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Abstract
Water plays an important role in underpinning equitable, stable and productive societies and
ecosystems.Hence, UnitedNations recognized ensuringwater security as one (Goal 6) of the
seventeen sustainable development goals (SDGs).Many international river basins are likely to
experience ‘lowwater security’ over the coming decades.Water security is rooted not only in the
physical availability of freshwater resources relative towater demand, but also on social and economic
factors (e.g. soundwater planning andmanagement approaches, institutional capacity to provide
water services, sustainable economic policies). Until recently, advanced tools andmethods are
available for the assessment of water scarcity. However, quantitative and integrated—physical and
socio-economic—approaches for spatial analysis of water security at global level are not available yet.
In this study, we present a spatialmulti-criteria analysis framework to provide a global assessment of
water security. The selected indicators are based onGoal 6 of SDGs. The term ‘security’ is
conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and
‘management’. The proposed global water security index (GWSI) is calculated by aggregating
indicator values on a pixel-by-pixel basis, using the orderedweighted averagemethod, which allows
for the exploration of the sensitivity offinalmaps to different attitudes of hypothetical policymakers.
Our assessment suggests that countries of Africa, SouthAsia andMiddle East experience very low
water security. Other areas of highwater scarcity, such as some parts ofUnited States, Australia and
Southern Europe, showbetter GWSI values, due to good performance ofmanagement, safety and
quality, and accessibility. TheGWSImaps show the areas of theworld inwhich integrated strategies
are needed to achieve water related targets of the SDGs particularly in the African andAsian
continents.

1. Introduction

Water is a vital resource necessary for the survival of
human society and of ecosystems. A famous quotation
from Coleridge (Coleridge 1798): ‘Water,water, every-
where, nor any drop to drink’, points out the uneven
distribution of freshwater in space and time as well as
its impaired quality (Postel et al 1996, Oki and
Kanae 2006). The availability of freshwater resources is

one of the main drivers of the quality of social and
ecological systems onwhichwe depend.

Unfortunately, human-water systems are tradi-
tionally viewed through the lens of physical ‘water
scarcity’ (Gunda et al 2015), either demand driven
water scarcity (water stress) or population driven scar-
city (water shortage). The demand-driven scarcity is
measured by calculating the ratio of estimated annual
freshwater demand to availability, with a threshold set
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exceeding 0.4 (Vörösmarty et al 2005). The supply-
driven scarcity is instead measured by calculating per
capita availability of renewable freshwater resources:
water is scarce when the availability goes below
1000 m3 per person per year (Falkenmark et al 1989).
Many of the previous studies used these concepts of
water scarcity for their macro-scale assessment at
annual (Arnell 1999, Vörösmarty et al 2000, Alcamo
and Henrichs 2002, Alcamo et al 2003, Oki and
Kanae 2006, Islam et al 2007, Kummu et al 2010) and
monthly time scale (Wada et al 2011a, Hoekstra
et al 2012).

Nevertheless, these traditional assessments of
water scarcity are usually poorly integrated with the
needs of policy makers and practitioners (Bak-
ker 2012), giving only little attention to the human
dimensions such as social and institutional capacities
(Bakker and Morinville 2013). Alongside climatic
changes and population growth (Vörösmarty
et al 2000), heterogeneous distribution of water
resources is pronounced by economic disparity, poor
governance and institutional failures. The integration
of both physical and human pressures on water
resources (e.g., growing global population, changing
climate, and increasing urbanization), is a funda-
mental requisite for a comprehensive understanding
of human-water systems.

According to Grey and Sadoff (2007), water secur-
ity refers in particular to the availability of an accep-
table quantity and quality of water for health,
livelihoods, ecosystems and production, coupled with
an acceptable level of water-related risks to people,
environments and economies. Ensuring water secur-
ity, vital for people wellbeing, agriculture, energy and
other sectors, is therefore one of the major challenges
of the 21st Century for the scientific community,
society, and policy.

