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Abstract: In this study, an in situ application for identifying neodymium (Nd) enriched 

surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor). 

Because of the narrow shape and shallow absorption depth of the neodymium absorption 

feature, a method was developed for enhancing and extracting the necessary information for 

neodymium from image spectra, even under illumination conditions that are not optimal. For 

this purpose, the two following approaches were developed: (1) reducing noise and 

analyzing changing illumination conditions by averaging multitemporal image scenes and 

(2) enhancing the depth of the desired absorption band by deconvolving every image 

spectrum with a Gaussian curve while the rest of the spectrum remains unchanged 

(Richardson-Lucy deconvolution). To evaluate these findings, nine field samples from the 

Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and  

by conducting detailed laboratory-based geochemical rare earth element determinations.  

The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. 

To reduce the influences of non-optimal illumination, particularly at the studied site, a 
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minimum of seven single acquisitions is required. Sharpening the neodymium absorption 

band allows for robust mapping, even at the outer zones of enrichment. From the geochemical 

investigations, we found that iron oxides decrease the applicability of the method. However, 

iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that 

are mainly enriched with rare earth elements. In summary, we found that hyperspectral 

spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at 

outcrop surfaces. 

Keywords: rare earth elements; imaging spectroscopy; neodymium; hyperspectral; HySpex; 

remote sensing; Fen complex 

 

1. Introduction 

Today, rare earth elements (REE) are of special interest for the global economy. Particularly, REEs 

are important in modern technologies, such as batteries, LCD displays, catalytic converters, and in green 

technologies, such as wind turbines. Rare earth metals include the chemical elements of lanthanides. 

Scandium and yttrium are often grouped together with the rare earth metals because both elements have 

similar chemical properties and frequently occur in the same deposits. Detecting possible future deposits 

and determining the concentrations and relative enrichment of REEs in carbonatites, silicocarbonatites, 

peralkaline granites and pegmatites are of interest for mineral exploration and mining processes. The 

world’s largest REE deposits are mostly bound to carbonatites or their altered equivalents [1]. The 

geochemical investigation of REE distributions within outcrops and the characterization of parental 

melts are currently debated and are usually performed by conducing laboratory analyses or by collecting 

handheld X-ray fluorescence measurements at a single spot [2]. Here, we present a new method that uses 

a hyperspectral imaging spectrometer (HySpex camera) for mapping the distribution of neodymium at 

the surface of a carbonatite outcrop in southern Norway. Generally, hyperspectral imagers can be applied 

from micro (laboratory) to macro (airborne or spaceborne systems) scales. Moreover, hyperspectral 

imaging is an ideal technology for monitoring exploration, particularly for reducing the environmental 

impacts of mining and decreasing costs. This study focuses on characterizing the REE distribution at 

one outcrop from one type of carbonatitic REE deposit by using the HySpex imaging spectrometer system. 

1.1. Introduction to Hyperspectral Data Acquisition 

A hyperspectral sensor uses the photoelectric effect by collecting pairs of free electron holes in the 

detector element. The number of collected electrons is a function of the incident photons. Thus, the function 

of illumination is determined in the radiometric calibration process for each detector element [3]. 

Hyperspectral sensors can be classified as either imaging spectrometers (e.g., HySpex) or point 

spectrometers (e.g., ASD field spectrometer). Single point spectrometers measure the incident 

electromagnetic radiation within a solid angle, whereas imaging spectrometers (in this case, a push 

broom line scanner) consist of at least one detector array and detectors that are contemporarily 

illuminated by spectrally and spatially dispersed incident electromagnetic radiation. Hence, each detector 
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element “counts” photons from a solid angle across a specific wavelength range and the system is 

configured to enable continuous spatial and spectral acquisition. If the detector array or the scanning 

object is moved over time and space, each scan line of a hyperspectral image represents one time step 

with a certain integration time, which can be used to successively collect the hyperspectral data cube. 

The x-axis of a hyperspectral data cube represents the number of detectors (across-track), the y-axis 

represents the number of frames or time steps (along-track) and the z-axis represents the wavelengths 

(spectrum). Thus, each pixel represents a single spectrum that can be analyzed to retrieve information 

regarding geochemical properties. Depending on the sensor, between 100 and 10,000 different 

wavelength ranges (bands) can be recorded on the z-axis. Minerals, metals and organic materials absorb 

electromagnetic radiation differently according to their inner structure and chemical composition. This 

absorption is detected as concave indentations within the spectrum that are referred to as absorption 

features. The position of the peak is referred to as the absorption band. Technically, different ranges of 

the electromagnetic spectrum represent different materials. Most absorption in the visible, near infrared 

(VNIR: 350 nm–1000 nm) and shortwave infrared (SWIR: 1000 nm–2500 nm) ranges can be explained 

by vibrational overtones, electronic transitions, charge transfer and/or conduction processes [4]. 

1.2. Introduction to Imaging Spectroscopy Principles for the Classification of Rare Earth Element 

Bearing Minerals and Rocks 

In addition to the public spectral library of the USGS [4], the reflectance spectra of different minerals 

and rocks and spectroscopic investigations of carbonatite rocks have been published [5–11]. Generally, 

classification applications utilize spectrum-matching techniques that compare unknown spectra with 

known spectra from spectral libraries (Cross-correlations, spectral angle mapper, support vector machines, 

spectral feature fitting, etc.) [12,13] and spectral unmixing algorithms (linear spectral unmixing, pixel 

purity index) [12,13]. All of these methods are usually applied across the entire spectrum. Absorption 

features that are widely used to characterize mineral deposits include clay minerals (approximately 2.2 µm), 

calcite (approximately 2.33 µm), dolomite (approximately 2.34 µm) and iron oxides (approximately  

900 nm, 650 nm and 540 nm) [4,12–15]. All of these absorption features are considerably broad, and the 

most mineralogically important bands are located in the SWIR. Exceptions include the characteristic 

absorption bands of metal oxides, such as iron oxides, and most of the REEs. According to Rowan et al. 

1986 [5] and White 1967 [16], the absorption bands of REEs can be physically and chemically explained 

by electronic field transitions. This goes back to the fact that the 4f orbitals are partially occupied in 

nearly all lanthanides [17]. Overall, two electrons can occupy 7f orbitals, resulting in 14 different 

electron configurations. Except for lanthanum and lutetium, which have f orbitals that are completely 

occupied or empty, incident electromagnetic radiation will be absorbed at the appropriate energy, which 

results in electron excitations. This absorption is mainly detectable in the ultraviolet, visible, and near 

infrared ranges [5,16,17]. For example, the peak positions of the key spectral characteristic absorption 

bands for neodymium are ~580 nm, ~740 nm, ~800 nm, and ~870 nm [5,6,8,16]. In the 1960s, various 

rare earth oxide and rare earth chloride spectra were published that show absorption features in the 

visible and near infrared ranges [16,17]. Moreover, less abundant and less pronounced absorptions occur 

in the SWIR, which are usually explained by vibrations in the crystal lattice or chemical bond lengths. 

