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Abstract. The temporal dynamics of climate processes are
spread across different timescales and, as such, the study of
these processes at only one selected timescale might not re-
veal the complete mechanisms and interactions within and
between the (sub-)processes. To capture the non-linear inter-
actions between climatic events, the method of event syn-
chronization has found increasing attention recently. The
main drawback with the present estimation of event synchro-
nization is its restriction to analysing the time series at one
reference timescale only. The study of event synchronization
at multiple scales would be of great interest to comprehend
the dynamics of the investigated climate processes. In this
paper, the wavelet-based multi-scale event synchronization
(MSES) method is proposed by combining the wavelet trans-
form and event synchronization. Wavelets are used exten-
sively to comprehend multi-scale processes and the dynamics
of processes across various timescales. The proposed method
allows the study of spatio-temporal patterns across different
timescales. The method is tested on synthetic and real-world
time series in order to check its replicability and applicabil-
ity. The results indicate that MSES is able to capture relation-
ships that exist between processes at different timescales.

1 Introduction

Synchronization is a widespread phenomenon that can be ob-
served in numerous climate-related processes, such as syn-
chronized climate changes in the northern and southern po-
lar regions (Rial, 2012), see-saw relationships between mon-
soon systems (Eroglu et al., 2016), or coherent fluctuations in
flood activity across regions (Schmocker-Fackel and Naef,
2010) and among El Niño and the Indian summer mon-
soon (Maraun and Kurths, 2005; Mokhov et al., 2011). Syn-
chronous occurrences of climate-related events can be of
great societal relevance. The occurrence of strong precipita-
tion or extreme runoff, for instance, at many locations within
a short time period may overtax the disaster management ca-
pabilities.

Various methods for studying synchronization are avail-
able, based on recurrences (Marwan et al., 2007; Donner et
al., 2010; Arnhold et al., 1999; Le Van Quyen et al., 1999;
Quiroga et al., 2000, 2002; Schiff et al., 1996), phase dif-
ferences (Schiff et al., 1996; Rosenblum et al., 1997), or the
quasi-simultaneous appearance of events (Tass et al., 1998;
Stolbova et al., 2014; Malik et al., 2012; Rheinwalt et al.,
2016). For the latter, the method of event synchronization
(ES) has received popularity owing to its simplicity, in partic-
ular within the fields of brain (Pfurtscheller and Silva 1999;
Krause et al., 1996) and cardiovascular research (O’Connor
et al., 2013), non-linear chaotic systems (Callahan et al.,
1990), and climate sciences (Tass et al., 1998; Stolbova et
al., 2014; Malik et al., 2012; Rheinwalt et al., 2016). ES
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has also been used to understand driver–response relation-
ships, i.e. which process leads and possibly triggers another
based on its asymmetric property. It has been shown that, for
event-like data, ES delivers more robust results compared to
classical measures such as correlation or coherence functions
which are limited by the assumption of linearity (Liang et al.,
2016).

Particularly in climate sciences, ES has been successfully
applied to capture driver–response relationships, time delays
between spatially distributed processes, strength of synchro-
nization, and moisture source and rainfall propagation trajec-
tories, and to determine typical spatio-temporal patterns in
monsoon systems (Stolbova et al., 2014; Malik et al., 2012;
Rheinwalt et al., 2016). Furthermore, extensions of the ES
approach have been suggested to increase its robustness with
respect to boundary effects (Stolbova et al., 2014; Malik et
al., 2012) and number of events (Rheinwalt et al., 2016).

Even though ES has been successfully used, it is still lim-
ited by measuring the strength of the non-linear relationship
at only one given temporal scale, i.e. it does not consider
relationships at and between different temporal scales. How-
ever, climate-related processes typically show variability at a
range of scales. Synchronization and interaction can occur at
different temporal scales, as localized features, and can even
change with time (Rathinasamy et al., 2014; Herlau et al.,
2012; Steinhaeuser et al., 2012; Tsui et al., 2015). Features at
a certain timescale might be hidden while examining the pro-
cess at a different scale. Also, some of the natural processes
are complex due to the presence of scale-emergent phenom-
ena triggered by non-linear dynamical generating processes
and long-range spatial and long-memory temporal relation-
ships (Barrat et al., 2008). In addition, single-scale measures,
such as correlation and ES, are valid and meaningful only for
stationary systems. For non-stationary systems, they may un-
derestimate or overestimate the strength of the relationship
(Rathinasamy et al., 2014).