After phasing out of theMillenniumDevelopment
Goals in 2015, the United Nations Rio+20 Summit
2012 in Brazil committed to establish a set of sustain-
able development goals (SDGs) to guide global devel-
opment for achieving sustainability (Glaser 2012). As
an outcome, theUnitedNations have recently adopted
Resolution 70/1 ‘Transforming our world: the 2030
Agenda for Sustainable Development’ with 17 SDGs
and relative targets to be achieved by 2030 (UN 2015).
Goal 6 is to ‘ensure availability and sustainable man-
agement of water and sanitation for all’
(UNSDSN 2013). The major challenges for Goal 6
include issues of water scarcity, access to safe drinking
water, sanitation, water quality, flood risks, and trans-
boundary water. In order to achieve Goal 6 and mon-
itoring the targets, a comprehensive assessment of
global water resources consideringmultiple challenges
in an integrated manner is required. However, only
very few studies attempted the development of inte-
grated assessment frameworks. Examples are the
water-poverty index (Sullivan 2002), water-vulner-
ability index (Hamouda et al 2009, Sullivan 2011, Gain

et al 2012, Giupponi et al 2013, Aleksandrova
et al 2016), and risk index (Gain and Giupponi 2015,
Giupponi et al 2015, Gain et al 2015b). The interac-
tions between humans and water have recently been
viewed comprehensively in terms of ‘water security’
(Gunda et al 2015).

Vörösmarty et al (2010) assessed global threats to
water security rather than water security per se. In
their assessment, a threat framework is developed con-
sidering twenty-three indicators for assessing threats
to humanwater security and biodiversity. The selected
indicators are mostly of bio-physical origin, with little
consideration of the human dimension. Governance,
for example is not considered. Lautze andManthrithi-
lake (2012) assessedwater security considering five cri-
tical dimensions (i.e., basic needs, agricultural
production, the environment, risk management and
independence) for 46 countries in the Asia–Pacific
region. Despite they have considered indicators of
physical and socio-economic dimensions, recent
developments of models considering physical pro-
cesses have not been taken into account. Recently,
Dickson et al (2016) consolidated a comprehensive
and flexible list of indicators for assessing community
water security. However, the assessment is limited to
local—community—scale rather than global scale.

In order to overcome these gaps, this study aims at
providing a first global understanding of the status of
water security, using a spatial multi-criteria analysis
(MCA) framework that goes beyond available recent
water scarcity assessments. In this study, physical
dimensions are mainly based outputs from the state of
the art global hydrologic model PCR-GLOBWB at a
monthly temporal scale that go beyond traditional
assessment at yearly scale (Vörösmarty et al 2000,
Alcamo and Henrichs 2002, Islam et al 2007). Com-
pared to previous attempts, this study integrates physi-
cal and socio-economic dimensions of security within
a unique index.

2.Methods

For assessing water security at global scale, the term
‘security’ is conceptualized as a function of ‘availabil-
ity’, ‘accessibility to services’, ‘safety and quality’, and
‘management’. Specific indicators are identified and
data for each of the indicators are collected from
different sources, ranging from modeling output to
previous studies. As the indicator values have different
units of measurement, these are normalized between 0
and 1 scale in order to be comparable with other
indicators. The global water security index (GWSI) is
calculated by aggregating the indicators using spatial
MCA methods. We have considered both simple
additive weighting (SAW) and ordered weighted
average (OWA) methods. The steps are described
below.
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2.1. The concept of security
The conceptualization of water security differs from
discipline to discipline, from area to area, from theme
to theme. While there is no universal definition for
‘security’, diverse notions can be found in the available
security literature (Grey and Sadoff 2007, Bakker 2012,
Bogardi et al 2012, Cook and Bakker 2012, Allan
et al 2013, Grey et al 2013, Lawford et al 2013, Pahl-
Wostl et al 2013, Benson et al 2015, Gober et al 2015,
Gain et al 2015a). These diverse notions include
common factors such as availability, accessibility,
affordability, quality, safety, stability (Hoff 2011, Bizi-
kova et al 2013). Considering these key aspects, we
define ‘water security’ as the conditions in which a
sufficient quantity of water resources is available and
accessible of adequate quality. To operationalize the
definition, first, we should emphasize whether a
sufficient quantity of water resources is available or
not. Second, we need to focus whether available water
resources is accessible or affordable to society and
ecosystem. Third, we need to consider whether avail-
able and accessible water is of good quality and
whether the area is free from flood risk. Finally,
consideration of governance and management aspect
are central to implementing a sustainable approach to
water security (Pahl-Wostl et al 2013). Therefore, a
quantitative assessment of water security should be
carried out taking into account physical, socio-
economic and governance dimensions, through the
assessment of indicators covering four main criteria:
availability, accessibility, safety and quality, and man-
agement. In this study, the term, ‘security’ is consid-
ered as the output of spatial MCA and is decomposed
into these four criteria.