It is unknown if this observation holds for absorptions in the SWIR range of REE bearing minerals. 
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Another special property of REE-related absorption bands is their narrow shape, with the concave feature 

having a width of approximately 60–80 nm [5] (Figure 1). Two example spectra are shown in Figure 1. 

The first spectrum is from a hyperspectral integration of sand sized monazite crystals. The second 

spectrum integrates the fresh surface of a rock sample from the studied test site (see Chapter 2). The monazite 

sand was provided by Dan Harlov (REE percentage: La2O3: 12.49, Ce2O3: 28.77, Pr2O3: 3.058, Nd2O3: 

12.28, Sm2O3: 1.694, HREE < 1.6%) [18]. Due to the multiple absorption shapes of neodymium related 

absorption features when a high percentage of neodymium is present in the sample, we used a natural 

sample with a medium-high concentration to generate an example spectrum. In this study, the monazite 

sand provides a good basis for defining the peak positions of the features because multiple absorptions 

are not resolved with the used spectrometer. The spectra were measured using an Analytical Spectral 

Device (ASD) spectrometer [19] and by integrating a circular area with a diameter of approximately  

2 cm. Each of the collected spectra represents a mean of 200 averaged ASD spectra. In both example 

spectra, the absorption bands at ~580 nm, ~740 nm, ~800 nm, and ~870 are resolved. These bands are 

attributed to neodymium based on the publications of [5,16,17,20–22]. 

 

Figure 1. Two reference spectra for monazite (a neodymium-bearing mineral) and a 

monazite-rich rock sample (a calcitic carbonatite from the Fen complex). The key spectral 

characteristic absorption bands in the VNIR range that are associated with  

neodymium [5,16,17,20–22]. The graph is modified after Boesche et al. 2014 [23]. 

2. Geological Setting 

The studied outcrop is located in an open cut natural mine located along Grønvoldvegen Road in 

Ulefoss, Nome, Norway (Figure 2) (location lat 59.282636°, lon 9.285511°). The outcrop consists of 

søvite type carbonatite rocks that are part of the Fen complex. This area was selected as the investigation 

area because it is widely recognized for its REE bearing igneous carbonate rocks. The Fen complex is 

formed from a Cambrian intrusion of alkaline and carbonatite melts that represent the volatile end 

fraction of a larger magma chamber, which probably lies beneath the surface [24–28]. Mitchell and 

Brunfeld [25] describe the søvites as a cap that lies on top of a urtite-ijolite-series (nepheline- and alkali-
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pyroxene-rich intrusions). The final liquids represent the less abundant silicocarbonites. During this 

sequence of intrusion, fenitization of the country rocks occurred [25,27]. The silica-undersaturated 

magma provided a source of fenitizing fluids that altered the gneissic wall rocks, mainly to the west of 

the oval-shaped complex [27]. A second phase of intrusion occurred of damtjernite (ultramafic) 

composition that was later altered and metasomatized to alkaline magnesio-calcite carbonatites (rauhaugite) 

and ferro-carbonatites (rødbergite) [25]. 

 

Figure 2. Map of Norway showing the location of the study area and a ~180 degree image 

that was collected as part of the HySpex data acquisition. The two scale bars below the 

outcrop image indicate a distance of one meter horizontally and represent their exact vertical 

locations. The image is compressed towards the edges because the rotational acquisition 

mode was used. The overview map is modified after Boesche et al. 2014 [23]. 

3. Methods 

3.1. Remote Sensing Analyses 

3.1.1. Instruments and Fieldwork Procedure 

The studied søvite outcrop (calcite carbonatites and silico-carbonatites) is located along a two-lane 

coastal road at lake Norsjø and strikes from the southeast to northwest. The surface normal to the outcrop 

points east. Therefore, solar illumination that is spectroscopically beneficial only occurs during the early 

morning hours. However, due to cloud formation in the early morning hours and because of the highest 

sun elevation (peak position was at ca. 1.30 p.m. in April), the best recording time was at ~2.00 p.m. 

The outcrop is approximately 50 m long with a height of approximately 6 m. The HySpex hyperspectral 

imager used in this study consists of two sensors (HySpex VNIR 1600/SWIR320 m-e), one operating in 

the visible and near infrared (VNIR: 350 nm–1000 nm) and the other operating in the shortwave infrared 

(SWIR: 1000 nm–2500 nm) [29]. These sensors were mounted on a tripod with a rotation stage and the 

entire system was installed ca. 10 m in front of the outcrop and perpendicular to the assumed REE 

enriched zones (Figure 3). High spatial resolution (pixel size) and low geometric distortion were 

achieved at the position of the REE enriched zone. The edges of the acquired images were always more 

distorted due to the rotational scanning process of the system, particularly because a field-of-view 

expander was used. The rotational acquisition was performed clockwise (from left to right), and a single 

acquisition period lasted for approximately two minutes, depending on the number of frames and the 

frame period. In this study, we only analyzed the VNIR image scene because most of the REE related 

absorption bands occurred within this specific range. The overall system settings are provided in Table 1. 
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The ground truth reflectance spectra of nine field samples (ground to a particle size < 63 µm) were 

obtained using an ASD Field spectrometer. We used a contact probe that was directly applied to the 

powdered samples to prevent stray light from superimposing the direct sample illumination and creating 

bias. Ground samples were used for these measurements because the ASD spectra were later compared 

with the chemical analyses results for the same sample powders. 

 

Figure 3. Experimental setup. The two HySpex cameras are located ca. 10 m in front of the 

outcrop. The measurement mode consisted of a clockwise rotation. 

Table 1. Campaign settings for the two HySpex cameras. A high integration time was used 

because direct illumination was not present and due to the low reflectance targets. 

Camera VNIR SWIR 

Integration time (ms) 30 30 

Frame period (ms) 31 61.753 

Frames (#) 4000 1110 

Field of view (°) 34 1 27 1 

Spectral sampling interval (nm) 3.7 6 

Radiometric resolution (bit) 12 14 

Bands (#) 160 256 

Detectors (pixel) 1600 320 
1 FOV is the Field Of View of the expander used to enable acquisition of nearly the full outcrop (height ~6 m 

in the VNIR, from a distance of 10 m). 

3.1.2. Brief Description of the Proposed Approach 

As shown in Figure 1, the REE related absorption features are so sharp that the spectral input of the 

entire spectrum would hamper the detection of small features within the matching algorithms due to the 

overestimation of the albedo and broad spectral signals (e.g., iron oxides). This result indicates the necessity 

of methods based on absorption bands, such as feature extraction [4] or modified Gaussian modeling [30]. 