The wavelet transform can potentially convert a non-
stationary time series into stationary components (Rathi-
nasamy et al., 2014), and this can help in analysing non-
stationary time series using the proposed method.

Therefore, the multi-scale analysis of climatic processes
holds the promise of better understanding the system dy-
namics that may be missed when analysing processes at one
timescale only (Perra et al., 2012; Miritello et al., 2013).
According to this background, we propose a novel method,
multi-scale event synchronization (MSES), which integrates
ES and the wavelet approach in order to analyse synchroniza-
tion between event time series at multiple temporal scales. To
test the effectiveness of the proposed methodology, we apply
it to several synthetic and real-world test cases.

The paper is organized as follows: Sect. 2 describes the
proposed methodology and Sect. 3 introduces selected case
studies. The results are discussed in Sect. 4. Conclusions are
summarized in Sect. 5.

2 Methods

Here we describe the methodology for the proposed MSES
approach. In this we combine two already well-established
approaches (DWT and ES) to analyse synchronization at
multiple temporal scales. The following sub-sections briefly
introduce wavelets and ES and subsequently provide the
mathematical framework for estimating MSES.

2.1 Discrete wavelet transform

Wavelet analysis has become an important method in spec-
tral analysis due to its multi-resolution and localization capa-
bility in both time and frequency domains. A wavelet trans-
form converts a function (or signal) into another form which
makes certain features of the signal more amenable to study
(Addison, 2005). A wavelet ψ(t) is a localized function
which satisfies certain admissibility conditions. The wavelet
transform Ta,b (x) of a continuous function x(t) can be de-
fined as a simple convolution between x(t) and dilated and
translated versions of the mother wavelet ψ(t):

Ta,b (x)=

∞∫
−∞

x (t)ψa,b (t)dt, (1)

where a and b refer to the scale and location variables (real
numbers) and ψa,b is defined as

ψa,b (t)=
1
√
a
ψ

(
t − b

a

)
. (2)

Depending on the way we sample parameters a and b, we
get either a continuous wavelet transform (CWT) or a dis-
crete wavelet transform (DWT). A natural way to sample a
and b is to use a logarithmic discretization of the scale and
link this in turn to the size of steps taken between b locations.
This kind of discretization of the wavelet has the form

ψλ,q (t)=
1√
aλ0

ψ

(
t − qboa

λ
o

aλo

)
(3)

where the integers λ and q control the wavelet dilation and
translation, respectively; ao is a specified fixed dilation step
parameter and bo > 0 is the location parameter. The general
choices of the discrete wavelet parameters ao and bo are 2
and 1, respectively. This is known as dyadic grid arrange-
ment.
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Figure 1. Schematic showing the decomposition tree for signal Xt using DWT.

Using the dyadic grid wavelet, the DWT can be written as

Tλ,q =

∞∫
−∞

x (t)
1√
aλo

ψ(
t − qboa

λ
o

aλo
)dt.Substituting a0 = 2

andbo = 1, weget

Tλ,q =

∞∫
−∞

x (t) 2−λ/2ψ
(
2−λt − q

)
dt (4)

where Tλ,q are the discrete wavelet transform values given on
scale-location grid indexes λ and q. For the DWT, the values
Tλ,q are known as wavelet coefficients or detail coefficients.

The decomposition of the dyadic discrete wavelet is also
associated with the scaling function φλ,q (t) (Eq. 5) which
represents the smoothing of the signal and has the same form
as the wavelet, given by (Addison, 2005)

φλ,q (t)= 2−
λ
2 φ(2−λt − q). (5)

The scaling function is orthonormal to the translation of
itself, but not to the dilation of itself. φλ,q (t) can be con-
volved with the signal to produce approximation coefficients
at a given scale as follows:

Aλ,q =

∞∫
−∞

x (t)φλ,q (t)dt. (6)

The approximation coefficients at a specific scale λ are
known as a discrete approximation of the signal at that

scale. As proven in Mallat (1989), the wavelet function and
the scaling function form multi-resolution bases resulting in
a pyramidal algorithm. The decomposition methodology is
schematically shown in Fig. 1.