2.2. Selection of indicators
Physical processes are analyzed for representing water
scarcity, droughts, and groundwater depletion, taking
advantage of, the outputs of the state-of-the-art
macro-scale hydrological and water resources model
PCR-GLOBWB (Wada et al 2011b). Model outputs
are converted into spatial indicator maps and joined
with socio-economic indicators derived from themost
recent global statistics. For providing current assess-
ment of global water security, our analysis is limited to
available recent data sources. The resolution of final
aggregated results is 5 min (similar to Global Agro-
ecological Zones by Food and Agricultural Organiza-
tions, www.fao.org/nr/gaez/en/). The definition and
data source for each of the selected indicators is given
in table 1.

2.2.1.Water availability
The criteria ‘water availability’ includes indicators that
represent ‘acceptable’ quantity of freshwater. How-
ever, the term ‘acceptable’ is subject to different
interpretations by different groups (Pahl-Wostl
et al 2013). To make this term operational, first, we

have considered the widely used blue water scarcity
index (WSI), defined as the ratio of total water
withdrawal to the water availability considering envir-
onmental flow requirements. Renewable groundwater
(i.e., groundwater recharge that goes to base flow) has
been accounted for in thewater availability side.Water
withdrawal includes both surface water and renewable
groundwater use for agriculture (irrigation and live-
stock), industry and households (Wada et al 2011a,
Wada et al 2011b). However, nonrenewable or fossil
groundwater, i.e. groundwater depletion, has not been
considered in the water use, but considered in a
separate indicator (Wada et al 2011a, Wada
et al 2011b). Nonrenewable groundwater use amount
has been subtracted from water withdrawal, since the
absolute amount of groundwater resources is not
known and cannot be included in the WSI (Wada
et al 2011a, Wada et al 2011b). Environmental flow
requirements have been considered inWSI calculation
(Wada et al 2014a), with the following equation.Water
stress is evaluated per month to consider the seasonal
variability and occurs whenever the amount of water
withdrawal reaches the threshold of 0.4 in that of water
availability in a same spatio-temporal domain.

W

A E
WSI ,i

w,i

w,i w,i

=
-

whereWw is the water withdrawal and Aw is the water
availability. Ew is the environmental flow requirement.
Although environmental flow requirement is best
determined by the degree and nature of their depen-
dency on stream flow, such information is rarely
observed directly, especially at the scale at which it is
modeled in this study. Therefore we calculated Ew to
be Q90, i.e. the monthly stream flow that is exceeded
90% of the time, following Smakhtin (2001) and
Smakhtin et al (2004) PCR-GLOBWB is used to
construct WSI on monthly basis with a spatial resolu-
tion of 0.5° (Wada et al 2014b). WSI for monthly
average value of 2010 is shown in figure S1 of online
supplementarymaterial.

Despite WSI is a useful measure of water avail-
ability, we need to consider separately fossil ground-
water depletion and hydrological drought as separate
indicators of water availability. The groundwater
depletion, defined as the persistent removal of
groundwater from aquifer storage owing to abstrac-
tion, has been estimated for the benchmark year 2010
at a 0.5° grid following the method described inWada
et al (2012). A flux-based method, i.e., calculating the
difference between grid-based groundwater recharge
(natural recharge and return flow from irrigation as
additional recharge) and groundwater abstraction is
used to assess groundwater depletion (Wada
et al 2012). The groundwater depletion index is shown
infigure S2.

For assessing hydrological droughts, we used the
monthly 80-percentile flow, Q80, i.e. the mean
monthly stream flow that is exceeded 80% of the time,
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as it is commonly used as a threshold, which accounts
for seasonal stream flow variability (Wada et al 2013).
Drought frequency was derived by counting the
occurrences of drought events, i.e. when stream flow
falls below the threshold Q80, and drought index was
calculated by dividing drought frequency by the aver-
age frequency over the period 1960–2010 (Wada
et al 2013). The drought index is shown in figure S3.
However, the drought index does not work well for
desert area. In order to consider desert area within
drought index, we have provided modified drought
map (see figure S5), in which aridity class I and II of
desert classification (see figure S4) is introduced as
high drought value.

2.2.2. Accessibility
The indicators, ‘access to sanitation’ and ‘access to
drinking water’, calculated through percentage of
population with improved sanitation and drinking
water, are adopted to represent accessibility of water to
people mainly due to varying socio-economic
conditions.