These methods produce robust and reliable results for mineral mapping when the Signal-to-Noise Ratio 
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(SNR) is high, when only minor topographical variations exist, and when atmospheric scattering is low. 

Under fieldwork conditions, these criteria are unrealistic. In addition, other hampering factors must be 

considered. The identification of REE bearing minerals is, for example, aggravated when surfaces are 

partly covered (e.g., by vegetation and/or surface weathering) [31]. Additionally, atmospheric absorptions 

are spectrally adjacent to REE related absorptions, or even superimpose them. Absorption bands of 

atmospheric molecules have an unpredictable shape that depends on the atmospheric pressure and 

temperature and on different isotopes within the molecules and aerosols [32]. Consequently, the detection 

of small REE related absorption bands is complex. To overcome these difficulties, we combined two 

detection methods. First, a multitemporal approach is used to reduce noise and varying illumination due to 

the positions of clouds and the sun. The integration time used for image acquisition was determined by 

compromising between the duration of image acquisition and the signal-to-noise ratio. If the signal-to-noise 

ratio had increased when a longer integration time was used, the time difference between the first and 

last frame would have been longer than two minutes. Having an acquisition window of more than two 

minutes, effects such as sun azimuth changes, cloud movement and the movement of cars passing 

through the image potentially resulted in variations in the image quality. However, every nearly full-frame 

image was assigned for its homogeneity, and the best recording times at this particular location were 

determined. Next, the homogeneity parameters were used to obtain a weighted average of all scenes. 

Second (and afterwards), Richardson-Lucy deconvolution (R-L deconvolution), which is widely used to 

sharpen signals, was applied [33]. R-L deconvolution is performed according to the following principle. 

If absorptions are characterized by means of the albedo, all small but sharp absorption bands can be 

considered as high frequency contributions to the low frequency albedo signal according to signal 

processing theory. Thus, the wavelength dependent impulse noise would have a high frequency, and 

spectrally broad iron oxide absorptions would have a low frequency. Although a single absorption band 

only represents one oscillation, it is associated with a certain frequency. Hence, a full spectrum represents 

superimpositions of different frequencies that are located in certain ranges of the electromagnetic 

spectrum. Mathematically, R-L deconvolution is applied to enhance the spectral contrast for the frequencies 

that are related to REE absorptions. This specific high pass technique mainly sharpens absorptions, such 

as those from rare earth bearing minerals, and simultaneously preserves the shape of broader absorptions 

or the albedo. The absorption features have a shape that is similar to a Gaussian curve; thus, a Gaussian 

function was selected as a filter for R-L deconvolution. This function also addresses the assumption that 

the absorption bands represent a Gaussian distribution, regardless of the type of absorption (electronic 

field transitions or molecular motions) [34]. The definition of sigma for the Gaussian filter is a function 

of the desired REE absorption bands and must be selected beforehand. Here, the frequency of the 

Gaussian-shaped filter is twice the frequency of the smallest REE feature to avoid aliasing following the 

Nyquist Shannon theorem. The 70 nm wide neodymium feature that is the focus of this work can be 

observed in 18 VNIR HySpex channels. When the positive and negative 3σ interval (including 99.7% 

of the integral area) is equivalent to the filter width (here: 9 channels), sigma is calculated with a standard 

deviation of σ = 1.5. 
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3.1.3. Proposed Approach 

Step 1 (Figure 4) is to collect multitemporal image scenes that must be transformed to reflectance 

data. For this study, five different reference panels are used for reflectance retrieval. These reference 

panels contain 5%, 20%, 50%, 90% and 95% calibrated reflectance standards and approximate the 

optimal Lambertian reflectance targets. Regarding the spatial shape of the outcrop, the 20% panel was 

mounted near the left edge of the outcrop, the 90% panel was mounted near the right edge of the outcrop 

and the 5%, 50% and 95% panels were mounted in the center with the normal surface of each panel 

oriented to the rotating sensor. The panels are measured during each acquisition to enable reflectance 

retrieval for each image. After measuring the raw Digital Number (DN), the data were radiometrically 

scaled to radiance (ܹ ∙ ଵିݎݏ ∙ ݉ିଶ) by using radiometric calibration coefficients. Reflectance retrieval 

was performed by incorporating the panel-specific spectral and spatial averages. All panels were 

spatially delineated in each image set (an image set has the same acquisition properties). All pixel spectra 

for each panel were averaged to obtain mean panel spectra (as radiance) and successively normalized 

based on their reflectance level (e.g., 5%). A second order or greater order polynomial model was 

estimated for each image and band integrating all of the averaged and normalized panel spectra as gray 

values per band and image and their respective spatial position (pixel). Next, the polynomial model was 

inverted and applied pixel-wise to the image to retrieve the portion of incident radiation per image, band 

and pixel (irradiance). Next, this hyperspectral irradiance cube was used to normalize previously derived 

radiance values. Hence, reflectance retrieval was performed by rationing radiance to irradiance. After 

reflectance retrieval for each individual scene, a multitemporal average was generated by calculating a 

weighted mean of all single images. For this purpose, individual reflectance data cubes were evaluated 

with respect to the quality of each scene by analyzing the reference panels for spectral homogeneity. 

Spectral homogeneity was determined by calculating the standard deviations of all pixel spectra at the 

panel locations within the wavelength range where neodymium absorption features occur. The average 

for all scenes was calculated using a normalized weighting factor according to the spectral homogeneity 

as follows: 

ଓത݉തതത ൌ෍
|ܹܴതതതതത െܹܴ௜|
∑ |ܹܴതതതതത െܹܴ௜|௜௜

∙ ݅݉௜ (1)

where WR represents all image pixels of the white references within the image scenes, im is the image 

scene and i is the running number of all collected images that are to be averaged. 

In step 2 of this approach, each spectrum of the averaged image scene was smoothed using a Gaussian 

filter with the same sigma used for the R-L deconvolution to suppress the remaining noise.  

In addition, the spectrum was further transformed into relative absorption by using the following equation: 

ܵ ൌ ܵሺݔ, ,ݕ ሻߣ ൌ log
1

ଓത݉തതതሺݔ, ,ݕ ሻߣ
 (2)

where ܵሺݔ, ,ݕ  ሻ represents the smoothed absorption spectra of the averaged image scene (im). R-Lߣ

deconvolution was conducted for every absorption spectrum ܵሺݔ, ,ݕ  ሻ following the principle that theߣ

Hadamard product of the Fourier transforms in the frequency domain equals convolution in the local 

domain. Here, the Hadamard product is the product of the initial image spectrum ܵሺݔ, ,ݕ  ሻ and the filterߣ

function (H), which provides the deconvolution term as follows: 
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ܵ௜ାଵ ൌ S௜ ∘ ,ݔሺܪ ,ݕ ሻ (3)ߣ

ܪ ൌ ,ݔሺܪ ,ݕ ሻߣ ൌ
࣠ሼS଴ሽ

࣠ሼS௜ ∗ ݂ሽ
݂ (4)

The input spectrum ܵ௜ is the spectrum of a single pixel (x, y) and is flipped upside down due to 

Equation (2). In addition, ݂ is the filter function for R-L deconvolution and is the Gaussian distribution 

with a standard deviation σ = 1.5. 