In this study, to calculate the synchronization at multiple
scales, we only consider the approximation coefficients (not
detail coefficients) at that particular scale because the aim is
to separate the effects of time-localized features and high-
frequency components from the signal.

For different λ= 1, 2, 3, . . ., the approximation coefficients
Aλ correspond to the “coarse-grained” original signal after
removal of the details at scales λ, λ− 1, . . .,1. In practical
terms, considering a daily climatic time series at λ= 0, the
time series represents the original observations. At λ= 1, A1
represents the features beyond the 2-day scale (wavelet scale)
which is obtained by extracting T1 (2-day features) from the
original time series. Similarly, at λ= 3,A3 represents the cli-
matic variable beyond the 8-day scale and is obtained after
removing T1, T2, and T3 (2-, 4-, and 8-day features) from the
original signal. In essence,A1,A2,A3,. . . represent the origi-
nal signal at different timescales. The schematic plot explain-
ing the procedure and relationship between signal, approxi-
mate component, and detailed component has been shown in
Fig. 2.

For simplicity we denote the approximation coefficient
Aλ,q of the signal x (t) at scale λ as xλ.

www.nonlin-processes-geophys.net/24/599/2017/ Nonlin. Processes Geophys., 24, 599–611, 2017
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Figure 2. Scheme of multi-scale decomposition of signals using
discrete wavelet transformation (DWT). The relationship between
signal, approximate component, and detailed component is shown.

2.2 Event synchronization

To quantify the synchronous occurrence of events in different
time series, we use the event synchronization (ES) method
proposed by Quiroga et al. (2002). ES can be used for any
time series in which we can define events, such as single-
neuron recordings, eptiform spikes in EEGs, heart beats,
stock market crashes, or abrupt weather events, such as heavy
rainfall events. However, ES is not limited to this definition
of events. It could also be applied to time series which are
pure event time series (e.g. heart beats). In principle, when
dealing with signals of different characters, the events could
be defined differently in each time series, since their common
cause might manifest itself differently in each (Quiroga et al.,
2002). ES has advantages over other time-delayed correla-
tion techniques (e.g. Pearson lag correlation), as it allows us
to study interrelations between series of non-Gaussian data
or data with heavy tails, or to use a dynamical (non-constant)
time delay (Tass et al., 1998; Stolbova et al., 2014). The lat-
ter refers to a time delay that is dynamically adjusted accord-
ing to the two time series being compared, which allows for
better adaptation to the region of interest. Furthermore, ES
has been specifically designed to calculate non-linear link-
ages between time series. Various modifications of ES have
been proposed, such as solving the problems of boundary ef-
fects and bias due to an infinite number of events (Stolbova
et al., 2014; Malik et al., 2012; Rheinwalt et al., 2016).

The modified algorithm proposed by Stolbova et
al. (2014), Malik et al. (2012), and Rheinwalt et al. (2016)
works as follows: an event occurs in signals x (t) and
y (t) at time txl and t

y
m, where l = 1,2,3,4, . . .Sx , m=

1,2,3,4, . . .Sy , and Sx and Sy are the total number of events,
respectively. In our study, we derive events from a more-or-
less continuous time series by selecting all time steps with
values above a threshold (α = 95th percentile). These events
in x (t) and y (t) are considered synchronized when they oc-
cur within a time lag ±τ xylm which is defined as follows:

τ
xy
lm =min

{
txl+1− t

x
l , t

x
l − t

x
l−1, t

y

m+1− t
y
m, t

y
m− t

y

m−1}/2. (7)

This definition of the time lag helps to separate indepen-
dent events, as it is the minimum time between two succeed-
ing events. Then we count the number of times C (x|y) an
event occurs in x(t) after it appears in y(t)and vice versa
(C (y|x)):

C (x|y)=

Sx∑
l=1

SyJxy∑
m=1

(8)

and

Jxy =


1 if 0< txl − t

y
m < τ

xy
lm

1
2

if txl = t
y
m

0 else.