2.2.3. Quality and safety
For representing ‘quality and safety’ of water security,
we have considered bothwater quality index (WATQI)
and flood frequency index. Based on WATQI , part of
‘Environmental Performance Indicator’, developed by
Yale Center for Environmental Law and Policy and the
Center for International Earth Science Information
Network at Columbia University, Srebotnjak et al
(2012), expanded its geographical coverage by using
hot-deck imputation of missing values (see figure S6).
Hot-deck imputation is amethod for handlingmissing
data in which each missing value is replaced with an
observed response from a similar unit. The modified
results better inform decision-makers on the types and
extents of water quality problems in the context of
limited globally comparable water quality monitoring
data (Srebotnjak et al 2012). In addition to water
quality index, various physical factors such as flood
risks make the available water unsafe (Gain
et al 2015b). We, therefore, consider flood risk (see
figure S7) as one of the indicators of ‘quality and
safety’.

Table 1.Definition of water security indicators with data sources.

Water security

criteria Indicators Spatial and temporal scales Definition, notion and data source

Availability Water scarcity

index (WSI)
0.5° spatial resolution;

Monthlymean value

of 2010

WSI is defined as the ratio of total water withdrawal to

thewater availability including environmental flow

requirements. The values with higherWSI lead to

decrease water security. (Source:Wada et al 2014b).
Drought index (DI) 0.5° spatial resolution;

Yearly value of 2012

DI is calculated using PCR-GLOBWB. The values with

higherDI lead to decrease water security. (Source:
Wada et al 2013).

Groundwater depletion 0.5° spatial resolution;
Yearly value of 2010

Groundwater depletion rate (millionm3 yr−1) is calcu-
lated using PCR-GLOBWB.The values with higher

DI lead to decrease water security. (Source:Wada

et al 2012).
Accessibility to

services

Access to sanitation Country scale data for 2014 Percentage of populationwith access to improved sani-

tation. The values with higher access lead to increase

water security (Source: Hsu et al 2014)
Access to drinking water Country scale data for 2014 Percentage of populationwith access to improved

drinkingwater source. The valueswith higher access

lead to increase water security (source:Hsu

et al 2014)
Safety and quality Water quality index Country scale data for 2012 The values with higher index value lead to increase

water security. (Source: Srebotnjak et al 2012)
Flood frequency index Country scaleflood fre-

quency during

1985–2003

Frequency offlood events during 1985–2003. (Source:
Center forH et al 2005)

Management World governance index Country scale data for 2010 The values with higher index value lead to increase

water security. (Source: Kaufmann et al 2010)
Transboundary legal

framework

River Basin scale data

for 2015

How effective transboundary legal agreements are in

place. (Source: http://twap-rivers.org/indicators/)
Transboundary political

tension

River Basin scale data

for 2015

Risk of PotentialHydro-political Tensions due to Basin

Development inAbsence of Adequate Institutional

Capacity. (Source: http://twap-rivers.org/
indicators/).
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2.2.4.Management
In addition to above factors, there are also social and
institutional management issues such as water plan-
ning and management approaches, institutional cap-
ability, economic policies, power relationship and
governance systems in place that play an important
role for providing water security. In order to consider
‘management’ aspect, we have considered the ‘world
governance index’ developed by World Bank (Kauf-
mann et al 2010). Country scale world governance
index (see figure S8) was calculated through aggrega-
tion of six governance dimensions: voice and account-
ability, political stability and absence of violence,
government effectiveness, regulatory quality, rule of
law and control of corruption (Kaufmann et al 2010).
In addition, we have assessed transboundary govern-
ance status of (i) legal framework (see figure S9) and
(ii) hydro-political tension (see figure S10) for 286
river basins of the World (see http://twap-rivers.org/
indicators/).

2.3. Normalization of the indicators
A preliminary step for the aggregation of indicators is
normalization, as the indicators in a data set often have
different measurement units. Several normalization
techniques exist in the literature (OECD 2008) and the
best choice depends on the indicators which are under
consideration and the preferences of the decision
maker. In this study, we apply a value function
approach. Value functions aremathematical represen-
tations of human judgmentswhich offer the possibility
of treating people’s values and judgments explicitly,
logically and systematically (Beinat 1997, Gain and
Giupponi 2015, Gain et al 2015b). A value function
translates the performance of the indicators into a
value score between 0 and 1 which represents the
degree to which a decision objective is matched. If the
objective is perfectly matched (highest security), the
value is 1 and if it is perfectly unmatched (lowest
security), the value is given 0. The value functions were
introduced in the Geographical Information System
(GIS) software environment as fuzzy membership
functions (Schmucker 1983), defining how each map

element is close to, or far from to a membership value
(or degree of membership) of 1 for optimal security
(Zadeh 1965). Themembership functionswere usually
linear or in some cases trapezoidal (linear normal-
ization with a plateau to express stable valuation of
indicator values belowor above a given threshold).