 

Figure 4. Flow Chart of the REE mapping approach showing the four main steps of its 

application. The first step is the collection of the multitemporal data cube and preprocessing. 

The second step is the application of Richardson-Lucy deconvolution. The third step is the 

identification and characterization of indicative and discriminative absorption bands and image 

pixel clustering. The fourth step describes the post-processing of the data and visualization. 

In step 3, the spectra were exponentially transformed back to reflectance and the resulting spectra 

were directly used in the following steps to detect pixels that did or did not indicate REEs. The bands 

that were spectrally closest to the shoulders of the 800 nm neodymium feature were selected, and the 
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spectra between the shoulders were normalized using a straight line between the shoulders in a procedure 

known as continuum removal for features. After continuum normalization, the differences between the 

continuum and the peak of the absorption band were computed to retrieve the absorption depth. The 

peak of the absorption feature was determined precisely by resampling the reference spectrum from 

Figure 2 to the spectral channels of the HySpex imager (the 800 nm peak appeared at 803 nm). The 

positions of the two shoulders were determined using a continuum removal method (convex hull) for the 

down-sampled reference spectra. The left shoulder is at 778 nm and the right shoulder is at 840 nm. If the 

absorption depth of a pixel spectrum was higher than the three sigma of the noise (according to the 

averaged SNR) it was flagged as a REE indicative pixel. Step 4 includes outlier suppression using 

median filtering (here: 3 × 3 kernel) and coloring of the results. 

3.2. Geochemical Analysis Tools for Retrieving Complimentary Information 

3.2.1. Brief Theoretical Background of the Geochemical Methods and Sampling Design 

The imaging spectroscopy methods delivered a high-resolution synopsis of the enriched and non-enriched 

areas of the surface of the outcrop. In addition, geochemical methods contribute to the exact quantitative 

compositional analyses of certain points. To obtain an overview of the REE distribution and further 

indications of the carbonatite-forming processes, several rock samples were collected along the outcrop. 

Their chemical and mineralogical compositions were analyzed from pulverized samples and thin sections 

thereby using three different methods. The first method was inductively coupled plasma atomic emission 

spectroscopy (ICP-AES), which was used to determine the REE concentrations of the pulverized samples. 

The second method was handheld X-ray fluorescence analysis of the same pulverized samples. The third 

method used an electron microprobe (EMPA) to characterize the composition of the REE-mineral monazite 

within thin sections. When validating the performance of the REE mapping method by geochemical 

analysis, it must be remembered that remote sensing techniques only penetrate the upper nm of the 

material. The surface penetration depth is wavelength dependent, and is half that of the center 

wavelength. Thus, remote sensing techniques can only determine the amounts of REEs within the 

weathered surface. Thus, it is important to sample thin chips (a few millimeters to one centimeter thick). 

In addition, if the samples contain too much fresh rock material, they must be cut parallel to the 

weathering surface and the fresh rock must be discarded. Because both positive and negative 

spectroscopic indications must be evaluated, rock samples were collected based on a preliminary image 

analysis using the 2.3 nm calcite feature and geologic field observations at the outcrop. These findings 

and the macroscopic analysis of the outcrop were used to identify sample locations (Figure 5). Generally, 

the outcrop was macroscopically divided into three rock units. The first unit consists of the carbonatite 

surrounding rocks of fenite, which mainly consist of silicate minerals (albite, potassic feldspar, quartz). 

The second and third rock units were established in schlieren and consist of melano-carbonatites 

(melanocrate minerals: biotite, iron oxides, pyrite, hornblende) and leuco-carbonatites (leucocrate 

minerals: carbonates, mica). Samples of these types of rocks were collected and were macroscopically 

determined to include REE-enriched carbonatites (HREE), medium REE-enriched carbonatites (MREE) 

and of less REE-enriched carbonatites (LREE). The geochemical results showed that samples 7L and 8L 

were not macroscopically classified in the field and actually were highly enriched samples. 
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Figure 5. Sampling positions of the nine collected field samples. The letters within the 

descriptions of the sample locations represent the in situ interpretations of the relative sample 

enrichment (H-high, M-middle, L-low). 

3.2.2. Realization and Instrumentation for Chemical Analysis 

To validate the spectroscopic results, four geochemical analyses were conducted. Three methods  

were used to determine the elemental compositions of the field samples (see Section 3.2.1). The fourth 

method involved an analysis of the spectral behaviors of different artificial mixtures of neodymium and 

calcite carbonate. 

When used on the field samples, the first method was helpful for determining the REE concentration. 

Nine rock samples were ground to a particle size of less than 63 µm. After sample preparation, 

chromatographic separation was applied using a Na2O2 sinter dissolution procedure before ion-exchange 

separation [35]. Then, geochemical analyses were performed using ICP-AES [35]. All results were 

normalized to C1-chondrite [36]. 

The second method was used to determine the major elemental abundances of rock samples and all 

other elements that could not be detected using ICP-AES. To accomplish this, the powder from the first 

method was further analyzed by using a handheld XRF instrument (Thermo Niton XL3) [37]. 

The third method included the mineral analysis of thin sections by using an electron microprobe 

(EMPA). The rock samples were cut into slabs to produce polished thin sections with a thickness of 30 µm 

that were coated with a layer of carbon. The thin sections were analyzed to determine the elemental 

compositions of the different monazite crystals by using a stationary electron microprobe (SuperProbe Jeol 

JXA–8230) [38]. 

The fourth method was used to estimate the extent at which the collection of hyperspectral images 

from the outcrop could be used to quantitatively determine the REE contents. Therefore, a series of artificial 

mixtures was measured in the laboratory and compared with the hyperspectral field recordings. For this 

purpose, certain amounts of neodymium oxide were mixed with calcium carbonate. The neodymium and 

calcium carbonate powders both had grain sizes of less than 63 µm. The investigated neodymium oxide 

percentages were approximately 0.1%, 0.5%, 1.0%, 2.0% and 5.0%. The exact concentrations were 

achieved using a precision digital scale. All mixtures were spectroscopically measured using the HySpex 

hyperspectral imager in the laboratory and their absorption depths at 803 nm were determined. As described 

in the chapter regarding the proposed method, the absorption depth was achieved by subtracting the 

reflectance value of the absorption band from the corresponding value at the feature-based continuum. 
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Figure 6. (a) REE thematic map of the søvite outcrop based on R-L deconvolution and 

combined with absorption depth determination. Red pixels indicate the enriched portion of 

the outcrop; (b–d) are the zoom images of the most important zones. Reference panels and 

the ground control points (for georeferencing) are colored black. The image highlights the 

local neodymium distribution as an indicator for LREE. The center area (c,d) is especially 

enriched in neodymium within the surface material that spatially follows the structured bands 

of alternating white and bluish weathering surfaces. Moreover, a ca. 4 m long band can be 

observed on the left portion of the outcrop (b) that is partly identified as containing 

neodymium oxide. Modified after Boesche et al. 2014 [23]. 

