounded solution (which necessarily satis-
fies condition (3.2.7)), q.e.d.

Solutions a? of GJ from another c'?, which does not satisfy condition
(3.2.7), cannot be bounded, because the bounded solution of C? is unique,
r 4

as is proved in Lemma 3.2.1. These solutions are of no significance,

because they cannot lead to converging series for the disturbing
potential dw.
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For the coordinates bﬂ corresponding to the basis functions PE sin ma

m . 4
the same statements as for the a are obtained, because the equations

(3.2i-ii) to determine the bﬁ are mathematically the same as the equat-

ions (3.1i-ii) to determine the aﬁ. In the preceding only the letter
' a ' must be replaced by the letter ' b ' and the letter ' c ' by ' d .
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Sumnary

The linearized boundary operator of the geodetic boundary value Problem
18 derived for a normal potential including a term of the centrifugal
potential. The linearized bowndary operator i8 rigorously computed
leading beside a derivative with respect to the spherical coordinate
radius r to an additional derivatiwe with respect to the spherical co—-
ardinate latitude ¢. The linearized geodetic boundary value problem ig
rigorously solved by the Hilbert space method, e.g. a spherical harmo-
nic representation of the unknowm disturbing potential and the known
gravity anomaly! A base representation of the infinite dimensional
system of equations i8 achieved by using recurrence relations of sphe-—
rical harmonics and Wigner 3j-coefficients. The solution of the system
of equations 18 comstructed by a Neummmin series whose convergency 18
proved by a theorem of the mathematical fix point theory. It becomes
obvtous that the solution can be represented by a generalized Stokes
function which beside the spherical distance depends upon the azimuth
of a great circle connecting two points projected onto the unit sphere.
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Ju.D.Boulanger 1

SOME RESULTS OF MEASUREMENTS OF NON-TIDAL GRAVITY CBANGES

In the USSR, first researches on secular cr, in other terms,
non-tidal gravity changes commenced in 1935. They were stimulated
a great deal by large discrepancy (of several tens of mgal)
in repeated gravity measurements within the Caucasus and Middle
Asia [1].

With this purpose, Drs. Boulanger and Pariisky performed
repeated pendular measurements within the Central Caucasuse. As
a result of the analysis made by Dr. Pariisky [_-2] it was deduced
that great gravity changes result from accumulation of measurement
errors. In case we do assume gravity variations in time, they |
cannot exceed several tenths of m gal per year.

The pendulum installation, which existed at the time, did not
have sufficient accuracy capable of registering gravity variations
of such value. There arises, therefore, a necessity to work out
new means of measurement and techniques which could allow to raise
the acouracy of gravity definition. The Second World War inter-
fered with this work and interrupted it for a long time. Only
in the fifties it became possible to resume this research. By
that time, there was constructed a highly accurate wide-range
gravimeter "GAE-3" and, a bit later, - "GAG-2".

Many times repeated gravimetric connections between Moscow
and Potsdam and repeated measurements performed through Potsdam-
Riga-Moscow-Kazan-Sverdlovsk-Chita-Takhtamygda~Petropavlovsk
Eamchatsky and also through Tbilissi-Ashkhabad-Balkhash-Alma-Ata
-Dushanbe show that the obtained gravity variations are much

less than the errors of their definition and do not exceed $0.02

mgal per year [3}.
T

Inst. Fiziki Zemli AN SSSR, Moskva, Bolschaja Grusinskaja 10
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Later, repeated measurements made in 1968 and 1974 by Inter-
national Gravimetric Expedition, sponsored by KAPG (Commission set
up by the Academies of Socialist countries on "Planetary Geophysical
Research program) and the geodetic services of Socialist countries
show that non-tidal gravity changes at sites Tallin, Vilnius,
Warsaw, Krakow, Prague, Budapest, Bucharest and Sofia are in-
significant relative to Potsdam and cannot exceed 2-3 Jugal per year

[5]

World literature has many examples of significant gravity
changes revealed by repeated measurements. Lack of sufficient
metrological facilities for these measurements in the majority of
cases does not allow to compare the results of these measurements.
At the same time, many authors regard these discrepancies as
related to the changes of the Earth's gravity field. Such experi-
mental measurements of gravity field changes in time often differ
by two orders or more.

Thecretical estimations of possible gravity changes, based on
comparison of various Earth models and on the influence on them of
endogenic and exogenic effects, also differ by several orders.

Thus, the problem of variability in time of the Earth's
gravity field is considerably complex. Its solution, no doubt, has
great significance for the whole complex of geosciences and far
many other branches of it: physics, metrology, geodesy, astronomy,
etc. Therefore, each new result showing gravity changes in time
should be carefully analysed. Besides, it should be noted that up
to the most recent time all measurements of gravity changes have
been performed by relative methods which principally could not

reveal global changes.
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At the end of the sixties, in the field of instrumental
gravimetry great progress was achieved. New instruments were
constructed-absolute ballistic gravimetres which have greater
accuracy of measurements than the relative instruments. Professor
Sakuma (Sévres, France) constructed the stationary absolute
gravimeter, Professor Faller (USA) - portable absolute gravimeter.
The analogue instrument was created in the USSR in the Institute
of Automatics and Electrometry of the Siberian Department, USSR
Academy of Sciencese. A bit later, a portable instrument was built
in Italye.

The Faller and Sakuma instruments were used to establish a
reference mark and scale of the new International Gravimetric
Standardisation Net in 1971 (IGSN-71) [4]. From 1967 to 1973, the
Sakuma instrument was used to perform systematic measurements of
absolute gravity changes in S&vrese

The Soviet absolute gravimeter called GABL (absolute ballistic
laser gravimeter) was first used in research in 1972. Later, the
instrument was modernized and, at present, it is possible to take
measurements of gravity with the accuracy of about i6—8xﬂ0_9g [6].

GABL instrument was utilized to perform numerous repeated
measurements of gravity in Novosibirsk, at the International
gravimetric site Ledovo (Moscow) and in Potsdam, in 1976 and 1978.
In 1977, in Sévres, GABL was calibrated with the Italian instrument
and the instrument cf Dr. Bakuma.

Table 1 presents comparison of gravity measurements at sites
of IGSN-71 which were obtained in 1969-1970 during the construc-
tion of this system with gravity measurements performed by GABL
in 1976-1978. These results siiow that for this period gravity

has increased, in average, at 4542.7 frgal at all four sites:
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Sévres, Potsdam, Ledovo, and Helsinki. It is remarkable that all
obtained results are in good agreement.

These changes first of all could be the result of the shift
of the IGSN-71 reference mark or, secondly, of real gravity
changes at these sites. The most probable is the first cause.
Data by Prof. Sakuma show that in Seévres, during the construction
of the IGSN-71 (1969), the gravity value was minimal. Iﬁ 1972
it increased by 45 ‘ﬁ/gal. Later on, there were no considerable
gravity changes. During the construction of IGSN-71 g value
in Sevres acquired great significance and the value obtained in
1969 was in fact considered as the reference mark, which caused
lower gravity value at sites of IGSN-71.

The reason for gravity changes in Sévres is not established.
It can be of global scale, of regional or of local one. In any
case, however, the increase in gravity in Sévres by +54+14 mgal
for 1969-1977 [ 5] is apparent.

Fige. 1 shows results of repeated gravity measurements
performed by GABL at sitess Novosibirsk, Ledovo and Potsdam. For
better clarity all results are adjusted to Ledovoe. The scheme
indicates that for 1973-1978 practically the same gravity changes
were recorded at all three sites. In Moscow, the rate was 9.1t

+2.0 mgal/year, in Novosibirsk - 10.7+0.9 ,u gal/year, amnd in
Potsdam - 9.9 + 9.1 w gal/year. In total, measurements show that
this reduction had the rate of 9.9 + 1.3 M gal/year.

In the first approximation, these changes could be considered
as quasi-periodical with the 5-year period and 20 s gal amplitude.
Reliability of these measurements is supported statistically. If
we consider the totality of changes as random distribution of
errors, the error for weight unit will be +11.7 /4 gal. This error

will be less by half, i.se. :5.7_/45&1, if it is calculated by
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diverge from the approximated curvee. Such reduction of the error
cannot be attributed to random distribution of errors.

Similar tendency was registered by Prof. Sakuma in Sévres
during 1967-197%. There were recorded the quasi-periodical
gravity changes with about the same period but rather greater
amplitude - about 25 ’ﬂlgal. It was considered as a local pheno-
menon. Observations of gravity changes taken by us were performed
along the line over 5000 km. It allows, for the first time, to
conclude on global charaoter of the observed gravity changes or,
at least, consider this phenomenon covering the significant part
of Eurasia.

It is obvious, that performed observations are not suffi-
cient either to define the period or the amplitude of the revealed
phenomenon. Thus, in future it is necessary to continue measure-
ments at the old sites and to add at least two new sites located
east of Novosibirsks: within the Baikal rift and in Kamchatka.

It is necessary to define the latitudinal effect of thése changese.
For this purpose observations should be made at considerably
different latitudes.

In conclusion, the author expresses his gratitude to all
the participants of the work with the absolute gravimeter: to
Drs. Arnautov, Scheglov, Kalish, Stus, and Tarasjuk, without

whose assistance the results described in the paper could not be

obtained.

// /
(széﬁaav/“ﬁf? J.D.Boulanger

{

Moscow, April, 1980




Table 1

Comparison of new absolute gravity measurements‘/ with IGSN-71 results.

g g
NN Site in IGSN-71 Type of measurements new results Discrepancy
PE Megal Sgal
1. Potsdam S-13 981 261 371 + 17 transmission from Ledovo 981 261 421412 +50 + 21
by relative methods
2e Potsdam S-13 981 261 371 + 17 by GABL instrument 981 261 41649 +45 &+ 19
3¢ Helsinki 981 900 590 + 19 transmission from Pot-
sdam by relative
methods 981 900 632 + 20 +42 + 28
4o Sévres 45 980 925 880 + 14 by GABL instrument 980 925 929416  +49 + 21
Averages +46 + 1.8
*/ Corrected according to results of the third

(September, 1980).

g measurement in Potsdam

92
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A - LEDOVO
O - NOVOSIBIRSK

® - PFOTSDAM
380

370

981 551 350

19175 1976 1977 1978 x 1979 o 1980 g 1981

340 +
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TESTING OF GEOPOTENTIAL MODELS BY SATELLITE ALTIMETRY 1)

Milan Burfa, Zdislav Sima
Astronomical Institute of the Czechoslovak Academy of
Sciences

Abstract

An attempt has been made for testing geopotential models

SE I1II, SE I1I, SE 1IV.3, SEV, GEM 6, GEM 7, GEM 8, GEM 10B,
GRIM 2 using new altimetry data (Rapp 1979, OSU rep. No.
285). On the basis of the altimetry geoid heights, an assumed
geocentric ellipsoid and the tested model the geopotential,
scale factor R° = GM/Wo has been calculated for each n/5° X
5° block. Assuming errors in the altimetry data as negligible,
the scatter of values R is due only to errors of geopoential
models. In this case the standard deviation in R (for ~r5

x 5 block) indicates the tested model accuracy as a whole.
The possibility of detecting the differences in the mean
sea-level heights on the basis of satellite altimetry has
been discussed.

") Erechienen in: Bullé Ast§on. Inst. Czechosl. 32(1981)2,
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Laser Satellite Ranging Using the Automated SBG Camera

by

1

Harald Fischer1, Reinhart Neubert and Ludwig Grunw&ldt1

Abstract

Daylight and Earth shadow laser ranging of satellites has been obtained with the aid
of a computer controlled step motor drive for the Potsdam SBG-Camera.
SAQO orbital elements are used as input information for the controlling desktop computer.
No detailed predictions from a large computer are necessary.

1. Introduction

The Potsdam Laser Ranging Station has been operating since 1974. At the 3rd Symposium
in Weimar 1976 we reported on first experiments to change from visual tracking to absolute
pointing, After having checked that the mechanical stability of the SBG mount is suffi-
cient for that purpose, an automatic tracking system was constructed and put into
experimental operation in 1976, Punched tape input was used at first converting later
to on-line computer control., The purpose of this paper is to summarize the present state
of the equipment, associated software and experience obtained.

2 Description of the Equipment

2.1 Mount and Optical System

The Potsdam laser ranging system uses a modified SBG camera mount. The 4 axis mount
of this camera is used even in the automatic tracking mode which simplifies the mount
control because only small accelerations of the drives are necessary. Step motors are
used as drives at the 3rd and 4th axis and in addition the axes are equipped with digital
encoders. These encoders are used only for presetting the mount and for calibration
measurements (star observations). During the pass no back information is sent from the
encoders to the computer. The mount is preset before each pass in such a way, that the
3rd axis drive acts approximately along track, with small cross track corrections

1 Akademie der Wissenschaften der DDR, Zentralinstitut fiir Physik der Erde,
DDR - 1500 Potsdam, Telegrafenberg A 17
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applied by the 4th axis drive.

The precise presetting of the mount bears some problems, however, which could be
solved with the help of additional inclination measuring equipment and taking into

account the bending of the 3rd, i.

the main tracking axis. Frequent checks of the

mount base orientation are necessary using observations of the polar star.

The transmitter is a two-stage passive Q-switched ruby laser giving approx. 20 ns

duration pulses at a rate of 10 pulses per minute in normal mode.

Table 1. Main Technical Data

Laser

Type:

Pulse Energy:
Pulse Duration:
Repetition Rate:

Mount:

Type:

Tracking Mode:
Tracking Accuracy:

Epoch Counter Resolution:
Range Counter Resolution:
Range Noise:

Ranging Capabilities:

Ruby

14J

20 ns

10 per min.

4-Axis
Automatic, Step Motors
1 min of arc

10 microsec
0.1 nanosec
OedeeeledS m
All Laser Satellites

The receiver system, blaced near the cassegrainian focus of the main telescope, now
uses a gated RCA 31034 A photomultiplier with high quantum efficiency at ruby laser

wavelength,

To gate the PMT, total voltage is switched from half the end value to full voltage
immediately before the expected arrival of the echo signal.

By help of a dichroic mirror, the receiver telescope may be used as a guide in the
case of weak satellites, which has proved to be very helpful for the aquisition of
STARLETTE and LAGEOS and in some cases for GEOS A, too.

2.2 R ing and Contr E i

A simplified block scheme of the electronical system is given in Fig. 1.

In comparison to the earlier configuration /1/, /2/, the automatic control block
and the computer have been added and the counters for epoch and range have been replaced
by instruments with higher resolution (10 ps and 0.1 ns, respectively).
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] ! epoch
tape punch time service counter
_ syncr.
computer [ "¢ control system laser [ to sateinin
to PMT
el al ongtrack cross track range gate i bﬂnho agLr |
interface pulse gen pulse gen delay gen.| !signal
r—-
start
mount e range range
drive gate stor lcounter

Fige. 1. Simplified Block Scheme of the Laser Ranging System

Central part is the HP 9825 desktop computer interfaced via the bus system to the
control block, epoch counter, range counter and to a tape punch for output of the

results.

For timing, we take advantage of the césium clock-based time service located at
our institute, Via cable we receive a 1 MHz reference frequency and in addition pulses
for marking each minute and second. So the mount control and epoch counter are easily
synchronized to UTC., Only for the range counter the internal reference generator is
used. During a pass, the computer is forced by interrupt pulses each 2nd second to
calculate and output a control information. These numbers represent the angular velo-
city along track, the cross track angular correction and the expected range. After
these 3 values are output, a new cycle starts. The control unit has built in registers
and accepts the information, calculated before by the computer, in an exact 2 sec
sequence, After acception, the new value is valid for control. So any change in
computing time has no influence.

Immediately after acception of the expected ranges, that means each 6th second,
the laser is fired and measurement starts. A small part of the laser power is led to
a photodiode which generates start pulses. These start pulses trigger the epoch
counter to output the epoch, start the range counter and the digital gate time genera-
tor. The latter generates delayed pulses according to the predicted range which are
used to switch on the PMT power supply and 225 pus later to open the range gate for

the signal puises.
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The hardware realization of the 3 control functions is based on identical counter-
comparator circuits. To generate a given pulse frequency for the along track step motor,
this circuit is used as a programmable frequency divider as follows. The 1 MHz master
frequency is fed to the counter and the comparator compares the count with the number
stored in the associated register. If the count is equal to the stored number, the
comparator generates a pulse which resets the counter to zero. The train of resetting
pulses is used on the other hand for step motor power unit. Thus the computer has to
output the time difference between successive step motor pulses in Mse

For the other functions the circuit is used to cut a given number of pulses from
a fixed 2 kHz pulse frequency as input to the cross track step motor,and to generate
the gating delay pulse. In these cases the first comparator pulse is used only.

The observer has the possibility to introduce hand corrections independent of the
computer., Along track velocity changes are made by removing or adding some percentage
of pulses to the 1 MHz master frequency, and for cross track corrections we apply
additional pulse groups to the cross track motor. In addition, there is the possibility
to introduce corrections via the computer keyboard, which is prefered for blind tracking.
Only time shift corrections are used at present.

3. Software and Operating Procedure

The system software may be divided into three parts: the prediction and real time
control system, the reduction and analysis system and some auxiliary programs. All
subroutines for the first part are present in parallel in the memory to simplify the
use by the observer. The HP 9825 desktop computer has proved to be very well suited
for our purpose, because all necessary subroutines may be called simply via special
function keys and time corrections may be input during program execution via the
keyboard without complications. The measurements are recorded after the satellite
pass on the second track of the same tape cartridge which contains the program. This
cartridge also contains a library of SAO orbital elements.

The analysis program system is used to compare the measurements with updated
predictions to reduce instrumental influences and to do some filtering. The reduced
measurements are collected on a separate cartridge.

Auxiliary programs are available for data handling and formatting and for mount

orientation calculation from polar star observation.

361 Prediction and Control System

Mein parts of the software are subroutines for satellite orbit prediction based
on SAO orbital elements. We use the polynomial terms, the most important long periodic
perturbation terms and in addition short periodic perturbation terms eccording to J2.
Neglecting short periodic perturbations according to tesseral harmonics and to lunar
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interaction, we have some loss in accuracy but a strong simplification of the program.
From comparisions to calculations using the well known AIMLASER program and to
measurements we found, that the contribution of the tesseral harmonics is often of the
same order of magnitude or even lower than the error caused by inaccuracies of the SAO
2lements itself. The latter is especially the case for GEOS C which shows time shifts
of up to 1 sec 10 days after the reference epoch already.

The time required to calculate a satellite position is approx. 0.7 seconds so
that computing time is not a great problem for the simple program.

At first the observer has the possibility to let the computer print out a list of
culmination times of the useful passes for a given satellite and time period., Imme-
diately before the selected pass, the mount orientation angles are calculated and
printed out including corrections for instrumental errors. After that, the control
program may be started. Input information for this program is the epoch counter start
time and the wanted receiver gate time (usally 50 /us). The program then outputs the
first angular velocity value and waits for the first synchronizing interrupt pulse.
The interrupt pulses are blocked by a gate, which is opened by the next minute pulse
from the time base after pressing the start key. The computer delivers at first only
velocity information raising up the velocity step by step in such a way, that the
satellite velocity is reached when it passes the center of the field of view. After
that, the program calls each 6th second the satellite position routine "SAPOS" and
outputs cyclic the three necessary components as described earlier. No precalculation
of satellite positions and associated interpolation are used. After the "SAPOS" call
and output of the new velocity to the interface there is sufficient time to read the
last measurement. This measurement is then compared with the prediction and an
acoustic signal is generated by the computer if the deviation is smaller than 1 km
indicating an echo signal.

After each pass a set of usually 10 target calibration measurements is taken and
the average is included together with meteorological data in the data set recorded

on magnetic tape.

3.2, Data Analysis

The data analysis program reads the measurements from magnetic tape and compares
them to predictions. Some time shift mey be input for improved matching, There is a
subroutine to calculate this time shift in such a way, that the difference between
predicted and measured range becomes equal for two selected points. Using the so
determined time shift the range deviations are usually well below 1 km. The operator
mey input a limit to the computer so that points, the deviation of which exceeds the
limit, are automatically omitted. During the process of comparison the calibration
correction and mount centering correction are carried out. The atmospheric refraction

is not corrected according to international practice, but the zenith distance angle
of each point is calculated from matched predictions and included in the data set
for later use.
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To detect very small errors and to check the range noise level, the operator may
call a polynomial subroutine to fit the differences between predicted and measured
range. The polynomial degree should be chosen as low as possible. The computer prints
out the residuals of the polynomial fit, the rms error and enoptional histogram of
the residuals. From this information "runaway" points or possible instrumental errors,
for instance missing bits in the measured data, are easily found. Points with residuals
greater than three times the standard deviation are usually omitted, After completion
of data inspection the reduced set is stored on a separate tape cartridge. The proce-
dure of data analysis takes a few minutes. So the observer may quickly check the data
quality between observations. In addition, he may easily calculate time corrections
to be used for the next passes.

3.3, Auxiliary Programs

To take advantage of the dialogue capability of the desktop computer, we installed
further programs. Among this is a program for the determination of the mount orienta-
tion bias angles from polar star observations., Main part of this program is a subrou-
tine for the calculation of the apparent place at given MJD (precession, nutation,
aberration). If completed with a catalogue of well distributed stars on tape, this
program may be used in future for a more refined mount orientation method.

A second group which is not complete yet, is for management of the growing number
of measurements. Among these there is a program for transfer of the data into special
formates.

4., Results

After introduction of the new control system the tracking has become more reliable
and the amount of measurements could be increased. This is the case especially for
STARLETTE and LAGEOS. The results obtained using the new configuration are summarized
in table 2. The hardware changes were introduced step by step during the whole period

Table 2. Ranging Results
(Given numbers are number of passes and, in brackets, number of points)

Period GEOS A GEOS C STARL, LAGEOS Sum
Sept.-Dec. 78 25(689) 12(181) 12(209) 49(1079)
Febr.-Mar. 79 3(81) 3(50) 2(82) 2(50) 10(263)
Apr.-June 79 38(1250)  44(1486) 3(47) 85(2783)
Sept.-Oct. 79 33(1500)  14(490) 4(73) 10(385) 61(2448)
Mar.-Apr. 80 12(553) 9(296) 5(87) 4(118) 30(1054)
Sum 111(4073)  82(2503)  26(498) 16(553)  235(7627)
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and therefore the output was limited somewhat by instrumental difficulties,

Whereas the majority of passes is observed catching the satellite visually at the
beginning of the observation, some passes using fully blind tracking (Earth shadow,
daylight) have been obtained for all satellites except for LAGEOS. We did not try to
observe LAGEOS at daytime yet because of the very high noise background at single
photoelectron level. For the other satellites we reduce the PMT voltage to prevent
damage of the sensitive GaAs-photocathode,

Improving the optical background suppression we hope to be able to observe LAGEOS
under twilight conditions in future.

As an example that the system may detect echo signals out of very strong back-
ground noise we show in Fig, 2 the analysis of a LAGEOS measurement taken at a very
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low detection threshold. In Fig. 2 the differences between predicted and measured range
are plotted in dependence of time., In Fig., 3 the corresponding histogram is given. It
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clearly shows the signal peak at small deviations. The detection conditions in this
case are not far from the moon ranging, but usually (at night) we work under conditions
of much lower background noise and stronger signals giving about 30 % detection probabi-
lity for LAGEOS. The typical rms value of the range scattering is for LAGEOS about

1.5 m according to the laser pulse width of 20 ns. As an example the distribution of
range residuals were plotted in Fig. 4 for a LAGEOS pass with 63 signal points.

For strong signals we have a somewhat lower range noise between 0.4 und 1.0 m rms
for GEOS satellites and STARLETTE., In Fig., 5 the distribution for a GEOS C pass with
56 points is given. No points have been removed in both cases. In the last example the
rms noise may be somewhat overestimated because of unsufficient fitting of the poly-
nomial. The lowest range noise (0.1...0.5 m rms) has been observed for calibration
target measurements. This would have been expected because of the lower signal
fluctuations from the terrestrial target in comparison to satellite signals.
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GEODATISCHE DATUMTRANSFORMATIONEN

E. W. Grafarend, Stuttgart, E. H. Knickmeyer, Stuttgart,

B. Schaffrin, Bonn

Summary:

A systematic approach of geodetic datum transformations including

geometric and physical terms and refering to a linear Gauli - Markov

model is presented. Observational equations can be characterized

by a typical rank deficiency with respect to injectivity which can

be excluded by a sufficient number of constraints. Reference is

made to the geometry of null space of the observational equations

(functionals). Two examples prove the power of the method:

(1) adjustment of a distance network in geometry space;

(i1) adjustment of observational functionals in geometry and
gravity space (physical geodesy).

Zusammenfassung:

Geoddtische Datumtransformationen werden in systematischer Weise
fiir ein lineares Gaufl - Markov Modell vorgesteilt, welclies sowohl
geometrische als auch physikaiische Parameter im Unbekanntenvektor
umfaBt. Der injektive Rangdefekt (Spaltendefekt) der Desigumatrix
erster Ordnung in den Beobachtungsgleichungen steuert das Datum-
problem und die Anzahl der Bedingungsgleichungen, die zu einer
Inversion eines Normalgleichungssystems notwendig sind. Die Rolle
des Nullraumes der Beobachtungsgleichungen (Funktionale) wird
herausgearbeitet. Zwei Beispiele belegen die Kraft des hier
prdsentierten Konzeptes der Datumtransformationen:
(1) Ausgleichung eines Streckennetzes im Geometrieraum
(ii) Ausgleichung von Beobachtungsfunktionalen im Geometrie- und
Schwereraum (physikalische Geodisie)
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0. Einleitung

Un aus geoddtischen Beobachtungen Koordinaten ableiten zu kénnen,
bedarf es der Festlegung eines Bezugssystems, speziell eines Datums.
Den verschiedenen geoddtischen Aufgabenstellungen angepalt, gibt

es nicht nur eine Wahl eines Datums, sondern eine Folge von ver-
schiedenartigen Festsetzungen, beispielsweise im lokalen, regionalen,
kontinentalen und interkontinentalen oder globalen Bereich. Vor allem
in der Navigation und geometrischen Geoddsie begegnet man deshalb

der Aufgabe, Koordinaten von einem Bezugssystem in ein anderes um-
rechnen zu missen. Wir nennen hier nur die Arbeiten von S.Heitz (1969), E.J.
Krakiwski und D. B. Thompson (1974), C. L. Merry und P. Vanicek
(1974), R. Sigl (1978) und W. Torge (1980). Aufgabe unserer nach-
folgenden Untersuchungen ist es deshalb, eine Systematik von Datum-
transformationen allgemeiner Art zu entwickeln. Als steuerndes
Element. einer Datumtransformation wird sich der injektive Rang-
defekt (Spaltendefekt) der Koeffizientenmatrix eines linearen

Modells der Beobachtungsgleichungen und das zugeordnete System

von Bedingungsgleichungen erweisen, welches das lineare Modell
invertierbar macht.

Im ersten Abschnitt iliber Datumtransformationen innerhalb eines
linearen Ausgleichungsmodells mit injektivem und surjektivem
Rangdefekt geben wir zundchst die zwei entscheidenden Eigen-
schaften eines Systems von Bedingungsgleichungen an, die zur Be-
hebung eines Datumdefektes erfiillt sein miissen: Unabhidngigkeit
der Bedingungsgleichungen, Unabhédngigkeit der Spaltenrédume von

A' und B', den transponierten Matrizen des Designs erster Ordnung
(Konfiguration) und nullter Ordnung (Datum). Die LOsungstheorie
spaltendefekter Gleichungssysteme mit dem Hilfsmittel von Be-
dingungsgleichungen wird anschliefend in den Zusammenhang mit

der Minimierung der Euklidischen Norm des Unbekanntenvektors
gestellt. Verschiedene Matrizen B,, B,, und Vektoren c,, c, in
den linearen Bedingungsgleichungen Bx"= c determinieren dié Da-
tumtransformationen (1.10). Ein erstes Beispiel der Theorie

von Datumtransformationen wird im zweiten Abschnitt liber drei-
dimensionale Netze im Geometrieraum gegeben. Der dritte Abschnitt
ist dem allgemeinen Zusammenhang zwischen der Datumtransformation
und den gewdhlten Restriktionen gewidmet, insbesondere der Frage
nach der geometrischen - physikalischen Interpretierbarkeit von
restriktiv gesteuerten Datumtransformationen. Ein zweites Beispiel
der Theorie von Datumtransformationen wird im vierten Abschnitt
iiber drcidimensionale Netze im Geometrie- und Schwereraum vor-
gestellt.
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1. Datumtransformationen innerhalb eines linearen Ausglei-
chungsmodells mit injcktivem und surjcktivem Rangdefekt

Ein lincares Modell sei mit seinen ersten beidcn Momenten des

nx1 dimensionalen Beobachtungsvektors y vorgegeben, namentlich
(1.1a) E() = A
(1.1b) D) = E{[-E()] H-EmM]'} =% ,

wobei A mxan dimensionale Designmatrix erster Ordnung vom Rang

It

r = vr(A) < min {n,m} und I nxn dimensionale Designmatrix zwei-
ter Ordnung, Varianz - Kovarianz - Matrix des Beobachtungsvek-
tors, und x mx1 dimensiongler Unbekanntenvektor ist. Die Dis-
persionsmatrix I habe vollen Rang, jedoch die Designmatrix A
den Spaltendefekt d: = m-r # 0. Der Spaltendefekt der Design-
matrix bewirkt, dall die kleinste - Quadrate - LOsung nur bis
auf die Freiheitsgrade festgelegt ist, liber die mit Hilfe von
Bedingungsgleichungen

(1.2) Bx=c

verfiigt werden kann. Dadurch wird das Datum eindeutig festge-

legt, sofern etwa gilt
(1.3a) o(B) = dxm, r(B) =d
(Unabhidngigkeit der Bedingungsgleichungen)

und
(1.3b) S(A') M S(B') = {G}
(Unabhingigkeit der Spaltenrdume von A' und B').

Eine Ausgleichung im Modell (1.1) mit den Bedingungen (1.2)

fiihrt auf eine eindeutige L&sung der Parameter, namentlich

(1.4) % = (A's 'AB'B)"T (A2 Vy+Bl0).

Eine Herleitung von (1.4) ist in E. Grafarend et al (1979
p.189-192) gegeben, kann aber auch nach K. R. Koch (1980 p. 57-60,
170-172) erfolgen. Ublicherweise wird der Datumdefekt bchoben,

(i)
indem einzeclnen Komponenten des Parametcrvektors bestimmte

Werte zugewiesen werden;



279

(ii)
indem der ganze Parametervektor in der euklidischen Norm mini-
miert wird;

(111)
indem ein Teil des Parametervektors in der euklidischen Norm
minimiert wird;

natiirlich kénncn auch Mischformen, z.B. von (i) und (iii), auf-
treten. Die dazugehdrigen Matrizen B fiir die Bedingungsglei-
chungen (1.2) lassen sich ohne Schwierigkeiten angeben.

[zu (1),

B besteht aus den d verschiedenen dx1 Einheitsvektoren und
dazu m-d dx1 Nullvektoren, z.B.

(1.5a) B = [I,,0];

(1.6a) c Dbeliebig, aber fest

c enthdlt die zugewiesenen Werte.

u (11)
Der Spaltenraum von B' steht orthogonal auf dem Spaltenraum
von A', also S(A') | _S(B') bzw.

(1.5b) AB' =0, r(B) =d
(1.6b) c=0.

I EEED)

Der Spaltenraum von B' muB orthogonal auf dem Spaltenraum von

A' stehen, wobei A durch Streichen gewisser Spalten von A ent-
steht, z.B. daurch

0 0
(V. DA 3= A
4 - (0
s

so dal S(A') 1 S(B') bzw.
I Le™

(r((é) =s-dz0

(1.5¢) 513'=A[g ” B' =0, v(B) =d < s
S

-~
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(1.6c) c=0

gilt.

In den beiden letzten Fdllen sollte beachtet werden, daf die
Spalten von B' keineswegs selbst zueinander orthogonal, sondern
nur linear unabhingig sein miissen; auflerdem ist B nicht ein-
deutig.

Auf Grund dieser Ausfilhrungen wird deutlich, dafl jede belie-
bige Datum - Transformation durch eine Anderung der Matrix B
und des Vektors c erklirt werden kann. Dabei sollen im folgen-

den die Parametervektoren Xy X, gegeniibergestellt werden, die
mit unterschiedlichen Matrizen B],B und Vektoren C15C, geschitzt
worden sind. Offensichtlich ist

(1.8) A'z7ly = (A'z7'AsBIB )R, -Bjc, = (A'Z
und daraus

(1.9) %, = (A'z7'A+BJB,) "' [A'27'A+B}B, )R, +Bjc,-Blc,]

-1
A+BB)X 22

andererseits durch Subtraktlon

=1 1

(1.102) %, = &+[cA's” A+B'B2) Lz ame Ay
' ] ' 1 1 ] '
+ (AL A+BB2) ZZ(AE A+BIB.)'Blc,
(1.106) %, = {1+|(sz A+B'% L A+B B) ‘]A'z AR,
+(A'z7 A+BYB,) T TByC, - (A'E” A+B'B s

unter Verwendung der Nonmalglelchungen

(1.an AR, = AT, = ATy

Eine Transformation T: R" — R™ mit

(1.12a) 22 = T(XI)

folgt hier der Darstellung

(1.12b) xz = MSt1 e

mit einer gewissen mxm Matrix M und einem gewissen mx1 Vektor 1,
die beide keineswcgs eindeutig bestimmt sind, wie ein Vergleich
von (1.9) und (1.10b) dcutlich macht. 2 (i=1,2) durchliduft bei
Variation des Beobachtungsvektors y n1cht den gesamten Rm sondern

nur den (m-d)-dimensionalen Unterraum
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{18 (54 S{(A'2_1A+BiBi)-1A'Z-1} (i=1,2)

der um den Translationsvektor

(1.14) s; := (A'z7'ABIB) B, (i=1,2)

verschoben ist. Nur fiir ﬁ1 mit

(1.15) Xl-s1 € S1

miissen die verschiedenen Darstellungen gemdB (1.12b) auf denselben
Vektor RZ mit

@.16) - % €S
fiihren.

Es bleibt uns freigestellt, nach einer solchen Matrix M und einem
solchen Vektor 1 zu suchen, die zwar (1.12b) erfiillen, jedoch zu-

sdtzlich eine bestimmte Struktur aufweisen, die den geometrischen

e, °7

und physikalischen Vorstellungen entspricht, die wir uns von einem
bestimmten Problem machen. Dazu mége das nachfolgende Beispiel
dienen.

2. Ein erstes Beispiel:
Dreidimensionale Netze im Geometrie-Raum

Der Parametervektor x mége ausschlieBlich Zuschldge von ndherungs-
weisen Punktkoordinaten enthalten und zwar je drei Koordinaten

ij s Xj - xj, ij = Yj - yj, Azj = Zj e filr jeden Punkt
Pj ( =1,..., k). Werden beispielsweise ausschlieBlich Winkel in
einem Netz beobachtet, so kann (1.12a) aus einer dreidimensionalen

Ahnlichkeitstransformation herrihren, z. B.

X5+ Ax{ "xj + ij
(2.1) Y; + ij = (1+1) Rq Y; + ij o
zj + Azj 2 zj + Azj 1
flir alllesgii=ay 255
t. 1 y -8B
(2.2) t:= ty 3 R3 SR BRI [ DU
tz B -a 1

worin A einen kleinen MafBstabfaktor, t einen Translationsvektor und
o,B,Y kleine Drehwinkel in einer dreidimensionalen Drehmatrix R3 be-
zeichnen. Mit diesem Ansatz bekommt (1.12b) die Form (m = 3k)
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R, O0... c t
(2.3) Ry = (1+2) 0 R3...0 (xo* 21) + ( .?. - xo)
0 0 R, t
= (143) (I B Rg) (xp + &) + (e,mt - x)
Dabei bezeichnet Ik die k-dimensionale Einheitsmatrix, ex I RS

den kx1 Summationsvektor, X, += Ex1,y1,zl,xz,yz,zz,...,xk,yk,zk]' den
Vektor der Niherungskoordinaten und ''®'' das Kroneckerprodukt, definiert
durch

(2.4) AmB := [aij B].

Betrachtet man beispielsweise die 3xk Matrizen

Ax1 ava Axk Xq e Xy
(2.5) X; = |8y, ... By G =1,2), Xpi=| ¥ =¥k
R AN Zy ey

so gilt gerade

~

(2.6) X; = vec X.1 G =1,2), X,= vec XO
Somit entspricht (2.3) der vektoricllen Form des Gleichungssystems

2.7) f(z = (1) Ry (X + )’E]) + (te] - X))

Die zentrale Frage lautet nun:

Wie lassen sich aus der Kenntnis von Bi und e, fiir © = 1,2 die Para-
meter der Ahnlichkeitstransformation (2.1) gewinnen, die in dem 7x1
Vektor

.- 14
(2.8) p:= [NouBY bt
gesammelt sein mdgen?

Dazu schreiben wir (2.1) unter Vernachldssigung von Produkten kleiner

Grolen
. Ax.
5 ~) ~J
gt - £ S W 9 o
Azj 2 Azj 1

fiir alle j = 1,...,k, mit

xj 0 -zj Vekas Ly {0BEL0
2.10 E = K B ) M, O
( ) 3 Y5 1 X; 0. ..1.4 A

. =Y. S0
szJxJ @ O

worin die Ndhernungskoordinaten (xj,yj,zj) der Punkte P, (j = 1,...,k)
eingehen. [nsgesamt verbleibt anstelle von (2.3)
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(2.11) ;2 = ;1 + F'p
mit
(2.12) F' := [F1,...,Pk]', o(F') = 3kx7
Vergleiche hier insbesondere E. Grafarend et al (1979 p.192-195) und
K. R. Koch (1980 p.173-175). Wie dort angegeben, iiberzeugt man sich
leicht, daB fiir das Beispiel des Winkelnetzes
(2. 13N ¥AF 0
(2.14) «r(F) =7
falls k 2 3, gilt. In andcren Netztypen sind gewisse Modifikationen

vorzunchmen; so ist z.B. in Streckennetzen die erste Spalte von F;

sowie die Komponente A im Vektor p zu streichen.
Damit 148t sich das Gleichungssystem (2.11), das wegen (1.11) und

(2.13) konsistent sein muB, eindeutig 16sen nach (1.10a) und (2.14)
durch

2.15) p= (B Flxyxp) =
- : £ g
EF) B[z BB, )T (ATE lyeBse,)

1

- i T s ysBic )]

Selbstverstdndlich wiirde es auch geniigen, 7 linear unabhidngige Zeilen
von F' zur Matrix E', z.B.

(2.16)  F' := [1.,0] B!

zusanmenzufassen und gang

@10 p=EN x,x))

zu rechnen; zur Kontrolle muB danach (2.11) erfiillt sein.

Ein numerisches Beispiel sei das folgende eines ebenen Streckennetzes,
bestehend aus drei Punkten. Tab. 2.1 gibt die einzelnen Streckenmes-
sungen mit den Werten ''beobachtet minus berechnet'" an. Die berechne-
ten Distanzen entstammen den Koordinatenndherungswerten der Tab. 2.2.
Die Designmatrix erster Ordnung A unseres linearen Modells E(y) = Ax
ist in Tab. 2.3 filir Ndherungsstrecken der Linge Eins zusammengestellt.
Tab. 2.4 enthdlt zwei Versionen von Bedingungsgleichungen, endlich
Tab. 2.5 die zugehdrigen nach (1.4) oder (1.9),(1.10) berechneten L6-
sungen 21 und ;2. Sei F = B,, so ergibt sich (2.15) p = [y,tx,tij'

zu y = 0,00029 (Drehwinkel) und bl = -0,01018, t_ = -0,02008 (Trans-

lationen). LOsung 2 (Bzx2 = 0) kann mit diesen Werten entsprechend
(2.3) verprobt werden.
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Tab. 2.1 : Streckenmessungen

812 = 1,0001 > )’1 = AS12 = S]z & 512
813 = 1,0005 , Y, = As13 = 813 - Sq3
Sz3 = 0,999 , y3 = 8s)3 = S)5 - 5,3

Tab. 2.2 : Koordinatenniherungswerte

X, = oa " s y, = 1/2

Xy = V3 L 1

<
[\S)
"

x5 = V3/2., y5=3/2

0,0001
= 0,0005
=-0,0004

Tab. 2.3 : Designmatrix erster Ordnung A

i -1 o =
(X1=x)s1,  (ry7yp)sy; -(xy=x))
. -1
A = (x1'x3)s1% (y1-¥3)$13 0
0 0

B2 -1z B2 2
A = 0 -1 0 0
0 0 V3/2 -1/2

Tab. 2.4 : Bedingungsgleichungen

o
o
o
o
o

B, = el i dli 00 0i O 01

1

o
o
o
—
o

FI/Z adof 2. 1] 2y ~ Wy M2
B, = 1 0 1 0 1
0 1 0 1 0

-1 -1
S12 ~17Y2)sy;

.0
0
-/3/2

0,01
0,02
0.01

-/3/2

0 ’

1

0

0
1
1/

£2

0

£
-(Xy-X3)8¢3

=i =1 -1
(X X3)Sy3  (¥5-Y3)Sy3 ~(X7X5)s)3

-

AREREE
-1

02730523




285
Tab. 2.5 : Ldsungen A;, X = x+A§, A;', Y - y+A;'
Losung 1 Losung 2
B, =0,01 X, = 0,87602 , &x, = -0,00004 , X, = 0,86599
Ayl = 0,02 3 Y1 = 0,52000 , A)'1 = -0,00033 , Y1 = 0,49967
&, = 0,00968 , X, = 1,74173 , tx, = -0,00021 , X, = 1,73184
by, = 0,02075 , Y, = 1,02075 , Ky, = +0,00017 , Y, = 1,00017
Ax3 = 0,01 » XS = 0,87602 , Ax3 = +0,00025 |, XS = 0,86628
Ays = 0,02050 , YS = 1,52050 , Ay3 = +0,00017 , Y3 = 1,50017

3. Der allgemeine Zusammenhang zwischen der
Datum-Transformation und den gewihlten Restriktionen

Entsprechend der im vorigen Abschnitt geschilderten Vorgehensweise
kann auch dann verfahren werden, falls keine genauen Vorstellungen
iiber die Parameter des Vektors p wie in (2.8) bestehen.

Ausgehend von (1.11) gilt stets

(3.1 ATTAG,x,) = 0

und daher

(3.2 x,x, € NA'ZA) = N(A)

da I als regulir vorausgesetzt wurde; N(A) bezeichnet den Nullraum
von A. Zur nxn Matrix A mit dem Spaltendefekt d 148t sich eine mxd
Matrix G' konstruieren mit den Eigenschaften

(3.3) AG' =0
(3.4) r(G) =d
so daf gilt

(3.5) S(A') | S@G").

Beachte die Korrespondenz dieser Bedingungen zu (1.5b). Beispiels-
weise nach K. R. Koch (1980 p.33-34) gilt stets

(3.6) S(A') | N(A)

und daher

(3.7 N(A) = S(G")
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wegen
(3.8) dim N(A) = d = dim S(G").
Nach (3.2) gilt-deshalb

~

(3.9)  x,7x, € S
fiir jede Wahl einer Matrix G, die den Bedingungen (3.3) und (3.4)
gentigt. Folglich ist das Gleichungssystem

(3.10) Xy=X, = G'p
konsistent und 1éRt sich wegen (3.4) eindeutig aufldsen zu

(3.11)  p = (66" 'Glxyx,) =

= () lefars™ A+B'B2) Tz lysBic,)
BB Ty,

worin (1.10a) beriicksichtigt worden ist.

Mit dem dx1 Paramctervektor p aus (3.11), in den nur die gegebenen
GroBen A, £, y sowie die unterschiedlichen Bi und <, (i = 1,2) cin-
gehen, 1dR8t sich somit eine Umrechnung von 2, in %, und umngekehrt
nach (3.10) vornehmen; p enthilt dabei die zugehSrigen Datum-Para-
meter. Andererseits fUhrt (3 10) auf

(3. 12) (I-G'(GG") "~ G) (xz—x ) =0

so daB der mx1 Vektor

(3.13) g = (I-6'(C6")7G)x, G=1,2)

unabhidngig von der Wahl der Matrizen Bi und der Vektoren 4 (i=1,2
ist; g hiingt also nur von A, I und y ab. Beispielsweise nach K. R.
Koch (1980 p.60) gilt explizit

(3.14)  (1-6'66M) Y6y = arzzmytarra
so daB sich mit (1.11)

(3.15) g =@z wtarsly

gleichzeitig als kleinste-Quadrate-Losung kleinster Norm im Modell
(1.1) erweist: Dies entspricht dem Fall (1.5b) und (1.6b), wcnach
gemidl (1.4) sofort
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(3.16) g = 'z Ao Tarsly

gefolgert werden kann. Geht man mit (3.16) in die Formeln (3.10) und
(3.11) ein und beriicksichtigt

(3.17) Gg =0 .

auf Grund von (3.13), so erhalten wir fiir irgendeine kleinste-Qua-
drate-Losung (1.4), die bestimmten Bedingungen (1.2) geniigen soll,
gerade den Effekt

(3.18) x-g = G' (GG Gz A+ B) T (arz Ty 4B )]
gegeniiber der kleinste-Quadrate-Losung kleinster Norm nach (3.16). Der
zugehdrige dx1 Paramctervektor

1

(G.19)  p = @6 Tofar BT sy

enthdlt dann die speziellen Datum-Paramcter beziiglich der Ldsung
g nach (3.16).
Gleichzeitig wird deutlich, dal die Datum-Parameter einer belie-

bigen Transformation nach (3.11) als Differenz der speziellen
Datum-Parameter zweier Transformationen auf g gemdB (3.18) resul-
tieren. Beachte, daf (3.18) und (3.19) unabhingig von der speziel-
len Wahl der Matrix G sind. Jedoch wird man G in der Regel so wihlen,
daB der Vektor p der Datum-Parameter gerade solche Komponenten bein-
haltet, welche die Wirkung der Bedingungsgleichungen (1.2) geome-
trisch oder physikalisch veranschaulichen, wie es im zweiten Ab-
schnitt vorgefiihrt worden ist.
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4. Ein zweites Beispicel:
Dreidimensionale Netze im Geometrie- und Schwereraum

In Punkten P der Erdoberflidche seien GroBen im Schwere- und Geo-
metrieraum gemessen, mit denen im Sinne der integrierten Geoddsie

nach (1.2) unbekannte Parameter bestimmt werden sollen. Als Messungen
oder aus Messungen abgeleitete Grofen mégen Strecken, Azimute, Hori-
zontalrichtungen, Vertikalrichtungen (Komplemente zu ''Zenitdistanzen'),
astronomische Lingen, astronomische Breiten, absolute Schwerewerte, Po-
tentialdifferenzen vorliegen. Unbekannt sind die cartesischen Koordi-
naten der Punkte P, oder besser gesagt, Korrckturwerte aut Ndherungs-
werte, Storungen von astronomischer Lidnge, astronomischer Breite (Lot-
abweichungen), von Schwerewerten und Potentialen relativ zu einem nor-
malen Schwerefeld und zusdtzlich normale Feldparameter, z.B.