(9)

C(y|x) is calculated analogously but with exchanged x and
y. From these quantities we obtain the symmetric measure:

Qxy =
C (x|y)+C (y|x)√
(Sx − 2)(Sy − 2)

. (10)

Qxy is a measure of the strength of event synchronization
between signals x(t) and y(t). It is normalized to 0≤Qxy ≤

1, with Qxy = 1 for perfect synchronization (coincidence of
extreme events) between signals x(t) and y (t).

Recalling Eq. (6), the scale-wise approximation at differ-
ent scales 0, 1, 2, . . . , λ for any given time series x (t) is
given by xλ = Aλ,q where xλ represents the approximation
coefficients of signal x (t) at scale λ. Now, to determine the
synchronization between any two time series x (t) and y(t)
at multiple scales, the event synchronization is estimated be-
tween the scaled versions of x (t) and y(t) for different λ
resulting in multi-scale event synchronization (MSES). The
normalized strength of MSES between signals x(t) and y (t)
at scale λ is then defined as

Qxλ,yλ =
C (xλ|yλ)+C (yλ|xλ)√(
Sxλ − 2

)(
Syλ − 2

) . (11)

Qxλyλ = 1 for perfect synchronization, and Qxλ,yλ = 0 sug-
gests the absence of any synchronization at scale λ between
x(t) and y (t).

Figure 3 shows the stepwise methodology of multi-scale
event synchronization.
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Figure 3. Multi-scale event synchronization (MSES) stepwise methodology. (a) Signal 1 and its decomposed component along with corre-
sponding event series after applying the (95th percentile) threshold. (b) Same for signal 2. (c) Event synchronization values corresponding
to each scale.

2.3 Significance test for MSES

To evaluate the statistical significance of ES values, a surro-
gate test will be used (Rheinwalt et al., 2016). We randomly
reshuffle each time series 100 times (an arbitrary number).
Reshuffling is done without replacement because estimat-
ing the expected number of simultaneous events in indepen-
dent time series is equivalent to the combinatorial problem
of sampling without replacement (Rheinwalt et al., 2016).
Then, for each pair of time series, we calculate the MSES
values for the different scales. At each scale, the empirical
test distribution of the 100 MSES values for the reshuffled
time series is compared to the MSES values of the original
time series. Using a 1 % significance level, we assume that
synchronization cannot be explained by chance, if the MSES
value at a certain scale of the original time series is larger
than the 99th percentile of the test distribution.

3 Data and study design to test MSES

The proposed method is tested using synthetic and real-world
data. The aim of these tests is to understand whether MSES is
advantageous, compared to ES, in understanding the system
interaction and the scale-emerging natural processes.

3.1 Testing MSES with synthetic data

Following the approach of Rathinasamy et al. (2014), Yan
and Gao (2007), and Hu and Si (2016), we test MSES using
a set of case studies including stationary and non-stationary
synthetic data. The details of the case studies and the wavelet
power spectra are given in Table 1 and Fig. 4, respectively.

Case I. A single synthetic stationary time series (S) is gen-
erated and contaminated with two random white noise
time series. Two sub-cases with different noise–signal
ratios are investigated (Table 1). This case allows un-
derstanding of how the synchronization between two

www.nonlin-processes-geophys.net/24/599/2017/ Nonlin. Processes Geophys., 24, 599–611, 2017
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Figure 4. Wavelet power spectra (WPS) of the test signals (Table 1). Panel I: original signal S1 (left) and S2 (right), respectively, for case II(a);
Panel II: original signal S1 (left) and S2 (right), respectively, for case II(b); Panel III: original signal S1 for case III(a); Panel IV: original
signal S1 for case III(b). In all the panels, the y-axis represents the corresponding Fourier period= 2λ.

Nonlin. Processes Geophys., 24, 599–611, 2017 www.nonlin-processes-geophys.net/24/599/2017/
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series is affected by the presence of noise or high-
frequency features. For climate variables such situations
can emerge when two signals originate from the same
parent source or mechanism (e.g. identical large-scale
climatic mode, identical storm tracks) but get covered
by high-frequency fluctuations arising from local fea-
tures.