2.4. Aggregation anddevelopment of index
For efficient processing of huge amounts of spatial
information, data about each indicator are stored as
rastermap layers (i.e. organized as unitary information
cells, the picture elements or pixels), with a spatial
resolution of approximately 0.083 decimal degrees
(around 10–15 km at intermediate latitudes). Each
indicator map is represented as a matrix of pixels with
4320 columns and 2160 rows. Among available GIS
software tools (Burrough et al 2015), the spatial
analyses were performed in the TerrSet environment,
coded with its macro language, allowing to implement
complex data processing algorithms in a transparent
and reproduciblemanner.

After having normalized indicators by means of
fuzzy membership functions, the resulting map layers
have been aggregated with a hierarchical MCA
(Saaty 1980). The indicators are aggregated into secur-
ity criteria, which in turn are aggregated to produce
the final outcome, i.e. global water security index,
GWSImap. Each indicator and criterion is weighted to
express their relative relevance to contribute to the
GWSI. The weights were defined by the authors (see
table 2). Among the four main criteria of water secur-
ity, the highest relevance is given to availability (45%),
compared to accessibility (20%), safety and quality
(20%), andmanagement (15%). According to authors,
water security cannot be achieved without available
resources. For determining water availability, themost
important criterion is blue WSI (weight: 70%). How-
ever, blue WSI is not capable to incorporate drought
and deep groundwater depletion. Therefore, separate
indicators (with 15% weight each) are considered for
representing drought and groundwater depletion.
Without drinking water, people cannot survive.
Therefore, for representing accessibility, access to

Table 2.Hierarchy andweights for assessing global water security.

Main components (weight) Security criteria (weights) Indicators (weights)

Global water security index Availability (45%) Water scarcity index (70%)
Drought index (15%)
Groundwater depletion (15%)

Accessibility towater services (20%) Access to sanitation (40%)
Access to drinkingwater (60%)

Safety and quality (20%) Water quality index (50%)
Global flood frequency (50%)

Management (15%) World governance index (70%)
Transboundary legal framework (15%)
Transboundary political tension (15%)

Ordered weights (indicators/criteria ordered in decreasing order): (i) aggregation of 2 indicators/criteria: 0.8; 0.2, (ii) aggregation of 3

indicators/criteria: 0.6; 0.2; 0.2; (iii) aggregation of 4 indicators/criteria: 0.55; 0.15; 0.15; 0.15.
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drinking water is given higher weight (60%), com-
pared to sanitation (40%). Water quality and flood
risks were considered equally important for represent-
ing safety and quality. Water governance status of a
country is the most important factor for managing
resources. Transboundary legal framework and poli-
tical tensions also support secured supply of water
resources in an area. Therefore, for representing man-
agement, highest priority is given to world governance
index (70%), followed by transboundary legal frame-
work (15%) and political tension (15%).

Since weighting is inherently subjective, in the
future practical applications weights should be the
result of participatory processes with relevant stake-
holders (policymakers, institutions, NGOs, etc).

Once indicators are normalized and weighted, a
suitable aggregation algorithm has to be selected in
accordance with the logic of the conceptualmodel, but
also according to the preferences and attitudes of the
decision makers. The aggregation can be done via
SAW in which normalized values of indicators/cri-
teria are first multiplied by weights (all weights sum-
ming up at 1), and then summed up (Afshari et al 2010,
Wang 2015, Kaliszewski and Podkopaev 2016). A well-
known drawback of SAW is its full compensatory
effect: the result of aggregating a very good and a very
bad value is the same as when two average values are
aggregated (Giupponi et al 2013, Gain and Giup-
poni 2015, Giupponi and Gain 2016). Therefore, we
adopt the OWA approach (Yager 1988, Eastman
et al 1993, Yager and Kacprzyk 1997), an evolution of
SAW. OWA applies a second round of weighting in
which weights are applied to the ordered sequence of
values previously weighted as in SAW (Mianabadi
et al 2014). For example, if three indicators have to be
aggregated, first, their values are weighted as usual
(weighted scores) and then they are ordered (ordered
scores) and weighted again with a new vector of
weights. This second weighting step makes it possible

to overcome the full compensation of SAW and to
implement the preferred degree of ANDness, with two
extremes: the pessimist case of the limiting factor (i.e.
the entire weight is given to the lowest ordered score)
and the optimist case in which only the highest score
determines the value of the aggregated index (Giup-
poni andGain 2016).