(gm, JZ’ a, W) - Produkt aus Gravitationskonstante g und Masse m der
Modellerde, zonaler Kugelfunktionskoeffizient JZ’ grofe Halbachse a
eines rotationssymmetrischen Niveauellipsoides, w seine Drehgeschwin-
digkeit - und Parameter, welche die Transformation des normalen Feldes
in einem System festlegen, in dem die Punkte P koordiniert sind.

In unserem numerischen Beispiel legen wir ein einfaches kugelsymme-
trisches Nommalfeld zugrunde, dessen Mittelpunkt M gegen den Koordi-
natenursprung 0 verschoben ist, so dafl gilt

we (g [ /x-xpia-y ez’

Die linearisierten Beobachtungsgleichungen kdnnen als solche in einem
Somigliana - Pizetti - Normalschwerefeld angesehen werden - sie sind
vollstidndig in E. Grafarend und B. Richter (1978) angegeben - in dem
die Exzentrizitdt auf Null gesetzt wird. Wir verzichten hier auf iber-
schilissige Beobachtungen: In einem dreidimensionalen Dreiecksnetz seien
die Strecken SIZ’ Sl3’ 823, das Azimut AIZ’ die Vertikalrichtungen

By,» B13 (Komplemente zu.''Zenitdistanzen', Schwercwerte Ty» Ty Ty beob-
achtet, astronomische Lingen l\1 ’ AZ’ A3, und astronomische Breiten d’l 3 ¢2,

¢5 aus astronomischen Beobachtungen abpelcitet. Unbekannt sind die car-
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tesischen Koordinaten X1, Y Z1, Xz, YZ’ ZZ’ X3, YS’ 23, Stérungen

der astronomischen Linge 6\ GAZ, 6A3 und der astronomischen Brei-

’
ten 6¢1, 6¢2, 6¢3, Stbrunge; der Schwere 8Yy» 6Y,, 8y3 sowie Normal-
feldparameter gn, XM’ Yies ZM' Entsprechend E. Grafarend und B. Rich-
ter (1977) ist die lineare Abhdngigkeit der Stdrungen des Azimutes
6a und der Vertikalrichtung 68 von den Stdérungen der astr. Linge 6A
und der astr. Breite §¢ direkt in die Beobachtungsgleichungen einge-
arbeitet worden, um zusidtzliche Rangdefekte zu vermeiden. Das Format
der Matrix A ist durch die Anzahl n = 15 der Beobachtungen in der

Reihenfolge Strecken, Azimut, Vertikalrichtungen, astr. Lingen, astr.

Breiten, Schwerewerte und durch die Anzahl m = 22 der Unbekannten in
der Reihenfolge cartesische Koordinaten, StOrungen von astr. Lingen,
astr. Breiten, Schwerenund Normalfeldparameter bestimmt. Der Spalten-
defekt d der Matrix A betrdgt d(A) =m - r(A) = 7 und kann wie folgt
interpretiert werden: ein Translationsdefekt der Netzkonfiguration
von drei, ein Defekt auf Grund des nicht festgelegten Wertes gm und
ein Translationsdefekt von drei wegen der Struktur des normalen Schwere-
feldes. Der Spaltendefekt d = 7 fixiert die Anzahl der Zeilen der
Matrix B. In der ersten Datumfestlegung werden die Korrekturwerte

Ax, = 0, Ay, = 0, Az, =0, §(gm) =0, Xy =0, Yy = 0, Z, = 0 gesetzt.
Dagegen ist eine zweite oder alternative Datumfestlegung

Ax1+Ax2+Ax3 =0, Ay1+Ay2+Ay3 =0, Az1+Az2+Az3 =0

(Auffelderung der Koordinatenzuschlige auf den geometrischen Mittel-
punkt), 8(gn) = -1,7 « 107, X, = ¥, = ~Z, = -30,000. Un die Dimen-
sionen in den Formeln (1.4), (1.9), (1.10) vergleichbar zu halten,
sind die Bedingungsgleichungen so anzuschreiben, dall c dimensions-
los ist.

Wéhrend die Abb. 4.1, 4.2 und 4.3 die Struktur der Matrizen A, B., B

X2

und Vektoren €y € illustriert - nur Elemente ungleich Null wurden
gekennzeichnet - enthalten Tab. 4.1 die heterogenen Beobachtungen,
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Tab. 4.2 Ndherungswerte der Koordinaten und (gm), Tab. 4.3 die L&-
sungen Ax, X, Ay, Y, Az, Z, 8A, &9, Sy, &(gm), XM’ ) (e ZM fiir die
obigen Datumfestlegunzen. Die numerischen Ergebnisse lassen folgende
Interpretation zu. Die Schnittstelle der bisher tiblichen stufenwei-
sen Auswertung (1. Stufe: Ausgleichung nach unbekannten Koordinaten,

2. Stufe: Ausgleichung auf der Basis eines speziellen normalen Schwere-
feldes mit Storungen als Unbekannten) wird durch die integrierte Be-
arbeitungsweise bestdtigt. Im Rahmen der Me@genauigkeit sind die Beob-
achtungsanomalien nahezu identisch mit den Stdrungen. Insbesondere
sind die Stdrungen recht empfindlich gegeniiber der Datumfestlegung.

Von besonderer Bedeutung ist deshalb die Formulierung der Bedingungs-

gleichungen.

Zusammenfassend méchten wir die Vnrteile der hier aufgezeigten Be-
handlung des Datumproblems aufzeigen: Beliebig viele Datumpara-
meter konnen eingefiihrt werden, ein besonderer Wert im Rahmen der
integrierten Geoddsie. Datumtransformationen ergeben sich in natiir-
licher Art und Weise anhand der Bedingungsgleichungen, mit denen
injektive Rangdefekte ''geheilt' werden.
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Abb. 4.1 : Struktur der Designmatrix erster Ordnung A
Unbekannte
‘] e o o 5 ® = g0 (o 010 e e | 015 ® o o .20 022
1 xxxxxXx ]
ol x xx X X X
. XXXXXX
ol XXX XXX X X X X X
5] X XXXXX X X X X X
ol Xx xx X X X X X X X X
ol XX 1 X X
. X X 1 X X A
g . X X 1 % %
%"IO X X X 1 X X X
i XegX X 1 X X X
g . X X X 1 X X X
Sl xxx 1 X, % R
3 . XXX e X %X
M15 X X X 1XXXX
Abb. 4.2 : Struktur der Matrix B1 und des Vektors <
Unbekannte
1 [ ] [ ] [ ] 5 [ ] [ ] [ ] .10 [ ] [ ] L ] .15 [ ] L] L] .20 .22
p 1
cae 1
. 1 B,, c,=0
5 1 LR
o
3, ‘
M 7 1
Abb. 4.3 : Struktur der Matrix B2 und des Vektors <,
Unbekannte
1 L ) L ] L ] 5 [ ] L] L] ‘10 L ] L ] [ ] .15 L] L] L ] .20 .22
1 1 1 r 0
o e 1 1 1 0
& - 1 1 1 0 4
8 1 B,, C,= |-1,7+10
59 1 -30
3 . 1 -30
=47 1 +30
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Tab. 4.1 : Beobachtungen

Sy, = 4.457,014 m - Y, = 8S;, = 0,006

S5 = 5.302,758 m ] y, =855 = 0,002

S, = 9.047,544 m , y; = 85y = 0,005

AIZ = -193,81328 gon s o A“12 = 0

B,, = -4,4000 gon ! Yo =088,,= 0

Bis = 9,131 gon ) Yg = 883 = 0,00001

Ay = 13,54765 gon ! y; =8y = 0

Ay - 13,54180 gon »yg =8k, = 0,00057

Ay = 13,60574 gon , Yg = 8\; = -0,00149

¢, = 53,09079 gon . Y10 = A¢1 = 0

®, = 53,1393 gon . ¥;, = 86, = -0,00105

®, = 53,05783 gon , y;; = 805 = 0,00083

I, = 9,80592479 ms™2 , Y43 = Y, = =0,000.000.01
I, =9,80666543 ms ™’ ’ ¥14 = By, = -0,000.201.47

9,80423035 ms™ 2 ,

Y15 = 8y; = +0,000.638.78
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Tab. 4.2 : Ndherungswerte der Koordinaten und des Produktes
Gravitationskonstante und Masse

x, = 4.187.535,996 m , y; = 904.833,027 m , z; = 4.721.760,231 m
x, = 4.184.221,479 m , y, = 903.675,455 m , z, = 4.724.505,950 m
x; = 4.189.634,641 m , y, = 909.391,494 m , z; = 4.720.046,957 m
gn = 398.603 « 10° mos™ 2

~

Tab. 4.3 : Lésungen 4x, X, Ay, Y, Az, Z, 6, &b, &y, &(gm)

A ~ A ~ ~

Losung 1 Losung 2

I = 0, X =4.187.535,996 , Ax, = 0,003 , X, = ... ,999
tyy =100 N = 004 BEE, 0on iy S SN AREREN. | 077
Moy = 0,2, =4.721.760,231 , Az, = 0,003 , Z, = ... ,234
bx, =0,003 , X, = 4.184.221,476 , Axy = 0, X, = ... ,479
by, = 01 L ¥, =R 0031678,455! ) Ay, =t 01 || %y JX, = iewe 55
bz, =-0,003 , Z, = 4.724.505,947 , Azy = O, Z, = ... ,950
fxg =-0,005 , X, = 4.189.634,636 , Axy =-0,002 , X = ... ,639
by = 0,001 , Yy = 909.391,495 , Ayg = 0,001 , Y = ... ,495
Doy =-0,005 , Z; = 4.720.046,952 , Azg =-0,002 , Zp = ... ,955
SAy = 0 5X, =-0,000.34

61, = 0,000.57 51, = 0,000.22

6h5 =-0,001.49 85 =-0,001.83

5, = 0 86, = 0,000.46

8, =-0,001.05 8¢, =-0,000.59

86, = 0,000.83 8 = 0,001.30

Sy, = 0 8 = 0,000.047.2

8, =-0,000.201.5 8y, =-0,000.154.4

85 = 0,000.638.8 85 = 0,000.686. 1

faw)= 0 gn=398.603-10° sgn)=-1,7+10°  gm=398.601,3-10°
q =0 Xy =-30

Yy = 0 Yy =-30

S = 0

i
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Direct liethods for Geodetic Boundary Problemsl)

by

Petr Holotae)

Contents

l, Introduction

2. Linearized geodetic boundary problem

Je Kelvin transformation

4. The simple liolodensky problem

5 Direct methods - elementary notions

5.1. The space We(l)(!l)

5.2« Lipschitzian boundary and notion of trace
6. Generalized obligue derivative problem

Te kelation to the classical solution

Be Oblique derivative problem for Laplace equation
9 Bilinear form
10, V=-ellipticity

l. Introduction

Great progress has been made in the solution of the
geodetic boundary problem during the past 5 to 6 years
(see HORMAWDER [2] , SiNSO [14] , [15) , [16] ).

1)

This paper was presented by the author at the 4th Inter-
national Symposium "Geodesy and Physics of the Earth",
GDR, Karl-Marx-Stadt, May 12th-17th, 1980 (to appear in
the proceedings of this Symposium),

2)Resea.rch Institute of Geodesy, Topography and Cartography,
250 66 Zdiby 98/Prague, Czechoslovakia
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The function spaces principally used for studying the
problem represent a significant advance as compared
witk previous techniques sometimes replacing the exact-
ness by intuition. Consistent work with function spaces
makes it possible to profit from the whole wealth of
abstract results of the functionsl analysis. The geodetic
boundary problem could thus for the first time be
successfully solved as a non-linear one. Necessary arnd
sufficient conditions for the existence and the unique-
ness of the local solution of the problem were speci-
fied and the stability of the solution was possible to

study.

However, HORANDER s and SANSO 's results require
a certain degree of regularity of both the input bounda-
ry data and the boundary itself. These requirements are
sometimes considered rather mild but there is also
a reasonably motivated tendency to generalize them. It
seems therefore appropriate to study the problem in
terms of the weak solution in the usual Sobolev spaces,
see HulaS [11] , REXTORYS [12] , LIONS-MAGENES [8] ,
MIKELIN [8] , wHITHMAN [1¢] .

ILnother reasons for using direct variational methods
to solve the linearized geodetic boundary problem, i.e.
an oblique derivative problem for the Laplace equation,
issue from a numerical implementation aspect. The tradi-
tional method of integral equations, if used to solve
the given problem, leads to the singular equation contai-
ning an integral convergent in the sense of Cauchy's
principal value only. It is thus impossible to apply the
Riesz theory on the compact operator ana problems could
emerge in connection with the boundedness (continuity)
of the respective inverse operator, that is with the
stability of the method used. On the other hand, it is
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well known that direct variational methods are stable
as related to small variations in input data.

In addition, direct variational methods enable us
to formulate a comparatively broad class of problems
for various boundary conditions and for rather general
simply as well as multiply connected domains. This is
very important when taking into account the gravitatio-
nal interaction with other celestial bodies and, conse=
quently, formulating time-dependent problems.,

The linearized geodetic boundary problem is formu-
lated for an unbounded domain and the use of a direct
variational method for an investigation of the weak
solution would necessarily imply work in spaces with
weight. This approach will be svoided By using the
elvin transformation as a useful means of formulating
en ecuivalent problem for a bounded domain. it the same
time, however, we will arrange the transformation so
as to relatively magnify in the image that part of the
poundary which is of particular interest to us. in
respect of the numerical solusion requiring e limited
nunter of basic functions, the approach just mentioned
has some advantages. in appropriate choice of the elvin
transformation could also he an efficient tool, if used
under real conditions, in suppressing in the image those
parts of the boundary which sre not covered by the input
boundery data. .. similar remerk was also made by KiAiUr
e [

et 15 be mentioned ef the end of this introductory
part that attempts have already been made to use varizs-
tional methods for the solution of the geodetic boundary
problem, In these papers, however, the linearized geodetic
boundary problem is dealt with only in its more or less

simplified form, mostly in spherical approximation, e.g.
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in HAKIBOGLU [10] . /hen teking into account the obligue
derivative as en essentiel fcature of the problem, it

is necessary to find,in the first place,an eppropriate
decomposition of the Laplace operator. i‘he problem
becomes, of course, more complex but approaches reality
in a more eccurate way.

Let us recall finelly that the weak solution concept
has an important sdvantege consisting in the fact that
the existence of the weak solution can be established
relatively easily by some of the methods of functionel
analysis {(Lax-ililgram theorem). ’atural function spaces
corresponding to this concept are the Sobolev spaces.

i8 usuel, general existence theorems do no: answer
the question concerning the quality of the weak solution
(differentiability, etc.). Hevertheless, it is important
for us to know what quality of the boundary {its smooth-
ness) and ell those data that define the problem in
guestion is sufficient for the weak solution to be the
classical solution (setisfying the differentiel ecuation
end the boundary condition pointwise).

Froblems like this are topics of the theory of the’
regularity 6f weak solutions which in general is rather
hard but assuming that the boundary and all input date
belong to the class, say, % , we hope that all
results can be expected to hold in the classical sense.

2. Linearized geodetic boundary probvlem

To solve the linearized geodetic boundary problem
means to find such a function ¢ that

(2.1) av = 0 mn ext I

2
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(2.2) v+ </f,fradzf')=f' on [,

a3 V/}’/ = C'/l/l + O(I/F‘?}, Yy —= oo

where < , ) denotes the scalar product and

7
OF i il
244) g = pedw |,
7 [a;’f/o"};-o’/’-] )

/

ilecall that # in the above equations denotes the gravity
potential of the earth's model body, e.g. of the referen-
ce ellipsoid;;ﬂ is so~called iiarussi tensor; and £ thus
indicates :he isozenithal vector field which on /7 is
close to y/2 . ‘he surface /° represents a model shape

of the earth’s body, telluroid, the construction of which
is connected with the structure of the right hand side #
of eguation (2.2) and will not be specified here. This
and all the other important details concerning the formu-
latioa of the linearized geodetic boundary problem can

be found in HO.camoun [2] .

+8 mentioned in the introductory part, our aim is

to obtain a direct variational solution of the problem
2¢1)={2¢5)e In the following section we will deal with
the elvin transformetion, see KILLOGG [4] , p. 231,

the use of wnich enables us to formulate an equivalent
problem for a bounded domain. However, an attempt is
made to arrange the transformation so as to relatively
enlarge that part of the boundary /° and its neighbouring
space which is particularly interesting when solving the

problem., i'or this reason we will situate the centre of
the sphere of inversion &; (with the radius # ) at a
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point whickz in general does not coincide with the
origin of the system of coordinates (y,, yo,p /.

Introducing & new system of coordinates («,,4,, x,)
with the origin at point 2 such that the translative
relation

g2ui y =X + z

is valid, the function

[0,6) Z(x) = v (x + z)

will have to be & solution of the following problem
(Sl I AL sz 10 i et Bl o

(2B ») z o+ (/f,iraa/z?')=/: on Y&

>

(2e3.9 Zx) = c/lx+zl + OClrs21%), 4 — o

llowever, in regard of the asymptotic behaviour of the
potentiael in infinity, see KILLOGG [4] , p. 1443 SiIRNOV

[18] , Chap. VI, Sec. 137, the last condition can be
reyritten as follows

(2.3") Z2x) = c(1/lxl = <x,2)/1a17) +

+0/|X'.‘?),x—:-°° -
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3. Kelvin transformation

By Kelvin transformation, in our case the inver-
sion in the sphere §, , any point « 1is carried into
its image x’ and it holds

(BT II’XT;_'} =% ="'l"‘7|z ’ lxl -la’l = RZ .

Further, if # is harmonic function in a domein ex// |,
then

A R ~ R =~ R
. Cx’) = — ¢ = — #
(3.8) ulx’) i & (x) ¥7 u(x 2 /
is harmonic in the domain A2 = @¢ /"’ into which et /7

is carried by the inversion.
Prom (3.8) it also follows that

(3.9) Z(x) = li FE e B RN

x| |x| I'\'lz

and we can calculate

; " g
3”() LRGeS TR A )
l:\'la x| 77 3";' ax;
But
ax}? /,7
L (xr) = - ( d; -Gk, )
oy Fihet ¢ o T
and thus
ou

Px- 7 Ju J 2
2L () =K uie) 4 (9% oy _ Z_P: ,-‘,l = ()

x5 lx] l.? ox;
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Hence, it is simple to conclude that

£, god &) = —-—. Cx, £D)u +
. I*’ Tk ’rlz(x,ﬁ),;raa/a)
and
Z+ <A, graddd) = lAI’(/‘ - IZ Cr £)) u +
X
2 ¥
% m.a(rf = Zmz(xll), gadu) .
Passing to coordinates ,r,’, x), &7, we denote
p , R
(3.10) /ofx’/ - / - -2 L £A(x P + 2),

(3'11) J(JI} - [/’rl Il2+ Z) le 1'2 ( iﬁ"' ,szZ))

2
(3.12) H(x’) = % F/x’l,,2+z} "
X’

lfow the problem equivalentto (2.1)=-(2.3), i.e. the bounda=-

ry problem for the function « , can be written in the
form

(3.13) Ay = 0 m ot

. 1'2 ;
(3.14) pu + (.r gedu) = om "7
{3.15) ulx’) = —f/——(x 2

+ O0(x12), ¥’ — O

b4
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vhere the asymptotic development (2.3") has been used in
{3.15). Comparing the coefficients of the Teylor expansion
of the function % at point 0 with the coefficients of
the development (3.15),it is obvious that the condition
{3.15) is equivalent to equations

e, u(0) = -;—

S 2 (0) =~ =5 % i=1,2,0 .

’
[

4 simple calculation can verify that
{5.1€) lscx')l = 1Ayl , Sal, sDD==(x', £(y)) .

ig regards the coeificient ,U(X') , 1t can be stated that,
for the time being, it depends on the vector £ . If given
in & special form, its properties become more spperent in
the following section. ilowever, ,ofx’/ may attein, in gene-
ral, positive as well as negative values,

ire The simple Molodensky problem

i\ L = g = i T ¥ A e ’m

“he title or this section corresponds to ZiAxUP 5
terminology from [;] end to the situstion when /£ = //2
ience,

Vi 7
a1 ) P = > (7 = %2 ('r’; Z)) ’
2
{442 = — -—_/P / -——2 l _’
(442) s 72 27+ /F'?(X’Z)}+Zz :
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bxample 4,1. For z = (0,0,0) we have p = 3,- ’
£
g = txd
2x

and the boundary condition (3.14) is of the form

(4.5) 2-111— ?{(x’,/radu)=/7’ A

Introducing new coordinaetes r,, 5 , /37 Dby the
relation
E4
(4.4) /rl = r + d -i}_l ’
we obtain
7 /
( = S i ———— -
(4.5) P =3 ;s ((r,z) + 4zl /
Next, we will calculate
wl° 2
(4.6) 2 = w[/+ s(Srnz) + 4zl ) -
Izl 4 2
— 2L (atisiigelai s L fp )
Zp3 ( izl Ir1= 27,

’ _ ’ X'l
x(7+ A,z(f"lz)}— 72 2

of r[/+——((r z2) + dlzl)J -

7 RZ 1 2
+A’?Z(d+dll Vol Rl -
Thus
lzl i
(4.7) S = Lra Sei e’y o2 2 rP)] .

l’lz Iz
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ixample 4.2. If /7 is a sphere then, owing to confor-
mity of the Kelvin transformation, 7"’ also is a sphere,
If ¢ is the radius of the sphere /’ (let be demoted 5‘, )
then the position of points A4, & in Pig. 1 is given
by the vectors

= - (F+ Izl)if-i , Ao = (812

Points A ,0 &are carried by the inversion into points

2 2
J r4 '? ’ V4 P

x| = R i o
4 £ g £l 14 et > %

\Ia
|
N

lying on the diameter of i o It can easily be conclu-
ded that

2
oe

7 ) /
a B e [ ¢ ———————

J J
is the radius of the sphere /7 (denoted by S in I'ig.l).
According to our figure the point

; 2 R’
L oS 2] = (= x|l )= =2 ————7 2
(4.9) ’ 7 7 12| P2~ |22
is the centre of the sphere .f,' "
The equation
2 b i,

is satisfied by
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4
2 R /4
= — —i + + ? /
“ez 2}l e : 4 1z)?
which in view of (4.3) yields
V]
2 12| . 2 2,5
= —_— = — 1zI°) =% |z
(4.11) d, S P sigm (§— |z )§° Pq
ik 2 7 t,"z . 2 2 ;_/
(4.12) dy = - R mz FI = _ J‘yn/f _|Zl)??|2l

Teking now into consideration equations (4d.4), (4.%)
and (4.11),it is not difficult to see that for & = &,
{the root d, is, for the present, not discussed) the
origin of the coordinate ‘system (/', s B, 5 J is
identical with the point

Z

X = 4,
7 R

i.e. with the centre of the sphere 6'5,’ « At the same

time, however,

s lx’) a, 2
(467 =5 = gLl + S (Cra + 412 )] -

=( Al )z(?z-f 121% + 2%1z| s (r,z)) ,

P
2 2
(4.77) ;=_ﬁ,-=_f__'_ﬁ,— i
2d, 2p?
) 2 2 ¢ . 2,2 r
= — syn (s - lzl)z?, o= - rgyrz(f _'z'}m

and it may be noted that, in view of the first equation
(3.18), the last result could be expected. Thus, the
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vector § is normal to the sphere .5';.»' - in agreement
with the conformity of the Kelvin transformation. It
is elso possible to verify for the example just quoted
that

el Si_lzl cor(rpz) + Izlz
2 2(92 — |z12)

Il

(4413) P

and that for p the following inequality holds

¢ - 2lz| P + 21zl

“i-- —_— < ————
LR 25 -121).F = Ziesizl)

Summing up, if /° is & sphere with the radius ? , and
if we use the coordinate system (7, /3, r; )] with the
origin X/ , then the solution of the simple iiolodensky
problem requires to find such a function « that

(4415) du = 0 a  awtr’s=sats

(4416) ?{[/_',F/Z" ((r,z) + d,1z1 )] u -

—7’[7+§((r,z)+ d,lzl)](r,;radu) =H on /_':

Z c
(/i l:)) JZ[( z} 4 .
\4elO 39 —d,— =——p;‘zj iy Qv 7,2,3 ‘
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i~
5. Direct metods - elementary notions

As was already mentioned, we will be engaged in
a week solution of the problem (3.13)=(3.15). Our
approach will be conformeble particularly to that of
15048 in [11] , or REKTORYS in [12] , but our aim is
not to give here a systematic exposition of the whole
concept of the weak solution of boundary problems for
elliptic equations. In order not to omit some characte=-
rigtic features of such an approach but to retain its
integrity, we will give here at least an elementary
explenation of some basic notions. The reader is also
referred to the pertinent information given by KUFNER,
Jouw, #uctx [7] .

5.1. The space '-:.’2\1)(.(2 )

Recall, first, that the use of the Kelvin transforma-~
tion made it possible to work with the bounded domain (2
( =S¥t

Let us denote by EC) e set of all functions
infinitely differentiable in 12 and together with all
their derivatives continuously prolongable on the closu=
re N2 of the domain 2 y 1eee up to its boundary
an . Let it be noted explicitly that in this paper
we restrict ourselves to real functions only.

By £, (12) we will denote the Hilbert space of
square integrable functions on 42 . [, (12) 1is provi-
ded by the scalar product

L i (v,u) = 42/(1)110)(1’1’
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where ar = dkx,dx,ok, . "he integrals are taken in the
Lebesgue sense. Instead of [,(2) we will simply write
only £Lp e

On &£(f2) we introduce the scalar product

(5.1 529 (V,l(/%ﬁ/(_q) = (7, u}, =

J Pr du
= u adx + 2 / i i /
ézf‘u . =7 Ja %% 0x
The space Wszf)_) is defined as a closure of the set
E(T) produced as a completion of &(f) with
respect to the norm

74
(541.3) Vorn, = (7, v), :

3 ) ! ' )
.orsake of brevity we will write simply Wz .

nemark S5e.le.l. The notion of completion is explained in
2uKrenys [12) , Chap. 25, in general in RUDIN [13] ,
P 71 or in some other books on mathematical analysis.

1t Few,” |, ¥l , =123, is defined

as a function from L, o In fact, in view of the
definition of W,” , we have f =tm £ in W,
where i

fo € E(RZ)  thus /o , 2 =12

7%e ")

is a Cauchy fundamental sequence in £/, . We denote 1ts
limit in £, by df/dr; end we will call it a genera-
lized derivative. It can be shown that in this way
af/ox; is uniquely defined, see NECAS [11] , §1,
Sece lo.l.

The space Wz(” is, of course, equipped by the
scalar product (5.1.2) and is often called an energetic
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space or & space of functions with "finite energy".

In this connection, the scalar product (5.1l.2) is
often referred to as an energetic product and the norm
(5.1+3), an energetic norm.

562, Lipschitzian boundary and notion of trace

Intuitively, the existence and properties of the
boundary values of a function defined on f1 are influen-
ced not only by the function itself but also by the
smoothness of the boundary 42 .

iie say that the boundary Jf2 is conbtinuous if

there exist a«a>0 , 4G > 0 , & finite number of
Cartesian coordinate system ( Xy Wondnaciees Jo
I e NI S e G SR |
continuous functions &, (+!/) defined on the open
sets

Vo o S B SR v ok S kot e e
such that

. 1) each point & €JJf2 can be expressed at least in
one of the m coordinate systems in the form

RO T aA% SVEN s

(ii) the points « =(ux!,x_ ) for which x’ €4, ,
alx!) =x, <a.(x)) + @ Dbelong to f2 and
those for which x’/ € 4, »_dr ) =B <uwy<d (x
belong to the exterior of £1 (i.e. to £&; —11),
see Fig, 2.
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fig. 2

Je say that 42 1is a lipschitzian boundary if sll
functions 4. are locally lipschitzian in 4, ’
this means that

X, e K= |a,(x,’} - a(y)| < const. |5/ — y|

is valid for each closed set AKC4, ; thus 4, is
lipschitzian on each compact Aca, .

The bounded domain {1 we are concerned with is
understood in the following text to be the domain with
the lipschitzian boundary. It can be stated that such
a type of domain is already general enough to cover,
with a small degree of idealization, also those domains
with boundaries whose regularity corresponds to the
smoothness of real topography. Domains with the lipschit-
zian boundary are, e.g., the sphere, ellipsoid, cube,
and polyhedron as well as substantially more general
domains with smooth, or piecewise smooth, boundaries,
etc. Let us note, however, that among domains with the
lipschitzian boundary cannot be ranged, for instance,
those domains having singulerities analogous to highly
sharp vertices in two dimensional case.
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It can be shown, see NECAS [11] , Chep. 2, §4,
lemma 4.2; KUFNZR, JOHN, ¥UCTK [7] , Chep. 6, Sec. 6.2,
Theorem 6.2.14 or FUéfK, KUPNER [1] , Chap. II, Sec. 8.3,
that each of the functions 4, describing the lipschit-
zian boundary of the domain 2 , has a total differen-
tial almost everywhere in A4, y 1lee. except a zero
subgset of 4, (with respect to Lebesgue measure). Hence,
the lipschitzian boundary 2 has an outer {inner) nor-
mal almost everywhere.,

48 will be shown on the following pages, it is
possible to speak in a certain precise sense about
boundary velues on J42 of functions from Wzm .

By L,(dR) we will denote the space of square
integrable function on 212 .

In the preceding section the space W;’) was
produced by functions of the set ¢&(42) eand by their
"cover" in metric (5.1.3), i.e., roughly speaking, by
those functions from [,(#2) for which it is still
possible to speak in a certain generalized sense about
their derivatives of the first order.

e 'or every continuous function on ﬁ , and obviously
for every function # € E() sy 1ts values on the
boundary Jf2 are uniquely defined., The function
r(x) , x¢e df will be celled & trace of the
function Z€ £(A) on @42 . The trace of the
function % is evidently continuous on the boundary 22
and hence, obviously, square integrable on d/1 ,

The possibility of extending the notion of the tra-
ce to all functions from h{?mfﬂ) , and accordingly
also to those which do not belong to E(N) or are
not even continuously prolongable up to the boundary,
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is demonstrated in the following theorem (for proof see
nzGas [11] , Chap. 1. §1, Theorem 1.2).

Theorem 5.2.1. Let 22 be a bounded domain with the
lipschitzian boundary. Then there exists a uniquely
determined continuous linear mapping from M@ayﬂﬂ)
into L, (dR) such that for all 4 € N2 and
210 @IE (1) it is 7(v)(x) 7N x) %

According to theorem 5.2.1, each function 7€ WZ(')(IZ)
is given a function 77 , its trace. On the contrary,
the cuestion arises as to whether each function from

L, (912) is a trace of some function from Wz(’/(fl) .
"he reply is negative, see NECAS [11):a, *ehdp s Uyaday
Remark l.2. Several comments on the question of traces
can be found in REKTORYS [12] , Chap. 30. Let us also
mention that theorem 5.2.1 is not correct if 42 is
not the lipschitzian boundery. To see it, it suffices to
consider a plane domain with a sufficiently sharp
point on its boundary, e.g. the Lebesgue edge,
see 112CaS [11] , Chap. 1, §2, ixercise 1.7.

In the following pages we will denote the trace on
) of a function 7 from Wzm (n) simply by # .

Recall that the space L, (dR) was introduced here
in a very intuitive way. ixact formulations defining this
normed Banach space can be found in NECAS [11] , Chap. 2,
§4.1. The corresponding notion of the surface integral
is defined by the lemma on the partition of unity in the
same book, i.e. in [11] , Chap. 3, §l.1.

Let us have now in l‘} a fixed Cartesian coordinete
system and let us formulate - at the end of this section
(also without proof) - the Green theorem which is very
useful in the sequel.

Theorem 5.2.2. Let (2 be a bounded domain with the
lipschitzian boundary. Let z ,? be two arbitrary
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functions from #,”(72) , then

Ju = : - I
.21 /[ (v (e = [ w2 n; () S [ 2) o x)

where 7 =/,2,9 end () = (n,(x), n,(x), ny(x)) is
the unit vector of the external normal at point x

Proof of this theorem can be found in general form
in NECAS [11] , Chap. 3, §1.2. The existence of the two
outer integrals in (5.2.1) is obvious. The existence of
the surface integral is a consequence of the theorem on
traces and of the fact, see p. 18 , that the normal of
the lipschitzian boundary exists almost everywhere .

6. Generalized obligque derivative problem

Let us mention that in the following text f2 is
still understood to be a bounded domain with the lipschit-
zian boundary.

Let 25,0), 4y x) , 4,5 =123 be bounded
Lebesgue-measurable functions in 42 and let it hold that

2
(6:1) I ay(ufify > const 1£1%, conet. >0,
Ern

for almost all x € 1] and all vectors

£=05,,6,6), £+0
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By
— v Ju
‘ — Qs — — dx +
/ - Ju
% b vy — axr
= z:z ‘oo
7) (7)
we define & bilinear form on W, () x W" (1) y
It can be seen immediately that Aflf, ¥) is conti-
nuous on  W,”(n) x W7 () , i.e. there exists a
constant A/ >0 such that for sll » u« € W, °(n) it
is A(rv,u) = M lrl,-lul, .

Further, let us define on Mém(.(l) « W70n)
the boundary bilinear form

(6.3) alv,u) = / alv Tu &5

anl
where a (x) is a bounded Lebesgue-measurable function
on 212 end 7 is the operator of treces, see theorem
5e2el o

i'rom theorem 5.2.1 it is quite evident that the form
a(r,u) is continuous on Wz(”(fl) x Wzm cn) y

In conformity with our earlier remark in Sec. 5.2,
we will denote in the following text the trece on 12
of a function # simply as # .

finelly, let e l,@n) .

The function « € W,7(N) is called the weak solu-
tion of the boundary problem with an oblique derivative if

(6.4) ACv,u) + aCv,u) = érfa's

holds for a1l # € W,”(n) .
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7. Relation to the classical solution

It will be shown that the definition of the week
solution from the preceding section asctually presents
a meaningful extension of the classical notion of the
solution of an oblique derivative boundary problem.
for this reason we will assume that x« , the functions
ay T R and the boundary £ of the
domein 42 are sufficiently smooth. Using now the Green
theorem we obtain

(Togd ) ACv,u) + acv,u) =

where the vector o = (6G,,6,,6,) ,
.2y Gy = 2' 2y i .
defined on 4722 , is oriented towards the exterior of

the domein N and is never tangential to its bounda-
ry J42 . Indeed, in view of (6.1), we have

(7.3) {G,n) =2 const. > 0 .

3y means of a usual reasoning concerned with an integral

from a continuous function it is now possible to write
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- i :J (e s e
g % oy gy O Ao iy
_ T/

J J . .
Tl e il (e O P 2
i=/ =/ Z

(T+5) au + (G,gadu) = f m I

and our definition from the preceding section then
actually results in a generalization of the classical
oblique derivative boundary problem.

8. Oblique derivative problem for Laplace equation

The differential operator on the right hand side
of (7.4) will be the Laplacian operator if and only if
the coefficients a,j s b6y will satisfy the following

relations
20 = 7
(8.1) 2p(d) == 3, (x) = a,(x) ,
dy(x) = = a,(x) = a,(x) ,
dyy (x) = = a,(x) = d,(z) ,
e day 4,
7 ox, dxy 3
(8.2) -4 j}’; - jf;v ;
= raesfltastafles L




In a case like

will be of the form

(8.3)

(8e4)

where

(8.5)

and

(8.6)
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this, the boundary problem (T.4), (T7.5)

2y = o mpfd raw
au + (G,gradu) = f om N
63 = 3,772 Jzﬂ, + ﬂ‘;
(e,n) = 7 3

It is easy to arrive at some additional relations

between vectors

hold on the boundary
(8.5). By direct calculation it is simple to verify that

(847)

(8.8)

(849)

(8.10)

(8.11)

(G-n ,a)

@ =(a, ,a,,d,/, G, n which
22 and result from equation

= 0 5
O S Y
G ‘= M B
g (n,a)d - (G -n),
le -7l = loI"~7 = #°(n6)=

e e (n,a)z = (nx0,4) ,
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(8.12) PP R b LR P A TR
= lallsin(n,a)

(8.13) le » al2 =Cla1?=7)(7 +121%) .

where x means the vector product.

Se Bilinear form

Our introduction of functions &, (x) has as yet
been quite formal. We have also shown that the weak so-
lution is, in fact, an extension of the respective
classical notion.

Our aim is now to construct the functions g, (x/
for the given vector G satisfying (8.6) so as to meet
equations (8.5) on the boundary. Recall that, according
to the assumption, they together with the components of
the vector

b = - curla

given by equation (&.2), should be bounded and Lebesgue-
measurable in £2 .

It is obvious from (8.7) and {(5.38) or (3.12) thet
the vector 2(x/) is determined at point x of the
boundary 212 8o as to be situated in the plane perpen-
dicular to the vector 6 - 7, its modulus and position
in this plane being interrelated by

2

(Sol) |6_|2_7 = 'c?' v (ﬂ,a)z =

2

= lal®“wmn?(n,a) .




321

This indeterminacy is a consequence of the singularity
of the system (8.5). It is simple to verify that its
determinant equals zero.

Let us now approach the determination of the vector
a(x) at points X of the domain 2 g

sxample 9.1+ Suppose that the vector a2 , continuous
on the closure 2 of the domain 2 y 18 determined in

n so that curl @ =0 . Then there exists a function #
such that
(9.2) a = grad P on n £

llence, owing to the fact that

(5.3) S (gaar, ac) = 0

~ (f} (; 7 )

is valid for an arbitrary closed curve situated in n ’
equation

(So/l) / (”XG'I df) -

(7)
= /({} lo—nl cosCnxo,at) latl = 0

must also be true on an arbitrary closed circuit (t)
with regerd to {8.8). Inagine now, for the purpose of
precticel interpretation, that the shape of the bounda-
ry Jf 1is given by a form of the earth surface topography
{possibly somewhat idealized} and 6 = (n,;)_’; s
where ¢ 1is the gredient of the earth gravity field.

Bet. (7). . be any contour line on the side of a conical
hill. It is obvious that such & line is closed and at
every poiat « 1its tangencial vector is co-linear with
the direction of the vector product #(x) x ¢ (x) (i.e.,
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it runs in the direction of ns6" ). Thus cos(nxc, af) =

= 7 along such a line and hence
(%=3) / le —nl ldfl = 0O
(¢)

which necessarily implies that G =n at all points of
the contour line (Z) . However, this cannot be generally
true. By analogy, it is not difficuli to see that a si-
milar result can be obtained for any closed surve along
which cos(nax6-, a¢) > O . This means that the
vector G cannot be arbitrarily given as its choice

is a priori limited by the shape of the boundary /2
Returning now to the beginning of this example,it is
evident that it is necessary to leave the assumption
curla = O which, as has been shown, does not allow
us to solve an oblique derivative problem (for the La-
place equation) for an arbitrary vector & satisfying
(8.6) only. Hence, it is too restrictive, particularly,
for the solution of the linearized geodetic boundary
problem.

ixample 9.2, Suppose now that the vector «# ,

continuous on Z , is determined in 2 so that
(a, curla) = 0 and curl @ =+ O is valid for all
x € () belonging to a certain neighbourhood of the

boundary 4.2 . As is known, see SUIRNOV [17] , Chap. III,
Sece 793 Chap. IV, Sec. 122, under these assumptions

there exists a function A and an integral multiplier

M such that

S.6) M2 = grad P on 1
and
(9.7) Acurla = @ x grad o om Q4
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It can be shown, on the basis of a similar reasoning
as in the preceding example, that

(9.8) /,a(ﬂxff,df) =

@) =//a Il = nl cos(nxa,at) latl =0
)

necessary holds along any closed curve (7)€ Ji2

A8 has already been demonstrated by the preceding example,
the case u(x) = const., x € 21 should be avoided.
Let us imagine now, similerly as in example ¢.l, that

we have the vector field G = (n,f)"’f and our conical
nill (with a rounded top). Let ((4/ be any closed curve
on the side of our hill running from point A~ te\potnt &
along & contour line; consequently, cos (ﬂX@‘, at) = 7
in this pert of the curve; from point A to top € end
from € to point A along the slope line; consequently,
cos (nx6 ,af) = 0 in these parts of the curve.

lience

o = /. lo — nl Jf =/ le—n| df.
(/z/“ Wt

Py
¥a
[ ]

L0
p—

and in view of an arbitrary choice of points A , £ on
the mentioned contour 1line and the inequality |G — 2>,
equaiion (¢.9) necessarily implies _« = 0 along the
vhole contour 1line. However, the contour 1line itself
was elso arbitrarily chosen and thus it can be shown that
M= 0 on the whole conical hill side. By means of clo-
sed curves composed of two segments on neighbouring con-
tour lines and two segmeints on slope lines connecting the
former , it can be finally shown that « =0 is valid
on the whole %“oundary . ¥0] . Congidering now (S.6),
one can conclude that the coefficients 2y i iFL Lyl I
cannot be reprcsented by means of the function # and

the integral multiplier u on the boundary d/2 . This
result is a natural consequence of the fact that there is
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neither a scalar nor quasi-scalar field whose lines of
force would run on 2R in the direction of contour

lines.

Summing up, to solve linearized geodetic boundary
problem one must necessarily assume that

S.10) b = — curla + O

Hence, the bilinear form A(r,u) is not symmetric
and

+ é(a,fraa’zf x gradu ) de —é(a/r/a,;raa’u)wdr

In view of eguations

{G.12) (@,g/@d v x gradu) = (gradu,ax;raa’r) 5
curl va = vearla — ax grad v,

see SuLiulov [17] , Chap. IV, Sece. 124, we have

Cewl a , grad u v = (curl vra, yradu) +

+ (grad u,axgred v) ,

thus also

(Sel3) ACwv;u) =4(,radzr, gadu)ar -

-4(car/zra,yraa’u)dr =
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Assuming now that v, ¥, 4; are sufficiently
smooth, it is possible to arrive at an equivalent form
of the bilinear form A (», u) . Hence, with the use of
the Green theorem and the fact that divawriva = 0
we obtain

(Sel4) Alr,u) =4(doradr,;raa’u)dx .

- / curlva , n) u ds
i ¥

end note thet
{9615) 4{2 (cwl va, n) a8 = 0

as a general consequence of the Stokes theorem, see
SLZ.NGVI [17]  , Chap. IEI,'Sees 73,

A similer menipulation as in (S.1l2) yields

(curlva ,n)u = (ewlvua,n)+ (nxa, gradu)v

end taking into consideration equation (8.¢), we can con-
clude that the equivelent form of A(z,u) is as follows

($.16) Alr,u) =4 (;raa’z/, yraa’z/) Py MG

i

£ (G -n,gradu) v ds .

..emerk ¢.1. The forw in (¢ .l6) is very important

for praciical computaiion. In that case we usually work
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with sufficiently smooth functions and, consecquently,
the forms in (¢.11) and {$.1l6) are equivalent.

10, V=ellinticity

It was shown in the preceding section in tie
case of the linearized geodetic boundsry problem the
weelk solubtion concept is necessarily ccanected with tie
esymnetry of the form A(r,u) , whis meens that the
Ritz method which consists of mininising a ceriain
functional of energy cennot be used for the numerical
gsolution. On the other hand, the use of weci:ods like the
Galerkin 2nd least sguares mcthiods is not resiric-
ted as it does not necessarily require the symuetry of
the form A (v,u) . llowever, this will no% be discussed

v

in detail in this paper. Je merely refer o IiuCas [11] ,
RETTORYS [12) , HITEAN [19) , (L30IN [C] . Irincipelly,
it is necesgary to choose in the spece éV}nV(JQ) en

appropriate function base. Ia this respect the finite
elements approach as discussed in JU.cli5 and HiGELO [3]
seems to be very promising. "he probiem to find the weak
gsolution (more orecisely its epproximation) consists,
subsequently, of soiving & certain system of linear equa-
tions.

The existence and uniqueness,in connection with di-
rect variational methods are usually studied by means of
the so-called V-ellipticity of the bilinear form A(ﬁ'u)**
+al(v,u) , see W5CAS 11] , Chap. 1, §2; :EHTORYS [12] ;
Chap. 33. Hence, in the case of the protiem defined in
Jec. 8., the study on the existence and unigueness of the
weak solution requires to clarify the question for which
v e W,7(N)  the inequality

(10.1) A(v,v) +a(v,v) =/(gradryradr)dx -

-/(cz/rl.; fraa’zf)v’dl % 32ocr ds > ¢ llzrllf , >0,
7
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and,after a small manipulation,the inequality

(10.Y) 4 (;radz/,yraa’zf’)d( == }Zé (C‘ar/a, ,,) Vzo’.f i

+/ar"’df =c el , ¢c>0,
an :

where ‘4(2 (coria, n)ds = 0 , is valid.