4. Results 

4.1. Spectroscopy 

The results of the proposed method include a thematic map that highlights the positively identified 

neodymium pixels in red (Figure 6). The reference panels and ground control points are covered in black. 

From the first in situ macroscopic descriptions and discrete spectroscopic measurements (ASD field 

spectrometer), areas of potentially high and low neodymium concentrations were identified. These zones 

are visible as whitish zones that were identified as leuco-carbonatites, bluish to light-brown zones of 

silico-carbonatites and silicate rocks (fenites) and brownish zones of melano-carbonatites according to 

geochemical testing. The hyperspectral mapping results from the introduced approach successively 

confirmed the presence of neodymium-enriched carbonatites (Figure 6). Particularly, one important 

finding is that the outer regions of the neodymium-enriched zones (transition zones from highly enriched 
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rocks to less concentrated ore zones) are still recognized. Thus, the zones with different compositions 

can be mapped better, including their gradual decrease in the direction of the outer contact zone (Figure 6a). 

In addition, REE containing pixels could still be identified when covered with a very small weathering 

layer or thin, small-scale vegetation layer (e.g., tiny lichens). At points with dense vegetation cover, soil 

forming on the top of the protruding morphology or a dense weathering surface, continuous positive 

detection was not possible because iron coatings hamper the detection of any underlying materials [15]. 

In addition, the remaining individual positive findings (1 to 4 adjacent pixels) were mostly deleted by 

the median filter. Melano-carbonatites are one example of a weathered rock and are brownish in color 

due to iron oxide coatings. The upper right corner in Figure 6 shows false positive identifications. The 

most plausible explanation for these false positives is the presence of transmissions from the leaves of 

small plants (moss, young plants and grass) growing on the outcrop.  

4.2. Chemistry and Mineralogy 

Compared with the REE distribution pattern published in [39], the distribution diagrams that were 

obtained for the ground truth samples (ICP-AES) show two different types of REE distributions (Figure 7). 

Although one distribution type represents rock types that consist of pure calcite-carbonatites  

(Figure 7a,b), the second type consists of siderite-bearing carbonatites (Figure 7c). The first type of 

distribution is represented by samples 1H, 2H, 3H, 4M, 5M, 6M and 9L and corresponds with the REE 

distributions published in Hornig-Kjarsgaard 1998 [39]. The second type of distribution is represented 

by samples 7L and 8L and shows a trend for the LREE that has been published for sulfide bearing søvites 

in Phalaborwa, South Africa [39]. In contrast with the steep slope towards the HREE in the Phalaborwa 

samples [39], the analyzed Fen samples plateau towards the HREE. All samples show a positive 

(La/Lu)(n) ratio that ranges from 30 in the first group to 170 in the second group (i.e., siderite-bearing 

carbonatites) (Figure 7, Table 2). 

The highest LREE concentrations (La, Ce, Pr, Nd, Sm) within the first type (calcite-carbonatite) were 

obtained for sample 6M, with a concentration of approximately 860 ppm, and for sample 5M, with a 

concentration of approximately 1270 ppm. The second type (siderite-bearing carbonatite) shows high 

concentrations of the middle REEs (Eu, Gd, Tb, Dy). Compared with the first rock type (ca. 40 ppm 

MREE in total), the second rock type contains up to 290 ppm MREE with a total LREE of up to 1900 ppm. 

The handheld XRF measurements show the main differences between the two types of iron and  

the sulfur contents (see Table 3). In addition, pyrite was also visible in the hand specimen and on the 

outcrop surfaces. 

The microscale analyses for both rock types showed evenly distributed rare earth minerals (mainly 

Ce-monazites and parisites; Table 4) within a matrix of calcite and some allanite. The monazites and 

parisites appear to represent different stages of fractionation evolution or epigenetic hydrothermal 

overprint. Few Ti-rich Fe-columbites occur. The ore rocks are sporadically veined. Some parisites 

include thorite or uraninite. Minor mineral occurrences of hematite needles, apatites, pyrites, ilmenites 

and barytes are present. The average composition of the monazites is provided in Table 4. 
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Figure 7. REE distribution patterns of nine collected field samples. The values are normalized 

to C1-chondrite [36]. Graph (a) shows the REE distribution patterns of samples 1H, 2H and 

3H that were expected for the søvite outcrop, as published by [39]; Graph (b) shows four 

REE distributions of samples 4M, 5M, 6M, and 9L that mainly belong to the calcite-carbonatite 

rocks shown in graph (a). Sample 5M shows a slightly higher enrichment of light REE 

(LREE(n)) and middle REE (MREE(n)), but with the same distribution patterns as those for 

the samples in graph (a); Graph (c) shows different distributions that represent siderite-bearing 

carbonatites (7L and 8L) and indicates higher LREE(n) and MREE(n) concentrations. However, 

the MREE(n) indicates a positive anomaly. The curves plateau towards the heavy REEs 

(HREE(n)) in all three graphs. 
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Table 2. Concentrations of REEs in the nine ground samples (ppm) and the C1-chondrite 

normalizing factors. Cerium (Ce) and gadolinium (Gd) show the differences between the 

two classes of rocks. Cerium represents the distribution of the LREE and gadolinium 

represents enrichment within the MREEs in samples 7L and 8L. N/A are either values that 

are not provided in the cited literature or are erroneous ICP-AES measurements. 

 C1-Chondrite 1H 2H 3H 4M 5M 6M 7L 8L 9L 

Y N/A 48 49 51 53 61 50 168 89 58 

La 0.237 164 167 179 186 278 212 377 1032 186 

Ce 0.612 330 338 367 383 587 413 845 1699 413 

Pr 0.095 40 41 45 48 81 51 109 185 58 

Nd 0.467 130 135 146 161 282 157 442 550 178 

Sm 0.153 22 22 24 27 46 26 138 118 30 

Eu 0.058 6 6.5 7.1 7.4 13 6.7 50 35 8.3 

Gd 0.2055 16 17 18 19 32 17 155 100 23 

Tb 0.0374 N/A N/A N/A 2.9 4.2 N/A 20 11 3.4 

Dy 0.254 10 10 11 12 16 11 62 32 14 

Ho 0.0566 1.6 1.7 1.7 1.8 2.3 1.7 6.6 3.6 2.0 

Er 0.1655 4.1 4.1 4.3 4.3 4.9 4.3 8.9 6.1 4.6 

Tm 0.0255 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Yb 0.17 3.9 3.7 3.8 3.6 3.8 4.2 5.0 5.0 4.2 

Lu 0.0254 0.54 0.52 0.54 0.48 0.49 0.61 0.67 0.65 0.59 

Sc N/A 2.2 2 3.6 2.1 2.9 3.7 74 33 5.3 

Table 3. Elemental compositions of nine ground field samples analyzed using the handheld 

XRF. All samples had calcium concentrations of between ca. 35% and 45%. The lower 

calcium concentrations were observed in samples 7L and 8L. These two samples also had 

higher concentrations of iron, yttrium, thorium and uranium. However, all samples can be 

subdivided into pure calcium carbonatites (1H, 2H, 3H, 4M, 5M, 6M and 9L) and the two 

siderite bearing carbonatite samples enriched with Th, U, Y and REEs (7L and 8L). LOD 

represents the limit of detection. 