Case II(a). Here we generate two stationary signals consist-
ing of partly shared long-term oscillations and autore-
gressive (AR1) noise St (see Table 1). The long-term
oscillations y1, y2, y3, and y4 have periods of 16, 32,
64, and 128 units, respectively (Fig. 4, Panel I). The pur-
pose of case II(a) is to test the ability of MSES to iden-
tify synchronization in processes which originate from
different parent sources or different mechanisms (e.g.
two different climatic process, different storm tracks)
but have some common features (y1 and y4) at coarser
scales.

Case II(b) presents two signals (Fig. 4, Panel II) with no
common features across all scales. Feature y2 in sig-
nal S1 and feature y4 in signal S2 represent a long-term
oscillation of period 32 and 128 units, respectively. The
idea is to investigate the possibility of overprediction of
synchronization if we analyse at one scale only.

Case III. Here, MSES is tested using non-stationary signals
(Fig. 4, Panel III and IV) generated as proposed by Yan
and Gao (2007) and Hu and Si (2016). The signal en-
compasses five cosine waves (z1 to z5), whereas the
square root of the location term results in a gradual
change in frequency. Two combinations are generated
of which case III(a) investigates the ability of MSES to
deal with non-stationarity signals. Case III(b) examines
the capability of MSES to capture processes emerging
at lower scales (in this case at scales 5 and 6) in the pres-
ence of short-lived transient features. For both combina-
tions, the signal is contaminated with white noise.

The time series of case III have features that are of-
ten found in climatic and geophysical data, where high-
frequency, small-scale processes are superimposed on low-
frequency, coarse-scale processes (Hu and Si, 2016). Such
structures are widespread in time series of seismic signals,
turbulence, air temperature, precipitation, hydrologic fluxes,
or the El Niño–Southern Oscillation. They can also be found
in spatial data, e.g. in ocean waves, seafloor bathymetry, or
land surface topography (Hu and Si, 2016).

3.2 Testing MSES with real-world data

To test MSES with real-world data, we use precipitation data
from stations in Germany (Fig. 5): 110 years of daily data,
from 1 January 1901 to 31 December 2010, are available
from various stations operated by the German Weather Ser-

Figure 5. Geographical locations of rainfall stations considered in
case study IV.

vice. Data processing and quality control were performed ac-
cording to Österle et al. (2006).

Case IV. We use daily rainfall data from the three sta-
tions: Kahl/Main, Freigericht-Somborn, and Hechingen
(station ID: 20009, 20208, and 25005). Considering
Kahl/Main (station 1) as the reference station, the dis-
tance to the other two stations, Freigericht-Somborn
(station 2) and Hechingen (station 3), are 14.88 and
185.62 km, respectively (Fig. 5). Rainfall is a point
process with large spatial and temporal discontinuities
ranging from very weak to strong events within small
temporal and spatial scales (Malik et al., 2012). This
case explores the ability of MSES, in comparison to ES,
to improve the understanding of synchronization given
such time series features.

4 Results

To evaluate the synchronization between two signals, which
can be expressed in terms of events, at multiple scales, we
decompose the given time series up to a maximum scale be-
yond which there is no significant number event. The num-
ber of events at a scale is a function of the nature of the time
series and also the length of the time series under considera-
tion. In most cases it was found that the number of events was
significantly reduced after seven or eight levels of decompo-
sition. We use the Haar wavelet as this is one of the sim-
plest but most basic mother wavelets. There are several other

www.nonlin-processes-geophys.net/24/599/2017/ Nonlin. Processes Geophys., 24, 599–611, 2017
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Table 1. Details of synthetic test cases.

Case Mathematical expression Other details References and figures

I(a) Sinusoidal stationary signal
S1= S+Strongnoise1

S = sin((2πt)/50)+ cos((2πt)/60)
Noise1
signal ∼ 2.8

Rathinasamy et
al. (2014)

I(b) Sinusoidal stationary signal
S2= S+Weaknoise2

Noise2
signal ∼ 5 Rathinasamy et

al. (2014)

II(a) Stationary signal (S1 and S2)
S1= St1 + y1+ y2+ y4;
S2= St2 + y1+ y3+ y4

Two AR1 processes St =∅St−1+ εt
εt = uncorrelated randomnoise
Parameter {∅1 = 0.60;∅2 = .70}

Yan and Gao (2007),
Hu and Si (2016)
Fig. 3: Panel I

II(b) Stationary dataset (S1 and S2)
S1= y2+ St1
S2= y4+ St2

y1= sin
(

2πt
16

)
;y2= sin

(
2πt
32

)
;

y3= sin
(

2πt
64

)
; y4= sin

(
2πt
128

)
;

where t = 1,2,3, . . .40177.