+xemple 1C.l., Chenging the notation slightly, we
have shown in exemple 4.1 that the boundary condition
for the simple ilolodensky problem is of the form

E/u—?’(x,;radu) = /K on dn

issuming now that («,7) >0 (i.e., the domein {2 is
starsheped at the origin), the boundary condition can be
given an eguivalent form:

(s ) = (x,n)-iu + (x{x, ﬂ)-z grad u/' = —Z(X,ﬂ)-///

which, conpared with (8.4), yields

-7 -7 -7
(10.3) @=-Cx,n) , 6 =ax¢x,n)  , F=-2Cxn) H .
Let now ¥ =consf{. , then

A 8V S utv) o (co,v.cf.)*'4z s < 0

end the inequality (10.1) ceannot hold for such & function.
Let further # = 4 ;then, considering (3.5) and (10.2),
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A(v,v) + a(v, v/ =/dr *
n

7 /‘?'.Q(G',-—n,-)xz-ds r _426,1,(,-0'.5‘ = 0
end the ineqality (10.1l) cannot be valid eitler . The
reason why we have failed in proving the V-ellipticity
of the form A(wv,u) + a(v,u) for v =const., v = x;,

nEull, 3 is somewhat deeper. In fact, for « = «;
end a1l 2z € W, (n) (considering (8.5) egain) we
have
v
ACr,u) + alv,u) =/ —-—
g9 91,-

=7
+ 4/6’,-— n;) v ds — 42(1,77) va dS = 0

thus the functions x5, ¢ = /1,2, , .ere, as is

known, obvious solutions of the homogeneous simple iLiolo=-
densky problem., These are, of course, ruled out by the
condition (3.15) or (3.17). Let now ¢ , @ <e¢ =/ . he
& sufficiently large constant. Supposing ¢ = cas(x, n) = I,
it is possible to state conclusively that the V-ellipticity
of the bilinear form A(% u)+ a(v,u) can be proved for sll

v € Wz(’}(f)) such that
/Vdr = /V,r,-a’,r =0, [ =172,7,
n 773

wihnich is in conformity with the HORLAIDEL existence and
uniqueness theorem 1.5.1 from [2] , velid for the
classical solution.
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Genauigkeitsuntersuchungen zu dem gravimetrischen Verfahren
der Bestimmung absoluter Hohenanomalien und Lotabweichungen
aus terrestrischem Schwerematerial

J. Ihde
VEB Kombinat Geodasie und Kartographie, Forschungszentrum

Summary

Three main error influences of remote areas (distance from
the station > 90) on height anomalies and deflections of the

vertical are being regarded:

a) The prediction errors of mean terrestrial free air ano-
malies have the greatest influence and amount to about + 0Oy2
in each component for deflections of the vertical and to

+ 3 m for height anomalies (results from 1977).

b) The error of the compartment method, which originates
from converting the integral formulas of Stokes and Vening-
Meinesz into summation formulas, can be neglected if the
anomalies for points and gravity profiles are compiled to
50 X 50 mean values.

c) The influences of the mean gravimetric correction terms

of Arnold - estimated for important mountains of the earth
by means of an approximate formula - on height anomalies may
amount to 1 - 2 m and on deflections of the vertical to

0y05 - 091 and, therefore, they have to be taken into account
for exact calculations.

The computations of errors are carried out using a covariance
function of global free air anomalies for points.

The influences of different global data series of mean free
air anomalies differ up to 7 m and 1" respectively. The la-
test gravimetric data series deduced by means of satellite
altimetry may result in accuracies of better than + 1 m for

absolute height anomalies.
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1. bBinflihrung

Mit den globalen satellitengeoddatischen Verfahren werden
absolute geodatische Koordinaten erhalten, die sich auf ein
geozentrisch gelagertes Koordinatensystem beziehen.

Das gravimetrische Verfahren der Bestimmung absoluter Hohen-
anomalien und Lotabweichungen ergibt in Verbindung mit den
gemessenen natirlichen Koordinaten, der Normalhohe und der
astronomischen Breite und Lange, ebenfalls absolute geozen-
trische Koordinaten.

Was von dem astronomisch-gravimetrischen Verfahren und den
satellitengeodatischen Verfahren jeweils nicht selbststandig
gelost werden kann, ist die Bestimmung der stationdren Meeres-
topographie, die einmal als Grundlage filir ozeanologische For-
schungen zum anderen fiir die Anlage eines einheitlichen Welt-
hohensystems von Bedeutung ist. Sie 14Bt sich nur durch Kom-
bination beider Verfahren ableiten, aus absoluten gravime-
trischen Geoidhohen in Verbindung mit satellitengeodadtischen
Altimetermessungen.

Vergleiche zwischen satellitengeodatisch und gravimetrisch
abgeleiteten absoluten geoddtischen Koordinaten filir ein und
denselben Punkt ergaben Koordinatenunterschiede bis zu 100 m.
Untersuchungen zeigten, daB ein GroBteil der Differenzen aus
der Ungenauigkeit des globalen Schwerematerials, also aus
dem gravimetrischen Verfahren resultierten. Nachfolgende
Betrachtungen sollen klédren, welche Genauigkeit mit der gra-
vimetrischen Methode mit aktuellem globalen terrestrischen
Schwerematerial (fiir Aufpunktentfernungen groBer 1000 km)
erreicht werden kann,
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2. Untersuchte Fehlereinfliisse

Die Berechnung absoluter gravimetrischer Hohenanomalien und
Lotabweichungen mit den Integralformeln von Stokes und Vening
Meinesz

—C
i

LR
i ngF S(y) do
G

f e cosa]

A } L jAgF s {sino\} 8

7 G

setzt die Kenntnis der kontinuierlichen Schwereverteilung
iber die gesamte Erdoberflédche voraus. Praktisch liegt die
gemessene Schwerebeschleunigung nur in diskreten Punkten 'vor,
wodurch eine bestimmte Messungsdichte realisiert ist. Die
diskreten Punktschwerewerte werden zu Mittelwerten pradi-
ziert, die einen Pradiktionsfehler als Funktion der Messungs-
dichte besitzen., Der EinfluB des Pradiktionsfehlers auf
HOohenanomalien und Lotabweichungen ist der erste untersuchte
FehlereinfluBl.

hi

(1)

Die Integralformeln nach Stokes und Vening-lleinesz gehen

bei Verwendung mittlerer Freiluftanomalien ZEF in Summen-
formeln iiber. Der dabei entstehende Fehler der mittleren
Anomalien als Funktion der Kompartimentgrofe wird als Summa-
tionsfehler bezeichnet.

Die Oberflachenfreiluftanomalien zﬁgF werden bei der Be-
rechnung von Hohenanomalien und Lotabweichungen an der Erd-
oberflache nach der Theorie von Molodenski durch gravime-
trische Korrekturglieder berichtigt. Im allgemeinen benutzt
man nur das lineare Glied der Reihenlosungen von Molodenski
oder Arnold. In die geodadtische Praxis hat die lineare Lo-
sung nach Pellinen mit der ebenen Reliefkorrektion als
Approximation der Reihenentwicklung von Molodenski Eingang
gefunden, die auch fir das Gebiet der DDR angewendet wird.
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Die Berechnung der linearen Korrekturglieder ist sehr auf-
wendig, so daB sie nur fiir einige Gebiete der Erde vorliegen
und bei der Berechnung absoluter Hohenanomalien und Lotab-
weichungen im allgemeinen nur in aufpunktnahen Gebieten

(\f < 1000 km) beriicksichtigt werden.

Als dritte FehlergroBe wird untersucht, welcher Fehlerein-
fluB auf Grund der Vernachlédssigung der linearen Korrek-
turglieder in der globalen Zone entsteht.

3. BErgebnisse der Fehleruntersuchungen

3.1. Pradiktionsfehler mittlerer terrestrischer
Freiluftanomalien

Die Pradiktionsfehler verursachen von den hier untersuchten
Fehlern den groB8ten EinfluB auf Hohenanomalien und Lotab-
weichungen.

Fiir die 1977 von Rapp (8] verdffentlichten terrestrischen
flachengleichen 5° X 5° - Freiluftanomalien wurden mit be-
kannten Messungsdichten fiir jedes Kompartiment individuelle
Reprasentationsfehler abgeleitet und ihre Fortpflanzung auf
Hohenanomalien und Lotabweichungen berechnet (Tafel 1).
Wegen der hohen Messungsdichte im mitteleuropaischen Raum
werden die Pradiktionsfehlereinfliisse der nahen Zone 1/"<9o
vernachlédssigbar klein angenommen (s. a. [4], Tafel 7).

Tafel 1

EinfluB individueller Pradiktionsfehler (Reprédsentationsfehler)
mittlerer Anomalien auf Hoheananomalien und Lotabweichungen

fir einen in der DDR gelegenen Aufpunkt

sy A | o i

in m in " in "

50° 180° +3,11 0,166 +0,148
20° 180° 3,16 0,206 0,165
9° 180° 3,22 0,221 0,182
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Aus dem Vergleich der Ergebnisse der numerischen Integration
verschiedener Datenserien lassen sich gewisse Riickschliisse auf die
Genauigkeit der HOohenanomalien und Lotabweichungen ziehen. In
Tafel 2 sind die Einfliisse der globalen Zone 1V>'9°, die aus drei
Serien mittlerer Freiluftanomalien abgeleitet wurden, gegeniiber-
gestellt., Die Differenzen zwischen den Ergebnissen kdnnen zum
Teil auf die Vervollstdndigung des Schwerematerials (ErhShung der
Messungsdichte) und die unterschiedliche Verarbeitung der Aus-
gangsdaten zu mittleren Anomalien zurickgefiihrt werden. Allerdings
iiberschreiten die Differenzen zwischen den Datenserien bei der Lot-
abweichung in Breite die Fehler aus individuellen Pradiktions-
fehlern der mittleren Anomalien betrdchtlich (Tafel 1).

Tafel 2

Ergebnisse der numerischen Integration der Freiluftanomalien
drei verschiedener Epochen der Zone 9° < ¥ < 180° bezogen
auf die Helmertsche Normalschwereformel 1901 im System Potsdam

Jahr der Anzahl
Ver6ffent- Datenserie Literatur der Kom- S g 7
lichung partimente
1970 20° x 20°-zIPE 1970 [2] 86
5° x 5°-08U0 1959 [3] 326 $+10 m +2,3" +1,8"
1° x 1°-6IP 1964 [1] N5
1975 5° x 5°-840 1975 [9] 1654  +18 m +1,2" +2,5"
1977 5 x 508U 1977 [8] 1654  +20 m  +0,3" +2,5"

3.2+ Der Summationsfehler

Der Summationsfehler ist der Verfahrensfehler der Kompartiment-
methode, bei dem zwei Fehlerursachen unterschieden werden
(Tafel 3).
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Tafel 3
SummationsfehlereinfluB mittlerer flachengleicher 50 X 5° -

Freiluftanomalien auf H6ohenanomalien und Lotabweichungen

wegen mittleren wegen Mittelpunkt- Gesamteinflul

Yo % ,
Anomalien werten der analy- ’7ﬁ5 Meas,

tischen Funktionen
in m in " in m W1 e in m Jippleiee

50° 180° 40,087 +0,0048 +0,024  +0,0009  +0,090 +0,0049

20% “80°% 0,17 0,013 0,062 0,0073 0,18 0,015
9° 180° 0,30 0,044 0,22 0,074 0,37 0,086
4° 180° 0,53 0,21 1,03 0,80 1,176 0,83

Erstens gehen in die Rechnung statt der von den Integralformeln
(1) geforderten kontinuierlichen Schwereverteilung mittlere
Freiluftanomalien, also ein geglédttetes Schwerefeld ein. Mitt-
lere 5° x 5° - Freiluftanomalien im Bereich 9° < ¥ < 180°
fihren zu Fehlereinfliissen auf HOhenanomalien und Lotabwei-
chungen von #+ 0,3 m bzw. £ 0,04"; 1° x 1° - Anomalien von

+ 0,015 m bzw., * 0,002". Dieser EinfluB ist vergleichbar mit dem
Abbruchfehler bei der Verwendung von Kugelfunktionskoeffizienten.

Zweitens werden die Argumente ¥, A der analytischen Funktionen
S(yv), V(¥), sinAk, cosx auf die Kompartimentmittelpunkte bezogen,
wodurch wegen nichtlinearen Verlaufs der analytischen Funktionen
Abweichungen zu ihren integralen Mittelwerten entstehen. Diese
Fehlerquelle kann durch numerische Integration iiber S(¥),

V(y) =« cosX, V(¥) . sink iiber jedes Kompartiment ausgeschaltet
werden. Bereits eine Unterteilung in 4 Teilkompartimente fiihrt
zu vernachldssigbaren Fehlereinfliissen.
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3,3, Fehlereinfliisse bei Nichtberiicksichtigung
gravimetrischer Korrekturglieder

Fir die Berechnung des linearen mittleren gravimetrischen
Korrekturgliedes nach Arnold wurde eine Ndherungsformel ab-
geleitet und in zwei Testgebieten (Mittelgebirge, Hochgebirge)
geprift. Es wurde eine fiir die Fehlerschidtzung geniigend

genaue Ubereinstimmung mit streng berechneten mittleren Korrek-
turgliedern gefunden. Mit der Ndherungsformel wurden fir 60
bedeutende Gebirge und &rhebungen der Erde mittlere Korrek-
turglieder geschiatazt (1r2>9°) und ihr EinfluB auf einen in

der DDR gelegenen Aufpunkt berechnet:

ASKG‘ ==-1,7n
Agm = + 0,045"
A?KG =, =0, 400 un

BEs zeigt sich, daB die Nichtberiicksichtigung der linearen
Glieder der Losungen des Randwertproblems fir aufpunkt-
ferne Gebiete Fehler von einigen Metern sowohl bei absoluten
Hohenanomalien als auch bei absoluten Lotabweichungen her-
vorrufen kann,

4, Diskussion der Ercebnisse

Die derzeit (Stand 1977) erreichbare Genauigkeit gravimetri-
scher Hohenanomalien und Lotabweichungen wird durch die Mes-
sungsdichte globaler terrestrischer Schwereanomalien begrenzt.
Sie liegt fiir 9° < ¥ < 180° bei

mr =+ 3,2 m, mg = + 0,2".

Die hohe Messungsdichte (etwa 2 km) der Punktschwerewerte im
mitteleuropdischen Bereich rechtfertigt die Annahme, daB die
Pradiktionsfehler der nahen Zone Y < 9o anndhernd ohne
EinflufBl bleiben.
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Bei Verwendung mittlerer 50 X 50 ~ Freiluftanomalien ent-
stehen Summationsfehlereinfliisse

msg = i 0,37 m, mez = i 0,09" [)

die auf alle Fdlle vernachlédssigbar sind, wenn der Summa-
tionsfehleranteil wegen Mittelpunktwerten der analytischen
Funktionen ausgeschaltet wird

My = + 0,3 m, Dos = 0,04" .

Fir Hohenanomalien mit dm - Genauigkeit und Lotabweichungen
mit Fehlern kleiner 0Y01 miissen 1° x 1° - Mittelwerte der
Freiluftanomalien verwendet werden. Die Freiluftanomalien
miissen weltweit mit mittleren gravimetrischen Korrektur-
gliedern reduziert werden.

Mit derzeit erreichbaren Genauigkeiten satellitenaltime-
trisch abgeleiteter mittlerer Freiluftanomalien auf den
Ozeanfldchen in Kombination mit terrestrischen Anomalien
1d4Bt sich bereits jetzt die Genauigkeit der Hohenanomalien
auf + 1 m verbessern. Eine weitere Steigerung der Genauig-
keit der Hohenanomalien bzw. Geoidhohen ist insofern von
Bedeutung, als daB sich aus satellitengeoddtischen Altimeter-
messungen in Verbindung mit gravimetrischen Geoidhdhen die
stationdre Meerestopographie bestimmen l1da8t, die in den Pe-~
gelpunkten fiir die Anlage eines einheitlichen HOhensystems
und als Grundlage flir ozeanologische Forschungen wichtig ist.

Gravimetrisch abgeleitete absolute geoddtische Koordinaten
konnen in der Genauigkeit nicht mit absoluten satelliten-
geoddtischen Koordinaten konkurrieren. Jedoch ist die gravi-
metrische Methode zur satellitengeoddtischen als unabhédngiges
Verfahren auch in Zukunft von Bedeutung.
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GEODATISCHE INTEGRALFORMELN UND VERALLGEMEINERTE FUNKTIONEN

In den letzten Jahren wurde flr gravimetrische Arbeiten in starkem
MaBe die Kollokation nach kleinsten Quadraten benutzt. Die Anwen=-
dung des Kollokationsverfahrens setzt die Kenntnis der statisti=
schen Eigenschaften der ersten und zweiten Ableitungen des Stér-
potentials voraus. Gewdhnlich sind jedoch nur die statistischen
Eigenschaften der Schwereanomalien Ag in Form deren Kovarianz-
funktion C bekannt. Es muB daher folgende Aufgabe geldst werden:

Vorgelegt seien: ~ ein stationdrer ProzeB Ag in R2 mit der
Kovarianzfunktion C sowie

-~ Gewichtsfunktionen

R2 - R1
f.: (i = 1'2)0
i X
1 3
X — - -—é
2ny, 11
Gesucht seien die Auto-~ bzw. Kreuzkovarianzfunktionen CiJ der
Prozesse
X -y
. Wik -
syi= f, m Ag = = . Ag (y) dy (=, 2) (1)
any, gp2 |x~y|

Deutet man Ag als den ProzeB der Schwereanomalien, so erkennt man
in (1) unschwer die ebene VENING~-MEINESZ Formel und in den Sy die
Prozesse der Lotabweichungskomponenten, d. h. der ersten Ablei~
tungen des Stdrpotentials.

Von GRAFAREND wurden als Lésung des Problems die Beziehungen

Cjy=fy mfyuc (1.3 = 1,2) (2)

angegeben. Es wurden jedoch keine Ausfiihrungen (Gber die Existenz
der Faltungsprodukte (1), (2) gemacht. Die aus der Literatur be-~
kannten hinreichenden Existenzbedingungen sind hier verletzt, da
die Funktionen f, an der Stelle Null nichtintegrierbare alge-~
braische Singularitédten besitzen. Es bleibt daher offen, in wel-
chem Sinn die Faltungsprodukte (1), (2) zu verstehen sind.
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Im folgenden soll eine Deutung von (1) und (2) gegeben werden,
die sich auf eine Verallgemeinerung des Funktionenbegriffs stltzt.

VERALLGEMEINERTE FUNKTIONEN ;
VERALLGEMEINERTE STOCHASTISCHE PROZESSE

Die Menge aller unendlich oft differenzierbaren, finiten Funktio-
nen werde mit J bezeichnet. Die Elemente von & heiBen auch Teste
funktionen.

Ein lineares, stetiges Funktional auf & heiBt verallgemeinerte
Funktion oder auch Distribution. Die Menge der Distributionen
werde mit JJ* bezeichnet. Durch (f,q) werde die Anwendung eines

f €' auf ein 9 € & symbolisiert. SchlieBlich sei / Q,Ol, P_/
ein Wahrscheinlichkeitsraum. Eine schwach meBbare Abbildung

X1 Q —J* heiBt verallgemeinerter stochastischer ProzeB (VSP).

Beispiele: 1. Durch die Abbildungen

i
¥k (1 =12 (3
fi' © _, 2%
® — -~ Joroig J; (gg:g) @ (r cosa, r sina) dx dr
2ny, © 0
I — gl
C:
¢ — J @ (x)C (x) dx (4)
R2

werden lineare Funktionale auf & definiert. Den"klassischen”
Funktionen f; und C werden auf diese Weise Distributionen zuge-
ordnet. Die fir Distributionen definierten Operationen kdnnen
somit auch auf "klassische™ Funktionen angewendet werden.

2. Die Abbildung

Q—g"
Ags
w — Ag(w): (Ag(w), @)t = [ Ag(x, w) @ (x)dx (5)
R2
definiert einen VSP. Dieser VSP ist in natlrlicher Weise dem
ProzeB Ag der Schwereanomalien zugeordnet. Dieser ProzeB im
klassischen Sinne kann daher gleichzeitig als VSP betrachtet werden.
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VERALLGEMEINERTE FALTUNG

Far f, g €J* wird durch
(f @ g, 0): = (f (x)s (g(y)s @ (x+y))) (0€ F)
ein verallgemeinertes Faltungsprodukt f (gb g ixa@ﬁ definiert.

Wahrend die Existenz der Faltungen 8y = fi" & im klassischen
Sinne ungesichert ist, kann man zeigen, daB die verallgemeinerten

Faltungen
gyt = fi @ Ag (1 = 1,2) (7)

existieren, wenn fi als Distribution und Ag als VSP gemaR
(3), (5) aufgefaBt werden. Das Faltungsprodukt o; ist wiederum ein
VSP, Es gilt ferner fGr die Auto~ und Kreuzkovarianzdistribution

der VSP oyt
ciJ = f, ® fJ ® C . fi;] = 1,2) (8)

Die Prozesse o; und deren Auto- bzw. Kreuzkovarianzdistributionen
sind zundchst verallgemeinerte Prozesse bzw. verallgemeinerte
Funktionen. Eine unmittelbare geometrische oder physikalische
Deutung dieser GrdéBen ist daher nicht méglich. Man kann aber
klassische Funktionen T und stochastische Prozesse 51 angeben,

i)

so daB .
(0,5 @) = .g 8; (x, W)@ (x) dx (1 =1,2) (peI) (9)
R

(Cygo @ = I, Ciy (x)@ (x) dx (1,3 = 1,2) (¢ €) (10)

gilt. Es bestehen daher auch die foigenden Beziehungen
8, = f;, (® Ag (1 =1,2) (11)

Die Prozesse 31 sind also die verallgemeinerten Faltungen von

fi mit Ag, und die Funktionen 513 sind deren Auto-~ bzw. Kreuz=-
kovarianzfunktionen.
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Die von GRAFAREND angegebenen Beziehungen (2) sind daher gesichert,
wenn alle auftretenden Faltungsoperationen als verallgemeinerte

Faltungen gedeutet werden.
Falls jedoch die Faltungen (1) und (2) auch im klassischen Sinn

existieren, gilt:
f, ® &g =f, = Ag (L = 1,2) (13)
fly () fJ ®c=f « fJ ¥ O (23] ='1,2) (14)

Es ergeben sich in diesem Fall bei klassischer Rechnung und bei
Rechnung Gber den Umweg verallgemeinerter Funktionen die gleichen
Resultate. Sollte aber die klassische Rechnung versagen, so ist
mit den verallgemeinerten Funktionen ein Mittel gegeben. dennoch
zu sinnvollen Ergebnissen zu gelangen.
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THE SIMILARITY TRANSFORMATION OF THE GRAVITATIONAL POTENTIAL

Alfred Kleusberg

Geoddtisches Institut der Universitdt Stuttgart

Summary

The transformation properties of the gravitational potential
represented by spherical harmonics due to variations of type
translation, rotation and scale are investigated. The similarity
transformation is used close to the identity. It is proved

(i) that scale and rotaticn variations do not change the degree
of thespherical harmonics, but (ii) that a translation transforms
spherical harmenics of deglce 2~ into spherical harmonics of
degree % and 2 + i. Geodetic examples are given: Rotational
variation due to diurnal polar motion, translativunal variation
due to mass centre shift and scale variation of the underlying
coordinate system.

1. Introduction

A familiar expansion of the earths gravitational field in a coordinate system
s 0,x'y'2) is
14

U (), A, ¢) = g-M zef ag+1 % Py, (s5ing) (C'zm cos mA + sz,_m sin m?) (1.1
=0 T m=0

vhere
m

-x2)* d£+m

2
2.
g (x4-1)

Prm 0 = {5
£m 2 £ . .dx

arc the Associated Legendre lunctions and

COS mA
}dm

sin mA

C
o i ){
Sgﬁf Meat (z‘m)'J ‘& 4

arc the unnormalized Potential cocfficicnts.

Using the relation

Co. cos md + S, sin m\ = ; [(C 01-1 b g) OXD imy' o+ (Cp i Séw) exp -iml)

L0 om n
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where 12 = -1

\«:get‘an expression cquivalent to(1.1) which is more convenient for transfor-

mation purposes.

-~ o0 4 ‘e o ] 1 ] ,. % .
U N, @)= gM LEo :r‘?ﬁ mfo Py, (5in®) 7 [(Cpp-i Spy) €Xp imX +

+ (Cp i s'm) exp -im\) (1.2)

If we want to cxpress the potential (1.2) in another coordinate system
S (0,x,y,2)

Gty 1 ! 1 : .

* (C£m+i Slm) exp -imx ] (1.3)

we have to perform a transformation of the potential coefficients

t ]
Com* Sem — Com® Sem-

Such a transformation may be necessary by reason of the following examples

(i) The expansion of the earths gravitational potential (1.1) would be
sufficient timelike invariant if evaluated in the figur axis coordi-
nate system of a rigid earth. But the figur axis varies from epoch to epoch
with respect to an earth-fixed system due to non-rigidity. These variations
can be described by physical models (MeClure 1973). To express the gra-
vitational potential in the earth-fixed system one has to perform a
transformation with timelike varying transformation paramcters a,B
(Rotation about x,y axis, respcctively) derived from the physical
model.

(ii) Therc arce many difllerent carth models (e.g. Goddard Earth Models,
SAO Standard Earths). To prove, whether there are different under-
lying coordinate systems uscd onc has to investigate whether trans-
formation parameters are derivable from the different potential

expansions.

Many authors dealt with transformation of spherical hammonics (dJeffreys 1964,
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Aardom 19069, wWinch and James 1973, Balmino and Bordertes 1977, Sidlichovsky
1978, 1979, Giacaglia 1980). They introduced transformation paramcters ol
any largeness for rotation and translation. Thus the Wigner 3-j-coefficients
appcar in the transformation formmulac.

In the above mentioned examples (i) and (ii) the transformation parametcrs can
pe assumed to be very small. Thereforc we are going to derive more convenient
formulae for the special case of a similarity transformation close to the

identity.

2. The similarity transformation close to the identity

Suppose the transformation S—S' for any vector x is given by
X' = (]+‘Sk) R (a’B’Y) (§+ -E) (2'])

where ék,a,B,y are scale variation, rotation angles about the x-axis, y-axis
and z-axis, respectively and t = [tx,ty,tz]T is the origin translation vector.
Furthermore assume all transformation parameters to be small enough to neglect
squarcs and products. Then (2.1) can be linear approximated by

5 X Skex + yey - Brz + tXx X 8§x

e St Vile o A0k T Xstacgad tMLL eIy b l6y £2 23

zit 7 8kez + Bex - ary + tz 7 8z
Using

rl = (xl2+y'2+212)1/2 = ((X*‘GX)Z + (y+6y).2 + (z+62)2)1/2

A' = arctan %T = arctan %;%%

®' = arctan 2 = arctan 2z

£ 20725 18 ((x+6x)2+(y+6y)2) /2

and

1 :
COSR = 7(CXI) lk + cx_p_il)

- i . E
SinA = 5 (exp-iA - exp iA)
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we get the transformation S—+S' in spherical coordinates in linear approxi-

mation
ol T sr
A! = |A] + |éA
®' ® s
where

6r = r-6k + %-cosw [(tx -ity) exp iAn + (tx +ity) exp -iA] + tz sing

8 = -y +1 tano [(a +i8) exp -ix +(a -iB) oxp iA] -
- Zf_%ﬁ§_ [(ty +itx) exp ir + (ty -itx) exp -iA] (2.3)
- x . - . 17
8¢ = 5 [(B *+ia) exp ir + (B -ia) exp -ir] + == cosp -

S §%¥£ [(tx +ity) exp -in + (tx -ity) exp iA].

If the transformation paramcters are small the expansion of the potential in
S' can be expressed as a linear function of the potential representation in S,

U (r' ;0 0" 82 U(T,\,0)"F %;-U (roA,0) or + %X'U (r,A,0) A + %5 U(r,A,0)80

(2.4)
where
Ja
) e aT(pe1) B . 1 B L y
— U(r,r,0) = -gM ¢ - £ P, (sing) 5 [(C, -iS, ) exp im\ +
ar ORNY. 7 Z 'om "opm) €XP
= (C'tm +iS, ) exp -im]
L U(r,a,0) =M T at Fop (sing) 2 [(S),. +iC) ) exp imr +
AT = 5 im
an 7 s 3 P 2 1 m "om: %
+ (Spy ~iCp,) exp -im]
2 ur,ae) =g T a’ %(—mt P i i
30 sAy U ol r£+] % ane P, (sing) + Pz,m+] (sing)) -

'%-[(Ckm -iSkm)cxp imA+(Ckm+182m)cxp-imA]

and &r, 6A, 8¢ are given in (2.3).
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3. ‘Transformation Formulae

If we insert (2.3) and (2.5) into Equ. (2.4) and use some recurrence formulae
for Legendre's associated functions given by (Kertz, 1973) finally we get
transformation formulac for potential coefficients under a similarity trans-
formation close to the identity (for detailed computation see Appendix).

Cpn = [1-0k (L+1)] Com - [mey] Stn
4 [(£+m+1)2 (&-m) g C‘£,m+1 i [(£+m+1% (£-m) al S'I_,mﬂ
- [(e-m) L2) ePy -1
. lH:m = Co-1,m-1 * [H:]m i Se-1,m-1
+ [L@%—@l o Co-t,me1 * ['gi)-lz"‘gﬂl ) Se-1,m-1

Sem = [1-6k (£+1)] Som + [mey) Com
+[]+:]m 8] Sem-1 " ["‘:m o] Ce,m-1
e Em) gy sy ) Em gy (3:2)
~[(e-m) L) Sp-1,m
‘[“;]m H Se-1,m-1." [mTlm vz Ce-1,m-1
O B, - B R

For most purposes the use of fully normalized spherical hammonics and potential

coefficients is more convenient, i.e.:

o L 2 .
U=gy ¥ &i_ W ] (sing) (C, cos mx + S, sin mA
ote EEEL &m £n )
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=
P o @) G,

c ‘ :
m

Com
Sem

Using these functions for the expansion of the gravitational potential we get

the more symmetric transformation formulae

Cpp = [1-6k(£+D)] Com - [my) S,
L) @m) (6IY2 (5T ¢ F By
- [(Lsme1) (£-m)]V/2 BT a1 = 3 Spp) |G3)
- 121 @m @@m /2 2 e
3 [% (&4m-1) (£L+m) (1+51m)]1/2[.§_: Eé-l,m—l I % gé-l,m-”
+ (Gt @) (em] /2 12Tt ne ikl e bt b
Sy = [1-6k (2+1)] Sem + [my) Ty
clemn @m (e 012 By - F Tppy)
- [(esm+1) (£m)]V/2 (550 me % Cpmerl |0
-2 -m11/2 tz 3
[%_] (t"’m) (L m)] —a— L-1,m
" [%%:_} (e+m=1) (e+m) (146 )]/2 [%S-Z'-l,m-l vavigk Cootmo1]
22-1 I 1/2 [tx ' r t C-l
+ gy (€m-1) (2-m)) 72521, m+1 % Coor,me]
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4. Numerical examples

Exgggle 1: Diurnal Polar Motion

Me Clure (1973) states that the diurnal variation of the axis of principal
moment of inertia with respect to the rotation axis may come up to an

amount of * 60m which corresponds to rotation angles of # 2' about the x-axis
or y-axis. Nagel (1976) computes the corresponding addition term of the second
degree potential coefficients from variations of the second order inertia ten-
sor. This leads to

Cy1=Cy * 8- Cy

g . (4.1)
S5p9 =531 - @ Cy
Using the equations (3.1) and (3.2) we get
] ’ ] 1
Cy1 = C31 * B * Cyg - 28Cyy * 205,
(4.2)
10 PR R N 8 iy '

Both systems of formulae yield'variations in C21 and SZ] of 1L10"8 at most.
The differences between (4.1) and (4.2) arc of order 10—10. The variation of
the potential coefficients of higher degree due to diurnal polar motion are

still neglectable at present. Some ecxamples:

b '—'E' 11

3,0 3,0 + 510

0

Cis 1Peligz 1t

= =0
C28,0° Cz28,0"

Example 2: Datum Shift

Introducing an origin translation vector t = (tx,ty,rz)r yiclds the well known
formulac for the variation of first degrec cocfficicnts:

=1

w = L\ 1/2 tx
i1 "% Yt P
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8o by
S;1=511 " %0 @ 3
= -0 —r 1.1/2 tz
C]O i C]O i Coo' (3 a

v i

—f — — — - —
Mrt=“%mlmm1GM)mdq]=%]=Cm Owe get Cy =5,,=Ciy=
= - 0.9:10°.

The variations of higher degree coefficients are of order < 10-7.
Some examples:

b . iy -8

(FRAC R

= _ = L0

53 u R R s

— o= -11

Ciz,0= G301 % 10

— =t -11

L28,0,= S28,0 7, 19

Lxample 3: Scale variation

Scale variation 8k of the underlying coordinate system results in

Ezm C'}_m
} = (1-(£+1)6k) {

Sem

Slm

The effect of scale variation increases linearly for increasing degree of the
coefficients. For a realistic value &k = # 1.10—6 this leads to variations of
¥ 3-10° for coefficients of degree 30 which is below the threshold of signi-

ficance.
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Appendix

From Equations (2.3) - (2.5) we get

()

a
Jd

U="gM ¥

o0
L=0 T L

m=0

+

o)
Mt

a

£=0 r

+

o)

(=) A
i
=0r

(o)
w»%

® £
.~ gM ——%r,,— I P&n(smq;)—-[(CL,m 1Sm)cxp 1m)u=(C +1S )exp imA].

=0 r m=0

+gM T 75

n=o

I P, (sing)J((

Pm(blllm) [(Ctm 1S£m)cxp 1mk+(C£m+1SZl Jexp -

m] (A1)

sz(si.mp)f[ (C}m-iszm)exp imA+(C£m+iS&")exp -imJ- (£+1)6k

(A2)

P&q(sm(p)—[ (C 1S}m)exp imM(sz'riS}m)exp ~imA] (£+1)-

.o COS(D
o g

[ (tx-ity)expin+{tx+ity)exp-ia] '

*(£+1)-tz-sing

(A3)

(A4)

an[Sill(p)%-[ tSémﬁC‘ém)exp im+(S -iC, o) €XP-imA ] emey (A5)

-m'—*—[ (a-iB)exp ir+(a+iB)exp-iA]

(Slmo) [(S

R ; i i
"Wegeosol (ty-itx)exp-ia+ (ty+itx)exp il

Py (sine)o (Cp

+1C )exp 1m}\+(S

zm)exp -im]-

-iSp Jexp im+(C én'; iS;, Jexp-im]-

m-%n—w[ (B+ia)exp ia+(B-ia)exp-iA]

eme tanep-cose- tz
) 3 l -0
lzm(smq;)z[(c 18“

] P ) . 3 . .
Cop=iSpy,)eXp imr+ ((,Em+1szm)cxp—1nm] .

Qm“’[t)‘ ity)exp ia+(tx+ity)exp-ia)

} 1 R i ; s
Ppn(5ine)5{ (S, +iC, Jexp imr+ (Sl:m-lc‘ém) exp-imp].

(A6)

(A7)

(A8)

(A9)

Jexp ima+ (Cém+i8£m)cxp—im)\] *m- tane-

(A10)
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) o e . 1 e~ 0
+ oM I mﬁo pl,mﬂ(sm‘p)_zl'[ (Cém—182m)cxp ima+ (Cop +1Spp)Cxp-imr) -

to
o
-

--21-[(B+iu)cxp irt(B-ia)exp-ia] (A11)

o gl ] . :
+gM I —%;7 L Pz’mﬂ(simp)%[ (CEm-iSL“)exp im\+ (Cpy #3Sp Jexp-im]-cose-t2
=0 r ¥ m=0 (A12)

w 4 . . B : :
- gM I —?72 I PZ m+]($1mp)-;—[ (C;m-ls}m)exp 1m+(Cém+1S}m)exp—1m]-
=0T m=0 ’
-S—irzl‘ﬁ[(tx-ity)cxp ir+(tx+ity)exp-ia) (A13)

This Taylor cxpansion can bc summarized in six terms depending on the trans-

formation paramcters (2.1)

U=U, + Up(8k) + Ua(y) + U3(a,B) + Uy(tz) + Us(tx,ty) (A14)
U, = gM £ a’ £p (sine) M (C -iS} Jexp im+(C. +iS" Yexp-im]
o = M on T SRt oI (Lo i) £m"* 1) SXP1MA
= gM b Zi % Pm(sinw) (Cémcos mMSE"sin m\)
£=0 T =0 i
U(8k) = gM T a® % P, (sing)H (C! -iS! Jexp ima+(C, +iS} )exp-imn](£+1)6k
o AT T 2t Mem ™ em m Ve’
L
© a % ] L] v
= gM 220 371- mio Pm(51n¢) (szcos mA+S£m51n mr) - (£+1) 8k
Up(y) =gM ¥ a® £p (sing)a (S} +iC) Yexp im+(S) ~iCl )exp-imr]+m
2 - — — — - . .Y
o 2" “Vbm *Vfm £m " “2m
A ol 3 ' B 1
=-gM I 2T Z Pm(sm(p)-m-y(smcos m\ - Cﬁnsm mA)

2=0 T m=0

To remodei Uz(a,B), Uy(tz) and Ug(tx,ty) in terms of spherical harmonics we
have to introduce some rccurrcnce formulae given by (Kertz, 1973):

: . £+m . £-m+1 :
sing sz(Slmo) = T l’£_]’m(s1nm)+ {&-mt] 2'2”1 p£+l,n1(51m°)_ (A15)
m-tang P, (sing) = Lam) (L-mt | P (sin )+—‘— P (singy) (A16
on 2 2,n-1(8100)*7 Py ey (sine )
p 2 - (£+m) (£+m-1) n . £-m+1) (£-m+2) > .
Cosyp P{m(sm“’) = 2o .z_]’m_](smq;) - U )2,&] I£+1,m—1(smq’)

(A17)
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. 1 . 1 :
cose Poq(sine) = = 77ey Pp_q meq (SI00)* 7757 Ppuq ey (5100) (A18)
m - _ (£+m) (£+m-1) : 15 -
Coso pzm(SIH(O) = 2 P£_1,m_-|(51n(0)+2 p£_1 ,m+1 (sing) (A19)
m c _ (£-m+1) (£-m*2) : 1 -
cose Pen(Sin@) = 2 Port,m-1(510)*7 Ppoq g (S1n0)  (A20)

These recurrence formulae are valid if the sccond subskript is greater than or

equal to zero. In addition, we have to use (Kertz, 1973)

n

_ . 1 - 1 )
cose Pp(sine) = - ﬂ;-fl’z_],l(smwh T Pb],](smw) (A21)

. 3 £+1 !
sing P,(sinv) 2_2%TP£—1(SIH(D)+ 77+7 Lp+1(51N0) (A22)

for the transformation of zonal terms (m=0). Furthermore we need (Balmino and

Borderies 1977)
: -m)! .
pL,-m(qu’) = (-n" %ﬁ—'g)L, Pm(smw) (A23)

From (A6), (A8) and (A11) we get:

L ¢
o 1 - . . .
Us(a,B) = gM & a%ﬁ mzo {(sz’m”(sm(p)«%tancp Pm(smgp)[(eﬂa)exp in+

=0 r

+(B-ia)exp-ir]«( (c}gn-is ém)exp imA+ (Cém+iS£'m)exp—inU\]
+%tannp Pm(simp)[(a-is)exp i>\+(a+is)exp—ik][(S£m+iCém)exp ima+

+ (Szm-iCEm) exp-imn ]}
NG ke

= g\/i I ———
L2

! 3 MY LENS .
£=0 T { 21—Pﬁ,mﬂ(sm“’)[[(C&n-lsm)exm(m+1)>\+

z
=0
+(C2m+i32m)0xp‘i (m=-1)A] (a+iB)+[ (Cém-isém)e:\—pi (m-1)A+
+(Cpy*iSp)exp=i (m+1)a] (B-ia) )~ Jtane Py (5inA)

[ (szdsém)ex])"i (m-1)A- (B+ia)+ (C[:,xn-isém)cxl’i (m-1)A-(B-ia) ]}
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Using (A16) and (A23) leads to

» aft 2
Us(a,B) = gM I ——-—
3 £=0 rz m-o

+(C +is! )exp i(m*1)A-(B-ia)]- U'—EML Pﬂ e ](Slmp)

{4 &, +](Sln(p)[(C "1S(_m)exl)1(m+1)k (B+ia)+

[ (CpyiS ) exPi (m- 1)1 (B-ia)+(Cpy +iSp Jexp-i (m-1)A- (B+ia) 1}

£

4
Us(a,8) = gM Eo "r%ﬁmf- 3 g +1(5m‘0)[(BC +aS£m)cos(m+1)x+

+(8Sy, ~aCp )Sin(m+ 1)1

e af £ (f+m)(e-
M ¥ 2” : (L+m)(2£ m+1){)£,m_](sin¢,).

£=0 r m=0

-[(8C ém-aS }'im)cos (m—T))\+(BSém+aC Em)sin (m-1)A] (A24)

Sumnarizing (A4), (A9) and (A12) we get:

® £ L) - m :
Uy(tz) =gM &£ —5> I [(—.L—lsmw- > tangcose)P, (sing)+
L=0 rz+2 m=0 2 2 £m
+—;— cos@PLmﬂ(simp) ]-tze
[(C —1Sm)exp1mx+(c +1S£m)exp im\ )

Making use of (A15), (A16), (A17) and (A18) one finds
L

s » a- ¢ (L-m+1) (L+m+ 1) (L-m) (£-m+ 1)y, .
U e P2 s - =aen 220 1) a1, p(S1n0)- tz-
-[(C -is, )exp1m+(C£n+1S&n)exp im])
. aﬂ"'] 2
Uy(tz) =g £ S T -(e-mr1)P,, m(sin(p)-%[szcosm+slfmsi_mm] (A25)

£=0 r m=o0

The sum of (A3), (A7), (A10) and (A13) results in

£ ¢
Us(tx,ty)=gM t -2 __ % s  £2 m - i
5( y)=g e rT;Z— m=o{ (( —£4—lCOS(p+dtﬂn(p51]l(p)Ptln(SIH(p)

1. .
= zsmwl’z’m”(sm(p) ].
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o[ (sz-isl'm) expima+(C £m+iS£m)exp-im>x] [ (tx-ity)expir+(tx+ity)exp-ia)

*iem— Py, (5110) [ (Sp +iCpIexpimh+ (Sp -iCp Joxp-im]

[ (ty-itx)exp-ia+(ty+tx) expiA]}

Using (A15)-(A23) lcads to

2+1 2 ]

Us(tx,ty)=gM T T
’ 2=0 £+2 m=0

7 Peet, m+1(51nw)[——- sz l Szm)cos(mﬂ)m

+(% Séms‘ Eax Cém)sin(mﬂ)kh

| (em2) (Lme1)

+gM £:£+2 = 2 Z+1,m-1(5imp)
e Co* X Sm)cos(m-T)M("‘ - T Cpsin(-n]  (A26)

Changing the subscript in (A24)-(A26) yields

U=U, + U;(k) + U(y) + Uj(a,B) *+ Uy(tz) + Us(tx,ty)
= gM T _E_at % P (sincp)[(C' (llck(bl))-s' hy)cosmM(S' (1-8k(e+1))+
=0 r 3 m=0 £m £m m £m
+ Cppemey)sinm) (A27)
- al 2+1 / ;
» g
+ gM Lzo 7;— z P&n(smw) 2[(BC£ 1t St'm_l)cosm+(88£,m_l-aCt’m_l)smmk]
2 Z—l (A28)
o g £2+m-1) (£-m
5 m T a— T P (S]nw).g__)l—l.
o r£+l 153 £Zm 2
[(BC2 1 aS l)cosmM(BSl mt1 c:uC£ m+1)smmk] (A29)
-C £-1 e :
-in Z T Zo PLm(Slmp) (£-m) ?[CZ_],mcosm)wst_]’msinm] (A30)
M F at ¢ P JBre
e r£+l L Pon(sine) 2 GCpo1, o155, g )cOSTAS
Tty .
( !. 1,m-1 +_:%,CC-I,m-l)smm)d (A31)
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L ¢
cadnl' s (£-m-1) (£-m X! tyat
S ey o Pp (51n p)— li———){(a 2-1 m+1+7¥85_1,m+])cosmx+
£=1 r m=-1
ty .
+(35;. 1,m1” 'xcz-l,m+1),51““"‘] (A32)

In (A23) the second subscriptcan start at m = 0 and end at m = £ because of

! B ! = c = 5 n i =
C£,—1 = Sﬁ»’1 o and p£,£+1 o. In"(A29)_the second index can e¢nd at m = £
since C2,£+] = S£,£+] = 0. Using (A23) and cos(-A) = 65§X;\sin(-§1\= -sinA for

the case of m = -1 we rewrite (A29)

o £ : L+m+1) (£-m) ¢ '
a
R Py, (5ine) EMDED gy -aS) L Icosmr

[ ' 1
*(8Sp, mne1* Cp,meq)Sinm] _ (A33)

e g P, (si )flm[(BC' +aS! )cosmA+
5 TIPS  Le DAV IR FS My TN T S

+gM'§;°

=000

+(BS£ m-1" 2 m_])sinml]

where Sim = 1 for m = 1 and zero otherwise. In (A30) the range of the second
bscript can be extended to m = £ b fC, = S; = o. £i
subscript can be extended to m ecause of Cy_; » 21,0 = © The first

index can start at £ = o since C° 21,m = S'] o = 0.The latter also is valid in

(A31). Here the second subscript also can start at m = o for Cé 1 _3 = SE_] -1
’ ’

\
R

[}

o. In (A32) the first index can start at £ = o because of C' “1,mel =

o and the range of the second index can be extended to m = £ since C,

£-1,%
= C£—1,£+1 = 52_1,1 = 81—1,£+1 = 0. Introducing (AZ3) and using cos(-A) = cosa,

sin(-A) = -sinA (A32) can be rewritten as

L
ol 12 (£- 1! -m)p t
s Zio A E Pen(s1n0) mM(n [(—ECA ', m+1+—xsé 1 m+])cosmA+
tXe! ty~ :
(551, me1” 2Ce-1 meq)Si0MA] (A34
o s
- else _%:$ -g 30n(51nw)_%m[(%§c.—1,m-l- %¥82_1,m_])cosmx+

+(Es! +HC£'_] p)sinm]

a £2-1,m-1
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In summarizing the terms (A27), (A28), (A30), (A31), (A33) and (A34) we get

the following expression

U=gM KEO r%f1 mgé sz(sinmf)(czmcosmx +S£msinmx )

where

Cop = *+ [1-8k(£+1)] Com - [m-y] Spm
+ [%(Hc]m)s] C("_,m—1 : [-;:(1*51“1)&] SE,m-l
. [%(Urm])(xz—m)B]C},_,m+1 % [%(‘i*mﬁ)("-'m)a] S},,mu
en o,
- 38,05 Gy g 0T Spy
+ [z(e-m-1) (e-m)IC) 'y + [3(e-m-1) (e-mPs) e

and

Spy = + [1-6k(£+1)] Sem + [m-y] Com
+ [%(Ha]m)el s}':’m_1 o [%(Hém)a] 'C}_,,,H
- [z(&m+1) (£-m)8) S - [Z(erme1) (e-ma) Cp o
e 5,
eligf 1+, R, U8 A - T Gy
v (gemy em Sy | - (- EemIcy
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A Solution for Determination of the

Gravity Field frem Satellite~to-Satellite Tracking Data

Jan Krynski il

1. Introduction.

In order to uso low-low satellite-to-satellite tracking
data for investigation of the Earth”s gravity field it is
necessary to describe mathematically in very detail the me~
sured phenomena. Some solutions of this problem are given by
Schwarz /1970/, Krytiski /1978/ and Rummel /1978/. The authors
use different assumptions and quite different methods in
their theories. However, it seems te be difficult to make a
cheige of the propsr solution for practical application.
Such a solution should be general, relatively simple and
cenvenient for numerical cemputations. These requirements
have been taken into account in the sequel to derive the
observatien equatiens.