More specifically, in this work we opt for a pessi-
mistic approach in which the aggregated index is cal-
culated giving higher weights to those criteria showing
the worst performances to account for the constrain-
ing effects of limiting factors to the overall perfor-
mance of the index (see table 2 for details). Although
we applied OWA pessimistic approach for detailed
assessment, however, we also have explored uncer-
tainty associated with different aggregation algo-
rithms. In particular, we report the effects on GWSI
results by comparing: (i)OWA pessimistic (risk averse
decision maker) with the weights provided in table 2
and OWA pessimistic with equal weights; (ii) OWA
pessimistic and SAW (full compensation of good and
bad), and (iii) OWA pessimistic (risk averse decision
maker) and OWA Optimistic (risk taker decision
maker).

3. Results

We argue that the blue WSI alone is inadequate as a
comprehensive assessment of global water resources
availability as it does not incorporate considerations of
aridity, drought and groundwater depletion in the
assessment. Therefore, we combine the blue WSI
(Wada et al 2014b)with twomore indicators: ground-
water depletion (Wada et al 2012) and the drought
index (Wada et al 2013), to obtain amore comprehen-
sive notion of water availability (figure 1).

Results show that remarkable water availability
issues are located in India, China, part of USA and
African countries where various combinations of high

Figure 1.Assessment of water availability, aggregated through figures S1, S2 and S5.
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water demands, population and economic growth,
and arid environment exacerbate the imbalance
between needs and available resources. Importantly,
more than 90%of the global irrigated areas are present
in these regions.

The available freshwater, however, may not be
accessible due to various socio-economic and physical
constraints (e.g., lack of infrastructures). Accessibility
to safe drinking water and improved sanitation (calcu-
lated through percentage of populationwith improved
sanitation and drinking water) is, therefore, an impor-
tant indicator for water security assessment (figure 2).
Most people in Africa do not have access to safe drink-
ing water and improved sanitation, whereas in devel-
oped countries such as USA, Canada, Australia and
Europe almost all people do.

In some areas, available freshwater cannot provide
benefits to societies and ecosystems due to impaired
quality. High quality freshwater is found in Scandina-
vian countries, Canada, and New Zealand, whereas
water quality is low in Africa and the Middle East
(figure S6). In addition to the problem of water qual-
ity, flood risks make available freshwater unsafe and it
increases risks to people and ecosystem. Water
volumes flowing during wet seasons cannot be used
during the low flow seasons unless storage systems, for
example reservoirs, are in place (Gain and
Wada 2014). Flood risk is a major concern all over the
world including developed and developing countries.
By combining water quality and flood frequency indi-
ces, we have integrated indicator of water ‘quality and
safety’ (figure 3).

The country level ‘world governance index’ devel-
oped by the World Bank (Kaufmann et al 2010) has
been considered and included in the analysis. Further,
transboundary water resources management is
another important dimension of governance. In order
to provide an indicator for transboundary governance,
we have aggregated information concerning the legal

framework and hydro-political tension for 286 river
basins of the World (see http://twap-rivers.org/
indicators/). Governance status appears to be rela-
tively low in Asia, Africa and South America. Combin-
ing both general governance and the transboundary
governance indicator, an integrated index of manage-
ment capacity is calculated (figure 4). Management is
generally good in developed countries, whereas it is
poor inAfrica, theMiddle East andAsia.

By aggregating the indices of water availability,
accessibility, safety and quality, and governance
through OWA pessimistic aggregation, we have devel-
oped the GWSI. Figure 5 shows that water security is
low in many countries in Africa and Asia, whereas the
criteria for water security ismet in Scandinavian coun-
tries, New Zealand, Australia, Canada, Japan, and
throughout Western Europe. It is important to note
that water security is low in part of USA primarily due
to excessive pumping of groundwater. Figure 5 also
shows where we have data gaps for some indicators, in
particular in Africa and in small island states.

The performance of selected indicators and their
aggregated notions for China, India, USA, Australia,
Brazil and Bangladesh is shown in figure 6. Flood risk,
impaired water quality, governance and transbound-
ary management are major problems in Bangladesh,
India, Brazil and China. Therefore, the performance
for quality and safety as well as management is very
low in these countries. Due to high flood risks (Gain
et al 2013) and high arsenic concentration in the
groundwater (Burgess et al 2010), along with trans-
boundary complexities (Gain and Schwab 2012, Gain
and Giupponi 2014, Rouillard et al 2014), water
resources is highly insecure in countries like Bangla-
desh, even physical water availability is not a major
problem there. Based on NASA’s Gravity Recovery
and Climate Experiment (GRACE) satellites, Richey
et al (2015) found that groundwater is disappearing
fast from the world and India is among the worst hit.