Reading No. 1H 2H 3H 4M 5M 6M 7L 8L 9L 

Duration of  

measurement (s) 
122.79 124.86 132.57 123.58 121.99 120.58 124.35 123.32 123.38 

Units ppm ppm ppm ppm ppm ppm ppm ppm ppm 

Nb 2493.48 1155.47 1694.60 2094.15 2963.61 521.13 4748.08 1578.00 1447.73 

Y 62.31 59.15 58.60 63.69 71.98 58.74 176.11 111.74 64.98 

Th <LOD <LOD <LOD <LOD <LOD <LOD <LOD 480.00 <LOD 
U <LOD <LOD <LOD <LOD <LOD <LOD 121.81 <LOD <LOD 

Units percent percent percent percent percent percent percent percent percent 
Fe 0.64 0.26 0.38 0.29 0.67 0.38 3.87 4.50 0.84 
Ca 43.35 43.24 43.33 43.69 41.39 43.29 32.32 36.23 42.56 
K 0.16 0.06 0.12 <LOD 0.09 <LOD 0.13 0.09 0.06 
S 0.13 <LOD <LOD <LOD 0.08 <LOD 0.44 1.05 0.23 
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Table 3. Cont. 

Reading No. 1H 2H 3H 4M 5M 6M 7L 8L 9L 

P 0.24 0.34 0.55 0.70 2.46 0.20 1.03 0.41 0.44 

Si 1.03 0.66 1.25 0.44 1.03 0.43 1.17 0.81 0.77 

Cl 0.01 0.01 0.01 <LOD 0.01 0.01 0.01 0.01 0.02 

Mn 0.31 0.24 0.35 0.26 0.43 0.47 0.54 0.42 0.36 

Al <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Mg <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Not detectable 52.91 53.99 52.72 53.53 52.67 54.28 57.42 54.99 53.98 

Total 99.21 99.10 99.04 99.33 99.40 99.29 97.75 99.12 99.52 

Table 4. Averaged elemental concentrations of 19 individual monazite crystals. All monazites 

are pure calcium carbonatite rocks, and due to the high amounts of cerium, all monazites are 

Ce-monazites. The presented values were determined by using electron microprobe analyses. 

Element Oxide Average Weight Percent of 19 Monazite Measurements 

P2O5  30.05 

CaO  0.79 

SiO2  0.35 

Al2O3  0.04 

FeO  0.36 

Y2O3  0.12 

La2O3  12.98 

Ce2O3  31.83 

Nd2O3  15.61 

Pr2O3  4.00 

Sm2O3  1.81 

Gd2O3  0.60 

Tb2O3  0.03 

Dy2O3  0.08 

Ho2O3  0.01 

Er2O3  0.03 

Yb2O3  0.01 

Lu2O3  <LOD 

ThO2  0.22 

UO2  <LOD 

PbO  0.02 

Total  98.94 

5. Discussion 

5.1. Validation of the Proposed Method, the Richardson Lucy Deconvolution and  

the Multitemporal Approach 

To discuss the benefits of R-L deconvolution, the results from only using the absorption band depth 

determination method and the results from after applying R-L deconvolution were compared. Many 

absorption bands were not identified until deconvolution strengthened them and made them detectable. 
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Figures 8 and 9 show that detection using R-L deconvolution was beneficial, especially for transitional 

zones with less prominent features. The graphs in Figure 8 show four different spectra of pixels that are 

good examples for different neodymium concentrations at the outcrop and are verified by geochemical 

sample analysis (sample position 1H, Figure 5). The straight line in each spectrum shows the continuum 

of the feature that was anchored at the shoulders of the 803 nm feature. The value in the legend indicates 

the absorption depth (which is the difference between the absorption band at 803 nm and the corresponding 

value of the continuum). Negative values represent non-enriched pixels because no defined absorption 

bands are mathematically describable. The yellow spectrum is extracted at the center of the ore zone and 

the red spectrum is extracted at the wall rocks of the carbonatite. The pixels that mark the transition 

between the ore zone and the wall rocks of the carbonatite are represented by orange and green spectra. 

The difference between the simple absorption depth determination and the determination of absorption 

depth is especially visible for those pixels after applying the introduced deconvolution approach. While 

the orange and yellow spectra can still be described with an absorption feature at 803 nm in both graphs, 

the green spectrum of the simple approach did not show any absorption features until after R-L 

deconvolution was applied. Thus, the introduced approach was helpful for more accurately delineating 

the borders of enriched zones. Figure 9 shows the final mapping results of the outcrop without using the 

introduced approach and compares the zoom images with those shown in Figure 6. 

 

Figure 8. A comparison between four image spectra with and without applying R-L 

deconvolution. (a) Image spectra from the simple run (without R-L deconvolution);  

and (b) image spectra from the full approach (including R-L deconvolution). The legend 

values represent the absorption depth (difference between the absorption band at 803 nm and 

its corresponding value in the continuum). Deconvolution has a high potential for mapping 

the exact borders of these zones, especially for transition pixels at the outer zones of the 

REE-enriched parts. Modified after Boesche et al. 2014 [23]. 
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Figure 9. REE thematic map based on the simple algorithm (without R-L deconvolution). 

Enriched zones cannot be identified at their full spatial extent. (a) Shows the full extent of 

the map; (b–d) are zoom images at where the original approach shows the most positive 

findings. Here, only some pixels could be identified correctly. For comparison, the results 

of the full approach shown in Figure 6b–d are shown in the zoom images (e–g). Modified 

after Boesche et al. 2014 [23]. 
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Figure 10. The impacts of using multiple image scenes for a weighted mean in the first step of 

the approach. Each run was performed using one more of the collected image scenes. The first 

run was accomplished using the image scene with the highest homogeneity for the white 

references. The SNR was calculated using the reference panels that were placed in front of the 

outcrop. Run after run, one image scene was added to the weighted mean according to its 

descending SNR. After using the best seven scenes, an increase in the number of correctly 

classified pixels was observed for the transition pixels between the enriched zones and the 

unenriched areas. From then on, every run that included one additional scene had a better result. 