Assume that the nengravitatienal forces do not affect
on satellite, so we consider the satellite motion in the
Earth“s gravity field only. The differential equatien of
satellite motion in such field W in inertial coordinates

system is the following:

R= Vw. /8 /s
It is quite natural to describe a motier of celestial body
in inertial system of coerdinates. But on the other hand in
physical ge®desy the gravity field of the Earth is usually
expressed in the coordinate system which is fixed to the
Earth /terrestrial system/. In such a system the equation of
motion /1/ has a form

1)Space Research Centre, Polish Academy of Science
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B+fc=_V_W:/2/

where Fc is a Coriolis acceleration.

It should be noticed that the integration of the differential
equation /2/ is much mere complicated then the integration

of the defferential equation /1/. What more, the velocity and
position vectors obtained from the equation /2/ refer to
terrestrial system. They should be transformed to the inertial
system in which we determine those vectors from ordinary solu-
tion of satellite motion. Therefore we have to formulate such
an equation which refers toe inertial coordinate system on one
hand, and on the other hand which uses the gradient of the
potential W expressed in terrestrial system.

Let us notice that the potential W does not explicitly
depend on time. Then VW is the conservative force, what
means that the quantity of the gradient of the potential W
is invariant with respect to linear transformation.

Let us consider the inertial coordinate system OXYZ and
geocentric terrestrial coordinate system O0°X°Y“Z with the
common origin /O = 0°/ and common Z-axis. Denoting by A the
rotational matrix transforming terrestrial system into iner-

tial one

Vw=aA VW /3/
we can write the equation of satellite motion in the follo-

wing form:

R=A TW . /4/
The equation /4/ is expressed in inertial system and symul=-
taneously the gradient of potential Y W refers to the

terrestrial system; it is a basic equation used in the

sequel.
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2. The case of two satellites.

Let us consider the case of two satellites following
each oether aleong similar orbits. In appropriate time intervals

the relative velocity of two satellites is measured.

Fig. 1

According to Fig. 1 let S1 and S2 denote the real positiens
of satellites at the epoch tye The gravity potential in S1
and 82 is w/l/ and W/Z/ respectively. In ordgr to compute the
approximate position of satellites we shall use an approximate
gravity petential medel U which can be regarded as a nermal
potential. The equatiens of satellite motion in real gravity

field and in the nermal gravity field are the following:

Bilw = A/i/ trwyi/ ' /5/
/i=1,2/
St SO/ X el /6/
where U/1/ and U/Z/ are the normal petentials in S, and 82

respectively.
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Let us assume that at t_ we knew exactly the positiens

of S, and S, i.e. the real position is the same as the normal

1 2
pesition at t . However, at to real velocities and accelera-

tions differ on normal ones.

Subtracting /6/ from /5/ we get
BR;= Ry ~Rity= Ai VWi~ As V= Ay [ Wi~V / /7/
If we denote the anomalous potential by T

TaWw-=-U, /8/
then the equation /7/ has a form
AR, = Ay, VT 19/
Integrating an equation /9/ we get an ingrement in the velo-
city of satellite Si due to anomalous potential T. We have
now

t
M‘zfA/l/ﬁ/l/dT*’g‘ § /10/
=ty

where obviously constant C. is determined from the initial

condition

= AR, /t /. /11/

C.
=i

Then /10/ can be written in the following form:

t
ARy y 1t/ = / Ay VT e+ AR, 1ty . /12/
T=t,
In satellite-to-satellite tracking we shall consider the rela-

tive velocity which contain the differential effect of anoma-

lous potential. From Fig. 1 we have

3' é2‘E1° /13/
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Differentiating /13/ with respect to time we get

Q = R, - R, . /14/
I1f we denote
_A_é" _A_...&g‘ A—é]_ ’ /15/

where AQ is the increment of the relative velocity vector

due to anomalous potential we get from /12/

t t
é_g/t/=/A/2/ ﬁ'/Z/ dr _/A/VVT-/V dr +A_f2_2/to/—_A£1/t0/. /16/
T=t0 T=to

Since

ARy /to/- BR1/te/ = A3/te/ /17/

the equation /16/ will have the form
to :
. 4 t —
Bt/ Ba s, =/Z1 /A T e /18/
Tty

The equation /18/ would be an observation equation when the
relative velocity vectors are observed quatities. However, in
satellite-to-satellite tracking technique we will be able to
measure the projection of the relative velocity vector on the
and S,. Therefore our

1 2
observation equation should have a scalar form.

direction between two satellites S

According to Fig. 1 the versor of direction 8182 is

R, - R
212 ® ;2 ;1] " l% ' i
I-2 T =1
The projection of the vector é oen the derection S; S,
will be nothing but the scalar product of é and the versor
e .
_12,1 e.
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R T

8 2% ror
3 /20/
The component § of the relative velocity can be directly
measured; it will be considered as a function of time. Let

us take the difference

QR/Q/t/ Qo /Sfy/ 1
O3 o/ RT " QZJ" oJt/alts] [g/t/qlf/g/fo/ q/fo/e/’folq/t/]

/21/

Using the abbreviation
O/o/=9/t/-Ag, , , /22/

where Aqit is the increment of the distance Q between

0
satellites in the time interval /to, t/ and substituting /22/
to /21/ we get

Q/t/=8/ts

_TE+T} (g/t/g/t/ﬁ g/t/] ~8/to/9/te/ } /23/

i /[1 7/

After some simple modification in /23/, neglecting terms of

second and higher order the formula /23/ has now a form
. ? y B ‘ 1o
o/t/-8/ /=g 77 [g/t/ 9/t/~ g/to/g/tu/] Yy 9/to/9/ty/ Agyy , /24/

Since in short time intervals a distance Q is practically

constant we can replace q/t/ by g/fo/ in /24/. Now we have

- - e 4 1 -
g/t/‘g/t°/=é74‘;[_g_/f/g/t/'g/’fo/g/to/]'Wf 8/t /9/te/ 89y . 125/

The expression /25/ describes variation of the projection of

the relative velocity vector on the direction S, 32 in time
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interval /t’. t/. Considering /25/ for the real gravity field

we obtain the expreseion for the ebserved quantity

1. .
g [6/t/-8/to/] m={§710—/ [ort/9/4/-3/to/ o/to/]" ot g/to/g/to/ﬂs'tot}.w ,
/26/

and for the normal gravity field we obtain the expression for

the calculated quantity

. . . - ’ 1 :
AQ¢ [Q/t/-g/to/l.u={§71f—o/[_9_/f/ o ~/t/8/ o gz 8/t B8]

/27/
In accordance with the previeus assumptions
o/te/ww=e/to/y /28/
and what mere
o/te/\w=8/t/iy . /29/
Using the abbreviatien
9/t/=g/ta/* A9y /30/

and sublracting /27/ from /26/ we find
N g e T » . . :
445 Ages g/to/{[g/f/aw 8/t g/tu/'[g/to/,w-g/to/,uj g/to/fr[g/to/%ot]m-

5 e ) :
[g/t/A_gtot](U} i g/to/{[g_/to/aetot],w‘[g/to/A9%{],“} : /31/

It is easy to notice that accerding to the previously used

notation

S/t~ Mh= B8N/ ool 8/t Ad e/
/32/
Substituting /32/ into /31/ we get

Y RY 5,17 [48/47-80/t6/] o/to/ + E/ito—/[[g/*/@tot]m' [g/t/@tof]w} 3

el : 1 /33/
0/to/? E/ to/ {[_9_/ to/4 9t(,t] W [Q/ to/d gtot] IU}
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and finally using /18/ the equation /33/ will have the folle-

wing form:

adyl [k
L WA
AQO'AQC+C1+C'2= =Q—/——to//§/‘1/ A/l/ V.l-/i/d'r :
=t /34/

whers  C= o [04728, i [8/t/88 g}

and Oy Q_/gf_o—/ g g/»f(,/{[(;a_/to/Agtot] o 18/t/4 Qto'c]lu}

Assuming a time interval /to, t/ as a small one, the expres-
sions C1 and C, can be neglected and the observation equatien

is now the following:
t
A . Qfte/ - o e
1=t

Let us define the rotational matrix A, As it was previously
mentioned the matrix A transforms terrestrial system into

inertial system. Denoting by © - Greenwich siderial time

we get
cos® -~ sinf 0
A = |sinB cos B o} 2 /36/
0 (0] 1

The observation equation /35/ is quite simple and convenient
to use when the gradient of anomalous potential is given in
the rectangular coordinate system. However, in order to use

the COVAX subroutine /Tscherning, 1976/ the gradien: of

anomalous potential should be expressed in spherical coerdi-

nate system.
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Denoting by B/i/ the matrix transforming spherical

coordinate system into rectangular coordinate system we have

S~ 8

where

cos ¢, , coOS A/i/ - sin ¢, , cos A/i/ - sin A/i

B/i/-.- cos ¢,/ sinJ\/i/ - siny,, sin A/i/ cos A/i/ ’

sin Y1/ cos ¥,y / (0] /3%/
and
Tryiy
VT R/_f/ T;P/u ;

Ry, cos %/ T*A/
/39/
R/i/' w/i/' -A/i/ are the spherical coordinates of
satellite S,- Substituting /37/ we can rewrite /35/ in the

following form:

/to/
Using the abbreviation 5 %
) Bl 0 /41/

where
cos ‘.p/ / COS/}\/ / +8/ - sin Lp/ /COS/ /1/ +9/ = SlnA/i/"'g
P/i/= cos \p/i/ sin/]\/i/ +8/ - sin \p/i/sin/]t/i/ +8/ cos/ /+9/
sin “71/ cos W/i/ o
/42/
we get feom /40/ _

/
a7 A3 g/to//z/ s D//VTNd'r | ;
43/
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In some cases e.g for the computation of covariarces it will be
more convenient to describe an observation equation /43/ in
another form.

According to /19/
fto/
/>3y
. /44/
is the unit vector of the direction between satellites at to

where

E/fo/=/A—X1,A—)(2,D(3/ :

/45/
Let us denote
g s
L A sy TG 7957
where
L,y Sk IR y . 747/
1102 My ey sy
and éfj
L s P VTS - /48/
- = T ANV,
Since .
e/"o/-L/;/=Z A_K LK/U
K=
/49/
we can rewrite the equatlon /43/ in the following form:
sistiel /o
YONSTHW Y P, VT, d basy

Finally, using the low of commutability of summation and

replacing constants in front of the integral we obtain the

followiny observation equation:

Ago Agc iAXK i:/"/ Z\/pm/./v l.// . /51/

Tty
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Now, it is quite easy to derive basic covariances. If we denote

by s,” and sg” the signals of observations A and B respecively,

where A i i: i:
5A= Kz‘AXK“=1/—1/ /pKl//VTl//dT ’

'r to /52/

and 5
e i Wy
SB=ZA msi/1/ ne
6=u° /53/
then using the low of propagation of covariances /Moritz, 1973/
we obtain the autocovariance-

cov/Sy,Sg/ = iiAXK Axngi/ i/ ii// Kl// mn//BCOV/VTl// “// /dédr,

=1 =1 54
t=ty 6=u, /54/
and the covariance between the signal sA and the anomalous

potential T at the point Q

3 2 3 f
’ = l S

It should be noticed that using the low of propagation of co-
variances all covariances between the signal s’ and arbitrary

geopotential parameters can be computed from /55/.

3., The case of three satellites,

Let us consider the case when the relative velocity is
measured between the “"mother" satellite and two subsatellites
simultaneously /Zielinski, 1978/. Combination of such two ob-
servations gives a simulation of a direct observation between
two subsatellites; it allows to minimize the influence of some
significant forces on the observed quantity which are in gene-
ral case rather difficult to eliminate. Geometry of the problem

is shown in Fig. «.
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Qo Q10

FE'gi.=2k

For any independent measurement we can use the observation

equation /51/. We have now

¢
3 3 t
; (Basl P e p i ;
Agmo Agmc ;AX01K;I{/pKl/1/VT"/1/dT /pKl/o/VTl/o/ dr}) /56/
T:to T=to
and
3 3 t ; 4 X
A8g9, Aé()?gKZﬁAXUQK;{/pK(/Q/VTL/Q/ dv '/pm/o/VT%/d'r} R
'r:to '[:tu

Let us denote
[B8.7 B8 [ = [AQei Bibpife= DG m AR,
0 A801/o™ /B85 B8oy/c = A8y~ Ay /58/
where the bars used on the right-hand side of /58/ mean that
the increment ZXle of the projection of relative velocity

between subsatellites S, and S,on the direction $,S, is very

2
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close to 2;512. but in general they differ to each other,

Subtracting equations /56/ from /57/ we get

Agﬂo t?121: ;g: /AX”K By //p'“//v l/o/d 2
Tty

[ S
P VT d-r] ,
+xz:g=:1 [Ax”x/ YAy e MK/ Ky, 1/
ot,

/59/

T-=t 0

or in more compact from

t -l ¢
Al $ AT
Agaz'Agmc ZZ/ BXong BXoq/ | PrapgsVTior 9T )0 VB / Kl l//
vty

=4 171 K=11=1i=1
Tty /60/

It should be noticed that the first term of the right-
hand side of /60/ contains the influence of anomalous poten-
tial on the "mother" satellite. This term is very close to ze-
ro when the directions So 31 and S° 82 are close to each other.
In fact, if this term is equal to zero then /60/ becomes iden-
tical to the observation equation /51/, which is appropriate
for the case of two satellites.

The observation equation /60/ can be finally written in

the form:

i By 3 BX,, Z / DR Ty O

C k=11-1i=1 /61/
If we denote as previously by sA and s8 the signals of

observations A and B respectively, where

2 ; 1 ¢ 3
P VT dr
A .-Z iZo Kfiy iy /62/
t=t,
and
5% o
S -1 Z!X ZE; p S
8 m={ n-{pgq/ / m' @ / mn/pq/sVTn/DQ/Bd6 5 /63/

6= Ug
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then the autecovariance between signals s, and sg is the

following:

383822 .
/ o AY
ol 5, Zizz I Was AXmKAAXOD / / i nn cov/VT ey "/Ws /d6dr

m={ |={ n={ i=1 p=4
T=tg6* /64/
and the covariance between the signal s; and the anomalous
potential T at the point Q is
, 332 1 ¢ -

cov/SA,T/a//= ZZZ/ 1/ AXO‘K Z Pe,, . cov/VTl._ ,T/Q//df 3

Ke4 1#4 i={ A Q%0 /il /il /65/

v=t,

4. Conclusion

The observation equations derived in the sequel refer to
the observations already corrected for the effects of ionos-
pheric refraction and air drag. Another nongravitational
effects are relatively small and they can be neglected.

The formulas describing the basic covariances are very
convenient forusing electronic computer technique. However,
it should be noticed that even taking into account a small
time interval /to. t/ of about 10 seconds and the simplest
algorithm for numerical integration we have to call 10 000
times the subroutine calculating the covariances between the
components of the gradient of anomalous potential in order to
compute one covariance between the signals. Therefore, if the
subroutine for computation of covariances between the com-
ponents of VT works slow in the computer sense, as it is in
case of COVAX, then computation of covariance between signals

takes a teemendous much computer time. Then the main problem
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of practical elaboration of satellite-to-satellite data is to
create the covariance function on one hand representing sta-
tistical properties of the gravity field as determined from
the data and simultaneously having analytical form as simple

as possible.
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Abstract:

The concept of measuring the relative velocity of two
satellites following each other along similar orbits has
been considered. A general ferm of the observation equation
was derived. The main covariances which are mecessary for
the least-squares solution have been described. The formulas

derived can be used for geodetical elaboration of satellite-

to-satellite data.
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Collocation with analytic (harmonic) splines

and stability conditions

by
D. Lelgemann 7

"The statistical origin of collocation has sometimes overshadowed
the fact that this method can also be considered as a purely ana-
lytical approximation method" (H. MORITZ).

SUMMARY

Collocation with kernel functions (aﬁalytic splines) may yield

unstable results if the free parameters R_ and kn of the kernel

Q

R n+1l
R(p,Q) =" 97 %) i P_(cos V)
n=o

are not chosen properly. As a stability criterion the size of the

Euclidian norm of the vector of the interpolation coefficients

ai(P) is used in this study.

Based on this criterion limits R . < R_ < R are determined,
mln Q max

related to the distance &y of the (homogeneously distributed) knots

on a sphere with radius R:

R oy-® RE (0.5 + O.S-oK)6¢ p Roko = R = @3)) '+ o.s-oK)6¢.
(0K¢—l)
The order oy = 0.(kn) is defined as the highest power of n within

the explicit expression for kn. The size of the resulting inter-
polation coefficients ai(P) illustrates the usefulness of the

stability criterion.

I

Institut fir angewandte Geoddsie, Frankfurt/i.
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1. INTRODUCTION

One fundamental method of numerical mathematics is the representation
of a function T by the determination of a set of coefficients bi

of a finite series of base functions (Collatz 1968, p.9). For example,
the disturbing potential T of the earth is usually approximated by

a linear combination t of suitable base functions @1,®2 o @I:

I
T(P) £ t(P) = X b, 0(P), (1 - 1)
i1

P denotes a space point in the domain Q on and outside a sphere w
with radius R (R = 6378140 m).

T should be harmonic in the domain Q. It may be therefore appro-
priate to select as base functions @. harmonic functions, satis-

fying Laplace's equation

A@i =0 (1= 2D

at least in the domain Q. As @i spherical harmonics are frequently
chosen but the @i may also be given, for instance, by the potential
of point masses suitably distributed inside the sphere w.

As a special kind of base functions we may also use harmonic
functions K(P,Qi) which depend on space points Qi on and outside
the sphere w with spherical coordinates (@i,ki,ri):

o

R.\n+1
0;(P) = K(P,Q;) = X k. [ P_(cos w). 61 - 3)
n=o P
The points Qi are frequently called knots and the functions
K(P,Qi) are called analytic (harmonic) splines, harmonic kernel
functions, harmonic multiquadric functions etc.
¥ 1s the spherical distance between P and Q, and Ri and kni denote
free parameters. In general, for each knot Qi special values kn.

i
and Ri may be chosen with the restriction

RSt 7R 5= LR 1S SRt A, (1 - 4)
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In this study a homogeneous distribution of the knots on the sphere
w is frequently assumed. As in such cases the parameters Ri and kni

are chosen to be constant they are abbreviated Ri = RQ = const and

k . = k = const.
ni n

The coefficients bi must be chosen such that they satisfy certain
conditions. For example, we may postulate that the approximation t
to T, as given by (1-1), exactly reproduces T at a number I of
given knots Qi' On putting

t(Qy) = T(Q;) = £, B L 1L 2 PR RNRIE | (1 - 5)

we thus have the equation system

z: g pee PE SIERIT 5 Dl = K(Qys Q) da e 1)

As is well-known we have to distinguish between interpolation, collo-
cation and approximation. A generalisation of the interpolation prob-
lem is the case in which I values of linear functionals LIT’ L2T,

LIT of T are to be reproduced in the knots Qi' On putting

Lo f SSTrSE] (r -17)
from (I1-1)
3
D By by =1, . By =L g, = LEK@E,Q,), s, 2)
i=1
ot T R T S

This method of fitting an analytic (harmonic) approximation to I
given functionals is called collocation, a generalisation of inter-
polation (de Boor 1978). The systems of linear equations (1-6) and
(1-8), respectively, are in general not symmetric.

It may often be desirable to represent the function T by a number of

bi less than the number of observations - an overdetermined approxi-

mation problem instead of a collocation problem. If the number
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of observations is greater than the number of knots we may solve the

system (1-8) under the condition that the sum of the squares of the

residuals

v, = 1i -1, t(Qi) (S=19)

becomes a minimum (Collatz 1968, p.9, Heitz 1968). In general, an

overdetermined problem provides a realistic a-posteriori error esti-

mation.

An essential problem which remains is the choice of the free para-
meters kni and Ri’ as is easily recognizable in considering the

graphs in figure 1. Given the function values
il
fi S e se (219 (1 - 10)

in 10 equally spaced knots on a meridian the interpolation has been
performed using kn = 1 and four different values RQ as listed in

the figure. If a relatively small value RQ is used as in graph 1d

the interpolating function tends to become unstable at the boundaries,
similar to Lagrange interpolation using equally spaced knots.

Indeed, in the one-dimensional case interpolation with analytic splines

converges to Lagrange interpolation if RQ - 0. (Golomb 1976, p.104).

The higher order discontinuities of the usual polynomial splines are
replaced by the poles of the analytic splines, poles outside the
domain R, i.e. inside the sphere w. The poles have a simple geometric
relationship to the knots. Considering splines of the form given
by (1-3) the sites of the poles of a particular spline form a rotation

surface defined by the equation

rg 2ro
o .y cos ¢ + 1 = 0 @il )
Q Q

rs is the radius of the positions of the poles. In case that all
knots are situated at the sphere w all poles can be found therefore

on and inside a sphere with radius

Gk = . 12)
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Figure 1: Analytic spline interpolation using
various parameters Rqg

et i vl goss!

0

Graph 1a: Rg = 6 378 000 m > Rmax

Graph1b: Rg= 6 367 008 m = R ax

Graph 1c: Rq= 6 311 348m = R_,,

Graph1d: Rq= 6 000 000m < R

min
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Considering the stability behaviour of an interpolating analytic
spline function, attention will be paid to the relation of the distance
6y of homogeneously distributed knots and the position of the poles,

i.e. the size of the parameter RQ.

2. INTERPOLATION AND STABILITY CRITERIA

Analytic splines provide the solution of a linear partial differen-
tial equation, namely Laplace's equation. Hadamard has introduced
the conception of an ill-posed problem into the theory of linear
partial differential equations. A problem is called well-posed if

it satisfies three requirements:

- a solution exists and is bounded
- the solution is Uunique for a given set of initial data
- the solution depends continuously on the size of the initial data.

Otherwise, the problem is called ill-posed.

In the course of the analysis of numerical problems it may be advi-
sable to extend these requirements to the conception of a well-posed
algorithm (Isaacson-Keller 1973). An algorithm designed for the
solution of a well-posed problem is also called well-posed if

- a solution exists and is bounded
- the solution is unique for the given data
- the solution is stable, i.e. small variations in the initial data

effect the result only by small variations.

The series (1-1) is a solution of Laplace's equation if the base
functions defined by (1-3) are used. The solution exists and is
bounded if condition (1-5) is observed. The solution is unique

as long as the equation system (1-6) or (1-8), respectively, remains
non-singular. In general, the stability of the solution may depend

on the initial data. However, at least the simple interpolation bet-
ween the knots should be stable. This requirement has to be expressed,
of course, by a suitable mathematical formulation.
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It is well-known that the stability of interpolation using poly-
nomials depends on the maximal degree n of the polynomial as well
as on the distribution of the knots in a given interval [a,b],

The error of polynomial interpolation can be expressed by (Isaacson-

Keller 1973)

£(x) - P_(x) = %’;‘;{—;T ¢ ke (2 - 1)
f(n+])(§) is the (n+1)th derivative in a certain point % of the
approximation interval [a,b]. The function

n
W) = I] (x-xj) (2 - 2)
j=o
is termed the error factor. A graph of the error factor is often
used to illustrate the stability properties of polynomial interpo-
lation (Isaacson-Keller 1973, p. 279, Moritz-Siinkel 1978, p.24),
especially to illustrate the unfavourable error propagation of poly-
nomial interpolation at points near the boundary of the interval
[a,b].
In figure 2 a graphof the error factor w(x) is given for equally-
spaced knots, in figure 3 a graph of the error factor using the
so-called Tschebyschew's interpolation points, which are defined

at the zeros of Tschebyschew's polynomials and are given by

2k+1 m
Ve T o8 | o 7] - 3a)
b= 0L alle . L en)
1
x, =3 [(b-a)y, + (a+b)] (2= 3b)

Since the definition of the error factor is closely related to
polynomial interpolation it cannot be used to investigate the
stability problems using analytic splines. It is therefore necessary

to look for another criterion.
In geodesy the stability property of a functional model is usually

described by the size of the standard error, asing the law of
stochastie error propagation. In the sequel this method will be
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Figure 2: Polynomial interpolation: Equidistant knots

Graph 2a: Distribution of the knots

t(Qi)=1+0,2 (-1)i

Graph 2b: Graph of the function

-2 - wn(x)=H(x-xl)
I=o0

Graph 2c: Graph of the error factor

4 |

40 +

- a(P)=Y [a;(P)]’
i

20 +

Bl ol

1 S
Graph 2d: Graph of the norm of the interpolation coefficients

e ——
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Figure 3:Polynomial interpolation: Tschebyschew points

Graph 3a: Distribution of the knots

Graph 3b: Graph of the function

N O s D T iR A
Ul T T S TR

1 5 10

Graph 3c: Graph of the error factor

Graph 3d: Graph of the norm of the interpolation coefficients
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applied to investigate the stability properties of linear inter-

polation methods.
Any linear interpolation can be written in the form of a weighted

sum of the function for the knots Qi’

I
8(B) = 3 @ () t(Q;). (2 - b)
iz1
Toinvestigate the stability behaviour, the function values t(Qi)
may now be considered as superimposed by a small error described

by its variance-covariance matrix

D(ti,tj) = Dyy - (2 - 5)

The variance of the propagated error of the interpolated value t(P)

can then be determined by

2 i 2
a*(®) = X X ay(P) a;(P) Dy . (2 - 6)
1 J

Assume now the simplest case, namely independent errors of the
same size. Dij can be expressed then by the diagonal unit matrix multi-
plied by a constant factor. We may express the variance - apart from

the constant factor - by

@) = Y a () o (P). (24 i7)

L

q(P) is the Euclidianvector norm of thecoefficientsai(P). This
vector norm may be used as a suitable criterion to investigate the
stability of linear interpolation methods of the form (2-4).

As an example, a graph of the vector norm q(P) for the results of
the polynomial interpolations described above is drawn in figure 2d
and figure 3d, respectively. The results of further investigations
have always shown the usefulness of the criterion too, a fact not

very surprising to a geodesist who is familiar with the fundamentals

of least squares adjustment.
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Without doubt piecewise linear interpolation or bilinear interpolation
(roof functions, bilinear elements) provides very stable results.

The norm of the interpolation coefficients attains a value q(P)
somewhere between two limits. For the one-dimensional case of piece-
wise linear interpolation the limits are

1 =v2.0.52 =40.5"; 2 -8
1=q,,(P)2a(P) 2 Qi (P) 2:0.5 )P WY ( a)
for the two-dimensional case of bilinear interpolation the limits
are

3 -V Z 2
1=aq,..(P)zalP) 2q,; (P) = 4.0.25° = 0.5 &= 8b)

The maximum is always obtained in the knots and the minimum midway
between the knots. Regarding all points P in an interval given by

a set of knots an interpolation method may be considered to be stable
if these limits are observed, at least approximately.

3. STABLE INTERPOLATION AT A BOUNDARY SPHERE

In the course of investigating a well-posed algorithm it must be
ascertained that only well-posed problems are considered. An ill-
posed problem is the analytical downward continuation of the poten-
tial (Schwarz 1971). To avoid a mishmash of the (natural) instabili-
ties due to downward continuation with (artificial) instabilities
due to an ill-posed algorithm all knots have to be placed at the
boundary of the domain Q of harmonicity, i.e. at the sphere w.

As already pointed out in previous studies (Koch 1973, Lelgemann

1978) the parameters of the kernel function K(P,Qi) have to be
adjusted to the density of the knots in order to obtain satisfactory
interpolation results. At least within the course of the investigations
of the stability properties of the algorithm a homogeneous distri-
bution of the knots within the region covered by the knots will be
advisable. A homogeneous distribution can be obtained by a grid of
(nearly) equidistantly chosen knots. The distance between the knots

is denoted by 6y. The scale of &y may be degree or km.

By applying analytic splines K(P,Qi) the vector of the coefficients
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ai(P) has to be computed by the matrix product
-1
al(P) = K(P,Qj) B (QJ,Qi)- (3 = 1)

The coefficients ai(P) do not depend on the function T but on the size
of the free parameters kn and RQ. This interrelationship will be in-
vestigated in the following two subsections.

3,1 THE CHOICE OF THE FREE PARAMETER RQ

In the course of this subsection we will always assume kn = . wThe
parameter RQ (or the parameters Ri) is chosen to fall between the limits

Roip S RQ g RN (3 =42)

These limits should be chosen such as to observe the limits (2 - 8)

of the norm of the interpolation coefficients for any point P within
the whole region covered by the knots. Under the two restrictions
described above (homogeneous distribution of the knots at the boundary
sphere w) the following relationships have been found by empirical

investigations:
Ri, = R - 0.5 8¢ [km] (3 = 3a)
Riax = R- 3+ 64 [km] (3 = 3b)

These empirical relations are very rigid with respect to further mo-

del modifications. Test computations have shown

- nearly no dependence on the number of the knots (if this number
is not to small, say more then 10)

- cnly little dependence on the dimension of the distribution of
the knots (one- and twodimensional)

- nearly no dependence on the size of the distance 6y as long as
&80 s 1° (and only little dependence in case of large distances,
e.g. 60~5°)

The size of the extreme values of the parameters RO depends, however,

strongly on the chosen parameter kn as will be shown in the next

subsection.
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If a value RQ is chosen between the two limits given by ( 3 - 3) the
interpolation result will always behave very stably. If the para-
meter RQ is chosen somewhere midway between these limits, e.g.

-~ b % | ’4
HQ LR B (3 )

the procedure allows obviously for small inhomogeneities in the dis-
tribution of the knots. Therefore, in (3 - 14) &y  denotes a mean value
of the distances between slightly inhomogeneously distributed knots.

The size of the interpolation coefficients ai(P) as listed in the
tables 1 and 2 in the appendix illustrates the usefulness of criterion
(3 - 3). In both cases (one and twodimensional), a (nearly) equidistant
point grid of knots was used.

In table 1 the interpolation coefficients (determined with four para-

meters R chosen to be the same values as used for the four samples

Q’
shcwn in graph 1) are listed for two different points P. The points P

are marked by dark circles. The parameters R. are chosen to demonstrate

Q
the behaviour of the coefficients for
RQ > Rmax
RQ & Rmax
RQ v Rmin
R R
Q min

Table 2 shows the behaviour of the interpolation coefficients in the
twodimensional cese. Consider especially the resemblance of the cof-
ficients of example 2d and 2e as compared to the coefficients found

in the one-dimensional case 1lc. Remarkable is also the very wild be-
haviour of the coefficients in example 2g and the very regular behaviour
of the coefficients in example 2h. Of course, all these coefficients are
not related to a special form of the function T. They depend only on the
size of the free parameter RQ and therefore on the position of the

poles of the interpolating function.

3.2 THE CHOICE OF THE FREE PARAMETER kn

It remains to investigate the influence of a modification of the free
parameter kn on the behaviour of the coefficients ai(P) and in this
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connection on the choice of RQ. As one result of these investigations
it turned out that not the individual values of kn but the order
O‘(kn) of kn is essential for the choice of RQ. The order O.(kn),
abbreviated in the sequel as Op s is defined as the highest power of n

within the explicit expression for kn'

The infinite series
= RQ n+1
KP,Q) = 2 k|&+ P_(cosv) (3 - 5)

was summed to form closed expressions for four different parameters

kn. As a common abbreviation

)
d 54 k6
L=§-p3-2-ﬁ2 cosy + 1 (3 - 6)
Q Q

is used. Test computations have been carried out with six different

kernels, including

o

1. kernel Kl(P’Qi) (Logarithmic kernel): e iy oLgE.E
Kl(P,Q)'z 1n (1 + = = ) (- 1)
1/2 D _ 1)
(L v
Q
2. kernel K2(P,Qi)(Krarups kernel:) k =1, 0,70
S SO e (3 - 8)
3. kernel K3<Pigi) (Szegbs kernel:) koo Lom Jis AoresT
2 2
r = RO
KB(P’Q) = WZ— (3 = o)
Q

4. Kernel Ku(P,Qi)'kn = (n+1)(2n+1); 0} =2

3 2 -3/2 r 2 r -5/2
K(B, @ =s5 5 i + 3 R% (( -F:; -1 —ﬁ—E - cosy | L (3 - 10)
) Q

As a result of the test computations it appeared that the interpolation

| s

5]
o W

coefficients undergo negligible change if the extreme values for RO are
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determined using the following empirical relations:

0.25 if ok=—1
R =R - (0.5+C-0,) &Y, % ={ - 11)
max o) 45 e n st ok¢—1
= - . i = 0
Rmin R (3 +C Ok) Sy C 5

As an example the coefficients of the one - dimensional test model
are listed in table 3 and 4 in the appendix when all four kernels have

been used.

The essential effect of a variation of the kernel function by a modi-
fication of the parameter kn is therefore a shifting of the poles of
the interpolating function in a radial direction. This fact may be
extremely important for such applications of the analytic splines which
are directly or indirectly related to analytical dewnward continuation.
A typical problem of that kind is Krarups problem which will be
considered in the next section.

4. STABLE INTERPOLATION AT THE SURFACE OF THE EARTH

In (Krarup 1969) a theorem developed by C. Runge was specialised to
geodetic problems. According to this thecrem the gravity potential
outside the earth can be approximated by spherical harmonics con-
verging at least in a domain including the geoid. All poles of the
interpolating function must therefore be included inside the geoid.

In this way it is ensured that the downward continuation to the geoid

fulfils the condition 1 of a well-pcsed problem.

However, Runge's theorem does not ensure that condition 3 of a well-
posed prohlem is fulfilled too. Since the function of analytical
continuation may be very rough inside the earth a development of the
potential of analytical continuation at the geoid into a seriesof
spherical harmonics may show undesirable, very unstable numerical

properties.

Based on the investigations in the last section we will show how to
choose the kernel function K(P,Qi) for knots Qi at the earths'surface
to get a stable series evaluation of the potential on and outside the
earths'surface, but not necessarily stable at the geoid. The geoid is
considered to have the form of a sphere (spherical approximation).
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The knots Qi should form for this purpose a grid over the earth surface;

the desired resolution of the approximating function is given by the

distance 6&uv.

Let us assume that the logarithmic kernel Ki(P’Qi) is used at the geoid.

At height
iy @ B = 0.5 & (4 - 1)

we need to use the Krarup kernel K2(P,Qi),both K1 and K2 should be
considered with their corresponding parameter Rmax' A stable inter-
polation function is obtained then at the surface of the geoid and e.g.
at the top of a mountain of height h. It is important to note that all
poles of the interpolating function are inside the geoid as required

by Krarup's theorem.

If the mountain is lower than h = 0.5 &) or for the knots at the slope
of the mountain we may always obtain asuitable kernel by applying a

weighted mean,

K(P,Q;) = a(r;)+K,(P,@) + b(r:) K,(P,Q) . (4 - 2)

Since the (empirical) relation between the extreme parameters Rmax for

kernels of various order are linear the coefficients a and b must be

chosen according to

r.-R 1o W= el
= =8 and L+ SR b. (4 - 2a)
B rh-R

If the mountain is higher than h 0.5 80 a third kernel has to be

. . . l
applied with ki = 0.(n) or even a fourth kernel with ki = O.(n2) etc..
In this way a stable interpolation function is obtain at the surface

of the earth, at least, if the slope of the terrain is not too large.

5. FINAL REMARKS
The following problems remain:

- downward continuation using analytical splines
-~ inhomogeneous and anisotropic distributed knots

- the relationship to Least squares collocation.

The problem of downward continuation is one of the most important of
modern physical geodesy. A discussion of this very difficult problem
is not the objective of this study. On the other hand there seem to be
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some remarkable links between the investigation of the range, in which
stable or at least nearly stable analytical continuation may be possible
and the technique used in the preceding sections.

The problem of inhomogeneously distributed knots may become critical
especially if collocation based on all available measurements will be
used. Small inhomogeneities in the set of mutual distances of the knots
may be caught up by the choice of the parameter RQ within the limits
Rmax > RQ > Rmin' If the differences in the distances to neighbouring
points are too large, nevertheless, anisotropic kernel functions (i.e.
kernel functions depending on the azimuth) have to be used. Investiga-
tions by applying anisotropic kernel functions are described e.g. in
(Kearsley 1977).

As pointed out e.g. in (Moritz 1978) the advantages of the statisti-
cal interpretation of the results of Least squares collocation are the
error estimates. Such a statistical interpretation can be preserved by
removing global effects from the global covariance function until a
local covariance function is obtained which can be approximated by a
kernel function of a form in accordance with the stability require-
ments. In this connectionit is an important fact that a critical quan-
tity for the error estimation - the variance at the origin ¢ = O of
the covariance function - has no influence on the size of the inter-
polating function as can be seen from the definition of the coeffi-
cients ai(P) in formula (3 -~ 1). At any rate the interpretation of the
error estimation of Least squares collocation is especially deep as
shown by the description of the statistical background of Least squares
collocation in (Moritz 1978)
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APPENDIX: Tables of Interpolation Coefficients for Equidistant Grids

of Knots and Various Parameter RQ

Table 1: Ihterpolation Coefficients ai(P) of an Onedimensional Grid
(Meridian) (RQ = variable, o R constant=1)

.
3

Example 1la: RQ ="6" 378 000" m > Rm

ax

i 1 2 4 5 6 F 8 9 10
cx.i(P) 0.01@0.01 0 0 0 0] 0 0] © 0
’— ———————————————————————————————————————————————————————
cx.i(P) 0] 0 0 0] ORC1@Ie). O 0 0 0 0
Example 1b: RQ = 6 36THE@m - Rmax -

i 1 -2 3 b 5 6 7 8 9 10
ai(P) 0.49@0.50 -0.03 0.01 0 0] 0 0] 0 0
ai(P) 0 0 OROAN=CLOBE ON50I@e. 5eRT@. 03 0.0% 0 0
Example 1lc: RQ SR OIS KI5 S = Rmin

i 1 2 3 b 5 6 7 8 9 10
cx.i(P) B 2iEN 860yl 36 ¥R 20120712  @UOT =-0.04 0.02 -0.01 0
ai(P) 0.01 -0.04 0.09 -0.19 0.63@0.63 -0.19 O._O9 —O.(_')L!_ 0.61

Example 1d: R, = 6 000 000 m < Rm.

Q L0l
. i : : ’ - 4 7 8 9 10
a; (P)]'0.20@1.54 " =1.79 12728 -2({31"W1,78'21100 "0y39"1=0,10 ' 0.01
a;(P)| 0 -0.01 0.04 -0.14 0.61@0.61 -0.14 0.04 g, 0 |

@® Interpolation point P

Remark: Regard also the corresponding graph of the interpolating

function in figure 1
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Taple 2: Interpolation Coefficients o.i(P) of a Twodimensional Grid
(RQ = variable, lop—= constant = 1)

Example 2a: RQ = 6 367 008 m = ey

i 1 2 3 it 5 6 7 8 9 10
1 | P 2% '-§,02 0 0 0 0 0 0 0
2 o,27.o.28 -0.02 0 0 0 0 0 0 0
3 |-0.02 -0.02 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
Example 2b: RQ = 6 367 008 m = R
i 1 2 g l 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0O -0.02 -0.02 0 0 0 0
5 0 0 0 =0, Q2 - IN2E 4 TE280 L = gp ity 0 0
6 0 0 0 -0.02 0.28.0.28 -0.02 0 0 0
/ 0 0 0 0. . =0, 02 -duQ2 0 0 0 0
0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0

@® Interpolation point P
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Example 2c: RQ R Ly Tl ) o Rmin

i 1 2 3 4 5 6 7 8 9 10
al 0.09 0.41 -0.22 0.12 -0.08 0.04 -0.03 0.01 -0.01 ©)
2 O.u1.0.60 -0.18 0.11 -0.06 0.04 -0.02 0.01 -0.01 0
3 |-0.22 -0.18 0 0 0 0] 0] 0] 0 0]
Yy 0 L2 (0) Sl 0 0.01 0] 0] (0) 0 0] 0]
5 |-0.08 -0.06 o 0] 0 0] 0 0] 0 0]
6 0.04 o0.04 0 0] 0] 0 0 ©) 0 0
| —Cs U5, 0,402 0] 0 0] 0] 0] 0] 0] 0]
8 OROASR O @} 0] 0] 0 0] 0] 0 0] 0
9 |-0.01 -0.01 0 0] ©) 0] 0 0] 0 0]
10 0 0] 0] 0 0 ) 0] ©) 0] 0
Example 2d: RQ ='6 311 345 m= Ro:n
o 1 2 3 4 5 6 A 8 9 10
al 0) 10l 0 0] 0 0 0 0] 0] 0] 0
2 |-0.04 0 0] 0 0] 0 0] o 0 0
3 0.09 0 0 0 0] 0 0] 0 0] 0
4 1-0.19 0 0 0 0 ©) 0 o 0] 0]
5 0.63 0 0 0 0] 0] 0] 0] 0] o
6 d’%} 0 0 0] o 0 0] 0] 0] 0
Henili=08.9 0 0] 0 0] 0] © 0 0] 0
8 0.09 0 0 0 (0] 0] 0] 0] 0 0
9 [-0.04 0O 0 0 0 0 0 0 0 0
10 (0)410)] 0 0] 0 ©) 0] 0] 0] 0 0

® Interpolation point P
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Example 2€e: RQ = 6 311 348 m = R

min
i 1 2 3 b 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
5|-0.05 0.04 -0.04 0.03 -0.02 0.01 -0.01 0 0 0
6 0.42@0.79 -0.30 0.16 -0.09 0.05 -0.03 0.02 -0.01 0
71-0.03 0.04 -0.04 0.03 -0.02 0.01 -0.01 -0.01 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 © 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0

Example 2f: RQ = 65 511 JU08e = Roin
3l l 2 3 4 5 6 i 8 9 10
il 0 © @ 0 OF GISSSORO 1 0 0 0 0
2 0 0 0 Ol O 1NR=0FO 2 F=OR O 2L SO O 0 0 G
3 0 0 ©5(0aL SElle2 - OOk 005421002 ;@ C 0
4 0 0. O131=0-G2" 1 IOR OB =GR T 2EH= 0= R ORI OEF=ONO 258 |0L O 0
5 OF O =0", 0258 .0405!=0 12 MO R TIGL 3OO0 128801058 '=0%'0 2 O, @)l
6 OO =0), 02 EL 05 =0/ 2 0.39.0.39 (0] 4l 05 (0)5,L.30) (02 )5
7 0 0,01 ER0 2RO, O3NSO 12 = Ot M- 2MROIN O =IO @ 2P ORI O] 0
8 0 0 02041 =04 025K IOk 05 MR 05N O 02" &0 O 0 0
9 0 0 0 (0 K0l L0 4(0)2 (011 (0F2 L L0 4(0)) 0 0 0
10 0 0 (0] 0 (055105 3=4(0]5(0)c 0 0 0 0

@® Interpolation point P
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6 000 000 m < Rmi

Example 2g: RQ = n
i 1 2 3 4 5 6 7 8 9 10
1 |-0.20 1.69 -4.08 ~6.73 -7.54 . 5.78 -2.95 0.93 -0.1A4 0
2 | 1.69 .-5.15 17.24 -29.99 34,41 -26.87  14.07 -4.63 0.81 -0.04
3 |-4.11  17.31 -49.66 84.34 -96.79 76.93 -41.97 14.98 -3.14 0.28
y | 6.79 -30.18 8U4.52-143,.46 165.88-134.,06 75.37 -28.36 6.52° =0.70
5 |-7.62 34.65 -96.92 165.63-193.58 158.98 -91.63 35.89 -8.79  1.04
6 | 5.84 -26.96 76.56-132.78 157.54-131.68 77.74 -31.54 8.15 =-1.04
7 }-2.97 13.94 -41.07 73.15 -88.78 75.92 -46.04 19.38 -5.27 0.72
8 ] 0.91 -4.42 14,08 -26.34 33,19 -29.35 18.46 -8.13 2.34 <-0.34
9 |-0.13 0.69 -2.68 5.52 =T7.44 6.95 =-4.61 2. 168 0. 668 30,10
10 0 B 08N -G ONTS . ~@.77 L90.56. 8-0.28" 0,09" 70.02
Example 2f: RQ = 6 000 000 m < Rmin
i 1 2 3 4 5 6 7 8 g 10
1 0 0.01 -0.01 0.01 -0.01 -0.01 0.01 -0.01 0.01 0
2 ] 0.01 i =0.03 40.06 (=0.07¢ 0.03y1 0:0%¢+0:0Tr#0. 06 +0.03 1 -0.01
3 |-0.01 0.06 -0.13 O0.14 -0.04 -0.04 0.15 -0.13 0.06 -0.01
4 | 0.01 -0.07 0.15 -0.16 -0.01 -0.01 -0.16 0.14 -0.07 0.01
5 §-0. Qe 10 0F 0sOlisi= 04 0% 1+ 053 Tor Ok 34=0L 02+ 0s0 g 0203 0. 01
6 |-0.01 0.03 -0.04 -0.01 0.34‘0.33 -0.01 -0.04 0.03 -0.01
7 | 0.01 -0.07 0.15 -0.16 -0.01 -0.01 -0.16 0.14 -0.07 0.01
8 [-0.01 0.06 -0.13 0.14 -0.04 -0.04 0.15 -0.13 0.06 =-0.01
9 | 0.01 -0.03 0.06 -0.07 0.03 0.03 -0.07 0.06 -0.03 0.01
10 0 0.01 $r0:01 §0.01 0.0, 03 0% 70501 & 0.01 80,01 0

@ Interpolation point P
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Table 3: Interpolation Coefficients ai(P) of an Onedimensional Grid

Example 3a: k= 537 » RQ S

(k, = variable,Ry = R. ) = variable)

min
.