Figure 2.Assessment of accessibility towater services.
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Figure 3.Aggregated quality and safety index (aggregation of figures S6 and S7).

Figure 4.Aggregatedmanagement index (aggregation offigures S8, S9, and S10).

Figure 5.Aggregated global water security index, calculated using the aggregation of water availability, accessibility, safety and quality,
andmanagement indices. The value ‘0–1’ (with the continuous color ‘red to blue’) represents ‘low to high’ security. The shaded areas
identify countries with data gaps.
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However, the performance in Australia is good for all
the indicators.

As mentioned above, beside the OWA Pessimistic
aggregation procedure, we ran other aggregation sce-
narios, to explore the uncertainty associated with the
subjectivity inherent in weighting. The descriptive sta-
tistics of difference between (i) OWA pessimistic (risk
averse decision maker) with the weights provided in
table 2 (Pes) and OWA pessimistic with equal weights
(Pese); (ii)OWA pessimistic (Pes) and SAW (full com-
pensation of good and bad), and (iii)OWApessimistic

(risk averse decision maker)(Pes) and OWA Optimis-
tic (risk taker decision maker) (Opt) are shown in
table 3. As expected, the highest differences are
between pessimistic and optimistic, while the lowest
are between the adopted solution and the test of
adopting equal weights. The values of the means are
always negative, meaning that the map we produced is
more precautionary, in that the values of water secur-
ity are lower than the others. The spatial distributions
of these differences are shown in figures S11–S13 of
online supplementarymaterial.

4.Discussions and conclusions

To provide a comprehensive picture of water
resources, Vörösmarty et al (2000) suggested an
integrated approach bringing together the physical,
and socioeconomic dimensions. Similarly, Kummu
et al (2010)mentioned that research on water scarcity

Figure 6.Performance of designated indicators (a) and their aggregated notions (b) for some selected countries. The value ‘0’
represents worst performance, whereas ‘1’ represents best performance. The average value of water scarcity index (Scarcity), drought
index (Drought) and groundwater depletion (GWDepl); access to sanitation (Sanit) and access to drinkingwater (Drink); water
quality index (Qualit), and flood frequency index (Flood); world governance index (Govern), Transboundary legal framework (Legal)
and transboundary political tension (PolTens) is shown in (a), whereas their aggregated notion, ‘availability’, accessibility (Access),
quality and safety, andmanagement is shown in (b).

Table 3.Descriptive statistics of the difference between different
aggregation algorithms.

Pes–Pese Pes–SAW Pes–Opt

Minimum −0.424 −0.350 −0.575

Maximum 0.194 0.141 0.205

Mean −0.021 −0.032 −0.052

Standard deviation 0.058 0.070 0.114
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should continue to extend towards the inclusion and
scrutiny of concepts of water governance, water
management, water policy, environmental integrity,
and water’s role in societal and economic develop-
ment. Using these dimensions, the present study
provides a first global analysis of water security using a
spatial MCA framework that goes beyond available
water scarcity assessment. Figure S1 (of supplementary
material) indicates that physical water scarcity is very
high in India, North-East China, some South and
Eastern European countries, parts of United States,
countries of middle east and Africa. However, com-
pared to water scarcity assessment (Wada et al 2011b,
Wada and Bierkens 2014,Wada et al 2014a), this study
shows heterogonous distribution of water security.
The comparison between (blue) water scarcity and
water security assessments is shown in figure 7.
According to the results, (blue) water scarcity value is
better in Bangladesh, China (country as awhole), India
(country as a whole), and Brazil than water security.
For example, low water security in Bangladesh is
represented by extreme flood along with deterioration
of water quality (e.g., arsenic contamination), trans-
boundary water problems. Similarly, beyond blue
water scarcity, low water security in India, China and
Brazil, is denoted by lack of access to safe water and
sanitation, deep groundwater depletion, drought, bad
quality along with management problems. In Austra-
lia, water security is better than water scarcity value
due to good management, good accessibility to safe
water and due to maintenance of good quality. In
contrast, the situation becomes very bad in African
countries due to poor performance of governance,
lack of access to drinking water and sanitation (Snorek
et al 2014). In Niger, 17 million people do not have
access to adequate sanitation and 8million people lack
access to cleanwater.