Yan and Gao (2007),
Hu and Si (2016)
Fig. 3: Panel II

III(a) Non-stationary dataset
S1= z1+ z2+ z3+ z4+ z5
S2= S1+ randomnoise
(uncorrelated)
noise
signal ∼ 2.781;
where t = 1,2,3, . . .40177.

Z1= cos
(

500π
(

t
1000

)0.5),

Z2= cos
(

250π
(

t
1000

)0.5),

Z3= cos
(

125π
(

t
1000

)0.5),

Z4= cos
(

62.5π
(

t
1000

)0.5),

Z5= cos
(

31.25π
(

t
1000

)0.5).

Yan and Gao (2007),
Hu and Si (2016)
Fig. 3: Panel III

III(b) Non-stationary dataset
S1= z4+ z5
S2= S1+ randomnoise
(uncorrelated)
noise
signal ∼ 21.5664;
where t = 1,2,3, . . .40177.

Z4= cos
(

62.5π
(

t
1000

)0.5),

Z5= cos
(

31.25π
(

t
1000

)0.5).

Yan and Gao (2007),
Hu and Si (2016)
Fig. 3: Panel IV

mother wavelets which could be used for wavelet decompo-
sition; however, it has been demonstrated that the choice of
the mother wavelets does not affect the results to a great ex-
tent for rainfall (Rathinasamy et al., 2014).

In case I(a) the noise–signal ratio is quite high in the range
of 2.7–3 (Table 1), such that the effect of the noise is felt up
to scale 7 (Fig. 6). Although both signals stem from the same
parent source and hence ideally they should possess perfect
synchronization (ES∼ 1) at all scales, the ES value at the
observational scale (λ= 0) is moderate (∼ 0.7), leading to
the interpretation that both signals are only weakly synchro-
nized. In contrast, the proposed MSES approach is able to
capture the underlying features (which were hidden in the
original signal) at higher scales (λ≥ 1) by approaching ES
values of 1, indicating the actual synchronization between
these signals. At the scale λ= 0 the ES measure is lower
because of the heavy noise covering the underlying informa-
tion. Considering higher scales, the effect of noise is removed
through wavelet decomposition, allowing for a more reliable
identification of the actual underlying synchronization be-
tween the signals. Interestingly, the slight decrease in the ES
values at a high scale (λ≥ 7) (Fig. 6) might indicate that the
essential feature that is responsible for the synchronization

at that scale gets removed in the form of a detail component
(Fig. 2). If features are present at a particular scale λ and
when we go up to the next scale (λ+ 1), those features get
removed in the form of the details and essentially the syn-
chronization is lost at the scale λ+ 1.

While repeating the same analysis but with a lower noise–
signal ratio (i.e. case I(b)), we find that the effect of noise
is almost completely removed after (λ > 3) and the MSES
values remain unaltered because of the same signal structure
(Fig. 6). These findings confirm that the MSES approach is
able to capture the synchronization in the presence of noise.

The significance test (Sect. 2.4) underlines the high level
of synchronization as indicated by the quite high ES values
(Fig. 6). Based on this example we find that the MSES anal-
ysis captures the synchronization at multiple scales.

Case II(a) presents a system where synchronization be-
tween two signals exists at a common long-term frequency
(y1 and y4). This is particularly relevant in studying the rain-
fall processes of two different regions, which are governed by
different local climatic processes but similar long-term oscil-
lations such as ENSO cycles. The MSES values (λ= 0 to 7)
are smaller than the confidence level, except for scales 4 and
7 (Fig. 7a). The synchronization emerging at scale 4 (λ= 4)

Nonlin. Processes Geophys., 24, 599–611, 2017 www.nonlin-processes-geophys.net/24/599/2017/
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Figure 6. MSES values for case I(a) and case I(b), including sig-
nificance test values for the significance level of 1 %. The value at
scale 0 is equal to the single-scale ES analysis.