6 322 480 m = Rmin

i 1 2 3 4 5 6 7 8 9 10

o (p) 0.01 -0.03 0.08 -0.18 0.63@0.63 -0.18 0.08 -0.03 0.01
(a, (7)) 0.36@0.87 -0.36 0.20 -0.11 0.07 -0.04 0.02 -0.01 O
Example 3b: kn e RQ I R Roin

i 1 2 3 4 5 6 7 8 9 10

a; (p)|0.01 -0.04 0.09 -0.19 0.63@0.63 -0.19 0.09 -0.04 0.01
a_i-(;; 0.37@0.86 -0.36 0.20 -0.12 0.07 -0.04 0.02 -0.01 © )

]

Example 3c: kn = (2n+1), RQ 2530 Q=24 6~m :'Rmin

i 1 2 & 4 5 6 ¥ 8 9 10

a; (P)]0.01 -0.04 -0.09 -0.19 0.63@0.63 -0.19 0.09 -0.04 0.01
a;(P)|0.38@0.85 -0.36 0.21 -0.13 0,08 -0.05 o.os_-o.azné—""_
Example 3d: k= (n+1)(2n+1), RQ = 6 289 084 m Rose

i 1 2 3 4 5 6 7 8 9 10
a;(P)|0.01 -0.04 0.09 -0.19 0.63@0.63 -0.19 0.09 -0.04 0.01
a:(P)|0.39@0.85 -0.36 0.22 -0.13 0.08 -0.05 0.03 -0.01 0 |

@® Interpolation point P
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Table U: Interpolation Coefficients ai(P) of an Onedimensional Grid

(kn = variable, RQ = Rmax = variable)

Example 3a: k_ = H-l—f , Ry = 6 372 574 m = R

+
1L o 2 3 4 5 6 7 8 9 10
ai(P) 0 0 0.901,150. 62, 0. 51 9051, =0.82.00-01 0 0
ai(P) OFSO@O 5 TT=0. 027 0701 0 0 0 0 0 0

Example 3b: k_ =1, RQ 6 567 008 m - = R

max
al 1 2 3 L 5 6 7 8 9 10
ai(P) 0 0 O, DLE=0R0= 70 .. S0@6s 50/ =0,0%L 0..04 0 0
(o, (P)[0.49@0.50 -0.03 0.01 0 o o o o o |

Example 3c: kn SR (Zn+ 39, L EMSIE 6 555 8768

Q max
i 1 2 g L 5 6 7 8 9 10
ai(P) 0 0 0.01 -0.08 0.55@0.55 -0.08 0.01 0 0
ai(P) 0.53@0.56 -0.08 0.01 0 0 0 0 0 0

Example 3d: kn SN2 (Al o RIS Gr il L ey So AR

Q max
. 1 2 3 4 5 B 7 8 ; 2
a;(P)] O -0.01 0.02 -0.11 0.58@0.58 -0.11 0.02 -0.01 0
a; (P)|0.54@0.59 -0.11 0.03 -0.01 O 0 Q0% @ 0 | o |

@® Interpolation point P
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RESEARCH IN SATELLITE GEODESY IN THE FRAME OF THE INTERCOSMOS
PROGRAM

) 3) W 5)
A. G. Massevitch? Ti. Almért N. Georgiev, K. Hamal, H. Montag,
S. Tatevian? Y. Zielinsky ¢

(Adressen siehe S. 415)

1. INTRODUCTION

At present Bulgaria, Cuba, Czechoslovakia, the GDR, Hungary,
Mongolia, Poland, Roumania, the USSR and Vietnam participate in
the Intercosmos multilateral cooperation program for space
research. In the framework of this program joint experiments are
carried out in explorations of the ionosphere and magnetosphere,
golar-terrestrial relations, Radio, X-Ray and 7§ -astronomy, the
interplanetary medium, natural resources, and technological
experiments in space.

One of the Intercosmos program aspects is scientific cooperation
in satellite geodesy and geodynamics. For this purpose a permanent
commission - Section 6 of the Working Group "Space Physics" - has
been set up which coordinates satellite tracking campaigns,
observational data exchange, unification of reduction routines,
exchange of observers and experts, modernisation and development
of tracking techniques; makes recommendations on participation in
other international programs. Four directions of research are
currently under way: 1) Satellite Geodesy and Geophysics,

2) Physical Parameters of the Atmosphere, 3) Improvement of
Technology and Instrumentation and 4) Balloon Geodesy.

All the four directions are closely connected and are directly or
indirectly aimed to solve fundamental problems of Satellite
Geodesy and Geodynamics.

As a base for joint observational programs serves a network of
satellite tracking stations situated in the collaborating
countries and several countries in Asia, Africa and South America
having bilateral agreements with the Astronomical Council of the
USSR Academy of Sciences who is acting as co-ordinator of the
whole problem. All stations are equipped with USSR photographic
cameras AFU-75 (several - with the GDR Carl Zeiss, Jena cameras
SBG) and Intercosmos laser rangers built in the frame of the co-
operation by scientists from Czechoslovakia, the GDR, Hungary,
Poland, and the USSR.




402

The technical parameters of the AFU-T75 camexra have been several
times described in various publications [1,2). A principal virtue
of the camera is its portability and mobility. Satellite direc-
tions can be determined up to 2 sec. of arc, positions of geo-
stationary satellites can be obtained with an error of 1 sec of
are.

The Intercosmos laser is a ranging system of the first generation
with effective distance -~ 3,000 km, the measurement accuracy
0,6-1,5 m; visual guiding, the impulse energy of the ruby laser is
1 3 , puls duration ~ 15 MRsec.(Ca)

The Potsdam laser ranger on the basis of the Zeiss camera SBG has

a two-step ruby laser. A unique feature of the SBG-laser is the pos-
sibility to carry out alternately photographic and laser-ranging
observations during one satellite passage. It is possible to obser-
ve all existing satellites with retroreflectors, Lageos including;
guiding is automatically, the measurement accuracy is about 1 meter
and, with a more sophisticated laser, a 0,2 m accuracy may be
achieved.

A SBG-laser will start in 1980 at the Simeiz station as well.

At present 22 photographic and 12 laser ranging stations are
operating (Table 1). Building of two new stations in Angola and
Vietnam is under way. Former stations in Kuru, Somali and Sudan
have been discontinued. Due to civil war conditions observations
at the station in Ndzhamena (Republic of Tchad) are interrupted.
The last term observations are carried out at the station on the
Island New Amsterdam in the Indian Ocean. :

2. POSITIONING OF STATIONS

Positioning of new Intercosmos network stations and their
geodetic links to global coordinate systems is still one of the
major problems in the Intercosmos collaboration.

Geometric methods of satellite geodesy, utilizing simultaneous
observations are used for developments of long geodetic traverses
(the Arctic-Antarctic, for examplel®%,5)) and for adjustments of
regional networks: the European (Fig.1) and the African (Fig.2).

The adjustment is realised by a parametric method [ 7] , which
allows to include in the computations both direct measurements of
satellite positions and evaluated directions and lengths of
geodetical chords between two stations.

Orbital methods allow to utilize observational data more
efficiently as usually the number of simultaneous observations
does not exceed 10 % of the total amount. In the frame of the
Intercosmos cooperation several variations of the short arc

method very useful for station positioning in a local coordinate
system have been developed and are frequently used(2,©]. A short
arc is usually defined as a part of the satellite's orbit observed
during a time interval from about ten seconds up to 1-2 whole
periods the condition being that the computational error should
not exceed the error of the observations itself. Using special
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routines developed at the Astronomical Council and the Novosibirsk
teodetic Institute, positions of distant stations: Sant Yago de
Cuba, Kerguelen, Helwan and Yuzhno-Sakhalinsk have been determined
on base of photographic tracking data of Midas 4 and GEOSA with an
accuracy of 15-25 meters. Together with laser range measurements
of GEOS A and C the accuracy has been increased up to less than

5 meters (Table 2 and 3).

A more general solution for site positioning was obtained by means
of the routine "Potsdam-3", realising a semidynamical method (7]
with an accuracy about 10 m. In Table 4 comparison of results
obtained by this routine on base of ISAGEX data with SE II, III, IV
results is presented. The routine Potsdam 3 is successfully
operating also in Hungary and the USSR.

3. ORBITAL COMPUTATIONS

Theoretical investigations in order to improve orbit determina-
tions so they could be utilised for geodynamical purposes are
under way in several participating countries. A new improved
version of the routine "Potsdam" i1s being prepared in the GDR.
This program is based upon numerical integration and provides a
decimetre accuracy of orbital parameters during several days[g8] .

Much attention is also paid to analytical methods of orbit
determinations based on the theory of an intermediate orbit of two
fixed centers C 9] .

A new routine "Prognose'" is being developed at the Astronomical
Council using a new approximation of the geopotential proposed by
Marchenko[410], as a sum of potentials of mass points (sum of
potentials of gravitational multipoles). Using, for example, a
number of Stole constants up to the 12th degree, a model of
gravitational dipoles consisting of 128 mass-points has been
constructed. This method simplifies the whole procedure and
requires considerably less computing time for numerical integra-
tions.

The present accuracy of orbit computations requires very accurate
atmospheric models. Special investigations allowing to choose the
most appropriate atmospheric model for a particular orbital
routine are under way 41].

Recently the influence of atmospheric drag on satellites with
perigee ~ 700 km has been investigated. Comparison of orbital
positions for Explorer 19 ( A r in meters and At in minutes)
computed without and with an atmospheric model (Jaccia 66) is
shown in Fig. 3 . In the case when the perigee is in the shadow
(¥ = 123°) the error does not exceed 1-2 m on an interval of
20-30 minutes. For "day time" the same error occurs after 5-7 min.
After 3 revolutions "at night"™ an error of 600 m is obtained, for
the"day" - 3-4 km. When choosing an atmospheric model for orbit
computations the possibility of its mathematical realisation
becomes an important factor. Some precise and rather sophisticated
models developed recently cannot be efficiently utilised due to
pure mathematical difficulties. A comparison of two atmospheric
models, CIRA-72 and the French Drag Temperature Model (DTM) by
Barlier (42]) has been carried out at the Astronomical Council
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recently. Results of numerical integrations of an orbit for a.
satellite with perigee height 1400 km on a 7 day interval have
been compared using both models. The difference A r of the geo-
centric radius-vector (the actual difference between the two
models) reached a value of ~100 m at the end of the interval for
a mean level of solar activity, e.g. a value comparable with the
errors of photographic tracking data (Fig. 4 ). However, an orbit
with the DTM requires 6-8 times less computing time than with the
model CIRA-T72.[{3]

Another investigation under way concerns the utilisation of photo-
graphic tracking data in order to improve the accuracy of naviga-
tion for scientific instrumentation on board of the Intercosmos
satellites. The result obtained shows that the errors in timing
can be improved 5-10 times along the orbit@4UThe influence of non-
gravitational forces on the motion of artificial satellites has
been investigated at Ondrjeov, Czechoslovakia. A global model of
solar radiation reflected by the Earth has been proposed and
analysed using spherical harmonics [15] . At present variable
components like clouds and seasonal variations of the albedo are
being introduced into this model.

4. GEOSTATIONARY SATELLITES

As early as 1972 K. Marek [ 16]) made an estimate of the possible
accuracy of direction determinations by means of simultaneous
observations of geostationary satellites. He showed that the
direction Zvenigorod - Island New Amsterdam (about 10000 km) can
be obtained with an accuracy of O¥5 if the position of the
satellite is determined with an accuracy of 0O%25. However, as
experience shows, the most precise photographic cameras provide
an accuracy ~ 1 second of arc. Computations, carried out at the
Astronomical Council show that such an accuracy may be sufficient
for geodetic links at very long distances if the geometric
configuration station-satellite-station is optimal and not less
than 25 simultaneous pairs are available. Most favourable are
directions perpendicular to the Equator C1%3 .

The first successful photographs of geostationary satellites of
the types Intelsat-4 and Molnija have been obtained in 1975 at
the Zvenigorod station on the USSR photographic camera VAU

(d =500 mm, £ = #00 mm, field of sight 5°x30). At present geo-
stationary satellites are tracked at all the stations of the
Intercosmos network. Table 5 shows some results for 1978 and
1979. Outstanding results have been obtained at the station
Zvenigorod near Moscow. On one frame of the VAU camera up to 19
geostationary satellites can be found. At Zvenigorod more than 30
different satellites are regularly observed which is remarkable if
the latitude of this station (56°) is considered.

Simultaneous photographic tracking data of geostationary
satellites can be used as a base for a global triangulation net
consisting of triangles (about 100°) around the eguator. An
example of such a network has been described in C17].

Photographic tracking data of geostationary satellites can be
also utilised for theoretical investigations, orbit determination
including resonance effects, and determination of the mass centre
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of the Earth (18).
5. GEODYNAMICS

Owing to the development of new tracking techniques and an in-
crease in the accuracy, new problems connected with global geodyna-
mical investigations were included in the program of scientific co-
operation. In order to recommend an optimal net of stations for
geodynamic investigations all Intercosmos stations were analyzed

on the base of geological, tectonical, meteorological, instrumental
and other conditions [i9) . Some of the stations are transterring
into special geodynamic observatories, e.g. Potsdam (GDR), Simeiz
(USSR), Penc %Hungary),Boroviec (Poland). The number of such sta-
tions will be increased in the future,

Into geodynamical stations will be transferred in the nearest
future the stations in St. Yago de Cuba and Quito (Equador).

At present investigations are under way to start regular determi-
nation of geodynamical components by means of laser range measure-
ments from one or several stations (for example the latitude
component of the polar motion on base of laser range measurements
of high satellites). Simultaneously with laser range measurements
astrometric observations by means of astrolabs or zenith teles-
copes as well as geophysical measurements are carried out at the
geodynamical stations. At the Simeiz station (USSR) systematic
determinations of latitude and longitude corrections with a
Danjon astrolab are under way. The latitude variation of Simeiz
has been determined and for a 3 year period corrected mean values
of ® and A obtained. Starting 1980 Simeiz is included into the
International Time and Polar Motion Service.

During 1979 two campaigns of laser range measurements of Geos 1
and Geos 3, aiming the precise determination of distances between
geodynamic stations, mentioned above, were organised. Short arc
methods are used for data processing.L20,21]

Simultaneously the same stations carry out Doppler measurements
for determination of their relative positions by the transloca-
tion methods.

In 1980 all laser stations of the Intercosmos network will
participate in the preliminary MERIT campaign.

Achievement of the decimeter (and centimeter) accuracy of laser
ranging is one of the necessary conditions for progress in space
geodynamics. New Laser systems of second and third generations
for satellites and the Moon are under development in the Soviet
Union, the GDR, CSSR, Poland. At the same time technical
improvements of the existing laser systems are carried out. The
SBG laser in Potsdam has been already mentioned above. A second
generation Czechoslovakian laser is mounted on the Intercosmos
ranging system in Cairo (pulse length 4 nsec, resolution of the
counter of Polish origin ~ 0,5 nsec, ranging accuracy 20-30 cm
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for BEC, Geos 1, Geos 3, Starlette).
6. DOPPLER MEASUREMENTS

Doppler measurements have started in 1978 in Hungary who acts as
co-ordinatox 'of this project. Participating are stations in
Bulgaria, Hungary, the GDR, Poland, USSR and Czechoslovakia.
Observations are carried out by two mobile Doppler receivers
(IMR-1 and CMA-751) in Hungary, one CMA-7223 receiver in the USSR.
A Doppler receiver belonging to the station Graz (Austria) is
participating in the campaigns. Poligh and Czechoslovakian
scientists are constructing their own Doppler installatiors@JSince
1978 the following experiments have been carried out: positioning
of the stations Boroviec (Poland), Pentz and Baja (Hungary), a
link by translocation of the stations Pentz (Hungary) and Graz
(Austria), by multilocation Pentz, Graz and Wetzell (FRG),
positioning by simultaneous tracking of the GDR stations Potsdam
and Dresden and Potsdam (GDR) and Riga (USSR). In 1980 stations in
Hungary, the GDR, the USSR, the CSSR and Poland have participated
in the WEDOC campaign.C23-23]

7. NEW PROJECTS

One of the newest projects (Satellite to Satellite tracking)
proposed for realisation in the Intercosmos program is the so
called DIDEX project (Differential Doppler Experiment): two
probes are moving along a circular polar orbit with a distance
between them 150-200 km. Theyytracked from a satellite moving
along a somewhat higher orbit. *The tracking will be effectuated
by two-way Doppler shift measurements, permitting to obtain an
accuracy of 0,05 mm/sec in the radial velocity. The actual data
which will be reduced for gravity anomaly deduction is the
relative velocity between the two subsateliites. It is expected,
that with an assumed accuracy of measurements -~ 0,05 mm/sec the
resolution of 3° with an error of 1?mgal in gravity anomalies
will be achieved. £E3©-32]

In 1981 a new Intercosmos satellite "Bulgaria-1300" is planned

to be launched. This satellite will have a circular orbit with an

inclination ? 75° and a perigee height about 950 km. The satellite

will be equipped with laser reflecting panels. (Number of prismas
84, reflecting surface ~. 0,05 m*). A special observation

program will be organised, under the general guidance of the

Bulgarian Academy of Sciences. [331]

A project of determining latitude and longitude differences in
one coordinate system for several geodynamical stations in order
to investigate relations and relative shifts of the geocentric
coordinate systems will start in 1981. The differences in
longitude and latitude for Potsdam, Simeiz and Irkutsk will be
determined with the help of a mobile Danjon astrolab with an
accuracy ~ 2-3 msec in longitude and 0,05-0,08 in latitude.

8. CONCLUSION

All above mentioned shows that in the participating countries
important results have been achieved mainly in improvement of the
tracking techniques and theoretical investigations aimed at the
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golution of fundamental problems of geodynamics.
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STATION  LAND
Borowiec Poland
Borowiec = " =
Ondrejov CSSR
= " = - . 9
Penc Hungary
Penc - " -
Baja -" -
Plana Bulgaria
Bucharest Roumania
Ulan- Mongolia
Bator
Dalan
Dzadagad - " -
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de Cuba Cuba
Santiago
de Cuba - " o
Phenian Korea
Helwan Egypt
Helwan - " <
N'Djamena Chad
Bamaco Mali
Kavalur India
Kavalur =TIV s
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gorod USSR
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Simeis USSR
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Riga =T
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Intercosmos Tracking Network

CAMERA
SBG

SBG,AFU-75

SBG,AFY-T75

AFU-T5
AFU=-T5
AFU-T5
AFU-T5

AFU-T75

AFU-T75

AFU=-T5
AFU-T75

AFU=-T75
AFU=-T5
AFU-T5

AFU-T75

AFU-T75

SBG,AFU-T75
VAU

SBG,AFU-75

SBG,AFU-75

409

LASER=-SYSTEM

Intercosmos

Intercosmos

Intercosmos
JMR-Doppler

Intercosmos

Intercosmos

Intercosmos

Intercosmos

Intercosmos

Intercosmos

Intercosmos
SBG

Intercosmos
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Table 1. (continued)

1181 Potsdam GDR 52 23 13 04 SBG-laser
1056 Uzhgorod USSR 22 16 48 36 SBG ,AFU-T75
1265 Yuzhno-
Sakhalinsk = " - 142 42 46 57 APU-T5
1650 New Indian

Amsterdam ocean
France T 32N a7 42 AFU-T5

Table 2. Mean-Square Errors for Rectangular Coordinates
(mx, : mz) of Intercosmos Tracking Stations Determined by the
Potsdam-3 Routine (in Meters). Photographic tracking data only

have been used.

Station(number) m m m,

M M M M
Uzhgorod(1055) 4 4 5 7
Zvenigorod(1072) 7 6 6 11
Riga(1084) 8 g 9 13
Kerguelen(1108) 10 11 i 20
Ondrejov(1147T) 9 6 &% 5
Potsdam(1181) 6 5 5 10
Ulan-Bator(1660) 5 6 7 10
Helwan(1901) 5 3 4 7

Table 3. Positioning of the Simeis station on base of
hotographic and laser tracking data by the short arc method.
Basic stations are Helwan and Potsdam.)

X : ¥ : yA :Date MID : Satellite
3783927+ 1.4:2551505% 2.7:4441053% 1.6: o : GEOS-1
GEOS-2

3783917% 4.8:2551490% 2.5:4441067F 2.2:43795-43797: GEOS-1
3783961% 3.6:2551487% 7.5:4441124% 5.7:43790-43792: GEOS-1
3783967% 0.6:2551435% 0.5:4440994% 0.7:43831-43835: GEOS-1
3783920% 2.1:2551513% 1.5:4441112% 2.0:43770-43775: GEOS-3
3783922% 1.4:2551531%10.5:4441107% 7.5:43784-43786: GEOS-3
mean values : : : -
3783935 12551493 : 4441076
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Table ﬁ_. Comparison with SE II, III, IV of positioning
results obfained by means of the "Potsdam-3" routine (differences
in meters).
Station(number) : SE II : SE III . SE IV
1976 1975 1976
5 g
Uzhgorod X -1 +26
(1055) 4 -4 : =22
Z =2 3 =40
Bt *10 t24
Zvenigorod X =67 4 + 7 : -35
(1072) Y +66 : +22 : +23
G =10 : +22 : -T2
2 5 g
Riga X + 2 : +7 : +16
(1084) Y +26 : +29 : & i
Z -20 $ =15 £ =22
I32 : 244
Kerguelen X =201 : -73
(1108) ¥ +141 : -35
7 + 41 : =30
Ondrejov : - 5 : 500
€ : -10 . -3
(1147) Y 143 33
2 +17 +20
; : $9 : 231
Potadam X : : =3 : -26
(1181) ¥ : +13 : +23
Z_: : =10 : -13
: %9 ‘
Ulan-Bator r Qe - =15 :
(1660) Y, . +6 :
.t : +25 :
: 114 %5 : 116
Helwan X : +211 3 +10 $ +27
(1901) i ~28 : +3 : ~56
Z =396 : -8 : +54
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Observations of geostationary satellites at the

Table °
Intercosmos tracking stations during 1978 and 1979.

Station

Number of observations (tot/sim)

1978 : 1979
Santiago 2/~ 20
N'Djamena 212/24 470/97
Kavalur 171/21 363/35
Uzhgorod 108/9 127/21
Zvenigorod 116/18 201/60
Ulan-Bator 113/13 36/8
New Amsterdam 29/10 56/16
Quito - 95/~
Yuzhno-Sakhalinsk it
Phenian 5/- 12/1
Patacamaya 25/~ -

Barenzburg
Hebhslaie Helsinki
e LI . )
Medon (O

San-Fernando

O Dionigos

Fig. 1. Adjustment of a regional European network based
on Intercosmos tracking stations.
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Fig. 2. Adjustment of a regional Europa-Africa network
based on Intercosmos tracking stations
links by photographic tracking data
--== photographic and laser data.
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Pig. 3. Perturbations by atmospheric density of
Exglorer 19 for "daytime" ( '-PB = 14°)
and "night~time" (\?B = 123°)%
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S
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Lrevry

Fig. 4. Comparison of two atmospheric models (CIRA-72
and DTM) for a satellite with gerigee 1400 km.
Different lines correspond to different degrees
of solar activity. A r is given in meters,

D t - in days.
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Pig. 5. Laser retroreflector for the satellite "Bulgaria 1300",

1)

2)
3)

4)
5)
6)

Astronomischer Rat der AdW der UdSSR, 109017 NMoskau
Pjatritzkaja ul. 48

Satellite Geodetic Observatory Penc, H-~1373 Budapest, PF 546

Bulgarian Academy of Sciences, Central Laboratory for Geodesy
1000 Sofia, 7. Novemberstr. 1

TU Prag, 11519 Prag 1, B¥ehovad 7
Zentralinstitut flir Physik der Erde,Potsdam, Telegrafenberg

Space Research Centre, Polish Academy of Sciences
00-716 Warszawa, Bartycka 18




416

ON THE INVESTIGATION OF GEODYNAMIC PARAMETERS BY MEANS OF LASER MEASURENKENTS

by

H. Montag1)

Summary

The general behaviour of the geodynamic parameters is discussed, especially the
spectrum of changes of the Earth's rotation vector.

The determination of polar motions by the aid of dynamic methods of satellite geod-
egy is treated more in detail. It is shown that the use of laser measurements to arti-
ficial Earth's satellites is one of the most accurate methods of studying polar mo-
tions and other parameters. By means of the observation equation for the determination
of improved polar coordinates from the orbit computation residuals the influences of
gtation coordinates and the orbital inclination are discussed. Some conclusions are

derived.

1. Spectrum of changes of the Earth rotation vektor and other parameters

Taking as a starting point the fundamental theory of the gyratory motion in space
of a rigid Earth and taking into account the effects of the tide-producing forces of
the Sun, Moon, and planets and the influence of a real model of the Earth with an e~
lastic mantle, a liquid outer core, and a hydrosphere and atmosphere, there is obtai-
ned the spectrum of the Earth rotation vektor given in Table I A, B and C 3, 5, 7,
8, 10/. This divides into movements of the axis of rotation in space (precession and
nutation), movements of the axis of rotation within the terrestrial body (polar mo-
tions), and variations in angular velocity of the Earth (length of day). The periods
and amplitudes of the movements have been determined not only from theories but from
observations as well. The causes of these movements have been derived from model con-
cepts that require to be studied in detail.

The individual components of polar motion, Earth's rotation, and terrestrial ti-
des are superimposed one on the other, and the main problem is to separate the indi-
vidual effects from the measurement results.

According to the causes of the phenomena (with the exception of luni-solar forces)
dealt with here it can be said that they are to be found primarily in the parameters
of the solid mantle of the Earth. Superimposed on them are influences exerted by the
non rigid part of the Earth (liquid outer core, ocean, atmosphere) and its interac-
tion with the solid mantle. Today, the latter effects are of major importance to a
better understanding of the entire process.

5 S
Akademie der Wissenschaften der DDR, Zentralinstitut fiir Physik der Erde,

DDR-1500 Potsdam, Telegrafenberg A 17
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As discussed by LAMBECK /7/ some causes for the different phenomena (Tab. I) are
still very much in doubt, especially
- the relative magnitudes of atmospheric, earthquake and aseismic effects on the free
polar wobble
- the amount of non-tidal rotational acceleration

- the nature of dissipation of both polar wobble and tides and

- the dominating mechanism of core-mantle coupling.

For demonstration by measurement techniques all that involves the need for as high

[

degree of resolution and accuracy as possible.

Additionally superimposed on the geodynamic processes referred to previously are
tectonic movements of the Earth's crust, which are local to global in nature. There-
fore, it is necessary to determine the tectonic movements and separate them from the
other effects. So far as local movements are concerned, this is relatively easily do-
ne with the help of local or regional control networks and simultaneous gravimetric
and inclination measurements. Today, interest is also focussed on the influences of
global tectonics. The amounts of relative plate movements are between a few cm/a and
2 dm/a. The refinement of this particular model of global tectonics also is an impor=-
tant task of the interpretation of measurement results obtained at geodynamic obser-

vatories.

2. Possibilities of measuring geodynamic effects

lajor progress in the study of geodynamic effects can be made if detection by
means of special measurement techniques is possible with an accuracy of ‘IO'8 of the
tarth's radius (€ 1 dm). This means that it is also necessary for a reference system
to be realized with at least the same degree of accuracy. To satisfy these accuracy
requirements it is essential that the observations be made continuously or quasicon-
tinuously with the use of methods with as high a degree of complexity as possible,
These include astronomic-geodetic methods, gravimetric measurements and cosmic-geod-

etic methods of measurements /9/.

Although the low accuracy of astronomic-geocetic methods of measurement does not,
in general, allow a fine resolution of the different phenomena to be obtained, they
will continue to be of interest because of the long series of measurements. On the
other hand, cosmic-geodetic methods of measurement will become increasingly more im-
oortant for these tasks. In this connection the proposed international observation
programm MERIT(.ionitoring of Earth Rotation and Intercomparison of the Techniques of
observations and analyses) is very important. The aim of this international project
is to compare these different classical and modern observation techniques and to es-
tirate the possibilities of the different measurements in determining the geodynamic

parameters, especially polar motion and Earth rotation,
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3. Analysis of satellite orbits for determining polar motions

Realization of a suitable inertial reference system is a primary prerequisite for
high-accuracy analysis of satellite orbits to detect geodynamic parameters For this,
the constants of precession and nutation required to determine the axis of rotation
of the Earth in space are needed. All the changes in the axis of rotation relative to
the terrestrial body (polar motion) and the variations in rotation will then manifest
themselves as variations in station coordinates or as residuals in the orbit determi-
nation.

The investigation of polar motions and variations of rotation by the use of such
analyses of satellite orbits is referred to as the kinematic method. The dynamic meth-
od may still be used for determining polar motions. This method needs variations in
spherical harmonic coefficients 021 and 821 to be studied. These coefficients are
known to give the difference between the axis of rotation and the principal axis of
inertia (which is equal to O if the two axis are coincident), and variations may thus
be interpreted as reflecting polar motions. However, orbital disturbances caused by
021 and 821 are usually of a rather low degree, and determination of polar motions by
this method is quite difficult. Estimates showed minimum requirements for the deter-
mination of orbits to be + 3 cm /5/.

Therefore, the major focus is on using the kinematic method which is of a more gen-
eral nature. Because of inadequate knowledge of the parameters of the perturbation
model, an accuracy better than + 1 to several meters cannot be expected to be obtained
in the analyis of laser measurements made from globally distributed stations to geod-
etic satellites. Qonsequently, it is necessary that special methods be available by
which it is possible to analyze, for example, only the transverse component. There-
fore, for the orbit determination it is useful to adjust the measurements in a rec-
tangular coordinate system accompanying the orbital motion, with the u-axis pointing
in the direction of the velocity vector of the satellite, v vertically to the orbital
plane, and w vertically outward in the plane of the orbit. This gives as low a degree
of correlation between the components as possible, and interpretation of residuals
for individual components is greatly facilitated.

If safellites are observed whose orbital inclination agree with the terrestrial
latitude of the observing station, the transverse component, v, will correspond to
the orbital inclination, i. The disturbances of inclination are smallest from an or-
bital mechanics aspect, and they are reduced still further near the greatest lat-
itude of the satellite (w + v==90°) {13/. On the other hand, the orbital inclination
may be particularly easily determined by laser measurements near the greatest lat-
itude, it being also possible there to observe the satellite from one station during
four to five consecutive passages (the period of time being about six hours) /6/. By
means of an orbital computer programme we have simulated how the principal compo-
nents of polar motion are reflected in the variations of the orbital components u,
v, and w [4]. But this single-station approach of laser ranging to appropriate ar-
tificial satellites has several limitations /17: of polar motion the meridional com-
ponent can be measured only; it is difficult to separate this component from dynamic
perturbations of inclination i and from precession and nutation; it is an big influ-
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ence of systematical error effects.

Avoiding these disadvantages it is necessary to use more than one station and to an-
alyse the results in such a way that the more accurate components have the greatest
influence on the determination of polar motions. This can be done on the basis of the
knowledge of the relations between the polar motions and the residuals in the used
coordinate system. Obtaining the influence of polar motions on the residuals in the
u, v, w-coordinate system accompanying the satellite orbit we transform the station
vektor rp of the Earth fixed system into the coordinate system accompanying the or-

bit rp T
rp = R) By () R, (@ ) R, (1) R, (R-0) Ry () R () 7

with R - rotation matrizes, w - argument of perigee of the satellite orbit, v - true
anomaly, i - inclination, % - longitude of the ascending node, § - sideral time,

. - polar coordinates. Variations of the vector Ty due to polar motions we get by
partial derivatives

du °rp 2]
dv = —: d3 + ': d 2 .
dw 33 3‘2

From this follows in detail

du ( cos L sin i sin L cos ¥ + cos L sin M cos i‘
av | = cos i xp + -sin M sin i zp| 4§
dw L sin L sin i -cos Lcos M +s8in L sin M cos i
-cos L gin i -sin L sin M + cos L cos M cos i W
+ -cos i g + -cos M sin i 25 a7
L -gin L sin 1 cos L sinM + sin L cos M cos i‘

with L a w+ v; M=% -6 and Xgs Yg» 25 - station coordinates in the Earth fixed
system,

This is the "observation equation" for the determination of improvements to polar mo-
tions j and 2 from the orbit computation residuals du, dv, dw. The discussion of this
equation shows several dependences. The periods one can see from the parameter L (or-
bita)/period) and ¥ (diurnal period). That means the components du and dw show in
general periods which are mainly equivalent to the satellite revolution, whereas dv
has mainly an diurnal period.

Further one can see from the last equation the well known matter, that one need for
deternining of both f and 2 at least two stations with a difference in longitude of
about 90°, Additionally 2; should be not so small; that means the stations should be
situated away from the equator. On the other hand Xg and g desire to be not so small
for determining d3 and dy , respectively; that means one should have two stations in
the nearness of the equator with @ difference in longitude of 90 degrees., Analogously
is the influence.of the orbital inclination. An increasing inclination raises the
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contribution of the z = coordinate of the station position and an decreasing inclina-
tion raises the influence of the x- and y-coordinatese.

4., laser measurements to artificial Earth's satellites and some conclusions

The use of laser rangings to artificial Earth's satellites is one of the most ac-
curate methods of studying geodynamic parameters.

Using the single-station method, Kolenkiewicz et. al /6/ obtained in 1973 first
results on polar motion and Earth's tides from laser measurements at the station
Greenbelt (f = 39°) to the satellite BE-C (i = 41°). The analysis of all short arcs
of about six hours each, in which the four to five passages had been observed, show-
ed an accuracy of the latitude variations to be about + 1 m for a total period of
seventeen months. The accuracy of laser ranging has been considerably improved
(<t 10 cm for the third generation and + 10 to + 30 cm for the second generation)
since these experiments were performed, and the accuracy of orbit modeling also
could be improved substantially. However, of particular importance in this connec-
tion is the launching of special geodynamic satellites such as Starlette (HA=11OO km,
HP = 810 lm, i = 500, 24 cm diam., 47 kg weight) and LAGEOS (H = 6000 km, i = 110°,
60 cm diam.,, 411 kg weight). For the LAGEOS satellite the orbital perturbations may
be relatively easily modeled to an accuracy of + 10 cm because of the high altitude
and the large weight-to-cross section ratio. By using this orbital accuracy and by
second and third generation laser ranging techniques it is possible to obtain accu-
racies of + 10 cm and better for- polar coordinates.

An analysis of the orbital perturbations of the LAGEOS satellite also allows oth-
er phenomena to be studied, and these include distances between remote terrestrial
stations from short-arc solutions, tidal effects, constancy of the gravitational
constant (from semi-major axis a), and variation of the harmonic coefficient Iy
(from change in the longitude of perigee).

Consequently, within the Intercosmos-cooperation on several satellite tracking
stations being set up improved or new laser ranging instruments with a higher ac-
curacy and the capability to observe LAGEOS too., In addition to a number of glob-
ally distributed stations (e.ge. Cuba), they will be centered especially on Europe
and Asia. This distribution (difference in longitude about 1800) makes it possible
greatly to contribute to a better determination of polar motions and other para-
meters (tidal models, variations in rotation and global tectonics). In order to
avoid systematical errors and to separate the individual components of geodynamic
effects the laser ranging results will be combined with other measurements.,




421

References

[ 1/ AARDOOM, L.: Earth Rotation and Polar Motion from Laser Ranging to the Moon and

Artificial Satellites.
Reports Department Geodetic Sc. No. 280 (1978). Columbus, Ohio, pp. 19-28

[ 2/ BENDER, P.L.; GOAD, C.C.: Probable Lageos Contribution to Worldwide Geodynamic

Control Network,
The Use of Artificial Satellites for Geodesy and Geodynamics Vol. II (Pro-

ceedings of the Symposium in Athens 1978), Athens (1979), pp. 145-161

[ 37 KAUTZLEEEN, H,: Some Actual Problems in the Interpretation of Geodynamio Pro-

cessese.
Veroff. Zentralinstitut Physik der Erde Potsdam Nr. 52, Teil 1 (1977), pp.

17-29

[ 4] KAUTZLEBEN, H.; HEMMLEB, G,; ELSTNER, C.,; MONTAG, H.: Complex Studies in Plane=-
tary Dynamics of the Earth.
Nabljudenija iskusstvennych nebesnych tel No., 15 (1975), Moskva 1976, PPe

63-84

[ 5] KOLACZEK, B.;JAKS, W.: Polar Motion Determinations by the Use of New Observa-

tional Techniques.
Artificial Satellites 13 (1978) 3, Warszawa - Lodz, pp. 31-48

[ 6/ KOLENKIEWICZ, R.; SMITH, D.E.; DUNN, P.H,: Polar Motion and Earth Tides from
Beacon Explorer C.
Proceedings Symposium on Use of Artificial Satellites for Geodesy and Geo-

dynamics, Athens 1973

[ 7/ LALEBECK, K.: Progress in Geophysical Aspects of the Rotation of the Earth.
Rep. Dep. Geodetic Sc. No. 280 (1978), Columbus, Ohio, ppe. 1-11

[ 8] L3ICK, A.: The Observability of the Celestial Pole and its Nutation.
Rep. Dep. Geodetic Sc. Ho., 262 (1978) , Columbus (Ohio)

[ 9/ _ONTAG, H.; LALA, P.; KLOKXOCNIE, J.: O nekotorych trebovanijach dlja kompleks-
nych stancii geodinamiceskich issledovanij.
Zpravy a pozorovani Geodeticke Observatore Pecn§ (VUGTK), Rada 5, Cislo 3,
Praha (1979), pp. 1-11

/10/ ROCHESTER, M.G.: The Earth's Rotation
Transact. Amer. Geophys. Union 54 (1973) pp. 769-780

/117 SHAPIRO, I.I.: Principles of Very Long Baseline Interferometry.
Rep. Dep. Geodetic Sc. ilo. 280 (1978), Columbus, Ohio, pp. 29-33

N2/ S¥ITH, D.E.; DUNW, P.H.: Determination of Station Coordinates from Lageos.
The Use of Artificial Satellites for Geodesy and Geodynamics Vol., II
(Proceedings of the Symp. Athens 1978), Athens (1979) pp. 162-172

[137 STANGE, L.; MONTAG, H,: On the Determination of Coordinates and their Temporal
Variations Using the Orbital liethod.
ngﬁggé Zentralinstitut Physik der Erde, Potsdam (1974) 30, Teil 2, pp.




422

Table 1. Spectrum of Changes in Earth's Rotation and Polar lMotion

A, Inertial orientation of spin axis

Phenomena Period Amplitude detg;ted probable origin/causes

Precession 25 700 yr 23,5° theory, |Lunisolar perturbations, mass
astr.obs.|distributicn in the Earth
Principal 18,6 yr &)y theory, |lunar perturbationsyiiass
flutation astr.obs, {distribution in the PEarth
Other periodic(9,3/1/0,5 yr } PRL theory, |lunisolar, planetar perturbations,
nutation terms [183/122/277/14 4 astr.obs, |mass distribution in the Earth
Free principal |associated te theory interaction between liquid core
core nutation |nearly diurnal ? and mantle
free nutation

Secul.decrease - -0,01"/yr |astr.obs,. |perturbations by planets
in obliquitye theory

B, Orientation of the rotation axis inside the Earth (polar motion)

i{Secular motion
:of the pole

Force free
nutation

- chandler
nutation

- nearly diur-
nal nutation

- long period.
nutation

[Forced
nutation

- Seasonal
nutation

- other peri-
odical (Op-
polzer )
terms

- 0,002 to agtr.obs.,
0,003"/yr |(IPLS,ILS)
(7=10 cm
/yr)
425 4 to 0,1"=0,2" | astr.obs.
440 a (3m-7n} theory,
(changable) satellite
obs.
sideral day + (<0,02" theory
several minutes| &6,7 m)
20 yr - 40 yr {€0,02" {astr.obs.
(0,7 m)
1 yr; 0,09%2,91)|astr. oba
0,5 yr Q01" (0,3m)|satelli-
te obs,
as diurnal <0,02" theory
nutation (0,7 m)

melting of Greenland ice (?)

elastic model of the Earth
(mantle and core)

seismic excitation hypothesig
(core-mantle interface)
atmospheric and hydrologigal
mass distribution

influences of pole tide in ocean
and of actions in Earth mantle

interactions between liquid
core and mantle

possibly observing effect and not
real (difference BIH and ILS)

meteorological (%)

lunisolar attraction




C. Changes in the length of day (LOD)
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continued Table 1

i Phenomena Period Amplitude detected by probable origin / causes
secular = -5-10'10/yr - astron. obs.| - tidal friction
ncceleration (-2ms/100yr) (- satellit - slow changes in mass dis-
V& Obs. ) tribution in the Earth
Yoo - Lunar Laser |- non-tidal torques acting
rang. on the mantle
- estimates
from tidal
parameters
Long-periodic [{10-300yr |+ 5-10'10/yr astr. obs. |- electromagnetic coupling
-10 of core motions to mantle
fluctuations !| 1- 10yr |+ 80:10" "“/yr - topographic coupling
and irregular -10 core-mantle )
changes months, ] [+ 500-107 “/yr ) - variations in atmospheric
i weeks, , and oceanic mass distri-
"abrupt"
ﬁhort-periodic 2 yr 9 ms astr. obs, '} meteorological
variations 1 yr 20 - 25 ms Lunar laser
i OR5N Y 9 ms ranging meteorological, especially
| zonal wind circulations,
' tides
month 1 ms ]
}global wind circulation
fortnight 1 ms
m

- only indirect via acceleration of mean motion of the moon
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L.P.Pellinen1)

REFERENCE SYSTEMS IN SOLVING MOLODENSKY'S PROBLEM
FOR THE SEA SURFACE

1« The progress of satellite altimetry opens possibilities
to determine the sea topographic surface (STS) with potential
accuracy of about Oe.1 me The departures of the STS from the geoid
become essential at this level of accuracy. The best way to
derive these departures is given by the combination of gravity
end altimetry data. We may obtain the STS-heights A above the
geoid by the formula (Fig. 1):

h=H-T+8H (1)
where /{ is the STS-height above the reference ellipsoid (/=0)
which is used in processing altimetry data; 'f is the gravi-
metric geoid height with reference to some conventional 1level
ellipsoid; 57/ is the correction for non-coincidence of the
reference ellipsoid (/=( ) and the level ellipsoid.

Let us assume that the regular tide component of the ﬁ -
heights is already kmown from special harmonic analysis of
gravity and altimeter data and we have to determine the quasi=-
stationary, long-period and non-regular components of these
heightse It should be stressed that the existence of quasista-
tionary departures of the sea topography from any level surface
causes difficulties in defining such terms as the geoid and the
level ellipsoide. The analogy of the known classical definition
of the geoid as the level surface best fitting to the mean sea
surface may be strictly realised only after the complete and
detailed determination of the figure of the STS. Moreover, we
should rigorously define the STS (for instance, w& may include
internal sea surfaces in it?). We should also fix the epoch of
the geoid taking in consideration sea level variations in time.

Thus, there are some advantages to assume as the geoid some
level surface of the real gravity field which may be defined
before the STS-determination,

2o It is sufficient to assume four fundamental geodetic
constants, i.e. the geocentric gravitational constant GM » the
second zonal harmonic (geopotential coefficient) 972 o the Earth
equatorial radius Q, and the angular velocity of the Earth's
rotation y for deriving all parameters of the Normal Earth
and its gravity field. The surface of the Normal Earth assumed

17
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to be the level (or normal) ellipsoid. The constants GN , ¢72
and ¢) eare independent from the definition of the Normal Earth.
We have another situation be defining the constants representing
the Normal Earth directlye. If we do not define the term "geoid"
we are not able to choose the Normal Earth as the best appro-
ximation of the geoid. Thus it is sufficient to choose some

value of the &, with the 1m - accuracy which is within the
range of the STS-departures from the geoide Then we derive the
value of the normal gravity potential Uo at the normal ellip-

soid surface.
Let us define the normal geoid as the real level surface on

which the gravity potential W is equal to Ua « The departure
of the normal geoid from the corresponding quasigeoid is appro-

5 = -%—Ag-h : (2)

where Ag is the free-air "mixed" anomaly on the STS; ¥ 9
the mean normal gravity value. Because ,hl £ 2 m;lA9,<400mGal,
we have ]5\§|< 0,8 mme. Thus, we need not distinguish on seas and
oceans the definitions of the geoid and the quasigeoide. It is

also possible to use other terms app-lied in solving Molodensky'!s
problem. The normal geoid departure from the normal ellipsoid

may be interpreted as the height anomaly

g= v (3)

b
where T is the disturbing potential at the STS. The height H=H,
may be interpreted as the geodetic height and the height /7 as
the normal height (see Fige. 1).

The definition of the normal geoid may be realised if we
determine the STS-figure in a geocentric coordinate system with
the required accuracy by means of the geometric satellite alti-
metry technique without any geoid figure data. In this case it
is possible to assume that the reference surface for the H-
heights coincides with the normal ellipsoide Thus, the JH - term
is excluded from (1) and we have

A @)
Because we are not able to know the h - heights before studying
of the geoid figure it is not reasonable to obtain mixed gravity
anomalies Ag from gravity measurements at sea. It is more
logical to obtain and use "proper" gravity anomalies or gravity

ximately [ 1] equal to
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disturbances 4G o The related problems are considered by
V.V.Brovar [2]. H.Moritz [3] has considered these problems
for the geoid (quasigeoid) figure to be determined with the
0.1 m-accuracye.

3. The errors of realization of the geocentric coordinate
system from geodetic satellite observations are actually essen-
tial and cause a shift of the reference ellipsoid which is used
for obtaining the / =~ values. There are also a scale error of
the coordinate system and an error of altimeter bias correction,

The JV{ - correction in the formula (1) may be represen-
ted when taking into account the systematic errors of the H -
heights as

8'H = xcosBeosl + Y cosBsinl +2sinB + 5H, (5)

where X , Y , Z are geocentric coordinates of the reference
ellipsoid center; B and L are geodetic latitude and longitude;
JVL is a constant component. The equation (6) is similar to
the well known height equation of grade measurements.

Let us assume that departures of the STS from the geoid do
not include zero- and first-degree spherical harmonicse. The
second assumption is probably justified from the physical point
of view. The first assumption corresponds to transition from the
normal geoid to another "mean sea" geoid fitting to the STS
within ocean area covered with altimeter measurements.

