English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Kinematics of the Iberia–Maghreb plate contact from seismic moment tensors and GPS observations

Authors

Stich,  Daniel
GEOFON, Deutsches GeoForschungsZentrum;

Serpelloni,  Enrico
GEOFON, Deutsches GeoForschungsZentrum;

de Lis Mancilla,  Flor
GEOFON, Deutsches GeoForschungsZentrum;

Morales,  Jose
GEOFON, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Stich, D., Serpelloni, E., de Lis Mancilla, F., Morales, J. (2006): Kinematics of the Iberia–Maghreb plate contact from seismic moment tensors and GPS observations. - Tectonophysics, 426, 295-317.
https://doi.org/10.1016/j.tecto.2006.08.004


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_2908914
Abstract
The Iberian Peninsula and the Maghreb experience moderate earthquake activity and oblique, ∼ NW–SE convergence between Africa and Eurasia at a rate of ∼ 5 mm/yr. Coeval extension in the Alboran Basin and a N35°E trending band of active, left-lateral shear deformation in the Alboran–Betic region are not straightforward to understand in the context of regional shortening, and evidence complexity of deformation at the plate contact. We estimate 86 seismic moment tensors (MW 3.3 to 6.9) from time domain inversion of near-regional waveforms in an intermediate period band. Those and previous moment tensors are used to describe regional faulting style and calculate average stress tensors. The solutions associated to the Trans-Alboran shear zone show predominantly strike-slip faulting, and indicate a clockwise rotation of the largest principal stress orientation compared to the regional convergence direction (σ1 at N350°E). At the N-Algerian and SW-Iberian margins, reverse faulting solutions dominate, corresponding to N350°E and N310°E compression, respectively. Over most of the Betic range and intraplate Iberia, we observe predominately normal faulting, and WSW–ENE extension (σ3 at N240°E). From GPS observations we estimate that more than 3 mm/yr of African (Nubian)–Eurasian plate convergence are currently accommodated at the N-Algerian margin, ∼ 2 mm/yr in the Moroccan Atlas, and ∼ 2 mm/yr at the SW-Iberian margin. 2 mm/yr is a reasonable estimate for convergence within the Alboran region, while Alboran extension can be quantified as ∼ 2.5 mm/yr along the stretching direction (N240°E). Superposition of both motions explains the observed left-lateral transtensional regime in the Trans-Alboran shear zone. Two potential driving mechanisms of differential motion of the Alboran–Betic–Gibraltar domain may coexist in the region: a secondary stress source other than plate convergence, related to regional-scale dynamic processes in the upper mantle of the Alboran region, as well as drag from the continental-scale motion of the Nubian plate along the southern limit of the region. In the Atlantic Ocean, the ∼ 3.5 mm/yr, westward motion of the Gibraltar Arc relative to intraplate Iberia can be accommodated at the transpressive SW-Iberian margin, while available GPS observations do not support an active subduction process in this area.