Regarding the low image SNR, several image collections were taken using a multitemporal approach. 

Ten images were necessary for obtaining a good quality average. To determine the minimum number of 

images required for the first, quick REE detection and the number of images required for a high-quality 

product, all scenes were sorted with respect to reflectance panel homogeneity. Then, for each run of the 

introduced approach, each of the sorted images was added individually in descending order of their 

homogeneity. After every run, a REE thematic map was generated. After ten runs, all of the resulting 

maps were classified. To classify all of the indicative pixels for each resulting image into statistically 

significant quantiles (here four classes), the absorption depths of all spectra were scaled to values of 0 

to 255, which is a broadly accepted 8-Bit image quantization technique for suppressing noisy outliers. 

Consequently, every image had the same maximum absorption value and scaling. To establish the four 

classes as quantiles of the abundance distribution, percentage values were used to improve the 

interpretability. The first class or 10-quantile comprises all pixels with spectra showing absorption 

depths of between 100% and 90% (255–230 absorption depth value). In addition, the second class or  

10-quantile encompasses between 90% and 80% (230–204 absorption depth value), the third class or  

5-quantile encompasses between 80% and 75% (204–190 absorption depth value), and the last class or 

4-quartile represents the pixels that are below 75% (190 absorption depth value) or do not show a 

significant absorption band (0 to negative absorption depths). To compare the ten classification results 

with each other, we extracted a predefined region of interest that only covers the pixel that were flagged 

as neodymium enriched in the ten-fold weighted average image (11,343 pixel). Because the ten-fold 
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average likely provides the most reliable result, we assumed that all neodymium rich flagged pixels were 

correctly classified. Hence, the following comparison is restricted to the relative omission classification 

error when less than ten images were used. The commission error and the absolute omission error are 

not testable in this case because a dense grid of ground truth sampling (several hundred to be statistically 

accurate) was not possible in terms of the laboratory analysis periods for geochemical REE analysis. 

The results (Figure 10) show that the accuracy of the classification is not increasing linearly for all 

quantiles. Regarding the pixels that show strong features within the spectrum (absorption depths of 

between 90% and 100%), the number of correctly classified pixels does not change significantly as the 

number of averaged scenes increases (Figure 10). The same independence of the number of averaged 

scenes can be observed for non-indicative pixels. However, for pixels that mark the transition zone 

between carbonatite surrounding rocks and the ore zone (90% to 80%), the average number of scenes is 

very relevant. In this study, seven scenes were required to observe an increase in the neodymium 

detection accuracy within these transition zones. With each additional scene, a noticeable increase in 

accuracy was observed. Finally, the noise depends on many factors (weather, instrument characteristics, 

multiple reflections of surrounding objects (trees, buildings, cars, lakes, etc.)) that noise estimations 

would always count under specific measurement conditions. However, the question of how many scenes 

one would need under similar conditions to obtain an improved classification result could be answered. 

5.2. Discussion of the Results from the Introduced New Method and their Chemical Evaluation 

As described in the chemical analysis results, outcrop rock types can be divided into two different 

rock classes. Although both of the classes are carbonatites, one class contains more ore minerals (such as 

REE minerals, iron ores and pyrites). Figure 11 shows the laboratory reflectance spectra for all collected 

and powdered field samples that were measured using the ASD spectrometer. The pyrite bearing 

carbonatites are represented by the 7L and 8L spectra in orange and yellow (Figure 11). Both spectra 

show strong iron oxide features (that would superimpose the neodymium feature [15]) and a very small 

calcite absorption band. By contrast, the spectra of samples 4M and 6M, which contain medium 

enrichments of sulfates and REEs, show low iron absorption at 530 nm and 910 nm. However, the 670 nm 

feature is missing. These two features would not superimpose the 800 nm neodymium feature. Hence, 

these spectra provide robust results for spectral neodymium analysis. The zoom image in the lower right 

corner of Figure 11 shows a continuum-removed subset of the spectra that points towards the neodymium 

oxide absorption band at approximately 800 nm. The samples with the highest neodymium absorption 

are 5M, 2H and 6M. The absorption band at approximately 800 nm of sample 6M shows a shift towards 

shorter wavelength/higher energy. This shift may be explained by the higher amounts of bastnaesites or 

parisites in the ore rocks. In spectra from bastnaesite and parasite, the peak absorptions occur at 797 and 

798 nm [22]. However, in monazites, the peak position occurs at 800 nm (Figure 1). The main differences 

between the chemical bonds of the Nd3+ in monazite and in the bastnaesite solid solution series is the 

presence of a fluorine atom in the bastnaesites series. It is broadly assumed that the absorption features 

for REEs can be explained by electronic field transitions [5,21,22] in the 4f-orbitals. The 4f-orbitals are 

shielded by the 5s² and 5p6 orbitals. The inner location of the 4f-orbitals is believed to prevent 4f orbitals 

from influencing the orbitals of the host mineral [20]. However, shifts towards shorter wavelengths were 

observed and explained by Kumar et al. [21], who analyzed two different chalcogen bound Nd3+ 
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compounds, and by Misra et al. [40], who compared the absorption spectra of trifluoroacetate and 

trichloroacetate. Kumar et al. described the occurrence of a blue shift for the 800 nm feature  

(4I9/2 → 4F5/2 shift: 801 nm to 797 nm [21]) for a material in which neodymium is surrounded by SC6F5. 

Misra et al. 2006 described the 4F5/2 shift as ligand mediated pseudohypersensitive. Kumar et al. explained 

the hypersensitive transition shifts of absorption bands with changes in the covalency of the bond [21]. 

Whether this decrease results from fluorine atoms was not answered directly. However, the decrease in the 

polarizability (due to the high electronegativity) of the ligands (F) around Nd3+ is provided as an 

explanation for the decreased overlap of the ligand (F) and Nd3+ orbitals [21,40]. Further, Kumar et al. [21] 

explain the occurrence of an inverse proportionality between the shifts in peak-wavelength and the  

4f–5d energy difference. 

 

Figure 11. Resulting ASD spectra of the ground truth measurements. The zoom image shows 

(feature based) continuum-removed subsets of the ground truth measurements. The spectra 

of samples 1H, 2H, 3H, 4M, 5M, 6M and 9L show a nicely resolved calcium carbonate 

absorption band at 2.3 nm and a small superimposition of neodymium oxides. The spectra 

of samples 7L and 8L show less absorption for the calcium carbonate band. The two spectra 

clearly show three iron oxide absorption bands. Hence, the spectra are correlated with the 

chemical results in Tables 2 and 3. The 800 nm absorption band is the most diagnostic feature 

for neodymium detection. A correlation between the absorption depth and neodymium 

content is visible (especially for the spectra of samples 5M, 2H, 6M, 4M and 3H), if they 

contain no iron oxide. 