Let us put in (1) instead of dA4 the expression (5) and
congider the obtained formula as "observation equation":

h+ V= xco5Bcosl+ ycosBsinl + 25inB+5H, *( H ‘Z—) . 6)

Let us obtain the parameters I ,5/, Z 5 f/‘/o from the least-
square solution of equations (6) for a uniform grid of points
on ocean area, where altimeter data are available. Further, we

find -
Gt (7)

where A is the STS height with referemce to mean sea ellipsoid
which is fitted to the mean sea geoid, and B
_ h=H-% (8)
where A is the STS height with referemce to the mean sea geoid
(Fige 1)
As before (section 3) it is logical to use proper gravity
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momnes__b? for determining the Z;'- - values. The geodetic
neights 4 are obtained from (7).

The similar procedure was used widely by Re.Rapp [4] in
processing altimeter data. The H -values obtained for each
orbital arc were fitted to the planetary geoid heights accord-
ing to the gravity model GEM=-10. Such radical transformation
of these heights by future studying departures the STS from the
geoid will have as a consequence that a local part of the A -
heights will be determined only. However, it is possible to use
planetary geoid heights based on some gravity models instead of
the detailed values of f in solving observation equation (6)
systems. ‘

4 It is an important peculiarity of the above results that
we impose no requirements on the determination of the zero har-
monic of the f = heights, though these requirements are often
stressed. This conclusion refers to the determination of normal
geoid heights above the normal ellipsoid as well as to mean sea
geoid heights above the mean sea ellipsoide It is easy to prove
that the i - values will be practically the same for both
cases, Consequently, we have to choose formulae for computing
geoid heights from gravity anomaliese

As may be seen the equatorial radius . @ of the mean sea
ellipsoid remains unknown. Its determination is a special pro-
blem which may be solved if we know for some points the heights
above some fixed reference ellipsoid in addition to the heights
above the mean sea ellipsoide.

Se¢ Let us compare national height systems with those based
on normal geoid or mean sea geoid. Geopotential numbers C’ ob=
tained after processing spirit levelling data are referred to the
level surface W=m = const in the initial levelling point
0 (Pige 1)e Let us assume that we have obtained the h =height
with reference to the normal geoid for a coastal point M oz
spirit levelling from gravity and altimeter data. Taking to
account that the A 1is small we may write the potential

at point M eas
W=U,-hg=W,-C
W-U-hg+C . (9)

The correction to normal heights for a shift of reference level-

Hence, we have
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ling surface is equal to

Il A A e A (10)
A/i- fm —Afm rm

Here g is the gravity value at point M , ¢}, is the
mean value of normal gravity between the normal ellipsoid and the
telluroid for the same point.

We have similar formulae for transition to the mean sea
geoid putting instead of A and U, , respectively, h and

W=1U,+(2-a) p
We see that the precise determination of h - or h - values and
gravimetric geoid heights 2: in coastal areas is important for
the effective app-lication of satellite altimeter data. Spirit
levelling, mareographic,detailed gravity and eltimeter data
should be combined. Additional independent results may be obtain-
ed from determining geodetic heights by means of doppler and
other satellite methods as well as of astrogeodetic (astrogravi-
metric) levelling.

Let us consider some questions related to the solution of
Molodensky's problem for coastal areas. We have two different
sets of information there :

a) Mixed gravity anomalies on land [5]

T T d7 _ W—We d

A9=-SH* T dH r dH s (11)
b) Proper gravity anomalies at sea
it
J‘g_ S (12)

As 0.M.Ostach has shown [6], the term with ( Z7,-W] ) in (11)
may be excluded by solving the geodetic boundary problem for a
level ellipsoid ZZ=T¢{ = const. The boundary values become un-
changed after transition to another geoid 1&" = const and
ellipsoid U’ = const it UW'=W-=TW +SW |

where OW is a small quantity. Thus we may assume that the
boundary values are referred to the normal geoid and ellipsoid

or to the mean sea geoid and ellipsoid.

It is reasonable to consider Molodensky's problem in coastal
area as a problem of approximation and, for instance, to find
numerically some anomaly mass model fitting to observed Ag and

4? - anomaliese. ’
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® -1,

a @W=u:\

S R TONSD i TR e,

.Figs 1. Reference systems for the STS.
1 - Sea topographic surface (STS);
2 - Reference ellipsoid used in processing
altimetry data (H = 0);
- Normal ellipsoid (U = U_)
Mean sea ellipsoid (U =°W5;
- Normal geoid (W = Ug);
- Mean sea geoid (W = WS;
_ Level surface in the initial levelling
point O (W = W,) .

STS - heights 3

oW H\Ww

Mm = H - above reference ellipsoid (H = 0);
Mmo= Ho- above normal ellipsoid;

Mi = I - above mean sea ellipsoid;

Mm = h - above normal geoid;

Mm = h - above mean sea geoid.

mbo = &'m =} -~ gravimetric geoid height.
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The 1°x 1° Mean Anomaly Field of the Earth
and Prospects for Its Improvement

by

Richard H. Rapp 4

Summary

Currently we have estimates for 41973 1°x 1° anomalies based on terrestrial
gravity data. Of these, 721 are highly uncertain estimates (¢ > 30 mgals) and
6912 may be geophysically predicted. When combined with anomalies derived from
Geos-3 altimeter data, there is total field of 52917 of which €943 have ¢ < 5 mgals.

Attempts to improve this field in the ocean areas using altimeter data will be
hampered by the effects of sea surface topography. Consequently, new techniques
such as satellite to satellite tracking (SST) and gradiometry need to be developed if
an improved field is to be found. Error analyses are described that estimate the
accuracy to which anomalies and undulations can be found using the new methods.

A typical result is the following: Given a low-low SST mission of six month duration
at an altitude of 180 km with a data noise of +1 gm/sec, and one data point every
eight seconds, a 1°x 1° anomaly can be determined to +3 mgals, and the correspon-
ding undulation to 7 cm. Similar results are found for a radial component gradiom-
eter with an accuracy of +£0.01 E. These estimates ignore systematic error and
assume orbit error can be filtered out.

Introduction

Many studies of the gravitational field of the earth have used estimates of mean
gravity anomalies at the surface of the earth. These mean anomalies have been used
for the determination of geoid undulations, deflections of the vertical, gravity distur-
bances in space, and potential coefficients (in combination with satellite information)
among other items. In addition, extensive studies have been made for geophysical
implications of the gravity field using mean anomalies.

Such mean anomalies can be estimated in various sizes. Traditional sizes have
included 5° anomalies and 1° anomalies. In some applications approximately equal
area blocks are used and in others, equi-angular blocks. In certain types of calcu-

e Department of Geodetic Science, The Ohio State University, 1958 Neil Avenue,
Columbus, Ohio 43210, USA
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lations smaller block dimensions such as 30'x 30', 15'x 15', 5'x 5', 6'x 10' in
size are used. Such mean anomaly estimates have primarily been made in local
areas whereas the 5° and 1° values have been estimated on a global or near global

basis.

For the past several years we, at The Ohio State University, have prepared
1°x 1° anomaly data tapes based on terrestrial gravity measurements incorporating
data from various sources. In addition, we have now estimated 1°x 1° gravity
anomalies from Geos-3 satellite altimeter data. In this paper we will discuss these
anomaly fields and show where they are lacking. In addition, we will discuss how
this field may be improved in the future.

The Terrestrial 1°x 1° Mean Anomaly Field

The collection of gravity material for a 1°x 1° data file was started in 1971.
The extensive data file provided by the Defense Mapping Agency Aerospace Center
formed the initial basis for our work. This organization has continued to provide
our base data files at periodic intervals. Our procedures are to update the Aero-
space Center data with revised data, and new data that we have collected. The
new data we have primarily used consists of 1°x 1° mean anomalies estimated from
gravity anomaly maps. In all cases we try to use the latest data in our updating
process. In addition, we try to be sure, where we can, that the anomaly accuracy
estimates are reasonable. This is done by comparing anomaly estimates from
various sources including altimeter estimates of the anomalies where available.
Since we started this analysis we have produced six 1°x 1° anomaly data tapes.
The number of anomalies in each tape is given in Table 1.

Table 1. Number of 1°x 1° Anomalies in Various Data Sets

Date Number
June 72 23355
Sept 73 29789
July 75 36149
Aug 176 38406
June 78 39405
Oct 179 41973

Our latest tape was created in October 1979. The information on this tape
will now be discussed in more detail.
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The development of the anomalies on the October 1979 data set started from
a base file provided by the DMA Aerospace Center. This file was updated and
checked against our June 78 data tape. We then compared new data sources with
the existing data and selected data to be merged. In doing this we would modify
accuracy estimates if a difference of greater than 20 mgals existed between two
anomaly estimates. Then the new standard deviation was taken as half of the
absolute difference, not to exceed 97 mgals, unless it is smaller than the standard
deviation on the tape when the tape value would be retained. A file containing
41973 anomalies was generated that contained data from 45 data sources. Of these
anomalies 721 values had standard deviations greater than 30 mgals and 16209
apomalies were anomalies not from the Aerospace Center. The location of these

anomalies is shown in Figure 1.

A number of anomalies on our original data file were based on estimates
made through geophysical prediction techniques. In such cases it is important for
us to identify these anomalies. This has been tentatively done based on published
accounts (e.g. Wilcox, 1973) of where such predictions have taken place. For
the October 1979 update we have identified 6912 possible anomalies which are

shown in Figure 2.

A statistical analysis has been carried out with the anomalies of the Oct 79
data set with some typical results shown in Table 2. All values are with respect
to the gravity formula of the Geodetic Reference System 1967.

Table 2. Statistics on the Oct 79 1°x 1° Data Set

Quantity Value
Mean Value -0.3 mgals
Minimum Anomaly -282 "
Maximum Anomaly 365 "
Weighted RMS Average +30.1 "
Minimum Std. Dev. Es il i
Maximum Std. Dev. 97 it

Weighted RMS Std. Dev. 16.3 "
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Figure 1. Location of 41973 1°x 1° Anomalies in the October 1979 Terrestrial Data Set
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Figure 2. Location of 6912 1°x 1° Anomalies Thought to be Geophysically Predicted
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A Combined 1°x 1° Anomaly Field

As is apparent from Figure 1, extensive gaps exist in the anomalies in ocean
areas. Many of these gaps have been filled by the analysis of the Geos-3 altimeter
data (Rapp, 1979). With this data we have predicted 29479 1°x 1° anomalies, 27488
of which had predicted accuracies of + 15 mgals or better. This data set was merged
with the terrestrial data set to form a combined file containing 52917 1°x 1° anomalies.
This field is shown in Figure 3. To show the distribution of ''good'' data we have plotted
in Figure 4 the location of 6943 anomalies, in the combined field, where the standard
deviation is s 5 mgals. Clearly we must say that major parts of the earth do not
have reliable estimates for the 1°x 1° anomalies.

Prospects for Improvement of the 1°x 1° Field

Because of the poorcoverage of accurate 1°x 1° anomalies at the 5 mgal level,
new techniques must be devised for an improved field to be used for geophysical
and oceanographic applications. A summary of the applications of an improved field
are discussed in a report, '"Applications of a Dedicated Gravitational Satellite Mission."

In the past few years one of the vast improvements in our knowledge of the 1°x 1°
field has come from the use of satellite altimetry. So far, Geos-3 data has been
widely used (Rapp, 1979) but Seasat data will shortly be added to the available data
base. Currently, when reasonable data coverage exists in a 1°x 1° block, the ex-
pected accuracy of 1°x 1° anomaly is about + 6 mgals. This corresponds to a meas-
urement noise of about £70 cm and assumes orbit errors are effectively removed
from the data. Prospects for significant improvement are dim despite significant
noise reduction in the Seasat data. This pessimism is caused by three concerns:

1) orbit error; 2) data coverage; and 3) sea surface topography. Of special
concern is the +1 m average effect of sea surface topography. Thus, even if we
have an accurate measurement, we do not sense the geoid, but the sea surface.
Tests under optimistic situations indicate that we might be able to reduce our 1°x 1°
errors to about +4 mgals if the data coverage is fairly dense in the block.

For land areas altimeter data is not directly useful so that alternate techniques
need to be considered. Possible new techniques include satellite to satellite tracking
and the use of gradiometry in space. A review of these techniques has recently been
given by Rummel (1979).

In the following discussion we will consider the possible future role of satellite
to satellite tracking (SST) data in the improvement of the gravity field. Such data
has already been used for the derivation of anomalies at the surface of the earth.
Hajela (1979) has discussed the results of using Geos-3 and ATS-6 data which was
a high-low mission. Vonbun et al. (1980) have discussed the determination of 5°
anomalies using ATS-6 and Apollo data taken in July 1975. Results showed that the
techniques used were promising although limited by a too high satellite (Geos-3) or
very noisy data (Apollo).
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Considerable interest has been expressed in using SST data with at least
one satellite at a low altitude. A number of investigations have recently been
carried out that try to estimate what could be expected from such a mission.
Discussion can be found in Breakwell (1979), Rapp and Hajela (1979), Douglas et

al. (1980) and Rummel (1980).

An extensive review of the methods used will not be done here. Instead, I
propose to discuss some recent results obtained at The Ohio State University.

We first examine the results for a high-low SST mission using the procedures
of least squares collocation as described in Rapp and Hajela (1979). We consider
the observed quantity to be an acceleration which can be found by fitting the range
rate data to a function and then differentiating. For simplicity here we assume only
the vertical component of the acceleration is determined. The data we have assumed
consists of 163 data points located at 0.25 intervals over the 1° block and at 05
intervals outside the block (to 3° from the center). Using the.covariances of Tscher-
ning/Rapp with respect to a 12th degree reference field the accuracy of the 1°x 1°
anomalies and undulations that would be recovered from such data is shown in

Table 3.

Table 3. 1°x 1° Anomaly and Undulation Accuracies Using Least Squares
Collocation for a High-Low SST Mission

H =150 km H =180 km
6 P m(dg) | m(N) [ m(4g) | m(N)
(um/sec) | (mgals) | (mgals) | (cm) | (mgals)| (cm)
22 0.50 7.0 49 8.7 47
3.3 0.10 4.4 43 5.9 38
1.3 0.08 4.1 42 5.6 37
0.2 0.01 2.6 39 3.3 33

The range rate (§) values were computed from a program kindly provided by Rummel.
This @ value corresponds to the acceleration in the sense that the signal to noise
ratio for both p and S are the same. The values depend somewhat on the height

(H) so the values given represent an average correspondence. We see from Table 3
that if we obtain range rate data whose accuracy is about +1 pm/sec we could ex-
pect to derive 1°x 1° anomalies to about + 3 to 4 mgals. Unfortunately, this high
accuracy in the range rate data is not achievable in the high-low case because of the
effect of the ionosphere. In addition, several high satellites would be needed to

obtain the global coverage needed.
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We now turn to the use of a low-low SST mission. Such a mission is dis-
cussed by Rummel (1980) using the methods of least squares collocation. We
will therefore discuss it using an alternate approach motivated by the discussion
of Rummel (1979). This procedure considers the spectrum of the signal and noise
to arrive at accuracy estimates for the quantities of interest.

The velocity spectra associated with a satellite has been described by Kaula
(1969), Rummel (1979) and others. For the velocity difference spectra of two
satellites separated in a radial direction we have (Rummel, private communication)

A _1-— o +1 .2 03 (r )
0°Xyr)y = |)';!2(1" (TQ)L ) T21€,+£ @

where 0()'(13.;)1 is the information, by coefficient in degree £, in the velocity
difference of two satellites located at a distance r, (low satellite) and rq (far
satellite) from the center of the earth. 07 are the potential degree variances
which are related to anomaly degree variances by:

p | 2

R
@-1F @ (2)

where R is usually consi.dered to be the radius of the Bjerhammer sphere
imbedded in the earth. |X| is the average velocity of the satellites.

R \f*
o ( Tp)y = (?—)

For two satellites at the same altitude, but separated horizontally by a
central angle ¥, the corresponding spectra is:

& 207
0% (Kaan), = TP 3ty (1 - By (c0s ¥)) 3)

For the case of 150 km high satellite we have plotted in Figure 5 the radial and
horizontal difference spectra when the two satellites are separated by 300 km.

In addition, the radial velocity difference spectra is shown for an altitude of

180 km. The c, model used is that of Tscherning/Rapp. The difference between
the horizontal and vertical spectra is small, being on the order of /2 .

We are now interested in the error spectrum of the velocity difference
Ga(pn.) given a certain measurement accuracy, o (6). One approach to the
error spectrum determination is given by Rummel (1979). An alternate approach
has been developed by Jekeli (1980, private communication). Assuming the data
noise is uncorrelated Jekeli shows that:

A
0 (Bpa) = A 9B (4)
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Figure 5. Velocity Difference Spectra
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Here Ao is the area of a block whose side length is the distance between successive
measurements. If d; and d; represent the along and cross track spacing of the
measurements we have A0 = d, * d;. Actually (4) can be applied to various types
of measurements, such as gradiometry and altimetry but can not be applied to
horizontal velocity difference error spectra.

Let us consider a typical mission in which the altitude of the satellites is
180 km and the sampling interval is one measurement every eight seconds (rep-
resenting an eight second average). Then d, equals 62 km and for a six month
mission dz is about 6 km. Assuming a range rate noise of +1um/sec equation
(4) yields:

O (By,) = +0.00085 pm/sec (5)

This quantity, as interpreted as a flat white noise error spectrum, is shown in
Figure 5.

From this figure we see that the signal/noise ratio becomes 1 at about degree
270 for the case of the radial velocity difference, H = 180 km. This implies that
coefficients up to this degree could be estimated from such data, but coefficients
higher than that would be lost in the noise. (We should note, however, that there
are special techniques that can be used to extract signals from highly noisy data.
They will not be discussed here.) For the lower satellite the highest resolvable
degree is degree 310.

Now consider the computation of the RMS mean anomaly or mean undulation
as a global average. We have:

e =

BE <y (6)

N2 =

8 o (7

Here B, is the Pellinen/Meissl smoothing operator calculated for a spherical cap
having the same area as a '"'rectangular' block at the equator (Rapp, 1977). If we
determine the gravity field from the SST mission we can estimate the spherical
harmonic coefficients to some maximum degree with the errors of the coefficients
being determined from the use of equation (5) and related equations. To determine
the error in c,,( 6cy), for example, we can insert (5) into (1) which then can be
used in (2) to find 601 . Then the expected error in the derived quantity would be:

£ nax @
O8g" =% B; bc, + ) B:c! (8)
L= =L sad +1
with a similar expression for the undulation error. Using these procedures accuracy
estimates for mean anomalies and undulations can be obtained. Such results are
shown in Table 4 where the c, model of Tscherning/Rapp was used in the calculation
of the truncation effect.
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Table 4. Accuracy of Mean Anomaly and Mean Geoid Undulation From
SST Tracking (Noise=+*1um/sec, Radial Separation = 300 km)

Block H = 150 km H = 180 km
Size Anomaly Undulation Anomaly Undulation
2 - - 1.2 mgal 3cm
1° 2.2 mgal 4 cm 3.2 mgal 7 cm
30" = = 10. 6 mgal 21 cm

These computations show that a significant improvement in our knowledge of
the earth's gravity field can be found using the SST mission. Although carried out
for radial separations which are not feasible in practice, the results should also
hold closely for the horizontal type of missiorn. Significant improvement in the
anomaly field does rely on having an accurate range rate measurement of

+1 pm/sec.

The results from Table 3 and Table 4 may be compared for the case of
H =180 km and 1°x 1° blocks. For the 1 um/sec data noise both collocation and
the harmonic analysis approach gives a 1°x 1° accuracy of about +4 mgals although
the collocation solution is for a high-low case. The agreement is quite good for
the anomaly but the undulation agreement is poor (35 cm vs 7 cm).

To further test this harmonic analysis approach we considered the case of
satellite aitimetry used to derive mean anomalies based on geoid undulations.
Assuming 10 measurements in a 1° block, with an accuracy of 70 cm, the implied
accuracy of a 1° anomaly is *5.4 mgals and +22 cm for the 1° undulation. These
numbers agree quite well with thousands of values derived from the altimeter data.
This gives us some confidence in this method.

We have also considered the correlation of the 1°x 1° and 30'x 30' anomalies
by propagating the error estimated for the smaller block into the larger block
error solving for an average correlation coefficient. For the correlation of the 1°
blocks we found p =-0.13 and for 30' blocks p =-0.21. The value of p for the
1° blocks agrees with that found by Rummel (1980) for a similar case. However,
it disagrees with the general expectation that 1°x 1° anomalies recovered from
such low satellites should be highly correlated.

We have also applied this analysis assuming we have determined the vertical
gravity gradient with an accuracy of £0.01 E. The highest degree resolvable is
very close to that found in the case of the low-low SST mission. For example,
with H =180 km, n,.x is 280. The error propagation using the previous approach
yielded essentially the same accuracy for anomaly and undulation recovery as did
the SST mission. For example, with H = 180 km, the 1°x 1° anomaly accuracy
was 3.0 mgals and the corresponding undulation accuracy was 6 cm., Thus a
gradiometer mission with 0.01 E accuracy and a low-low mission of 1 um/sec will
yield about the same final gravity field improvement.
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We have also considered the sensitivity of the analysis to the model used for
the anomaly degree variances, or in effect the potential coefficient decay. This
was done by using Kaula's 10™°/£2 rule and a new model described in Rapp (1979).
Our results do not show any significant change when different models are used.
(For example, at H = 180 km, a 1° accuracy is + 3.8 mgals and 8 cm when
using the best two component model described in Rapp (1979) )

Conclusions

In this paper we have discussed the status and improvement of the 1°x 1°
anomaly field of the earth. The current situation is a considerable improvement
over what existed ten years ago. However, the coverage is still poor in some
land areas and the information at sea is primarily available from Geos-3 data.

The average accuracy of the terrestrial data set (excluding altimeter derived
anomalies) is £16 mgals. In the combined data set only 6943 values have standard
deviations <5 mgals. If we are to improve our gravity field, significant strides
must be taken. We cannot expect that such strides will be taken through ground
base measurement systems. Instead we need to look towards space techniques.

In examining such methods we found there is a possibility of significant
improvement of our field from a low-low SST mission with an accuracy of +1um/sec
for the range rate data, or through gradiometry with a vertical gradient device of
£0.01 E accuracy. Then we expect to be able to obtain 1° anomalies and undulations
to an accuracy of about +3-4 mgals and 7 cm,respectively,. These accuracies make
a number of assumptions that will need careful consideration in the future.

The primary analysis method used here is an error propagation procedure. To
gain confidence in our results, a simulation study should be performed to carry out
a typical real world solution. Such simulations are complex and costly. In addition,
we need to understand better orbit error problems, and problems in the downward
continuation area. What, for example, is the best way to obtain and define anomalies
and undulations in rugged topographic areas ? What are optimum reduction proce-
dures to be used? How can we overcome the apparent instability in least squares
collocation solutions when very dense data is used? What are the orbit computation
problems for this highly precise computation? Are global solutions required ?

First steps have been taken to assess the feasibility of a gravity mapping
mission. Current prospects appear to say that highly accurate data can be obtained.
Such information will be extremely valuable to geophysicists and to oceanographers,
as well as geodesists. For example, the precise geoid that will be available from
such a mission will help solve a number of problems in ocean circulation, if com-
bined with precise altimeter measurement. Clearly we are ready for the next sig-
nificant advance in the improvement in our knowledge of the earth's gravity field.
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RESULTS OF AN EXPERIMENT ON BALLOON - TRIANGULATION BETWEEN PCTSDAM AND DRESDEN

by
2
H. Rehse =

Summary

In September 1979 we carried out a balloon-triangulation between Fotsdaw: and Dres-
den, On this occasion obtained observations have been analysed. The results ha¥e been
compared with other methods.

Zusammenfassung

Im September 1979 wurde zwischen Potsdam und Dresden eine Ballontriangulation
durchgefithrt. Die hierbei erzielten Beobachtungen wurden ausgewertet und die Ergeb-
nisse wurden mit anderen Auswertungen verglichen,

Balloon-triangulation is a stellar triangulation, basing on the fact, that high
aims (balloon borne flashes) can be observed photographically by two observation
stations against the fixed star sky. These simultaneous observations define together
with the observation stations the so-called simultaneous planes. If two of these pla-
nes come to a section (see fig. 1), the direktion to the 2nd station (B) can be de-
duced in an equatorial coordinate system /1/. Our task was to determine the direction
Potsdam - Dresden by means of balloon-triangulation, Besides, Doppler-measurements
were carried out to compare results of both methods.

In the Central Earth Physics Institute a mobile balloon ascent station and flash
probes have been developed. The meteorological balloons with flash probes were started
at adequate places, and these probes had to produce flashes of light. For light gener=
ation, magnesium flash powder /2/ were used which was released radio electrically by
means of electric bridge igniters., The field works on determination of the direction
between Potsdam and Dresden were carried out in september 1979. Herzberg was the cen-
tral station, and from here the places for starting the meteorological balloons accor-
ding to the corresponding altitude winds could be reached in a short time (see fig.2).
The field station of the Technical University of Dresden in Dresden-Gonnsdorf and the
Helmert Tower of the Central Earth Physics Institute in Potsdam served as observation
stations. For the observations an astrograph were used in Dresden and the Automatic
Camera for Astrogeodesy (SBG) in Potsdam,

X
Akademie der Wissenschaften der DDR, Zentralinstitut fiir Physik der Erde,

DDR-1500 Potsdam, Telegraphenberg A 17
Kartengenehmigungsnummer P 326/80
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Fig. 1: Principle of balloon -triangulation

During the observation period 10 balloon ascents were carried out. 8 simultaneous
plates with 14 simultaneous planes were gained. Photographs were measured by the As-
corecord, and by means of fixed points the flash positions were determined by compen-
sation with 6 unknowns. The flash positions were corrected by rocket refraction, po-
lar motion, daily aberration and centring data. Using the corrected observations the
hour angle tand declinatiorlJ\were computed by means of the method of least squares:

t

d

The result cannot be considered statisfactory because of the big mean error. The rea-
sons for the big errors can be seen in the fact that on the one hand too little and

26° 0' 27,89" + 3,16", with m = + 2,06" ,
(1)

-35° 21 41,32"

1+

(5ISHN

on the other hand only one-sided observations were made. For confirmation of the re-
sult we used therefore the little number of observations received for the determi-
nation of the direction between Potsdam and Dresden, in 1968 (see fig. 2). Because
they had been carried out on excentric points, they had to be centred. Including
these observations the 18 observations totally gave the following results:

t = 26° o' 24,60" + 0,89" , with m = + 2,13" ,
(2)

d’= -35° 21' 39,30" £ 0,58" .
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These results are satisfactory in geodetic respect. The existing deviations between
both solutions are within the simple mean errors of the result of the observations
made in 1979 and do not have the character of systemaic errors. For geodesy the azi-
muth between two points is more important than the components of direction in the
equatorial system. Therefore the azimuth and its mean error were calculated from the

direction angles:

(3) Ay = 20° 57' 12,91" 4 0,72" .

In November 1978 and in Karch 1979 Doppler measurements were carried out at the
same stations in Potsdam and Dresden /3/. Comparison of the results of both methods
cannot be carried out immediately, because both methods are based on different coor=-
dinate systems. For comparison of the results, coordinates of Doppler measurements
were used with reference to the Potsdam station and then transformed according to

AX 1 "§1 %2 AX
Cayilbm ot i B e 0 A
AZ -5 0 1 Farg i o

into the astronomic system of Potsdam (where AX - AY —AZBE are the differences of
coordinates between Potsdam and Dresden in the broadcasting system). 31, 32 are
differences between astronomic coordinates and geographic Doppler coordinates. From
the AX - AY - AZ - data, the direction angles in the equatorial system were calcula-
ted and from that the azimuth inclusively its error. The result of these calculations

is
(5)  App = 20° 57" 14,83" & 4,23"

Comparision of calculated azimuths according to balloon-triangulation and to the
Doppler measurerent and their mean errors shows that the azimuth determined by bal-
loon - triangulation was determined for nearly an order of magnitude more accurate
and that the difference of the azimuths which is 1,92" is within the simple mean
error of the Doppler azimuth.
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Error Analysis of "Low-Low" Satellite-to-Satellite Tracking

Reiner Rummel
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Abstract

An error analysis for the estimation of surface geoid heights,
geoid height differences, and 1° x 1° mean gravity anomalies
from an SST experiment in the low-low mode is presented. The
employed method is least squares collocation. The error esti-
mates are analyzed in their dependence of the measurement pre-
cision, the spatial configuration of the two satellites, the
intersatellite distance, and the experiment altitude. In an
optimal situation - range rate precision * 10-® ms-!, inter-
satellite distance 250 km, experiment altitude 200 km - an a
posteriori std.dev. of *# 0.9 m for geoid heights, * 0.7 m for
geoid height differences (distance 150 km), and * 6 to 7 mgal
for 1° x 1° mean gravity anomalies is feasible. Thereby short
wavelength uncertainties in the orbit have to be controlled
down to 1 cm in radial direction, whereas for long wavelength
effects 10 m should not be exceeded.

Further improvement could be obtained if the solution of the
large and unstable system of linear equations could be a-
voided. Since in SST a globally very dense pattern of obser-
vations is available it is proposed to construct a stabilized
operator valid for globally and continuously given data with
variance 03 on which a discrete approximation by numerical
integration could be based.
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Zusammenfassung

Unter Anwendung von Least-Squares Kollokation wurde eine
Fehleranalyse flir die Schédtzung von Geoidhthen, Geoidh8hen-
unterschieden und 1° x 1° mittlere Schwereanomalien aus
Satellite-to-Satellite Tracking (SST) im "low-low" Mcdus
durchgefiihrt. Untersucht wurde die Abhdngigkeit der Schédt-
zungen von der Beobachtungsgenauigkeit, der rdumlichen An-
ordnung der beiden Satelliten, vom Abstand zwischen den
Satelliten und von der Hb6he, in der das Experiment durch-
gefihrt wird. Unter optimalen Bedingungen - Beobachtungs-
genauigkeit * 10-® ms-! , Satellitenabstand 250 km, Hd&he
des erdnahen Satelliten 200 km - wdre eine a posteriori
Standardabweichung von *+ 0.9 m fir Punktgeoidh&hen,

+ 0.7 m fir GeoidhShenunterschiede und von * 6 bis 7 mgal
fir 1°© x 1° Schwereanomalien erreichbar. Der Einfluf hoch-
frequenter BahnstSrungen muR® dabei unter 1 cm in Radial-~
richtung bleiben, wdhrend fir langwellige Stdrungen 10 m
nicht Uberschritten werden dilirfen.

Eine weitere Verbesserung der Schdtzergebnisse wdre mdéglich,
geldnge es die notwendige Aufl8sung des grofen und instabi-
len, linearen Gleichungssystems zu umgehen. Da SST Beobach-
tungen global und in sehr dichter Anordnung liefert, kdnnte
man einen flir eine globale, kontinuierliche Beobachtungs-
belegung mit Varianz o gliltigen stabilisierten Operator
ableiten, der die Grundlage filir eine N&herungl8sung Uuber
numerische Integration aus diskretem Beobachtungsmaterial
liefert.
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In the near future a considerable improvement of our current
knowledge about the detailed structure of the earth's gravity
field is expected from satellite~to-satellite tracking (SST)
in the low-low mode, as expressed e.g. in (Geodesy: Trends &
Prospects, 1978) or (Hieber & Guyenne, 1978). Possible candi-
date missions with very different characteristics are for in-
stance the GRAVSAT project (4dpplications of a Dedicated Grav-
itational Satellite Mission, 1979), the SLALOM experiment
(ESA, 1978), or the DIDEX experiment (Drozyner, 1978).

Existing simulation studies or error analyses produced results
that were partly in disagreement with each other or not com-
parable at all, mainly due to the employment of different
error measures or different mathematical models, e.g. flat
earth approximation, finite models restricted to a limited
area. As a result the panel on gravity field & sea level re-
quirements of the committee on geodesy, National Academy of
Sciences, U.S.A., (Applications of a Dedicated Gravitational
Satellite Mission, 1979), compiled a catalogue of open ques-
tions to be answered in future studies and tried to define
the user requirements for geodetic, geophysical, and oceano-

graphic applications.

The goal of this paper is to summarize the results of an
error analysis for an application of low-low SST for the es-
timation of surface 1° x 1° mean gravity anomalies, geoid
heights, and geoid height differences. Details are described
in (Rummel, 1980).

Mathematical Model and Error Analysis Results

The applied mathematical model for the range rate p between

two satellites at S1 and 82 SiiSE
) = %45  eqp )

where 312 = X(Sz) * Z(Sl), is the velocity difference between
the two satellites and €4y = 0-1512’ the unit vector pointing
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from 81 (with position vector Xl) to 82, and p is the inter-
satellite distance. When using the least-squares collocation
method for the gravity parameter estimation the underlying
model of the gravity field comes because of its global and
continuous character closest to physical reality. Uniqueness
of the estimates is thereby achieved by a least squares so-
lution with minimum norm in a Hilbert space with reproducing
kernel. But, as shown in the study by (KrynskZ, 1978), the
incorporation of time dependent quantities such as the po-
sition or velocity of satellites into the collocation model
is a rather complex problem. Thus, instead of working with
range rates we will analyze range rate changes, p, (line of
sight accelerations) which are assumed to be derived from
the observed range rates by numerical differentiation:

(2)

BB 587) ST ER N 5 T

An evaluation of the average magnitude of the second term on

the right hand side from degree 2 to «» gives approximately

0.2¢ « 10719 ns™2 = 0.24 + 10" °mgal (for & = 19 to =
O=O21: 10_5 mgal) as compared to % 1.50 mgal (1.08 mgal) for
the first term. For a range rate change precision 0.2 mgal,

5ms-l, respectively, the

or a range rate precision of 10
second term can therefore easily be neglected. For a moment
the true orbit is assumed to be known. Then the observation

model for gravity parameter estimation becomes

dgrad T
- @ L a7
2 = p (Sl’ 82) t eq, R s + € , (3)
(e e
E ki
where 2 ... vector of "observed" range rate changes,

range rate changes, computed from a chosen
reference field,
grad’I‘l2 =gradT(S2) - gradT(Sl)= §X&g
+++ difference of the gradient of the disturbing
potential at S1 and 82 ggz%g ... residual
acceleration difference)
8B ... parameters of the residual gravity field (e.g.

geoid heights, gravity anomalies referring to

the chosen reference field).
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€ ... vector containing the measurement noise and the

terms of second and higher order of the series

expansion.
2 39 grad T12
With r = 2 - p°(S;, S,) and e, * S oy ik
s
S125;
the estimation model becomes:
r.= A B + € . (%)

A separate sensitivity study for the orbit requirement shows
that unmodelled short-wavelength orbit uncertainties, espe-
cially due to drag effects, have to be controlled down to

1 cm in radial and to 1.5 m in along and cross track direc-
tion, whereas unmodelled long-wavelength effects, e.g. due to
tracking station uncertainties should only not exceed 10 m,

independent of the direction.

With the a priori model for the variance-covariance matrix of

the observations D = ogl(og

variance of the observations,
I ... identity matrix), and 98 the second-order moment ("co-
variance matrix", reproducing kernel model) the best linear

estimate of

2
minClly - MBIl -1 + ls8ligz0)

becomes:

ok T gls T Zee =l

§B = oA (ACAT + olD)
or with C AT S C % and AC AT = C.. 1n a more familiar

SIEE —(0) — B P

form:

éb e e oS L O (5)

RBOT¥p BT S
Finally we denote
_ =
L = Cpy(Cy + oJI) (6)

the linear estimator.
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In our error analysis the a posteriori variance-covariance
matrix EB of the gravity parameters is computed from the a
priori model for D and 96' The results represent the error
situation to be expected from a real world experiment. EB

is computed for a variety of observation noise levels o,

and arrangements of the sample points.

ISt=EiiS
: ~ i Ay = 2_,-1.T
Eg = E{[6B - §g1l6B - 6817} = Cg Cay(Cp *+ 9o1) "Cgp -+ (D)
This form can be rewritten to
o il
L 8
Eq = BCpB + LDL (8)

where B = (LA - I).

I

In equation (8), the first term represents the configuration
inadequacy, the second term more or less the pure error pro-
pagation. Thus, the two terms provide information on what
could be gained from an improved configuration of the sam-

pling points and, separately, from an improved instrumentation.

The error analysis was performed for surface 1° x 1° mean
gravity anomalies, point geoid heights, and geoid height
differences. The covariance elements needed in equation (7)
were supplied by the subroutine COVAX with degree variance
model 2, (Tscherning, 1976). The 74 sample points, covering
an area of [1|0° < A < 5°) and [¢]|1° < o < 9°], were located
along a circular orbit with inclination 68° and period 5301 s
at an altitude of 200 km (and 150 km, 250 km, 300 km) with a
sample rate of 20s for a mission period of 50 days. All com-
putations refer to a reference field up to degree & = 12,
assumed to be known perfectly. Analyzed was the variation of
the a posteriori std.dev. as a function of the a priori range

rate change (or range rate) precision for

- radial, along and cross track variation of the two satellites,
- changing intersatellite distance,

- different experiment altitudes, and
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- a variation of the location of the gravity parameters with
respect to the pattern of sample points.

Table 1 summarizes the results for the estimation of 1° x 1°

mean gravity anomalies. The assumed a priori range rate change

or range rate precisions correspond to the envisaged instru-

5

mentation precisions for SLALOM (o(p) = 10~ n1s-1) and

6 1

GRAVSAT (o(p) = 10 "ms ~). From Table 1 one concludes, that

- a radial separation of the two satellites yields better re-
sults than a along or cross track separation,

- the intersatellite distance should be comparably large,

- the experiment altitude should be as low as possible (but:
experiment life time; necessity of a drag free system).

o(p) = + 0.22 mgal o(p) = + 0.031 mgal
o(Ag) (o(p)= + 10%ms™ Yy | (o(p)= + 10 %ms™ )
mgal mgal

spatial arrangement
(altitude: 200 km; separation: 250 km)

cross track 14.5 13.0
along track SIS Ry 9.9
radial 9.1 6.8

intersatellite distance
(altitude: 200 km; radial separation)

10 km 4.3 7 8. 3
50 km 9.7 oV,
250 km %o L 6.8

experiment altitude
(radial separation: 50 km)

300 km 14.0 10.5
250 km 12.2 8.8
150 km 7.4 5.4

location of the anomaly
(altitude: 200 km; radial separation: 250 km)

arbitrary 10.2 8.6

optimal gl 6.8

Table 1: Estimated 1° x 1

© mean gravity anomaly standard deviation
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In an optimal case it seems to be possible to derive 1° x 1° mean
gravity anomalies with a std.dev. of + 6 to 7 mgal from a

SST low-low experiment at 200 km altitude. The better result
obtained for a radial separation, as compared to a along or
cross track separation is only due to the shorter correlation
length for radial separation. The difference would disappear
when using sample points for the along and cross track study
covering a sufficiently large area. In all cases the correla-
tion between the estimates of different blocks was almost

negligible.

The a posteriori variance for a geoid height difference &N
between two points P1 and P2 is derived from the variances
and covariances of the point estimates by:

o?(sfi(p, - P)} = 02{ﬁ<P2>} - 2.cov {N(P,)3N(P )} + oz{ﬁcpln . (9)

Equation (89) shows that only for high correlations between
the point estimates low variances for the geoid height
differences are to be expected. This is the reason that for
points located along the direction of the separation of the
two satellites, either along or cross track, especially good
geoid height difference estimates are obtained. Otherwise

the results for geoid heights but also for geoid height
differences follow the same pattern as those for mean grav-
ity anomalies. An exception is the variation with experiment
altitude, where the picture looks rather heterogeneous.

Again the comparably small area (5° x 8°) covered with sample
points is responsible. The coverage with data has to be con-
siderably larger for the estimation of geoid heights than for

gravity anomalies.

Some results for the a posteriori std.dev. of a point geoid
height (point no. 1) and for geoid height differences bet-
ween points no. 1 and 2 (distance: 151 km) and points no. 1
and 3 (distance: 302 km) for two different intersatellite

distances are given in Table 2. The a priori measurement

std.dev. are identical to those in Table 1.
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P) = +£:0.22 1 (p) = + 0.031 mgal
altitude 200 km S SRR Es PSS . g1
radial separation (o(p)= + 10" ms™ ) Goat sl fa v cad o] e

m m
o{N(P, )}
10 km 1.73 1l's S8
250 km 0.97 0.87
10 km 1.4y 0.93
250 km 0.89 ()47 7
o{6N(P, - P,)}
10 km 1.77 SIES248
250 km 1.08 0.93

Table 2: Estimated geoid height and geoid height difference
standard deviations

From the derived numbers we conclude that for point geoid
heights a std.dev. of + 0.9 m, for geoid height differences
over 150 km + 0.7 m are attainable. Thus, SST low-low with
a range rate precision of about 10_6ms_1 at 200 km altitude
and with the above described configuration should be capable
of providing results for geoid heights and mean gravity anom-
alies comparable in accuracy and resolution with those ob-
tained for the sea-surface topography from the GEO0S-3 satel-

lite.

Alternative Estimation Procedure

Figure 1 shows the variation of the estimated a posteriori
std.dev. of a 1° x 1° mean gravity anomaly with changing ex-
periment altitude as a function of the a priori measurement
std.dev.. Also contained is the contribution of QQLT, equa-
tion (8), and the optimum lower bound, which is derived an-

alytically for an assumed global and continuous coverage
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with measurements at an altitude of 200 km. We see that the
contribution from LQQT ("pure error propagation") comes
rather close to the lower bound and that the major part of
the total error has to be attributed to a non-optimal con-
figuration. In other words, the linear operator L derived
from the least-squares minimum-norm solution is no perfect
inverse to the linear model represented by A. The dilemma
comes from the fact that in order to allow at all the com-
putation of L, equation (6), from the given unstable system
of linear equations, only a very limited number of observa-

tions can be used.

Thus, an alternative estimation procedure would on one hand
have to be based on an equally physically adequate model as
the model implied by the least-squares collocation solution
and on the other hand be able to extract the information
contained in the tremendous amount of densly sampled data
available in SST. The idea is to construct a stabilized in-
verse operator (with the properties of existence, unique-
ness, and stability) valid for a continuous data coverage
in satellite altitude with measurement variance og, and to
base on this operator a finite approximation from the dis-

crete but very densly spaced data.

The spectral relation of a spherical harmonic coefficient,
gom?® of degree 2 and order m, e.g. of the gravity anhomaly
field at the earth's surface to the corresponding coeffi-
cient Gim of the radial component of the gravity gradient

in satellite altitude is:

I

g i Si\2eg - 1 7
m p L Ay’ i i
with Pg ... geocentric distance of the satellite at S,, and
1
ry geocentric distance of the surface point P. The spec-

tral relation to an acceleration difference coefficient,

Aézm, of two radially separated satellites is then:
r r
ey g of SaYeeeq sif Rayesavg g w08
2m rg rp LR S 2m

1
(10)

7
AQAGQm
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According to the derivations in (Gerstl & Rummel, 1979) the
kernel function, K(P, S), of the stabilized operator may
with equation (10) be expressed as:
*
RED R e fg )‘2, Ylm(P)YZm(S) 5 (11)
Lm
where Yzm are surface spherical harmonics and the filter
coefficients fz are
02
o) =l
Lo 7 (1 + x-Qc Sz+2) (12)
SUL R
with og ... @ priori variance of the measuremegnts,
cy chosen anomaly degree variance model, and
r2
s = _E%E ... square ratio of the radius of the Bjerhammar
Tp sphere to the geocentric distance of the sur-

face point P.
Equation (11) allows the construction of a table for the sta-
bilized kernel function - summation limited to £ = zmax - for
densly spaced spherical distances ¥ between P and Q. Thus,
the estimation of gravity parameters at the surface of the
earth from discrete satellite observations such as range rate
changes of two radially separated satellites would consist of

the following steps:

- Construction of a minimum
weight triangulation between
all satellite observation

points, with a procedure de-

veloped in (Gerstl et al.,
1979).

- Computation of area weights
for each observation: Since
each triangle belongs to
three points, see Figure 2,
the area, fi’ for an arbi-
trary point Si is derived
from

N
£. =3 rg arc tan %Kj

Figure 2




462

where k. are the angles of the polygon around Si'

- Evaluation of the kernel function K(P, S) for the esti-
mation point Pk and observation point Si’ multiplication
with fi and, finally, summation over all observation points:

GBk = fi K(Pk’ Si)ri b

!
1
=£Lr

The a posteriori variance-covariance matrix, equations (7)

and (8), is modified to

e 2 o

Eg = Cu-®(Cs + oD ®, or (14)
. i B iy

£ REch ol (15)

with B = (éfé - I). Now, the first term on the right hand side
of equation (152 2ives the contribution of the finite approxi-
mation of & by ¥#. Equation (14) shows that no problematic so-
lution of a large system of linear equations is required any-
more for the evaluation of EB' Of course, one has to pay a
price: The possibility of combining different types of ob-
served quantities is not easily possible anymore. Neverthe-
less, the alternative procedure should be capable to circum-
vent the major numerical obstacles which prevent to extract
all physical information contained in the large amount of

observations of an SST low-low experiment.
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THE INVERSE GRAVIMETRIC PROBLEM FOR THE EARTH

Matej Skorvanek

Introductzon

In the work [1] we were interested in inverse gravimetric
problem for the density distribution in the Earth by the help
of some functional of the density. We demanded, that the den=-
sity fD(F) in sphere V , which is bounded by surface S» , mi-

nimized the functional

K = %///[V)O(F)]Zda“ /1/
v

at determined value of potential on the surface

Uks) = //,J;’, dr ireq /2/

and boundary conditiocns

Blery] = Uiy - 1 ImeSy3, /3/

PF) = PutR) , Fe Siri /4/
Then for the variation of functional /1/ must be

dK= 0, Y5/
for potential :

dUry= 0, Fed /6/
and for density

cf)om = 0 ; res,. /7/

The equation for the denait¥/m¢7 is

Geophysical Institute of Slovak Academy of Sciences, Dibravské
cesta, 899 30 Bratislava
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f/fJJoo—) %!!T%{S:s’lld; ]J)-U(F?d?' =0, /8/

where A() is Lagrange ‘s multiplicator.,

The solution of equation /8/ is

AAF(F)=0/ rev, /9/

<

i. 6. biharmonical equation. When we define operator G in form

6f (F)=~—"-/ 'r('",.'),‘ /10/

wnere f(7) ie arbitrary functlon which is sufficiently differen-

tiable in sphere V » we can the solution of equation /9/ writte

in form

)0(;)=_4%[/4(F) +CHP], FeV, /11/

where H,(F)/ i‘(z(r’) are arbitrary harmonical functions in v » which

we determine from boundary conditions /3/ and /4/.