and scale 7 (λ= 7) corresponds to features present at those
scales shown in the wavelet power spectrum (Fig. 5, Panel I).
The thick contour in the WPS indicates the presence of sig-
nificant features (at the 5 % significance level) corresponding
to y1, y2, y3, and y4 (Table 1). In the same figure, the dashed
curve represents the cone of influence (COI) of the wavelet
analysis. Outside of this region edge effects become more in-
fluential. Any peak falling outside the COI has presumably
been reduced in magnitude due to zero padding necessary to
deal with the finite length of the time series. To test the sta-
tistical significance of WPS, a background Fourier spectrum
is chosen (Addison, 2005; Agarwal et al., 2016a, b).

For case II(b), we would expect that the ES value should
be zero or nonsignificant at scale λ= 0. However, we find
that the synchronization between S1 and S2 at scale λ= 0 is
significant (Fig. 7b), although there is no common feature by
construction (Fig. 3, Panel II).

Interestingly, the MSES does not find significant synchro-
nization at any scale (λ > 0). Moreover, the MSES values
become zero after scale 4 because signals S1 and S2 have no
common feature beyond these scales.

As seen clearly, the ES at only one scale overpredicts the
actual synchronicity between the two series. This behaviour
may be due to the integrated effect of all scales, and hence
some spurious synchronization (although rather small but
still significant) is indicated.

Case III(a) is used as an analogue of dynamics and
features of natural processes (Table 1). Its WPS (Fig. 4,
Panel III) shows non-stationary, time-dependent features at
higher scales 2≤ λ≤ 6. ES values at lower scales λ≤ 1 are
below the significance level, revealing that the two signals
are not synchronized (Fig. 8a). The ES for the signal com-
ponents of the larger timescales reveals significant synchro-
nization up to scale 6, which is expected because of the com-
mon features (scale 2 to scale 6) in S1 and S2. After scale
λ= 6, the MSES value drops below the significance level
as the features responsible for synchronization are removed
in the form of the details component during decomposition.
Results from this case show the wavelet’s ability in capturing

the underlying multiple non-stationarities that are common
in both the time series which otherwise go unnoticed using
ES at the observation scale.

The similar case III(b) is used to investigate the behaviour
of MSES in a scale-emerging process in a non-stationary
regime (Table 1). As the wavelet spectrum of the signal re-
veals, only features at scales 5 and 6 are present (Fig. 4,
Panel IV). The corresponding MSES values are significant
only at those scales (Fig. 8b), revealing the synchronization
at scales 5 and 6. This case illustrates that MSES reveals only
the relevant timescales and does not mix them with the ob-
servation scale. In reality, there may be situations where the
causative events act only at certain timescales and remain un-
connected at other timescales. Under such situations MSES
is useful for unravelling the relevant scale-emerging relation-
ships.

After testing the efficacy of the proposed MSES approach
by using some prototypical situations, we apply the approach
to real observed rainfall data (case IV). We find significant
ES values between station 1 and station 2 at the scales λ= 1,
5, and 7 (Fig. 9a) by tracking the features present in the WPS
(Fig. 9c, d, and e). The significant ES value at the observa-
tional scale (λ= 0) might be due to the integrated effect of
features present at coarser scales (λ= 1, 5, and 7). In order to
emphasize the features present in the data, we use the global
wavelet spectrum (Fig. 9f, g, and h) which is defined as the
time average of the WPS (Agarwal et al., 2016a, b; Mallat,
1989).

Applying ES in the traditional way, i.e. analysing only at
scale 0, we find synchronization. However, only when we
consider multiple scales are we able to find that the synchro-
nization is the result of high- and low-frequency components
present at scales 1, 5, and 7.

For station 1 and station 3 synchronization is significant
at scale 7 (λ= 7) (Fig. 9b). However, evaluating the ES in
the traditional way (i.e. λ= 0) leads to the conclusion that
both stations are not significantly synchronized. Here, MSES
plays a critical role in identifying synchronization at specific
temporal scales. Hence, MSES provides further insights into
the process, such as low-frequency features that are present
and the dominating scales causing the significant synchro-
nization at scale 0.