A second explanation for this shift may be the higher amount of thulium, which absorbs at 801 nm 

and superimposes the neodymium absorption band [16]. Based on the geochemical analysis used in this 

study, it was not possible to validate the shift of the 800 nm feature with the exact concentrations of 

thulium in the rock samples. However, the distribution patterns shown in Figure 7 can be used as indicators 
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for the values of thulium when analyzing general trends of the HREE plateau. Hence, Figure 7b,c show 

higher HREE values in sample 6M compared with samples 1H, 2H, 3H, 4M, 5M and 9L, and lower 

values than samples 7L and 8L. The spectra of samples 7L and 8L would not show thulium absorption 

because of the iron content. Thus, sample 6M is the only spectrum that shows the superimposed and 

widened feature of neodymium and thulium. 

 

Figure 12. Quantitative comparison between the neodymium concentrations of mixture 

samples and field samples and the corresponding hyperspectral recordings. (a) Correlation 

between the amount of neodymium oxide within a calcium carbonate powder and the 

absorption depth of the 803 nm absorption band measured with the HySpex spectrometer in 

the laboratory. The trend line is a second-degree polynomial fit. (b) Correlation of the REE 

content of the field-samples with the depths of the neodymium absorption band measured 

with the ASD field spectrometer in the laboratory. Only samples 7L and 8L occur as outliers. 

This result is due to the iron oxide content, which is shown for all field samples as index 

numbers next to the plotted points in graph (b). 

The quantitative concentration determination results of a series of laboratory measurements of artificial 

sample mixtures (CaCO3 and Nd2O3) that were compared with hyperspectral recordings revealed an 

algebraic dependence between the 800 nm absorption band (Figure 12: y-axis) and the neodymium 

concentration (Figure 12: x-axis). Figure 12a shows that for the laboratory mixtures with minor 



Remote Sens. 2015, 7 5182 

 

neodymium concentrations less than 5%, the two parameters are multiplicatively dependent with a 

polynomial grade of two. Figure 12b shows the neodymium concentration of the powdered field samples 

plotted on the x-axis and the absorption depths of the hyperspectral ASD measurements on the y-axis. 

In addition, Figure 12b shows that an algebraic dependency between the neodymium concentration and 

absorption depth may only be visible for samples with low pyrite. This observation is occurs because 

the very small amount of iron oxide (less than 10%) dramatically hampers the identification of REE related 

absorption bands (Figure 12b: values in the red circle). In addition, this observation can be explained by 

the fact that the presence of only minor concentrations of iron oxides (approximately 5%–6% FeO or 

Fe2O3) within the weathered surfaces of the rocks inhibits any reflection of the subsurface material. 

Additionally, [31] stated that a thin reddish film resulting from rubification processes (e.g., free iron 

oxides that were released from the rock and coat the surface of an outcrop) already exists and 

significantly affects the spectrum. Therefore, spectral muting in the presence of iron oxides makes 

identification of the small REE absorption bands impossible. A new study on how carbonatites erode 

and weather under Scandinavian climate conditions (rain, frost, snow, etc.) and on how mobile rare earth 

elements behave in the weathering surface is necessary for quantifying weathering as a hampering factor. 

Besides the pyrite rich samples, the algebraic dependency shows that spectroscopy has a large potential 

to semi-quantify low REE concentrations. However, superimpositions with other materials hamper 

direct quantitative estimations. To quantify the influences of vegetation coverage, the exact species, leaf 

thickness, the ability of the plant to store REEs in the fabrics of the roots or leaves and the multiple 

reflections and transmittance of the incident radiation at the vegetation pixel must be considered. 

6. Conclusions 

The results of our study provide valuable information regarding the concentrations and distributions 

of rare earth elements in carbonatites. The proposed approach is a first and robust tool for spectroscopically 

identifying rare earth elements. This approach allows for spatial mapping of distribution patterns at 

different enrichment levels and provides further insights regarding the signatures of the parental magma. 

- Spectroscopy has been identified as a powerful tool for mapping outcrops for rare earth elements, 

even under nonoptimal illumination conditions (e.g., dark materials, shadowed outcrops, low sun 

elevation angles). Remarkable hyperspectral mapping of neodymium-enriched zones is achievable if 

data acquisition conditions are good or if multitemporal scenes are collected and the outcrop has little or 

no weathered surface. 

- The R-L-deconvolution method has a high potential for resolving neodymium related absorption 

bands, even when the noise is considerably high. 

- The weighted mean of a minimum of seven scenes already allows for good mapping of transition 

zones. To locate the highly enriched zones of the outcrop, only one scene taken under good illumination 

conditions is required. 

- Our approach is suitable for analyzing outcrops that are located short distances from the sensor  

(30 m to 5 m). The presented approach provides results within a short period of ~10–30 min, including 

field measurements, and can be readily used in the field as an additional tool for mineral prospecting 

processes. We suggest applying this approach in a two-step procedure. The first step involves a run with 

a fast integration time and low multi-temporal average. This quick-result serves as a basis for setting up 
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the ideal acquisition conditions in the field (e.g., the position of the sensor, position of the white references, 

illumination angles). The second step includes the full approach with the best integration time and a high 

number of acquisitions. 

- The spectroscopic results show a direct relationship between low-pyrite carbonatites and the 

geochemical results. Therefore, this approach produces accurate results when the iron content is low. 

Nevertheless, iron and other ore minerals can be used to detect enriched zones within the carbonatite 

body because higher amounts of iron ore minerals represent a secondary indicator of sulfidic conditions 

during melt intrusion and can highlight particularly enriched zones. 

- The geochemical results show two classes of rock types within the investigated søvite outcrop.  

The first type (carbonatite) shows the expected rare earth element distribution, and the second type 

(siderite-carbonatite) contains surprisingly high amounts of the middle rare earth elements. 

Future studies should focus on the key spectral characteristics of the remaining 15 rare earth elements. 

In addition, we recommend investigating the potential of iron oxide spectroscopy as a secondary 

indicator of sulfidic melts in carbonatitic rocks. Quantifying the applicability in the presence of 

spectroscopical hampering materials, such as vegetation or iron coatings, would be very interesting. 

Additional hampering factors, such as incidence angles, illumination angles, non-optimal acquisition 

conditions (lack of white references in the images, shifts of pixel due to the unstable underground of the 

tripod) and dust should be focused on in the future. Moreover, the proposed technique could be tested at 

different scales (e.g., microscopical image collections on thin sections and remote sensing of the whole 

ore body from airborne and space borne). Finally, the geological interpretation of carbonatitic outcrops 

might be enhanced by incorporating LiDAR or from photogrammically retrieved three-dimensional 

surface models to conduct more complex spatial analyses of the mineral phases in the outcrop. This 

method would be especially useful when using the REE mapping technique for vertical 3D monitoring 

of vertical open pit mining surfaces. 
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