The_solution of inverse gravimetric_problem_for spherical body

In this case we used the equation /11/. The harmonical fun-
ctions H,(7) and :"40‘) are g:wen in the form
&m ,p m¥
/-/(F>=Z A; (T)E(COS'”Q ) /12/

em g -

where A; , ©21,2 are unknown coefficients, which will be deter-
mined from boundary conditions /3/, /4/. After calculations,
tne solution of inverse gravimetric problem for spherical body

with radius R in case that we know its density on the surface

end its gravitational field has the form
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P(F) =-—24 E 2 Xg(f’g % (;XZ)(GEW Cosm¥ + @,,,,szﬂm{”)é’éos?ﬂ) -
=0 Mm=Q0

0 € 7 , -
+ 285 5 464 xT1-x) (G ucosnPt Spsinn? Wom FlCosh),
b | /13/
- Y2
W TS e A

f% is the mean density of spherical body,
Gln‘,fhn» - coefficients in expansion of the density on the sur-
face,
(b,v)84ﬁn - coefficients in expansion of the gravitational field.
The solution /13/ was applied for the calculation of the den-
sity distribution in the Earth. The values of the density on the
Earth’s surface were for the continental crust jO = 2700 kgm-3
and for the oceanical crust )0 = 3000 kgm~3. The data of Earth
gravitational field were taken from [3] . The results for selected
distances from centre of the Earth are in table l. /where A - geo-
graphical longitude, geographical latitude and f) is given
in kgm'3/.
When we assume, that we do not know the density of spherical
body on the surface, we cannot apply the boundary condition /4/.
Therefore in this case we applied the condition for the minimum

of functional [1,2]

. i —ﬂ[[r)ol’r)]d" 14/

Om  Lwe
The variation refers to the coefflclenta /t /1 in harmonical

functions /12/ in equation /11/. The solution in the case, that




Table 1.

-150°

rlg N 120° =90 -30 30 60 % 10 P5a? 150
300 90° 9407 9407 9407 9407 9407 9407 9407 9407 9407 9407 9407 9407
60° 9401 9401 9403 9405 9408 9410 9410 9410 408 9406 9403 9401

30° 9394 9395 9398 9402 9406 9409 9410 9409 407 9403 9358 9395

0° 9388 9390 9393  93%8 9402 9405 9406 405 9402  93%8 9393 9389

-30° 9385 9386 9389 9393  93% 9399 9400 9399 939 9393 9335 9386

-60° 9384 9385 9386 9388 9391 9392 9392 9392 9390 9388~ 9386 9385

‘-9o° 9387 9387 9387 9387 9387 9387 9387 9387 9387 9387 9387 9387

3300 90° 7665 1665 7665 7665 1665  T665 7665  T665 1665 7665  T665 1665
60° 7640 7680 7705 7686  T669 7700 7138 7754 71752  T726 1676 7637

30° 7601 7664 7728 7690 671 761  T80B 7791 7780  7T744 7648 71597

. 0° 759 7618 7686 138 7688  T135 T!84 7705 7697  T742  T6TL 7605
-30° 7575 7581 7626 7688 7639 7637 1670 7617 7611  T664  T650 7592

-60° 7562 7566 7583 7594 7584 1579 7580 71575 7575 7581 7580 7569

-90° 7603 7603 7603 7603 7603 7603 7603 7603  T603 7603 7603 7603

6300 90° 314 3104 3104 3104 3104 3104 3104 3104 3104 3104 3104 3104
60° 3017 2855 2878 2895 3109 2950 2881 2876 2872 2877 2900 3018

30° 3142 3079 2893 3116 3138 2886 2880 2888 2887 2951 3134 3142

0° 3143 3164 3137 2887 3095 3012 2892 3142 3131 2904 3079 3134

-30° 3144 3156 3148  2%01 3145 3139 29%5 3143 3142 3019 3025 3138

-60° 3139 313 3129 3079 3136 3133 3134 3132 3134 3136 3134 3133

-90° 2897 2897 2897 2897 2897 2897 2897 2897 2897 2897 2897 2897

LoV
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we know only the gravitational field of spherical body, has

the form

o ¢
P = 34— b G{éﬂ’{’x(&’, 45’ NGy cosmP+ G, Smm?’)/VM(caszx),
715/

where >(=f'~ .

The results for selected distances from centre of the Earth

are in table 2.

The_solution_of_inverse_gravimetric_problem for rotation_ellipsoid

By analogical method which we applied in the case of spheri-
cal body, we proceeded for rotation ellipsoid. Because the va-
lue of the Earth’s flattening & = 1/298.256 [3] is very small,
we took only the first approximation with respect to ¢ .« But
in this case instead of operator G in /10/ we must take ope-

rator G, , which has the form

&/ GG, /16/

6f) = M//irﬁ:)l -
e ///r W

V - sphere which is bounded by spherical surface with radius R ’

where

), - sphere which is bounded by spherical surface with radius R

and by the surface of rotation ellipsoid with equator ra-




Table 2.

o

)

o

¢ [ixa] v -150° -120 -90 60 =30 0 30 60 % 120 150 180
300 90o 11923 11923 11923 11923 11923 11223 11923 11923 11923 11923 119823 11923
600 11923 11923 11923 11923 11923 11923 11923 11923 11923 11923 11923 11923
30° 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924
0° 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924
=30° 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924 11924
-50° 11923 11923 11923 11923 11923 1193 11923 11923 11923 11923 11923 11923
-90° 11923 11923 11923 11923 11923 1193 1193 11923 11923 11923 11%3 11923
3300 90° 9035 9035 9035 9035 9035 9035 9035 9035 9035 9035 9035 9035
60° 9048 9048 9048 9048  S048 9048 9048 G048 9048 9048 9048 9043
30° 9073 9073 9073 9073 9073 9073 9073 9073 9073 9073 9073 9073
0° 9086 9086 9086 9086 9086 9036 9086 9086 9086 9086 9086 086
-30° 9073 9073 9073 9073 9073 9073 9073 9073 9073 %073 9073 9073
-60° 9048 9048 9048 9048 9048 9048 9048 9048 9048 9048 9043 <048
-90° 9035 9035 9035 9035 9035 9035 9035 9035 9035 9035 9035 9035
6300 90° 1412 1412 1412 1412 1412 1412 1412 1412 1412 1412 1412 1412
60° 1429 1429 1426 1427 1430 1427 1429 1428 1426 1427 1429 1429
30° 1452 1472 1466 1445 1468 1461 1465 1470 1464 1469 1456 1453
0° 1457 1508 1499 1457 1503 1480 1482 14% 1476 1487 1472 1446
-30° 1450 1477 1475 1453 1477 1465 1461 1463 1456 1462 1468 1451
-60° 1429 1429 1427 1423 1431 1427 1430 1423 1428 1431 1427 1426
-90° 1411 1411 1411 1411 1411 1411 1411 1411 1411 1411 1411 1411

69Y
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dius R and polar radius (1-&)R . The function f(r") is de-
fined as in /10/.

We assumed in this case, that we did not know the density on the
surface of rotation ellipsoid. Therefore we used the condition
/14/ and by analogical way we obtained the solution of inverse
gravimetric problen for the rotation ellipsoid in the cese, that

we know only ite gravitational field

oo £
s { £ ; g
p(r‘) = ‘3'/03 ,'520 nga X («4m(r)(‘os'm?’ +/§f4m(r~)5mmf") ?(cm‘z«‘?),/l?/

where
il ey | S -
+ ff—‘ é%%m ( 244(-{-@x’)({marz)(fm”)/‘»/’*%’" l S’i:: [ i
'z f;(_z (262 4L )L -mE-m-1) Ny, SC::: +

4,
+ 71(2& -4 x2) [ 260¢41) =2m*-1] \, 1 (e,m/j
-4 4m | d
S{,m

- p3_ 2
A=t =196+ 106¢, +152 By =4’ +228% + 1364, + 144,

2, =&+ 5E2 +224, +80 | E,= L2+ 642 + 4ot + 96

Mo =ty + 8 3 x==£;



Table 3.

r (=] -150° -120° -90°  -60° -30° 0° 30°  60°  90°  120° 150° 180°
300 90° 11963 11963 11963 11963 11963 11963 1153 11963 11963 11963 11563 11953

60° 11963 11963 1193 11963 11963 1193 11%3 11963 11%3 1193 11%3 11953

30° 11964 11964 11964 11964 1194 11964 1194 11954 11964 119%4 11564 11954

0° 11964 11964 1194 11%4 1194 11964 1194 11554 11964 119%64 11%4 11964

-30° 11964 11964 1194 11964  11%4 11964 1194 11964 11564 11964 11564 11964

-60° 11963 11963 11963 11963 11963 1193 1193 11963 11963 119%3 11553 11963

-90° 11963 11963 11963 11963 1193 11963 119%3 1193 11963 119%3 11%3 11963

3300 90° 9069 9069 9069 9069 9069 9069 9069  S069 9069 9069 069 069
60° 9079 9079 9079 9079 9079 9079 9079 9079 9079 9079  S079 9079

30° 9100 9100 9100 9100 9100 9100 9100 9100 9100 9100 9100 9100

0° 9110 9110 9110 9110 9110 9110 9110 9110 9110 9110 9110 9110

-30° 9100 9100 9100 9100 9100 9100 9100 9100 9100 9100 9100 9100

-60° 9079 9079 9079 9079 9079 9079 %079 9079 9079 9079  SOT9 9079

-90° 9068 9068 9068 9068 9068 9068 9068 9068 9068 9068  S058 9068

63€0 90° 1465 1465 1465 1465 1465 1465 1465 1465 1465 1465 1465 1465
60° 1462 1462 1459 1461 1463 1460 1462 1462 1459 1460 1462 1463

30° 1450 1472 1465 1443 1467 1460 1464 1469 1463 1468 1454 1452

0° 1436 1492 1482 1436 1486 1462 1463 1478 1458 1469 1453 1425

-30° 1448 1476 1475 1451 17T 1464 1460 1462 1455 1461 1468 1469

-60° 1463 1463 1460 1462 1465 1461 1464 1457 1462 1464 1460 1459

-90° 1459 1459 1459 1459 1459 1459 1459 1459 1459 1459 1459 1459

LLY
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The results in this case for selected distances from centre

of the Earth are in table 3.

The results of the density distribution in the Earth in our
three cases we can consider as satisfactory, especially when we
compare the mean values of the density with the Bullen-Haddon ‘s
model /HBl [4) / of the Earth /table 4., figure l./. From this
follows, that the differences between our models and model HB1l
are due to abov all, that we did not consider the discontinuities
of the density in the Earth. The discontinuities we did not take
into consideration, as we did not know sufficiently exeactly
their space distribution and their velues. But if we realize the
fact, that we did not use at the calculation any equations for
the description of the structure of the Earth, the results are

very interesting from point of view of used method.

R_ e f e r_en.c_e_s

[1] Sxorvanek,M.: Obrdtend iloha gravimetrie pre zemské teleso
a gulovi vratvu. Kandiddtska dizertaéné préca, Geofyzikél-
ny istav SAV, Bratislava,1978. /Theses for the degree of CSc./

[2] Pohénka,V.,5korvanek,M.: Urenie rozlo%enia hustoty v zemskom
telese z Udajov o vonkajs3om gravita&nom poli Zeme. Geolo-
gické préce - Sprédvy 68, Bratislava, 1977.

(3] Gaposchkin,E.M.: ,1973 Smithsonian standard Earth /III/. SAO
Special report N°353, Cambridge, Massachusetts, 1973.

(4] stacey,F.D.: Fizika Zemli,.Izd. Mir, Moskva, 1972.
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37

M

T71

971
1171
1250
1371
1389
1571
1771
1971
2171
2371
2571
2771
2971
3171
33N
3493
3493
5N
3T
3971
4171
4371
4571
4771
4971
5171

pl kg >]

9412
9407
9390
9359
9316
9260
9192
9161
9110
9102
9016
8909
8788
8656
8510
8351
8180
7996
7799
7589
7454
7454
7366
7130
6882
6621
6347
6060
5760
5447
5122

/;[kgm_31

11947
11940
11911
11861
11790
11698
11585
11534
11451
11438
11295
11118
10921
10702
10462
10200
9918
9614
9290
8944
8722
8722
8577
8189
1779
7349
6897
6425
5931
5416
4880

/% [kgm-QJ

11987
11980
11951
11901
11829
11737
11623
11572
11488
11475
11332
11154
10956
10736
10494
10232
9948
9644
9318
8971
8748
8748
8602
8213
1802
7370
6917
6443
5947
5431
4893
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Table 4.

ﬂm [ kg"‘-BJ

12460
12455
12437
12405
12360
12301
12229
12197
12130
12121
12017
11887
11737
11570
11383
11176
10948
10697
10421
10121
9927
3527
5487
5387
5288
5188
5087
4983
4877
4768
4655
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Table 4. /continued/

riml  plen™  Ale™  plea”] Py lien”]

5371 4784 4322 4334 4538
5387 4756 4277 4289 4529
5571 4433 3744 3754 4380
5721 4161 329 3305 4200
5721 4161 32% 3305 4150
5771 4069 3144 3153 4075
5871 3882 2837 2845 3925
5958 3717 2565 2572 3795
5971 3692 2524 2531 3775
6021 359 2365 2372 3700
6021 359 2365 2372 3441
6071 3499 2205 2212 3424
6171 3302 1882 1887 3387
6271 3103 1558 1558 3348
6311 3022 1420 1424 3332
6356 2931 1269 1273 3313
6356 2931 1269 1273 2840
6371 2900 1219 1223 2840

)Q,- the mean density in the Earth, which is approximated
by spherical body, when we know the density on the
surface and gravitational field,

f& - the mean density in the Earth, which is approximated
by spherical body, when we know only the gravitational
field,

‘P3 - the mean density in the Earth, which is approximated
by rotation ellipsoid, when we know only the gravita-
tional field,

‘P”34° the density in the Earth from model HB1.
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Requirements for Observations of

Geostationary Satellitesq)

by

Klaus=Glinter Steinertz)

Summary
Some authors have investigated theoretically the usefulness of photo-
graphic observations of geostationary satellites for geodetic purposes.
Practical observations depend on several conditions. These are the
geographic position of the observatory, the phase angle of the satellite,
and its reflecting surface. Last not least are important facts the
daily motion of a geostationary satellite, and the instrument used.

Zusammenfassung

Einige Autoren haben die Niitzlichkeit der photographischen Beobachtung
geostationdrer Satelliten flir geoddtische Zwecke theoretisch untersucht.

Die praktischen Beobachtungen hédngen von mehreren Bedingungen ab. Dies
sind die geographische Lage der Beobachtungsstation, der Phasenwinkel des
Batelliten und seine reflektierende Fldche. SchlieBlich sind fiir eine
erfolgreiche Aufnahme die tédgliche Bewegung des geostationdren Satelliten
und das verwendete Instrument von Bedeutung.

In some papers of various authors the usefulness of photographic
observations of geostationary satellites for geodetic purposes was discussed.
There are different theoretical proposals either to determine the variations
of the Earth's mass center in two components from observations of the un-
stable libration points or in the case of geometric satellite geodesy to
use observations of satellite positions for the determination of large
distances between points at the Earth's surface, for instance by means of
triangulation chains or long polygon chords [11 , [2J, [el.

1) Mitteilung des Lohrmann-Observatoriums der Technischen Universitdt
Dresden Nr., 44

Technische Universitdt Dresden, Sektion Geodédsie und Kartographie
DDR-8027 Dresden, Mommsenstr. 13
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However there is not in all cases agreement in the theoretical
results obtained.
What concerns practical observations of geostationary satellites, there
are manyfold experiences and successful results in USSR and other
countries| 3] , (4] « For instance it is possible to get about 20 geo-
stationary satellites at one photo, taken with the large Soviet satellite
camera VAU (7] , having a field of 5° x 30°[5] .

Besides this it seems useful to add some further investigations about
the practical conditions for the possibilities of observations of geo-
stationary satellites,

Because of the parallax of about 7° under good darkness conditions near
the horizon geostationary satellites reach at least an altitude of 28°
during passing through the meridian of an observatory having a latitude
not larger than 550.

An other problem, concerning the apparent magnitude of a geostationary
satellite arises from its phase angle. Supposing that the surface of the
solar cells of the satellite is always directed towards the sun, the
phase angle should be smaller than 30° to obtain the optimum light re-
flection from the satellite., Of course mainly the size and the reflecting
power of the reflecting surface is important for the visibility of a
satellite., However in the most cases the observer does not know values
about these quantities.

In connection with this problem it should be mentioned, that the
visibility of a satellite depends also on season. In the neighbourhood
of the equinoxes (+ 3 weeks) it can be in the Earth's shadow, especially
if the phase angle is small,

The most serious difficulty is the usually unknown orbital motion of
the geostationary satellite. In principle its apparent orbit in the sky
is similar to a figure 8 during the time of 23 hours 56 minutes. The shape
of this figure depends on the orbital inclination, on the Earth's local
gravitational £ield near the subsatellite point, and other perturbations.
Running along this apparent figure in the sky, the satellite varies his
velocity. In this way arises a problem in the estimation of the limiting
magnitude of the telescope used.
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There are very different dates in the literature about the expected
magnitude of geostationary satellites. From theoretical calculations
MAREK [ 6] found a mean value of 15 magnitudes. DIXIT and others (3] get
from observations '10,5m to 12,5m « In the second case the results are
theoretically better about O,Sm because of the smaller extinction (the
latitude of the observatory is 12,50).

In the following table there are estimated some dates for an orbital
inclination i = O,1° under the approximative assumption of a constent
velocity of the periodic daily motion of a geostationary satellite. Tre
given time of exposition deperds on the focal distance of each instrument
mentioned. This time is limited in such a way, that the star's trail is
not larger than 35 um. Under these conditions the limiting magnitude for
the given exposure time was calculated. The quotieant D2/F is a characteristic
value for the qualification of a telescope for obgervations of geo-—
stationary satellites. The weight p of the position of a geostationary
satellite is proportional to the focal length of the telescope.

Telescope Time of Limiting D2/F o)
exposition magnitude (cmz/cm)

Zﬁgjz‘:ni:t(GDR) . g v 4
Baker-Nunn (USA) 14 V552 51 0,7
VAU (USSR) 10 “15~(0) 36 150
SBG (GDR) 9 14,4 23 155
400/2000%) 4 14,0 8 2,8
300/1500%) 5 13,5 6 2,1
AFU (USSR) 4(0) 13,0 6 1,0

x) Astrographs VEB Carl Zeiss Jena, Sonnefeld type

First experimental photographs at Tautenburg Schmidt (a geostationary
satellite of 14,7m yielded a strong blackening after an exposition of
5 minutes) and Dresden Astrograph Zeiss 300/1500 confirmed the dates of
the table above. Beyond this was found out:
1. There are geostationary satellites (or quasistationary ones),
which may reach the magnitude 6% (an object at two plates of
Dresden astrograph)
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2. The apparent velocity of a geostationary satellite depends
on its position in the orbit, and may vary quickly, so that
the limiting magnitude for a given exposure time varies very
much too.

The problem of timing is not yet solved for telescopes, which are
no satellite telescopes.

Determination of positions of geostationary satellites may be
done by Schlesinger's method of dependences or Turner's method using
plate constants,.

The accuracy of determined positions of a geostationary satellite
depends on the focal distance of the telescope used, on the precision
of timing, and on the positions of the reference stars used. Because
there is not yet a timing device at 2-m-Schmidt-telescope and at
astrographs, the position accuracy attainable is not investigated
till now.

The author thanks Dr. Bérﬁgen and Dr. Kirsch from Tautenburg
observatory (ZIAP) for taking a series photographs at 2-m-Schmidt,
and Dr. Losinskij from Astronomical council (Moscow) fox some
valua_ble advice. Some results of the present paper were taken from
the diploma thesis of M. Schmidt, TU Dresden 1980,
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A Method for the Construction of spheroidal Mass Distributions consistent with
the harmonic Part of the Earth's Gravity Potential.

by

C.C. Tscherningq) and Hans Sﬁnkele)

Aystract

Approximations to the harmonic part of the gravity potential of the Earth may

be expressed as a series in external spheroidal harmonics,

V(u, B, 1) = ZN En A V:m(u’ Bv A).

n=o0 m=-n nm

where u, B, A are "ellipsoidal" coordinates.

Models for the mass distribution (p) of a spheroidal approximation to the Earth
may be expressed as a series in internal spheroidal harmonics, contingently mul-

tiplied by a function F(u, B, A), i.e.

p(u, B, A) = Flu, 8, A) z§=o g _a VE(u, B,A).
Qf : By . { 4
It) shown, that for suitable choice of F(uyj B, A), simple relations between the
coefficients a. and Anm can be established. This permits the construction of
spheroidal mass distribution models consistent with the known low-degree harmonic

expansions of the Earths gravity potential.

In order to construct geophysically realistic mass distributions a generalisa-
tion of a procedure due to Moritz has been used. First the coefficients Agm of a
spheroidal harmonic expansion of the potential of a geophysically realistic (dis-
continuous) approximation Py to the mass distribution of the Earth are computed
A mass distribution Py is then computed based on the residual coefficients A i

nm-Azm, using F(u,B,R) 2/(u  Boeon™ B).(This is one of the functions, which
gives a simple relation between the coefficients A;m and the coefflclents‘a;m of p1).
E is the excentric anomaly. The harmonic part of the potential of the density di-

stribution p:po-ip1 will then be equal to V.

1) Geodaetisk Institut, DK-2920 Charlottenlund, Gamlehave Alle 22.

2) Institute of Physical Geodesy, Technical University at Graz,Steyrergasse 17,
A-8010 Graz, Austria.

Presented 4'th International Symposium '"Geodesy and Physics of the Earth",
Karl-Marx-Stadt, DDR, ,12-17, 1980.
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Results of a numerical example showing the density variations within the

Earth implied by a set of potential coefficients (GEM10OB) are given.

1, Introduction

Models for the density distribution of the Earth (or another planet) are use-
ful in geophysical research e.g. when comparing observed data with the values
derived from a model with known physical properties. In geodesy such models are
needed, when constructing approximations to the gravitational potential of the
Earth, W=V+&, (where V is the potential due to the mass distribution of the Earth

and & is the rotational potential). The reason for this is the following.

In order to linearize the functionals relating observed quantities (such as
gravity values and astronomical latitude and longitude) to W, a certain normal or
reference potential U is adopted. Approximations to the anomalous potential, T = W-U
can then be constructed using the linearised functionals and the observation ano-
malies (gravity anomalies, deflections of the vertical). If information about the
mass distribution is to be used, U or a reference mass distribution producing U
must be defined inside the Earth. Also when using statistical models, not the ab-
solute density values, but the residuals with respect to a reference model are

the basic quantities, cf. Tscherning (1977).

Up to naw only harmonic functions U have been used, for which the mass distri-
bution is a multipole distribution at or near the origin, (the Barths gravity cen-
ter)., Therefore we must now construct reference mass functions, which are geophy-
sically realistic volume distributions, and which outside the masses produce the
adopted U-function, Hence, the main purpose of this paper is to describe techniques

for the construction of such mass models.

When working with density anomalies (d) it is permitted to work in spherical

approximation, i,e. so that the Earth is regarded as a sphere with radius R =

6371,0 km, The anomalous potential T, produced by these density anomalies,

2(p) = 6 [ a@/IP- Q Il 4 (1.1)
Q0
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may in spherical approximation be expressed as a series in solid spherical
harmonics outside the surface of the Earth. (Q is the set in 93 inside the

surface of the Earth, P and Q are points in RB and G is the gravitational con-

stant) .

Let the point P outside (1 have spherical coordinates ¢ = latitude,

A = longitude and r = distance from the origin. Then

g

e 1l
GM (R\1 ] W . ony
T(P) =i?2 . (;) jzgpij(51nw) [Cij cosjr + sij sinjA], (1.2)

where M is the mass of the Earth, P : are the fully normalized solid spherical

harmonics and G i3 and Slj are constants.

When the density anomaly function d is required to fulfil a simple con-

dition like
A(x™a) = o, &l 5]

where 8 is the Laplace-operator, then d can be expressed as a series in inter-

nal solid spherical harmonics multiplied by r—m,

B(R) = r 7 5§;0(§)1 2%=0 (s:n@) [c COSJX dynilll J81n3k] (1.4)

In this case there is a simple relationship between the coofficients of the

two series, cf. Tscherning (1974),

(o]

ij (2i-m+3)(2i+1) f C (1.5)
R>™M, 4G i S, i

S
1]

for i $-m, i.e. i generally €

When working with the density distribution p itself, it is no longer
permitted to work in spherical approximation, but we must work with a spheroidal
(or ellipsoidal) reference model. Let the Earth be approximated by a spheroid
with sem1—ma33; axis a, semi - minor axis b, and hence half focal distance

E = (a -b ) - We will also introduce spheroidal coordinates, i.e. the point
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P will have the coordinates (u,B,A) where u = the semi-minor axis of the spheroid
confocal with the reference spheroid and passing through P, B = the reduced
latitude and A = the longitude, cf. Heiskanen and Moritz (1967, section 1-19).
The gravity potential of the Earth, V, can then be approximated by an abbreviated

series in spheroidal harmonics.

We will in the following work with both internal and external spheroidal

harmonics, which we will denote V:ml(P) and Vsm(P)’ respectively. Then

i ek cosmA 0%2mé&n 3
Y .U . 1 ke
v (P) Pn(lE)Pn(81nB) Y TR (1.6)
1 s 1w cosmA O£m=n
Vnm(P) = Qn(lf)Pn(51nB) e el | (1.7)
_ p—m m ! -m m !
Here we put Pmn = Pn R Qn = Qn , where Qn are the associated

Legendre polynomials of the second kind. The "i" appearing within the argument

of P'I"1 and Q’E is the imaginary unit.

We then have

N e
V(P) = G zh:o Z::n1=—n Aannm (P) , (1.8)

where the coefficients Anm can be determined from one of the standard earth

models like the Smithsonian or Goddard Earth models. These models are expressed

as; series in solid spherical harmonics with coefficients Ci' and Si' like in
eq. (1.2). The coefficients Anm may be computed from these coefficients using
e.g. Hotine (1969, eq. (22.59)).

The summation 1limit N becomes in reality infinite, but the coefficients
of degree 4, 6 larger than the maximal degree of the sperical harmonic coeffi-

cients are very small and can be put equal to zero.

If we require
MR(n B * p) =.0 (1.9)

where f(u,B,A) + 0, we may express p as a modified series in solid sphe-

roidal harmonics,
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1 i y
p(P) = nz% ?zu,ﬁ,lyiz§=-n anmvnm(P)' (1.10)

Selecting f(u,B,A) in a suitable way, we then can hope to obtain relationships
between the coefficients Anm and a- similar to these given in eq. (1.5).

In the following sections 2-3% we will determine such relationships, by
simply computing the potential of a mass distribution F(u,B,A) « Vim (P),
F(u,p,A) = 1/f(u,B,A) being a simple function. In section 4 we will describe
how these relations can be used for the construction of geophysically reali-
stic mass distributions, the potential of which will agree with a given set
of coefficients Anm’ Finally in section 5, we point out some future research

problems.

2. The potential of V' (u,B,A)
pouiL|

We will in this section regard the simplest case where F = constant.
In this case we must compute the potential of a harmonic mass distribution in
a point Q with coordinates (u',p',A"'),
u=b .27 /2

Y (0B AY) = | Vi (u,B0) (u%E%sin )/ (2.1)

v u=0 J)\=o‘J B:—Tf/z
*cosBdpdA du
2 gl 5
vhere L = ||P-Q|| and (u™+ E"sin“B)cosBdBdrdu is the volume element.

According to Hotine (1969, eq. (22.55)) we have

248 (ene[Q (iR P_(if )P _(sinB )P (sing)
5 " (n-m)! ; m('E})Pm('EJPm(sinB')Pm(sinB) (2.2)
i %§1 e (n+m) 1, Vg PRE 5 n

xcosm (A' A)],

When evaluating eq. (2.1) we can then take advantage of the known ortho-

gonality properties of the Legendre polynomials. We also have
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T/ 2
1 R L
'§ﬁJ° J-n/g(Pn(SInB)) cosBdBdA = — (2.3)

/o
J‘ (P (ﬂrn.)) {ZOS ml}toskdﬁdA = P—H’I:,i' g?lt—:gf Gz, )

hece m ¥ O in the nst equition.

Let us regerd the part of the integrand equal to

S —EZP:(i%)Pz(sinB)C:glsmn&}((l—) e B)

T HOCAON (e ISR (2.5)

where q = i% and t = sinB. We will express I only using Legendre-polynomials.

Using the well-known recursion formulae

(nemsDE™_(£) = (2061t B(£)-(nem)P”_ (1)
R i+ =, Lt -(ntm)P (2.6)
we have
m _ n-m+1 .m n+m m
RER GRS e P w1 i B i) (2.7a)
m _ n-m n+m-1 _m
bR (8= P (t) e §10) (2.7b)
m _ n-m+2 _m n+m+1
: Pn+1(t) ~ 2n+3 Pn+2(t) " 2n 2n+3 4 (t) (2.7¢)
and

m (n-m+1) (n-m+2) (n-m+1) (n+m+1) _m
tap (t) = (2n+1) (2n+3) Pn+2(t) (2n+1) (2n+3) Pt

(n+m)(n-m) _m (n+m)(n+m-1)
+(2§+T 2n-1) Pn(t)  Bnr T one ] 5 ’ (2.8)
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which we will write

m m m
=AP (t)+ (B+«)P (t) + D P _,(t) , (2.9)
hereby defining the quantities A,B,C and D.

Hence

& i (ap? (q)+(B+C)P (q)+D p (q))P (t) {°°s“’\

P(q) (A BT (£WBCIPT(£)+D BT (1)) C‘l’fﬁ} ]

= EA Pl(Q)PT (t) - (A P (q)+D B} _(q))FN(t) +D PR(q)P]_(t)]

m
{::m)«} (2.10)

Using the orthogonality property and eq. (2.3 and (2.4) we get
v

Y = Eel}n[ ib/E(APm ( ) me ( ))Pm( )d m ( |)Pm(t') « B
nm < ne2t@) +DP 5 (q))P (q q.an E
ib/E .
= bk A l'n](q)P (q)dq Qn+2(ql)P;n1(t| ) L

[27%5 e gyem mo o
“da=o 2 Pn(q)Pn-a(q)dq ’ Qn-2(q')-Pn-.2(t')'D']

with A'=B'=D'=1 for m=0,

B' = (n-m)l (- 1)m{cosm\ Ly (n-m+2)! (-1)™ {'cosml'}

(otm)t sinmA'

and
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5" = (n—m-2)!( )™ cosmA'
= (n+m-2)' "~ inmA'
Then
ib/E
g 2 ! m
Y, = E% lm[Jq=o P
ib/E
+
Sy

Using eq. (A.1.3) we have

b2 E2+1
-2(2n+3)

Y o= gl (p"
nm

(B '-Qﬂ(i%')P‘r‘:(sine' )-At -Q’n"

b2 E2+’I

m sbyid
g (P (iz)—=—

n-2""E’dq

El

T .
¢(B .Qn(lE

n+2

) Prrnl( sinB)~

for m»0O

(0)P™(q) dq(B'Q(q IPN(t ")-A"Q], J(a" )P}, (t")

D-P(q)P"_(q)dq-(B'-Q(qIEN(t")-D"-q ,(q VP (t")]

P (i) -

n+2 E

by 4 om by ome . byd
(1E) % Pn (lE)-Pn(lE)dq

dataam RelaR
+2(1'15 )Pn+2(51n8 ))

m,.b m,.by d m .b
Pn(lf) —Pn(IE)EiPn_a(lf) )+D

D Qﬁ_z(i%' )P0 _(sinB')) ], (2.11)

which may be stightly simplified by factorizing out %(bZ/E-2+1)=a2/(2E2).

Example 1, a=O.

(n+1) (n+2)

(2n+1) (2n+3), P

Here A =

SO

n+2

n(n-1)

=! USSR o LRI 0|
[E I E AN

.byd Al .by d .b
(lE)dq Pn(lE)_Pn(lf)aE P_n+2( ]f))

Voot B ) i BiA))

2
_ =2ma” r(n+1)(n+2)
Yl’lO 3 2n+1 (2n+;)27 (P
y I‘n-’l)Z(P
(2n-1)

.byd 219 .by d .b 1ot g
n—2(1E)dz‘Pn(1E)-Pn(lﬁ)E Pn-2(1§)(vgo(u Ll )-vn—Z,o(u"B' ’A')]
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Example 2, n=0.

Here A=%, D=0, A'=B'=D'=1, so

2!
y —EB (P (i )——P (i )) £ = (q (1—>p (sinB*)-Q (1—)p (sing'))
oo 3 2

4na2bi e S - 4
7E (Voo( B2 )—V (u WBYAT)

This agrees with MacMillan (1958, eq. (39.2)).

Example 3, m=0, n=1.

2ﬂ by3 .b by715..b
T, = a® (52 GUR%- 252 -GDH RGP D)
e
LV V)
2na2b1 2 b2 € e
= -5% —2 -3+15E—2 +3)(V1’0—V3,0)

25,
o Lma b7 (Ve i darlly
5E3 1o:ti 50

3. The potential of some simple non-harmonic mass-distributions.

In section 2 we found that the(harmonic part of the) potential of an
internal spheroidal harmonic V;m was equal to a linear combination of generally
three external spheroidal harmonics ve 3 v® and V°© . The reason for

n+2,m nm n-2,m
this was the occurrence of the factor t“= sin“B in eq.(2.5) . This factor will

disappear when we compute the potential of functions

) F.(q) )
F(u,B,A) V2 (u,BA) = === V> (q,t,A) (3.1)
u,p, - U,P, = (qa_ta) nm q,tyn/, D=
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where we again have put q = i%.

If we choose Fq(q) to be equal to a polynomial in q, then we may without
difficulty carry out the needed integrations. We may even choose F1(q) to be
equal to different polynomials in different intervals of q, i.e. F1(q) may be

a discontinuous function.

In order to carry out the integrations we must first convert the quanti-

ties quZ(q) into a linear combination of associated Legendre polynomials:

k
k m m il
q Pn(q) ~j§_kCn(k,J)Pn+j(q) (3.2)
From eq. (2.7a) we have Cﬂ (0,0) = 1,
m n+m m eh m _ n-m+1
c (1,-1) = 5=, , ¢ (1,0) = 0 andC (1,1) = 3= . (3.3)

Then we get the following recursion formulae for the determination of the coeffi-

cients
m P il m m : m
Cn(k,J)—Cn(k—1,J—1) cn+j_1(1,1)+cn(k-1,3+1)cn+j+1(1,-1)
m x n+j-m m . n+j+m+1
=Cn(k-1,3-1) P c, (k-1, I CYSIFS: (3.4)
(We must put Cﬁ(k,j) = 0 for Lj]?k).
o[ .
For F1(q) = T c.q we then have
. i
i=0
m I g
F1(q)Pn(q) =.Z c;q Pn(q)
i=0
il i m
=Zc. T c"(i, PP .(a) , (3.5)
G 1j=—i n n+)
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which we will write as
- e (@)
E.3. sk Ry A0 - .
B.Tity J n+j
which also will define the constants c3 5
We then have
b 2m T1/2
' i | il
T (u'yBt, Atdej f L Fy(@V;, (u,B,1)/LeosBapar du
u=o A=o0 B=-T1/2
q=ib/E I
it | = m 0 ST T e Sy
=-E lm[J z ] Pn+j(q)Pn(q)dq]Qn(q )Pn(t )*B
q=0 j=-1
I iu/b
5 % * ‘ m m m L m ! '
= -E lm[-ix cl | Pn+j(q)Pn(q)dq]Qn(q )P (t')B
= S
I € -S|
= Bnm‘:nm(u Y e (3.6)
ib/E
v, 2 (n-m)} m g J m m
where B = -4 E i (=1) jiE-I gt o Pn+j(q)Pn(q)dq (3.7)

In a similar way we can handle functions F(u,B,A), which are polynomials

in q and t, (Or in rE u2-EasinZB).

The potential Ynm of a function F(u,B,A)V;m(u, B,A) will be a linear

combination of external solid harmonics

[} [ ' k e ' ' '
Y (u'B'AY) = kEJ B Vkm(“ g ) (3.8)

where J is a suitable index-set (equal to n+2, n and n-2 when F is equal to a

constant as used in section 2).
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4, Construction of mass distributions.

Let us suppose that the external potential is given by eq.(1.8) or
equivalently by a set of coefficients GMAnm’ neN .

If we require the density distribution to fulfil the condition (1.9)

with F(u,B,A) equal to a polynomial in q = r% and t = sinB in each interval

’

- % = Gl = b then eq. (3.8) is
541 Ji= ©g00g M uj uj+1 )y U 0 an Uy e q 3
valid. For the density distribution given by

u.<u 4du
J

o) = B P a F(u,8,0)VE (u,B.4) (4.1)

n=0 m=-n

we must then have the relationship

v Bl a -aM.A, (4.2)
ned nm nm Jm

For a given set of coefficients it will only in a few cases be pos-

sible to solve the set of linear equations (4.2).

If the coefficients, Bim, which can not be solved for, are very large,
one may artificially adopt some very small potential coefficients Anm’ and
then solve the equations. Or, using an elimination method, one may start with
the high order and degree terms, ending up with a mass distribution P, and
some residuals Agm for the low degree terms. These residuals can then be used
for the computation of a mass distribution Py using one of the functions F,
which gives a one to one correspondance between Azm and the coefficients az

of a mass distribution po. We will then have p = po + p1,

Due to lack of time, we have, however, only tried the simple situation,

described in section 3, where F(u, B,A) = F1(q)/(q2-t2). Then we simply have

o
%nm 9y Anm/Bnm (4.3)
In Figure 1 are shown the radial variation of the mass distributions

obtained using the set of coefficients GEM10B and F1(q) =i, G q2 and q3,
respectively. Note, that for F1(q) = q2, we will get a mass distribution, which

is approximately harmonic. None of these results are geophysically meaningful .

A more meaningful result was obtained using F1(q) equal to q2 times a
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polynomial expression Py for the radial variation of the mass distribution,
(with u/b substituted for r/R as a parameter), see Moritz (1968, eq. 88). The
reason for this is obviously, that the condition (1.9) in this case is equi-
valent to requiring p to be equal to the constant function 1, - which for sure
is harmonic. We expect, that the use of a discontineous function, F1(q) =

pO- q2, will give a mass distribution, which is geophysically meaningful and

we are still investigating this possibility.

Numerical experiments with an alternative method (inspired by methods
discussed in Moritz (1968, 1973)), resulted in the following procedure, which
will produce a geophysically meaningful mass distribution. Instead of starting
by trying to solve the equations (4,2), the idea is to use a parametric earth
(mass) model, po, and then determine a small pertubation to this model, using

eq. (ho})-

We have carried out this procedure for one specific parametric earth
model (PEM), given by (Dziewonski et.al., 1975, Table 1),and one set of po-
tential coefficients, GEM10B, given in (Lerch =t.al., 1978).

We choosed the PEM describing an average structure (with respect to the
continents and the oceans). This model is given in spherical approximation,
by 8 polynomials in different continuity intervals with r/R as a parameter.
We modified the polynomigﬁs, so that they each were defined from O to Ri,

where Ri is the radius of the i'th surface of discontinuity.

Instead of using r/R as a parameter, we then used ui/bi’ where bi is the
semiminor axis of an ellipsoid having the same volume as the sphere with ra-
dius Ri' uy is the ellipsoidal u-coordinate, so that u, = bi on the ellipsoid.
We fixed b8, so that it was equal to b, but varied all the others,so that the
potential produced by the massdistribution agreed with GM and C of the

2,0
used set of potential coefficients (GEM10B). We parameterized the bi by putting

al - b Tl |
= - (4.4)
a.2 a2 R '
i
which through an iterative procedure gave the correct C value for ¢ ~ 11.2

2,0
Let us denote this mass distribution for Py and the potential coefficients

for Aﬁm. (Only the even zonal harmonics are different from zero because of

the rotational and equatorial symmetry).

T — S —

T L=
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The set of potential coefficients GEM10B were slightly modified by sub-
traching the potential coefficients of the isostatically compensated topography,
computed as described in (Lachapelle, 1975). We then had the potential coeffi-
cients of an ellipsoidal Earth, without topography, which were converted into
coefficient Anm of an ellipsoidal harmonics series.

The residual coefficients A;m = Anmngm’ where then converted using eq.
(4.3), with F1(u,l, B) = u2, resulting in a (residual) mass distribution Pqe
The total mass distribution p = p0~l-p,I will produce an external potentiai,
with the ellipsoidal harmonic coefficients, Anm. Figure 2 show the variation
of p, in various depths. We see, that the maximal values numerically are below 0.01
g/cm”, i.e. p is only a slight perturbation af po,andhence also a geophysi-
cally realistic PEM. The main deficiency is the behavior near the Earth center,
enforced by using ellipsoidal coordinates. However, this is, seen from a geo-

detic standpoint, of minor importance, because we mainly are concerned with

the variations in the crust and mantle.

5. Conclusion

We have in this paper given examples of possible methods of constructing
mass density distributions, which will produce an approximation to the exter-
nal gravity potential given by a set of low degree potential ccefficients. We
also have carried through a computation which gave a fairly realistic mass
distribution as a result, or more correctly: the perturbations of the used PEM

were insignificant.

There are, however, some problems, which need to be solved, primarily
related to the use of the PEM. Which excentricities should be adopted for the
different discontinuity surfaces, which mean density should be used at the sur-
face of the Earth and how do we get rid of the problems originating from the
use of ellipsoidal coordinate systems ? We have thoughout used the condition
eq. (1.9). However, this condition is just one which makes the construction of
density distributions possible in a unique way. The ideal situation would be
to have a condition which corresponded to the minimalization of an integral

formula like the one discussed in Moritz (1968, section 12), see also Rubin-

cam (1979).
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Appendix  Integrals of products of associated Legendrepolynomials of the

same order.

The associated Legendrepolynomials fulfil the well known differential-

equation
2 d2 m d .m rn2 m
g g ;;E-Pn(t)—Zt 3t P (t)+{n(n+1)- :—:3 ] P (t) =0 (A 1.1)

which we will use in order to evaluate the following integral for n # k,

o
I=: P™2)P™z)dz (A 1.2)
on k

(}
We have
2 2
(n-k) (n+k+1) = n“+nk+n-nk-k“-k
>
= n2—n—k‘-k = n(n+1)-k(k+1)

and

e

n(n+1)Pz(z) = (22-1) :
dz

P™( z)+2z—d— PR, S
n dz n

m
5 Pn(z),
1=z

hence

(n(n+1)-k(k+1))Pﬂ(z)P;'(z) =

Pi:(z)(n(n+1)Pﬁ(z))-P;nl(z)(k(kﬂ )P;(z))

i

2 2
2 d d
P (2055 Pl(a)e2z 3 P(a) ]-P(a] (z2_1)§:2- PP(2)

g -m
* 2z == Pk(z)]
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2 2
Lot a3 [--dE Pfll(z)PE(z)- > P (2).P0(2)]
dz

+ ZZ[PQ(Z) ad; PZ(Z)—PTI(Z) Ed; Plr:(z)]'

]

L [(22-1) (B (2) P(2)-P(2)2el(2)) ]

_ 4 rpm n(n-m+1) (n+1) (n+m) _m
2 dz[P (2) E_%E'I_‘PE-H(Z)- 5 .2n+{l1 Pn—'l(z_D

k(k- +1) (k+1) (k+m)
- PG CgEm) ph (o) SR B (2)]

For z = O we know that either P™(z) = O or L P™(z) = 0, so
n AZ T
for k-n even and +O we have

g m
P (z)P (z)dz
% n k

18 —1 m d .m 4
= oD ey [P Pz Palt) = Pt P()] (a4 1.3)

., 1 (n-m+1) (n+1) (n+m)
et L AO m  URr  AN)

m k(k-m+1) (k+1) (k+m) _m
Tl Bt aeer Pt

For k-n odd, terms with PE(O) or PE(O) must be added.
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Figure 2. Deneity anomaly variation with depth. GEM10B with n=12 and

F = q2 used.
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Figure 3.2. Distribution of density anomalies at 300 km depth. Units ‘10‘3 g cm
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Correlation anslysis of gravity snomslies snd isostasy

by

Vincenc Vyskod&il 1)

Summary
The method of moving ststistical churacteristics was

gpplied in correlation ane&lysis of geophysical fields on the

territory of Czechoslovsekia,

In the rrevious pepers [112] it was found thst in the
Western Carrathians & relatively close correlztion could be
observed between the Bouguer grevity snomzlies, the heights of the
terrein and the depths of the Moho discontinuity. On the other
hend, in the Bohemian messif the correlation between these guanti-
ties is much wegker. The recson for this is apparently in the d4if-
ferent structure of the esrth’s crust of the Alpine-Cerpsthien
zone end of the geologicelly older fcrmetions.

Since we sre interested in distinguishing aeress with diffe-
ring prcperties of geophysicel fields, it is recommended to com-
pute the moving characteristics [3,4] . For geophysicel interpre-
tation the moving velues of the correlaestion coefficients seem
to be the most importent.

This paper deels with the correlations of Bouguer and iso-
static gruvity snomalies, the heights of the terrain, depths of
the Moho discontinuity and the neotectonic verticel motions on the
territory of Czechoslovskia. The initiel values of the anslyses
are the mean values of these quantities in the areas of (2 o R

The window used was either SO'x 1015'(5 X 5 basic srees) or

) Geophysicel Institute, Czechosl. Acsd. Sci., Boéni II,
Sporilov, CS - 141 31 Prsha 4
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1°10°x 1°45° (T x 7 basic sress). The velues of correlstion coeffi-
cients celculsted for the 5 x 5 windows are shown and discussed
1J1[4]. Here, only & brief review of the results cen be presented.

The obtained values of the moving ccrrelstion coefficients
indicete that there sre some differencies in the geophysicel
properties of the Carpathisns ard the Bohemian messif. The
Carpsthians appeer gs a relstively homogeneous block from the point
of view of the investigsted correlstions. Cn the other hand, the
Bohemien msssif presents itself as an inhomogeneous block. This is
expressed by the observed varigbility of the vslues of the correla-
tion coefficients. Their snomelous signs occur mostly in the Southern
end Esstern psrt of the Bohemien messif. Consequently, in some
cases & relatively wegk correlation is observed if the input date
from the whole region of the Bohemisn messif sre included in one
set, although it is quite significent in some of its parts.