The model based simulation of water scarcity,
drought and groundwater depletion comprehensively
represent the security of global water availability. The
outputs (i.e., river flow) from PCR-GLOBWB are
comparable to other global hydrological models like
Water GAP: both models have been used in the num-
ber of multi-model simulation projects, notably in the
ISI-MIP project (www.isimip.org/). Generally, the
spatial variability in water availability (i.e., river dis-
charge) between PCR-GLOBWB and WaterGAP is
similar in most of large catchments and the difference
is mostly within 10%–20% (Dankers et al 2014, Prud-
homme et al 2014).

Moving beyond qualitative understanding of
water security (Bakker 2012, Cook and Bakker 2012),
we provide a comprehensive quantitative assessment
for current period. Access to safe water and sanitation,
water quality, flood risks and water governance are
also the major security concerns for managing global
water resources. TheGWSI and the indicators used in
this study directly refer Goal 6 SDG targets. Therefore,
GWSI can be useful to support Goal 6 SDG monitor-
ing of targets to be achieved by 2030. Success in attain-
ing the SDGs will rest on how well monitoring of the
progress towards the goals can be tracked, and how
consequent implementation actions can be identified,
refined and implemented. The main challenge for
monitoring the implementation of the SDGswill lay in
the availability of comparable global raw data collected
with adequate spatial detail and quality at regular time
intervals (Giupponi andGain 2016). In this study, data
are collected with different spatial resolutions and
reported to a common GIS structure with 5 min reso-
lution, which is finer than current available informa-
tion, in view of allowing the integration of more
detailed information in the near future, formore accu-
rate spatial assessment. Similarly, time resolution is

Figure 7.Comparison between bluewater scarcity andwater security assessment for some selected countries. The value ‘0’ represents
worst performance, whereas ‘1’ represents best performance.
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currently sub-optimal in that not all the data sets uti-
lized so far refer to the same period of time.

Country-level averaging and aggregation hide the
variability of physical and socio-economic phenom-
ena. Therefore, the spatial detail is crucial to identify
hot spot areas of greatest interest for planning the
developments towards the SDGs. Remotely sensed
data provided by the satellites will play a greatest role
in providing the spatial and temporal information
required.

Given the aim of exploring the feasibility of pro-
posing an assessment method that may contribute to
the future implementation of the SDGs, we envisage
consolidating fuzzy membership functions in the
future, when targets will be agreed upon, so that the
output of the classification could explicitly demon-
strate the areas in which the SDG targets are being
accomplished. Similarly, the weights of indicators will
require careful consideration with the involvement of
relevant stakeholders and in depth sensitivity analysis.

The GWSI is proposed as a means to monitor pro-
gress towards SDGs in the coming years. In order to
monitor SDG targets, the performance of each of the
selected indicators should be assessed similarly to the
examples reported in figure 6. The evaluation of spa-
tial and temporal performances will allow to identify
the specific needs for improvement in each country.
For instance, repeated assessments on an annual basis
will allow for the identification of progressive or per-
sisting problems. The spatially explicit analysis identi-
fies the areas where strategies are required to increase
the availability of water resources, to expand accessi-
bility to larger groups of people to safe water and sani-
tation, to improve water quality and reduce flood
frequencies, and, finally, to improve the capability of
national as well as transboundary institutions. To
increase water availability, we need to improve agri-
cultural water productivity, irrigation efficiency, and
domestic and industrial water-use intensity, reduce
population growth, increase water storage in reser-
voirs and, finally, to increase the use of desalination
technologies (Wada et al 2014a). In order to increase
access to safe water and sanitation (especially in sub-
Saharan Africa and developing countries), ongoing
efforts of theWorldHealthOrganization (WHO) need
to be strengthened in terms of promotion of home
water treatment, improvement of hygiene behaviors
and gender aspects, increased use of affordable, effec-
tive and environmentally-friendly of drinking water
and sanitation. Global water quality can be improved
by developing international water quality guidelines
for aquatic ecosystems, strengthening global process
for monitoring, storing and accessing water quality
information. In order to reduce flood frequencies,
water storage needs to be increased using the benefits
of wetlands. To improve governance, the institutional
ability of transboundary organizations needs to be
strengthened by implementing and adopting some
commonpolicies such asWater FrameworkDirectives

and Flood Directives in Europe. In addition, general
governance needs to be improved in the Middle East,
Africa and other developing countries by increasing
accountability and transparency, political stability,
and controlling corruption. In order to achieve Goal 6
by 2030, these strategies need to be implemented in an
integratedmanner.
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