The results for the real-world case study suggest that prox-
imity of stations (station 1 and station 2) does not necessar-
ily indicate synchronization at all scales. For stations 1 and
3, which are comparatively far from each other, we find in-
significant synchronization at the observational scale. How-
ever, considering the scales separately, MSES detects signifi-
cant synchronization at scale 7 as both stations might be shar-
ing some common climatic cycle at this scale.

www.nonlin-processes-geophys.net/24/599/2017/ Nonlin. Processes Geophys., 24, 599–611, 2017



608 A. Agarwal et al.: Multi-scale event synchronization analysis

Figure 7. (a, b) MSES and significance level (1 %) values at different scales for cases II(a) and II(b). The value at scale 0 is equal to the
single-scale ES analysis.

Figure 8. (a, b) MSES values and significance level (1 %) at different scales for cases III(a) and III(b). The value at scale 0 is equal to the
single-scale ES analysis.

5 Discussion

We have compared our novel MSES method with the tradi-
tional ES approach by systematically applying both methods
to a range of prototypical situations. For test cases I and II we
find that the ES value at the observation scale is influenced
by noise, thereby reducing the ES values of two actually syn-
chronized time series. When using MSES, the synchroniza-
tion between the two time series can be much better detected
even in the presence of strong noise. Another important as-
pect related to the analysis of these cases is that MSES has
the ability to unravel synchronization between two stationary
systems at timescales which are not obvious at the observa-
tion scale (scale-emerging processes). From these observa-
tions, it becomes clear that (i) event synchronization only at
a single scale of reference is less robust, and (ii) the depen-
dency measure of two given processes based on ES changes
with the timescale depending on the features present in these
processes.

Case study III illustrates that for a non-stationary sys-
tem with synchronization changing over temporal scales, the
single-scale ES is not robust. In contrast, MSES uncovers the
underlying synchronization clearly. MSES is able to track the
scale-emerging processes, scale of dominance in the process,
and features present.

The real-world case study IV shows that the synchroniza-
tion between climate time series can differ with temporal
scales. The strength of synchronization as a function of tem-

poral scale might result from different dynamics of the under-
lying processes. MSES has the ability to uncover the scale of
dominance in the natural process.

Our series of test cases confirms the importance of apply-
ing a multi-scale view in order to investigate the relationship
between processes that exist at different timescales. We sug-
gest that investigating synchronization just at a single, i.e.
observational, scale could give limited insight. The proposed
extension offers the possibility of deciphering synchroniza-
tion at different timescales, which is important in the case of
climate systems where feedbacks and synchronization occur
only at certain timescales and are absent at other scales.

6 Conclusions

We have proposed a novel method which combines wavelet
transforms with event synchronization, thereby allowing us
to investigate the synchronization between event time series
at a range of temporal scales. Using a range of prototypical
situations and a real-world case study, we have shown that
the proposed methodology is superior compared to the tra-
ditional event synchronization method. MSES is able to pro-
vide more insight into the interaction between the analysed
time series. Also, the effect of noise and local disturbance
can be reduced to a greater extent and the underlying interre-
lationship becomes more prominent. This is attributed to the
fact that wavelet decomposition provides a multi-resolution
representation which helps to improve the estimation of syn-

Nonlin. Processes Geophys., 24, 599–611, 2017 www.nonlin-processes-geophys.net/24/599/2017/



A. Agarwal et al.: Multi-scale event synchronization analysis 609

Figure 9. (a, b) MSES and significance level (1 %) values at various scales for stations 1 and 2 and stations 1 and 3, respectively; (c, d, e)
WPS of precipitation of stations 1 (c), 2 (d), and 3 (e) (station ID: 20009, 20208, 25005), respectively; (f, g, h) global wavelet spectrum of
the same stations. In (c)–(h) the y-axis represents the corresponding Fourier period= 2λ.

chronization. Another advantage of the proposed approach is
its ability to deal with non-stationarity. Wavelets being made
on local bases can pick up the non-stationary, transient fea-
tures of a system, thereby improving the estimation of ES.
Finally, it can be concluded that the proposed method is more
robust and reliable than the traditional event synchronization
in estimating the relationship between two processes.
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