The results prove the partisl justification of the Airy's
isostastic model in the Carpsthisns. The isostatic conditions of
the Bohemisn messif are more compliceted and indicste the necessity
of & more genersal approach to isostasy, which ceznnot be associsted
only with the compensation of topogrefic masses. According to the
present experience, all the irregulerities in the distribution of
the masses inside the lithosphere must be considered in studying
the isostatic conditions [5,6].
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Determination of the Earth’s Pigure by Solving an Inverse Astro-Gravi-Magnetic-Geodesic
Problem
by
Dimiter: Zidarovi)
Summary

An inverse astro-gravi-magneto-geodesical problem on the base of all available as-
tronomical,gravimetrical, magnetical and geodesical data is formmlated.The Earth gra-
vimetric and magnetic fields are represented by the fields of simple gravimetric and
magnetic layers on the Earth surface.The problem is solved by minimization of the sum
of the differences between the corresponding empirically and theoretically determined
values.The uniqueness of the solution of the inverse astro-geogesical and the inverse
gravi-geodesical problems is proved.

Zusammenfassung

Eine umgekehrte astro-gravi-magneto-geodasische Aufgabe auf die Grundlage von allen
vorhandeln astrronomischen, gravimetrischen, magnetischen und geodasischen Daten wird
formuliert.Das gravimetrische und das magnetische Feld werden durch das Feld einer ein-
fachen gravimetrischen Schicht und einer einfachen magnetischen Schicht dargestelt.Die
Aufgabe wird durch die Minimisierung einer Summe der Differenzen zwischen den ent -
sprechenden empirisch und theoretisch bestimmten Werten gelost.Die Eindeutigkeit der
Losung der gravi-gedesischen und astro-geodesischen umgekehrten Aufgabe wird bewiesen.

1.Introduction

We will examlne the simultaneous use of astronomic, magnetic, gravimetric and geode-
sic measurements in determing the Earth’s figure, see Stok% G.Ge. @5.16], Laplace P.S.
[8],Helmert W.[6] , Molodensky M.S.[9-12],Moritz H. [13,14] ,This paper represent a conti-
nuation of the investigations aimed at determing the Earth’s figure through solving the
inverse gravi-geodesic problem, as proposed by Zidarov D.P. [19,21,22 925,29,30,32] .AB-
tronomic and magnetic measurements have been added here to the gravimetric and geodesic
data.

2. - ~M o-G

Let us assume that we have at our disposal the following data:

1.Known are the astronomic coordinateeG?Qa;), \f”(@ai) of the Earth’s surface in a cer-
tain number of points Qu,1=0,1,¢¢e, My .The approximite values of the coordinates r,; ,
6;; s \fo; Of the points Q,; are denoted by rS, ,th; ,fh;The angle £°(Q,;) is closed be-
tween the unit vector _f(Qo-,) of the vertical in point Qg; and the unit vector T of the
Earth’s r_ojation axi_s;;\{"(Qo;) represents the angle between the plane determined by the
vectors N(Qoo) and P, where Qu, is a fixed point on the Earth’s surface (Greenwish Ob=~
servatory) and the plane determined by the vectors N(Qe;) and .13,

2.Known are the values of the geopotential

AW (Q,; ) = W(aﬁ)_\l\/((gm): j;.qdh

el Bulgarian Academy of Scienges,Geophysical Institute,

Sofia 1113, 13 Acad. G.Boncev Str.,Bulgaria
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in a certain number of points Q,; ,i=0,1,¢s.M4, On the Barth’s surface S,AW(Q,;) repre-
senting the difference between the gravity potential W in point Q,; and the gravity po-
tential W in the basic point Q,o ; L is an arbitrary line on S, connecting points Q,;
and Qo » g is the gravity field intensity in the points of L ;d/i is the distance bet-
ween the corresponding equipotential surfaces W=const. and rf; ,01‘; ,)010; are the approxi-
mate values of the coordinates r, ,®;,¥; of the points Q,; , )

3.Known are the values g(QQ;) of ;t;he ogravity field intensity in the points Q 3; (5‘; .
920;, 80 )y 1=0,1,...M,,where rz‘:- ’ Qz;'g..' are the approximate values of the coordina-
tes T, ,%: ,)g; of the points Qg; €S,

4 .Known are the geodesically determined distances 5 between every two “neighboou-
ring" points Q3; and Q;; of the triangulation network and the approximate values ry, ,
05:,)%‘2 of the coordinates r;,, €,,f;, of the points Qzg,1=0,1,..s,M3,

5.Known are the northen X(Q,;) s the eastern Y(Qy;) and the vertical z2(Qp; )
components of the Earth’s magnetic field intensity in the points Qg; ,

6.Known are the absolute values T(Qg; ) of the Earth’s magnetic field intensity in
the points Q= (:r.'Qoi .940: ,)Q? )91=0,1y0400,M, ,where ry: ,9: ,5&:: are the approximite values
of the coordinates r,. ,6,; s¥,; of the points Qg ; .

7.Known is an approximates expression 19(0.)9) of the Earth’s surface S (assumed to
be sttelliform with respect to the Earth’s centre of gravity), which will be used in
the regions where there are no points of type Qg; yk=0,=92,3,4.

Given these data, the Earth’s figure will be determined by solving an inverse astro-
gravi-magnetic-geodesic problem, consisting in the determination of the Earth’s figure.
(coordinates of the points Q;,k=0,1,2,3,4) and a simple layer (of a density M @) ),
at which the difference between the observed elements of the Earth’s gravitational
field and the corresponding elements of the field of the introduced simple gravitatio':
nal layer is the smallest in the sense of the least sqares, and in the determing a sim=~
ple magnetic layer (of a density u,(¢,f¥)), at which the difference between the observed
elements of the Earth’s magnetic field and the corresponding elements of the field of
the introduced simple magnetic layer is the smmllest in the same sence.This problem is
solved by seeking the conditional minimum of the sum

M, -l I M - ~
ua m = Z P“’__A W(Q,;) - AW(G,,-)]?Z]S‘,; + Zqz;l%(az;) = 3(02:)] ZASZ; %

L[ - Ttea] o5,

where W(Q,), g(Q,;) and T(Q,;) are the corresponding measured magnitudes,

~ 2, 2 2 MR)AdSa
W(&.):&L Xjss b sul bl S o
1 2 ( 111 71 ) 2 . k(a“’(;;)

is a trial gravity potential, %(X“f + Y, ) is the potential of the centrifugal force,

M@ s,
and |=———— ig the Newtonian potential of the simple layer with density u(Q), lo-

s A7 /ﬁ(@pnfg)

cated on the Earth’s surface (see Zidarov D.P. [29,20,21,22,28,29,30,34] ,Weightam J.A.
fi7] yDempney G.N.G. [3] ,Holota P. rSJ),
AW(Wg;) = WGy ) -W(Qy);

Q(in)il-g-radguwj -
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R, Q)dsa 1. [ 2 - A
[, +2n/u(621,)cosxn2 + /ﬂ/a}COSE(zi(Zéfzz)) 6 %4 [wy; +27 (@0 Cos YNy, +

/“(&JCOSYR.(&M,QJO‘SG T (@)cos 7R(Qa:,R)454 2} 72
: e T+ Ry )cosn, + /d—iﬂﬁ'zmz,, oBIdsa]?

-‘g('ad'f is the magnetic field intensity of the trial simple magnetic layer with a

density 4,{Q),located on S, * it on(B) CszR( Q)JSQ
- i @Qu:|coSyn,; *
Fiaa el o [l P s i

Am(‘g) S Yy R—( 4'1 a , l’ . -}_/_ '“a) COSRZ ( aﬂ’ 7&) Q }

w :l.s the Earth-‘a—angular velocity, R(Q‘, ,Q) is th% distance from point Qm to an arbi-
trary point Q= (x,y,2)z(r,8F) on S, nz‘ X :‘\y, nZ,z and n4 X n4, ¥, n,; z are the res-
pective angles between the normals to the surface S in the points Q,; and Q4 and the a-
Xes X,y,2 (approximite values are put for these angles at first and after the first ap-
proximation they are replaced by the corresponding newly obtained more exact values),
fR(QK; »Q) ﬁl(Q‘; »Q), é\R(Q,‘; »,Q) are the angles between the axes x,y,z and the radius-
vectors R(Qy;j,Qlhke1,2,4,45,;6Te the areas of "squarelets" in the middle of which are the
points Qy;» k=1,2,4 and py; q,; tg;are the weights of the respective measurements.

The sum Ugm is a function of the densities «(Q) and u,(Q) and of the coordinates of
the points Q,;, k=0,1,2,3,4.Let us expreee_,M(Q) and/um(Q) by series of Legendre polyno-
mials

n,
M) =) i [«Tcosmy + p sinme] P (coss),
Mm(8,$) = Z'i[); COSmy + (),,smmp]P (cos®),

=0 Inz0

Am m
where o[.n, /5”:" and() it O are coefficients which we have to determine.
Let us repreeent the coordinates r, .., 6., ¥, ; of the points Q; by binomials 1/, +r,; ,

q( +Aem,~P,(, +¢\‘ﬁm and the very corrections ar,;, 4%;, 4¥%; -by the series

Arg,-z Z[/.] cosma; + B Sihmﬂ;]P (cos®,.),

"‘.vi")

48573 ) [Ccosmpg + Dy sinm g JPM(cuss, ),

h30 m=zp

".!h

A¥.= =N \ '_E“cosmyx +F sinm g, . ”3" (cos6,:),

55

where A ,,,B ,...,F are coefficients which we have to determine.

Replacing these expressions for Ty :, 6;;,Y; and foru(s»\p) _,um( #.) in uQm this sum
turn into a function of the coefficients ol,, » /.’:,, » ) J it » A'“,.... P sWhich we
have to determine by its minimizing.

The ¢onditional minimum of uQm must be attained on the following four limiting condi-
tions:

(1) Minas Lidas
where r.. are the triangularly determined distances between the points Q 3; and Q3 ,
while r are the distances between the same points, expressed by the corresponding coor-

dinates »

(2) ~

it 5 3
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where 7 ; are the astronomically determined angular “iistances” between the zeniths Z(Qo;)
and z(Qc'J) in the points Q,; and Q,; ,while y' are the angular'distances' between the
normals to the respective equipotential surfaces W=const., determined by means of the

relations COS)~. = grad . .w.gradg W Agrad |-l grad, Wi,
(3) i = Yo iy

where Y, .. 8Tre the determined on the basis of the components X,Y,2 and the astronomic
'J -
coordinates #*, ¥* in the points Qy; and Q,; angles between the wnit vectors
T€Qo:) and T9Qe;) of the vectors T (Q,;) and T (Qq;), while %5, are determined by
means of the relations COS [, = grad, @.gradg. ‘P/lgr‘aal *P' lgrady . [

(4) ﬂ(& )x ds, ﬁ(@)yd;‘ /,u(&)zds ;

which express the condition that the Earth?s centre of dravity coincides with the origin
0(0,0,0) of the coordinate system Or¢-¥ .

After mininizing Ugm with respect to oy, Ay Iy On's and AMyeus,Fywhile satisfying

» n

the limiting conditions (1)-(4), we shall minimaze this function again with respect to
the same unk:novms, after having accepted the values newly obtained for Orio¥ris k=0,
1,2,3,4 and for nmx, nmy. n i %2y k=2,4, as initial values and with a new and more exact
expression r(#,¢) for the Earth’s surface (valid in the regions where there are no po-
ints of the type Q; »k=0,1,2,3,4) and so on and so forth, until the reepective diffe-
rences become negligible. The set astro-gravi-magnetic-geodesic problem thus has been
solved: we have determined the exact values of the coordinates of the points Q;, k =0,
1,243,4, 1=0y1,...,M,,88 well as a more exact expression r(8,¥) for the Earth’s surface
( valid in the regions in which there are no points of the type Qg;j, k=0,1,2,3,4) and as
a side result of our calculations- the simple gravimetric and magnetic layers, which
have fields with elements differing but 1ittle from the respective obaerved magnitudes.

Remark I.The same problem may be solved minimizing an other sum qu = Ugm*’i?\ ;

(- ) + Ztﬂ,,ﬁ" -3 ) +ZZv,J Vo Vo er }u(u)rasah[ymwds,}&[ fu@zas)?,

where A;; » M;;» ‘)u- and)1 ,\2, A3 are suitable positive numbers.
Remark II.Satelit data may be used anologously.

3.Uniguness of the Solution of the Inverse Astro-Geodesical Pro‘u‘l_q_1 :

Theorem 1.There do not exist two twofold smooth closed surfaces S~ and S“, except
those differing only in there position in space, between the points of which mutual and
ux/:rivocal correspondance has been established, so that every point (u.v) of 5 a point of
8~ with the same coordinates u,v is Jjuxtaposed,when on the surfaces S “ and S"' two one=
parameter families of lines u=const and v=const are plotted, if

1.1.the coefficients of the first aquare forms after Gauss C.F[4] of the surfaces s!
and S¥ in an arbitrary point (u,v)ES and (u,v)es” are equal and

1.2.the projections of the unit vectors n (u.,,v,) and T (u sV; ) of the normale to s
end 8" in their arbitrary point (u,,v;) on the unit vectors f‘(u,v) .\E L sv) andf wlu,v),
t (u,v) of the tangents of the curves u=const and v=const, pasaing through onother arbi-
trary point (u,v)esT and (u,v)es" , and the projections of the same vectors on the umit
vectors #' (u,v) and 3"(u,v) of the normals to S’and S" in the same points (u,v)eS' and
(uyv)es™ are equal:

(5.1) N Uy, v,) B (UV) = 7" (Uoyv,). T, v ),
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Ny, ). tuv) = nu, v 4,5 v

(5.2)
¥/ I
P (U, 1), 07 (14, v)= 71" Clgvi). P (V).

(5.3)

Proof theorem 1. Let us have two con'esponding points (u,v)ESl and (u,v)ésn coincide,
Let also the tangential planes to s’ and S' coincides in the points (u,v)€S' and (u,v)e€
Sn » 88 well a8 the vectors t (u,v) and t (u,v) coincide respectively with the vectors
t! «(uyv) and t y(uyv) Ve coaider points (u1,v )es” and (u,,v, yes” slocated at infinitely
small diatance from points (u,v)és’ and (u,v)€S” . From condition 1.1 of theoremiit fol-
lows that the radius vector d:r.'J connecting point (u,v)€S with point (u,,v, )ES' can be
equalized with radius vector d¥™', connecting point (u,v)es® with point (u, ,v, )est! .
lloreover, on the basis of eq. (5¢1)=(5.3) we can assert that the change dii’= #' (u,,v, )=
&' (u,v) of the unit vector 7' of the normal to s' ,when paesing from point (u,v)es’ to
point (u,,v, )est ,ie equal to the change di” = B (u 40%) - -3 (u,v) of the unit vector
7 of the normal to " ,when passing from (u,v)es” to (u,,v, )es™ .But since (u,,vq) is
an arbitrary point of sf a.nd s 1n the region of (u,v)es’ and (u,v)fS i sit follows that
the second square forms )9 = -dn'.aF! and *PH ==dnl I.dr after Gauss G.F.[4]) of the sur-
fases S! and S" in point (u,v)éSI and (u,v)ésu are equal.From this and from the equali-
ty of the first square forms of s’ and S it follows after Gauss that the surfases S
and S¥ can differ only in their position in space. Thereby theorem 1 is proved.

From theorem 1 it follows that when a surface S is a level surface of the potential
W of the gravity ( S= W=const), this surface is determined univocally on the basis of
geodesic measurements (of the distances r;; between every two "neighbouring®” and suffi-
ciently close points Q; and Q; on S) and - of astronomical measurements (determination
of angles closing the normal to S in an arbitrary its point with the normal to S in an-
other arbitrary its point).No gravimetric measurements are necessary in this case.

Theorem 2.There do not exist two twofold emooth closed surfaces S’ and S™ sexcept
those differing only in their position in space, between the points of which mutual and
univocal correspondance has been established, so that every point (u,v) of S' a point of
Sn with the the same coordinates u,v is juxtaposed,when on the surfaces s' and B two
one-parameter families of lines u=const and v=const are plotted, if

2.1.the coefficients of the first basic square forms after Gauss C.F.[4] of SI and
S" in their respective points (u,v)éS* and (u,v)ésS are equal,

2.2. the components of certain unit vectors il(u,v) and ?’(u,v) determined in a com-
mon Cartesian coordinate system Oxyz are equal,

2.3. the components of the same vectors are equal, when they are determined in the
local coordinates systems, defined by triplet of vectore T u(u,v), 'f' (u,v) B (u,v) and
T:"(u,v) -fn(u,v). *(u,v), where tf (u,v), t (u,v), nf(u,v) and t‘"(u,v), £t (u,v), i(u,v)
are the unit vectors of the tangents to the curves u=const and v=const and of the nor-
mals to S* and SU in the points (u,v)ES and (u,v)GS"respectively and

2+4.the unit vector P of the axis Oz is located in the same plane as the vectors
t (u,v) and ¥ (u,v) and in the same plane as the vectors -‘E (u,v) and ¥ (u,v).

Theorem 2 can be proved by demonstrating that, on the baais of the unit vector N (u,
v) located in the "meridional™ plane v=const, which passes through the point (u,v), the
unit vector -'(u,v) of the normal to the examined surface S can be determined, when
N(u,v) is subordinated to the respective conditions of theorem 2.Let us denote by l the
unit vector of the tangent to the curve v=const, which passes through a given point
(uyv) .The end points M,N,n and P of the unit vectors I,'ﬁ,ﬁ and P will form on the umit
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sphere spherical triangles ANMn, APMn and ANPn shown in Fig. 1.By condition N is loca-
ted on the arc EP, while the arc ¥n is equal to Ji/2.Let us
examine the triangle aNMn in which Mn, M and fn (this arc is

n determined by us on the basis of the components of the vec=

tor ¥(u,V) on the lines u=const and v=const passing through

M P /V point (,‘i'V) ) are known.From this triangle we determine the
angle NMn by means of the respective formulas of the spheri-

cal trigonometry.We then consider the triangle aPMn and from
7~

it determine the sought arc Pn.Finally we consider the trian-

gle ANPn, in which by condition the arc PN is also known and

O from it determine the sought angle NPn.The position of the
vector n(u,v) in the basic Cartesian coordinate system has
Pig.1 thereby been determined.

Prom the above it follows that, if the vectors ifl(u,v) and ¥ u,v) and their projec-
tions on ths tangents to the curves u=const and v=const passing through the points
(u,v)es’ and (u,v)eS! are known, the unit vectors #?(u,v) and i"(u,v) of the normals
to the surfaces S’ and S’ can be determined in the points (u,v)€S® and (u,v)es’and thus
the theorem 2 can be reduced to the case examined in theorem 1.Thereby theorem 2 is
provede.

Hote.Let the surfaces g and 5'* be twofold smooth and let they encompass gravita-
tional masses (index # has been added in connection with the use of astronomical coor-
dinates in section 1).Let a mutual univocal correspondance exists between the points of
Sz and Sn, established by plotting on s™ and s* two fa.milies of one-parameter lines
@=const and y=const and juxtaposing to every point of s** with coordinates &, a point.
of S* with the same coordinates.Let the angles &' and |0¥ represent the astronomical co-
ordinates of the corresponding points of SI* ang si7* ; H #" be the angle encllused between
the unit vectors ﬁT&P) and—ﬁ“(e',f) of the gravity intensity of the masses encompassed
by S!* and S"* with the unit vector of the rotational axis P of the surfaces S'* and
S’”‘and the masses encompassed by them (vector P is oriented along axis Oz of the coor-
dinate system), while angle ~P" be enclosed between the plane determined by the vectors
¥'(6,¢) and T or W'(H,p) and ¥, and the plane determined by the vectors N (8,r) and
? or by the vectors " (6,4) and P, (&,8)is a .certain point of S'™ or % .Let the lines
¥ =const be plotted so, that the tangents to them in the point (6,f) lie in a plane de~
termined by the vectors N' (6,¢) and P or the vectors N' (6,£) and P.Let assume that
§'(0,¢)R"(0,P) and that the projections of the vectors N (&,f) and ﬁn(ﬂ',\P) on the tan-
gents to the lines@=const and Y=const, which pass through the point (9,¢) are respec-
tively equal.lLet us futher assume that the coefficients of the first basic equare forms
after Gauss of the surfaces S'* and SF'* are equal in their corresponding points (or
that the distances between every two "neighbouring" points of s'” are equal to the dis-
tances between their corresponding points of s'’* ).on these assumption on the basis of
theorem 2 we shall conclude that the surfaces SI# and $'™® coincide.

From the above it follows that the figure of the Earth S can be univocally determi-
ned by solving the inverse astro-geodesic problem (when the unit vectors ?(G.Y’) of the
gravity intensity and the distances r;; between every two "neighbourning" points on
the Earth’s surface are known) only, if S represents a level surface of the potential
W of the gravity.Otherwise we must al=0 know the projections of the vectors N (©,9) on
the tangents to the corresponding lines #=const and Y=const, while the determination
of these projections calls for gravimetric data.
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After determing the coordinates of the points Q,;,k=0,1,2,3,4, 1=0,1,¢0¢,¥y , We may
determine the final expression r(8,¥) of the Earth’s surface.Futher on we may introduce
othsr coordinate systems on the base of the expression r(£,¥).

tiopn of n e Gravi-Geodesical Problem

Theoremmez_'e are no two twofold smooth closed surfaces Sl and st sexcept those
differing only in their position in space, between the points of which mutual and uni-
vocal correspondance has been established, so that every point of st with spherical co-
ordinates &,¥Y a point of S™ with the same coordinates #,¥Y 1is Jaxtaposed, if

3.1.the coefficients of the first basic square forms after Gauss of the surraces S*
and S¥ in arbitrary point (8,P)€ s* and (@,¢)Es™ are equal,

3.2.the surfaces S’ and S represent level surfaces of the corresponding gravity po-
tentiales W! and W¥ ( s* =W* =const, S* =W" =const),

3.3.the surfaces S! and S* are stelliform with respect to the gravity centers of the
regions ‘i"; and fz enveloped by S* and S™ ;these centers coincide with the origines
0(0,0,0) of the corresponding coordinates systems,

3.4.the vectors gradQ;W‘ and grad., W*are directed (like to the normal ¥V to S® and
§¥ ) intoT, and f,respectively, Qf€s* and es® ,

51055 lgradQ._W'|= lgradQuW“I at Q€ (0,F)€ S* and Q¥(@,P)E S .

At first we will prove the following

Lemma {.Let tye partially smooth surfaces §" g.nq, i envelop the regions (or sets of
regions) T, and U; possessing an intersection T =1,.T, with positive three dimentional
xgeastire.Let denote with S' the surface of swith AS,vandAS%tlle surfacea of Z;—- Z; and
L~T, , with 84S} and A§, the surfaces delimiting ¢ from 4%, and % -1 res-
pectively.Let suppose that all points of the parts de:dS,—dg and AS§ = 652°AS,'
of the surfaces 4S, andA4s, are external to Z” i.e. they may be shifted to infinity
without crossing the points of T .If the potentials of two simple layers with positive
dq;ls{.,ti?/s 6; and G, , situated on s* and s* regspectively, are equal in the points of
C=Z,.7, , then the inequalities will be in force:

(6.1) [Gads > jG‘, as at ASE20,
asf as;

(6.2) [GRdS 2> ads at 45¢>0.
AS.¢ DS}

Proof of lemma 1.L§t ASi)O (i.e. let AS{ has a positive two dimentional measure).
Let us sweep out (using the Poincare balayage method) the masses situadet on S** s Which
are outside of i’ » see Fig 2.These masses are the masses o:t"_'Sn situated on AS‘,"while
all other masses of S" are situated on the surface s' of € .Thus we receive on S!
a simple layer with density @®>0.Analogously we sweep out the masses situated on S*

( onasf).which are outside of T » and obtain on S; a simple layer with densityﬁ)O.
The thus obtained simple layers possess equal densities &‘,’(a) =6§_(&) sQE Si, and equal
potentials in the points of ¢ .The masses m, = Oy S are more than the masses m,=

S - (& Y
L?‘T ds e]g—:’vds sbecause during the sweepfng out of the masses a part of the ma-
sses m, has fetn going in infinity.On the other hand the initial masses fa_‘.ds loce-

ted on AS'; are less (or equal =-when ASf:O) than the final massesf&: das 9% stlich will
A,

be obtained on AS,; as result of the corresponding sweeping out of‘ the massgs located
ondS," -Combining these two inequalities we obtain exactly (6.1).Inequality (6.2) is
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obtained analogously.Thsreby 1emma 1 has been provede. '
Proof of theorem 3.Let us suppose that there are two surfaces S* and S™ subordina=

ted to the coditions of theorem 3.From the conditions 3.2 and 3.4. of theorem 3. it
follows that the potentials W’ and W" may be represented as potentials of simple lay-
cars with positive densities & and 03 (see Fig 3¢
13
G (Q°) dS e n G, (%) ds o» z : «
Wiy = [ S8 )= [ 2536 glgpges e
RAK D it st R(A,G")
1 WL) ). 1 (d’ ) » while (by condition)G, (0‘(0%)=6,(R“(b§)).
T, : = | T (] > 3
mere G0k golayfas 0 GH@) =57 () g
Let us use the denotations introduced at the proot of lemma 1.Then from the condi-
tions 3.1,3.3 and 3.5 of theorem 3 it follows that

(7.1) /61 ds = |6ds al 4st>0,
age ag;
(7.2) f Gds = jo; ds at a5 >0.
452 AS;
These equations contradict to the inequalities (6.1) and (6,2)The contradiction is
removed when wea_accept that S=s% «Thereby theorem 3. is proved. au(-_&' ¥)

o “(%"52,:’

e
- dV /i
s Fig 3 a

S.Conclusions
The proposed solution of the problem concerning the determination of the Earth’s

surface help us to use simultaneously all given astronomical,gravimetrical, magnetical
and geodesical measurements.At the formulated common inverse astro-gravi-magneto-geode-
gical problem one has to find simultaneously such a surface S of the Earth and such
simple gravimetric and "magnetic" layers on S, at which the unit vectors of the corres-
ponding gravimetric and magnetic field intensities coincide (by condition) with the
unit vectors of the intesities of the respective gravimetric and magnetic fields, deter-
mined experimentally in certain points of the Earth’s surface.In other points of the
Earth’s surface the absolute values of the mentioned field intensities differ but 1li-
ttle in the sence of the least squares from the corresponding experimentally determined
absolute values of the field intensities.The distances r;; between each two "neighbou-
ring" points Q; and Q; on the Earth’s surface S are equal (by condition) to the corres-
ponding geodesically measured distances.Thus we have determined the corrections of the
initial coordinates of certain points on the Earth’s surface, in which there are astro-
nomical, gravimetrical, magnetical and geodesical measurements without using incorrect
operation (reduction of the gravimetric and magnetic data on oceanic level, see Lambert
We [7],Zidarov D. [;.8,26,31] «Such incorrect operations we are forced to use when Stoks G.
G. [15,16] or Molodensky M.S. [3.-12] methods are applied.,

The obtained analytical expressio r(6,¥) for the Earth’s surface and- for the gravi-
metric and "magnetic" simple layers, corresponding to the observed (meusured) gravi-
metric and magnetic field intensities, may be used as basic point for further investi-
gation of the distribution of the gravimetric and magnetic masses in the Earth. Using
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the mass ~compression method after Zidarov D.P. [25,26,29,31,32,34]we can determine uni-
vocally the "most concentrated" masses, corresponding to the given gravimetric field da-
ta.Thus we determine the so called comressed geoid, the surface of which coincides with
the undisturbed oceanic surface (W=const); under the continents the compressed geoid co-
incides with the lewel surface W=const.Further on we can determine other mass-distributi-
ons possessing the same gravimetric field, using the sweeping out method after Zidarov
D.P. (22,34] and Zidarov D.P. and Zh.Zhelev[23]. Thus the determination of the Earth’s fi-
gure and mass-distribution in the Earth will help us to solve the problem of the Earth’s
structure and evolution, see Barta G.[2]and Zidarov D.P. [24,27,33] .

Referencesg

E

el

G]
b
B

[é]

d

El

Bl

BALMINO, G.

BARTA, G.

DEMPNEY, C.N.G.

GAUSS, C.F.

HALOTA,P.
HELMERT, W.
LAMBERT, W,

LAPLACE, P.S.

MOLODENSKY, M.S.

A New Point Masses Model for the Earth Gravity Mo-
dels.In:International Symposium on Earth Gravity Mo-
del and Related Problems,

St. Louis, Missuri 1972

Anvendungsmoglichkeiten der Satellitengeodasie bei
der Erforshung der inneren Strukturen der Erde.In:

2 nd International Symposium Geodesy and Physics of
the Earth,Proceedings, Part 1,Ed.H.Kautzleben and E.
Buschmann,p.351-353.

Potsdam 1974

The Equivalent Sourse Technique.
Geophysics 34 (1969), p. 39-53

Disquisitiones generales circa superficies curvas.
Gotingen 1828 .

Representation of the Earth Gravimetric Field through
the Potential of Point Masses (in Rassian).

Observacje sztucznich satelitov 28 (1978),p. 159-169

Die mathematischen und physikalischen Theorien der
hoheren Geodasie, Band II.

Leipzig 1884

The Reduction of Observed Values Gravity to See Le-
vel.

Bulletin Geodesique 26 (1930)

Theorie des attractions des spheroids et de la figure
des planetes,

Mec. col, 3 (1785),Chap IIX

Fundamental Problems of the Geodesical Gravimetry
(in Rassian).

Tp. WA x K 42 (1945)




Gd

E5Y

[

(23]

[14]

[19]

[16]

(7]

[2€]

(9]

[20]

MOLODENSKY, M.S.

MOLODENSKY, M.S.$
EREMEEV, V.P.}
JURKINA, M.I.

WOLODENSKI, M.S,

MORITZ, H.

MORITZ, H.

@
STOKS, G.Ge
@

STOKS, G.Ge

WEIGHTMAN,E.H,

ZIDAROV,D.P.

ZIDAROV, D.P.

ZIDAROV, D.P.

ZIDAROV, D.P.

ZIDAROV, D.P.

513

External Gravitational Field and Physical Earth’s
Figure (in Rassian).

Bull.Acad.USSR,Geograph. and Geoph. Series 12 (1948)

Method for External Gravitational Field and Earth’s
Figure Studing (in Rassian).

Tp HMMTA w K 131 (1960)

Approximative Method for Solving of Equation Deter-
ming the Quasigeoid Figure (in Rassian).

Tp.IHOTA 1 K 68 (1969)

The boundary Value Problem of Physical Geodesy.

igomalais tiedeakao toitaks, Ser. A III, 83 (1965)
Pe

Eine neue Rechenldosung des Problems von Molodensld.
Vermessungstechnik 18 (1970) p.445-446

On the variation of Gravity on the Surfaces of the
Earth.

m%them. and Phys. Papers,Cambridge, 2 (1883) p. 131-
171

On Attractions and Clairaut®s Theorem.
Mathem. and Phys. Papers, Cambridge, 2(1883)

An Unified Analytical Approach.In:The Use of Artefi-
cigl Satelites for Geodesy,vol 2,Ed.G.Veis,p. 467=
486,

Net.Tech.Univ.Athens 1967

Sur les corrections gravimetrique et magnetometrique.
Compt.rend.Acad.bulg.Sci. 11 (1958) p. 351-=354

A Solution of the Inverse Gravimetric (and Magnetic)
Problem and Its Application to the Study of the Earth
Structure.

Compt.rend.Acad. bulg.Sci. A7 (1964) p.817-820

On the Solution and the Uniqueness of the Solution of
the Inverse Gravimetric Problem.

%ul%e}in of the Bulgarian Geophysical Institute 5
1964

Solution of Some Inverse Problems of Applied Geophys
sics,.

Geophysical Prospecting 13 (1965) p.240-246

On the Solution of Some Inverse Potential Fields
Problems and Its Application in Geophysical Problems
(in Rassian with english summary).

Sofia 1968




514

3]

(24]

(3]

[2¢]

[24]

29

(391

B4

B2

B3]

(4]

ZIDAROV,
ZHELEV

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

ZIDAROV,

DeP.?
Bl

D.

D.

D.P.

D.P.

D.P.

D.P.

D.P.

D.P.

D.P.

D.P.

D.

On Obtaining a Family of Bodies with Identical Exterd
or Fields-Method of Bobling.

Geophysical Prospecting 38 (1970) p.14-33

Palaeomagnetic Data Analysis and Continental Drift.
Comt.rend.Acad.bulg.Sci. 24 (1971) p. 1637=-1640

Point cDipole) Solution of Inverse Potential Field
Problem-Mass-Pressing-Method,.

Comt. rend. Acad. bulg. Sci. 25 (1972) p. 1347-1350

Method of Finding Point (Dipole) Solutiom of the Po=-
tential Field Problem.

Pageoph.110 (1973) p.1918-1926

Theory of the Evolution of the Earth and Earth’s
Crust.

Pageoph. 105 (1973) p. 655-668

On the comstruction of Bodies with Equal Potentials
and Uniqueness of Solution of Inverse Problem of Po-
tential Fields.

Compt. rend. Acad. bulgo Sci. 2-6_ (1973) p0179-181

Characteristic Solution of the Inverse Gravimetric
and Magnetic Problem.

Compt. rend. Acad. bulg. Sci. 25 (1974) p. 643-646

Application of the Solution of the Inverse Gravimet-
ric and Magnetic Problem for Studing the Earth’s Pi-
gure, Structure and Evolution.In:International Sym-
posium Geodesy and Physics of the Earth,Proceedings,
Part 2,Ed.H. Kautzleben and E. Buschmann, p.423-429,

Potsdam 1974

Reduction of Gravimetric Data with Accounting Nonho-
mogeneities of the Intermediary Layer.

Compt. rend. Acad. bulg. Sci. 28 (1975) p.1027-1030

Application of the Solution of the inverse Gravimet-
ric Problem for the Earth’s Figure Determination (in
Bulgarian).

Bulgarian Geophysical Magazine 1 (1975) p.T8-95

Theory of the Evolution of the Earth and Earth’s
Crust Based on the Mobile Earth Core Concepte.

Geologica Balcanica 7 (1977) p.3-26

New Approach to the Solution of the Intezral Equati-
on of First Kind.In: Inverse and Impropely Pose 1
Problem in Differential Equations.Ede G.Anger »vol 1,

Berlin 1979



D R R Em————

515

Janusz B. Zielinski

Department of Planetary Geodesy
Space Research Centre

Polish Academy of Sciences
Warsaw

Project DIDEX
/Differential Doppler Experiment/

1, Scientific objective of the project

The present state of technology allows to use in principle
three methods enabling determination of the gravity field of
the BEarth in a global scale: ground gravimetric meausrements,
analysis of perturbations of satellite orbits and altimetry.
Bach of them has specific advantages as well as limitations.

Ground gravimetric measurements is rather slow method.

At present covering of the Earth surface with gravimetric
measurements is estimated at about 50% /Groten 1978/ and we
cannot expect that before the end of this century this value
will increase at least to 90%, Besides, it is extremely difficult
to maintain equal precision and avoid systematic errors not to
mention that some areas are so difficult of access that we can-
not look forward to data acquisition.

As far as the satellite method is concerned, its great
advantage is obtention of a global result. It was the crucial
feature at the moment of introduction of this method. The
limitation concerns possibility of obtaining of details of an
obtained image, that is the resolution power. It is diffiecult
to define precisely what is the 1limit of this resolution but

1t is estimated as near to the 40th order: of spherical harmonics
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/495 x 495/, therefore to models published at present.

Altimetry has vast possibilities of data collecting with
two limitations: they refer to ocean areas only and to the
physical surface of water which can differ from the equipotential
surface which the geoid is.

As each of these methods has the limited efficiency, it
is necessary to search for new ways. Gradiometry and two variants
of satellite-to=satellite tracking are taken into account. The
variant low=low is the most promising at the present moment.

Taking this ipto account and considering the results

of newest determinations of the Earth’s gravity field

Space Research Centre of the Polish Academy of Sciences has
proposed the project of experimental measurements with the method
of satellite-to-satellite tracking called DIDEX /Differential
Doppler Experiment/ to be realized in the frame of the programme

INTERKOSMOS. Aims of this project are the following:

1/ resolution of gravimetric anomalies on the earth 3% x 3°;

2/ precision of the mean value of the geoid undulation in a
segment + 2 m;

3/ obtention of a global image of the geopotential;

4/ securing possibilities of more precise analysis of selected

regions.

2. General idea of the method.

The low-low satellite-to-satellite tracking method has been
already presented and discussed by many authors /Wolf /1969/,
Balmino /1974/, Rummel at al. /1978/, Krynski /1378/ /. In the

present paper we will mention only some of its more important
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characteristics,

Let us imagine two objects moving on the same circular
orbit, a short way one from another. It is possible to measure
continuosely a relative velocity between these objects. If we
exclude the atmospheric drag, anomalies of the gravitational
potential along the trajectory will be the source of changes
of this velocity. It results from the energy conservation law

fulfilled for each of these objects:

Urdyl=h N/

U = potential of gravitation

v = velocity of motion

A change of the potential value along the orbit will thus
influence a change of the velocity:
2
U+AU = h- 7 (v+Av)
from that
2
o \'4
AU-'vAv"AT /2/

Because the ratio AVVW' is of the order of 10~°, the
square term is negligible, thus

AU = - vAv /3/
For two objects we obtain
54 AU J2ahbp
o 5 L _ AU, AU
¢ = Avy-Av, = qu %;2

where Q - the relative velocity between the two objects,
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Let us decompose the Earth potential into the normal
potential and perturbing potential

U:V#T /5/
and

AU = AV+T /6/

However, the observed value can be decomposed too, namely

into the part depending on the normal and perturbing potential
N =0 +¢ /7/
Q=9 *Q

and so

J AVi+Ty  AVprTy _ (AVy _ ABVe\ (T4 T
%" 8: :ﬁ g v, -(V1 Ve )+ Vi Vg /8/

This equation divides into two and we are interested in

T Ty /9/

T Yy VY
It is one of possible shapes of the observational equation
but it contains a substantial simplification.
The accurate expression will be obthined starting from /1/
and remebering that velocity is the vector value as well as
resigning from the assumption of circularity and identity

of orbits of the two objects. In such a case
iE%i 3Ty, /10/
Vi

o' = vi+ v =2V, cos a /11/

where a - angle between vectors V4 and Voo Replacing /1/ we get
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1

& = 2{(hy~Un)* (ng=Up) = 2/ (h,-U,)(hpUp) cosa 12/

This equation is a non-linear expression indeed but it has
the virtue of connecting the measured value with values in
request, that is with the potential U, and, at the same time,

it shows the role of orbital elements occuring in the form of

constants h.

3. Accuracy estimation

For the simplified accuracy estimation it is.enough to use

the equation /9/

We assume that V=V,

_ AT
=7
80
_dAaT
dq -~d7-
putting dAT = 1m-Y
Y=878cm/s’
v=7-8km/s

we get dg=112mm/s

This value corresponds to 1 m difference of the equipotential
surfa-ces at the 300 km hight.
In order to obtain the corresponding figures for the see=level
/ge0id/ we have to divide it by the factor

e (_ﬁ,.-)n-ﬂ
wher n is the degree of the spherical harmonics development
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conforming to assumed resolution. In our cese n = 60

So, for getting + 1 m accuracy in the gedd determination we
have to measure the relative velocity in space on the
altitude of 300 km with precision + 0.07 mm/s.

This estimation is supported by results published by other
autors, e.g. by Schwartz /1970/ who accomplished rather detailed
simulation of the experiment. Analygis of Rummel /19T79/
though made for quite different measurement precision and orbit
is also conforming to our results,

Kryheki /1978/ gives similar figures: for n )60,

dé= 0fmm/s, m =1m

It shows that for dQ=007-01mm/s Wwe can find

1-2 m differences 1in the geoid undulation with resolution 3°.

4. Concept of realization

The atmospheric drag is the main reason of difficulty in
realization of the SST method. In this connexion we have
developed the idea /Zielinski 1977/ allowing to eliminate this
effect in a great part. The use of three, instead of two objects
has been proposed, two of which would be similar and the most
favourable in respect of aerodynamics, the third being different.
Such a system - the satellite "mother™ SM and two subsatellites
SS would have many other technological advantages facilitating
carrying out the experiment /Fig 1/.

Aboard SM a proper measuring system would be placed
measuring the relative velocity by means of the doppler effect.
A signal is emitted from SM and retransmitted from SS by means

of the transponder.Doppler measurement is taken aboard SM again.
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Fig. 1

To cover all the globe with measurements, the polar orbit
320 km above the earth is suggested. Separation of the subsatel=-
lites will be 200 km, distance between the pair of the subsatel-
lites and the main spaceship will increase from O to 600 km.

During 120 hours of the experiment we will obtain distribu-
tion of orbits 495 at the equator., It is less than required
resolution 3°, but for latitudes greater than 45°, that means
for most interesting regions coverage by orbits will be more
dense.,

The measurement will be taken in two frequencies, in the
band 3.8 GHz and 5 GHz with appropriate offsets for the first
and second subsatellite to avoid interferences. Time of integra-
tion is 10 sec. The budget of errors of the measuring system
gives, according to theoretical estimates, cumulative error
0.03 mm/sec. Taking notice of other sources of errors still
unknown we can admit that accuracy of the measurement on the

line SM-SS will be + 0.05 mm/sec. It secures the accuracy of
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the relative velocity between the subsatellites not worse than

0.08 mm/sec conforming to the requirements.

5. Elimination of disturbances

The influence of the atmospheric drag was always considered
a8 the basic impediment in realization of the idea of satellite=-
-to-satellite tracking. The drag can influence motion of objects
so significantly that influences of gravitational anomalies will
be distorted strongly. The way proposed in DIDEX allows to
reduce this influence to the highest degree without recource to
a drag-free device.

Let us take our system of three objects in which the two
subsatellites SS1 and 882 are proper gravitational probes, the
third - we call it the satellite mother SM - contains a greater
part of measuring and board systems. The aerodynamic characteri-
atics of the third object is different from the two others. In
that case influence of the atmospheric drag on the satellite
mother will be different from that on the subsatellites. Ac-
celeration affecting each of these objects can be resolved into
the gravitational and atmospheric components, and velocities
in a similar manner. We measure, however, relative velocities,

denoted Q

8= Vi Vi (i=12) ¥13/

L

from that

Qﬂ:éMz-@m:VQ-W {14/

Let us denote as Vv, this component of velocity which is

caused by the atmospheric drag along the orbital arc which
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corresponds with one observatiom. The other part being the
function of the gravity field and parameters of the orbit at

the previous moment is denoted by Vg

Thus
V; = Vgi * Vgi (i=1,2) /15/

The following values are measured

Qui™ Vi~ V= Vgi VoM * (Vai = Vam) (i=19) /16/
from which we calculate

. Bt e ) /117
Q0" Om2 ™ Qmq = Vg2~ Vg1 . (VGQ Vu‘l)

The difference in the brackets if different from O will burden
the result of the measurement thus it should be determined.

It can be in such a case if the atmosphere density will change
along the orbit /Fig. 2/.

e T
SM T s, /ﬁ

W

Fig. 2

However, because all the system moves along the orbit, after

geveral seconds SM will be at the point where SS,, was before

that, whereas 55, passes through the point in which 882 was,
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and so on. Thus we can write

t+At ot

Var Va2 /18/
t+At _ t

VOM T kVM

where k- ratio of ballistic coefficients of SM and SS.
Combining properly equations /16/ we obtain a system of 2n
equations /n a number of observations/ allowing to determine
successive terms v
Such the method allows to avoid practically the influence
of the atmospheric drag. The only limiting assumption is that
the atmosphere density in a given place will not change in time
necessary for the shift of the whole system on the orbit by the
section equal to the distance between the first and the last
object. The other assumption, this one of the technological
nature, is that the orbits of all three objects are very similare.
The other, not less important saurce of errors, is the
influence of the ionosphere on radio signal propagation and
the measurement of doppler effect. This influence is the resultant
of many phenomena, that is of electron density in the ionosphere,
the magnetic field, Faraday rotation, electron collisions. A
coefficient of refraction of an electromagnetic wave is the

parameter collecting the influence of these different phenomena.

where Fn and A are functions connected with the abov%?entioned

phenomena,
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The analysis by Zatka /1980/ has proved that the influence

of the ionosphere on the measurement of doppler effect can be

of the order of 0.2 Hz, frequency being 3 GHz, and 0.15 at
5 GHz, At the same time the accuracy of this measurement |
requested to obtain the velocity accuracy under 0.05 mm/sec

should be of the order of 5.10'4 Hz. Thus the introduction of

corrections is necessary, determination of which 1s possible

if using three frequencies, that is two high ones given aboves
3.8 Gz end 5 GHz as well as one low about 150 MHz, It allows
to arrange the system of equations determining .all corrections
in demand with the accuracy necessary in the experiment.
Motion of antenna 1in relation to the centre of mass both

aboard the main satellite and the subsatellites is another

source of errors. The elimination of these disturbances
consists first in a technological solution assuming gravitational
stabilization of all the three objects and monitoring their

orientation in relation to stars in the second place.

6. Data processing |

| The aim for the global covering with observations with
the use of the polar orbit is an important characteristics

; of the project DIDEX, Assuming the time of the experiment as ,

| 120 hours, permanent observations with integration time equal

to 10 sec, we will obtain 43 200 observations. Their density

along the orbit will be about 80 km, intervals between particular |

orbits at the equator 500 km condensing toward the poles. Thus ’.

regions from mean latitudes to the poles will be covered best of
(
| all,

—= T e
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Kryriski /1980/ has discused the mathematical aspects of the
problem giving the relation between the observed value and gra-
dient of the perturbing potentisl T. The method proposed Ly
Kryriski provides for the solution of a system of observationsal
ecustions by means oflzast sguares collocation. It z2ssumes also
starting from a sufficiently good model of the gravitational
field as the first approximation as well as indpendent determina-
tion of initisl orbital elements. The use of collocestiorn will
allow to make local determinstion and to use other kinds of dats

at the same time, grounrnd gravimetric measurements especialy.
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Abstract:

For improving the Zarth gravitational potential the
low-1low satellite tracking experiment has been proposed.

Tae paper presents the general idea of the experiment,
scisntific ok jectives, zccuracy analysis, outlines of technical
reglization. With an assumed measurement accuracy | 0.05mm/ sec
the significant improvement of the geopotential model is expected.






