Skip to main content

Advertisement

Log in

Hypolimnetic oxygen conditions influence varve preservation and δ13C of sediment organic matter in Lake Tiefer See, NE Germany

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Stable carbon isotopes of sediment organic matter (δ13COM) are widely applied in paleoenvironmental studies. Interpretations of δ13COM, however, remain challenging and factors that influence δ13COM may not apply across all lakes. Common explanations for stratigraphic shifts in δ13COM include changes in lake productivity or changes in inputs of allochthonous OM. We investigated the influence of different oxygen conditions (oxic versus anoxic) on the δ13COM values in the sediments of Lake Tiefer See. We analysed (1) a long sediment core from the deepest part of the lake, (2) two short, sediment–water interface cores from shallower water depths, and (3) OM in the water column, i.e. from sediment traps. Fresh OM throughout the entire water column showed a relatively constant δ13COM value of approximately − 30.5‰. Similar values, about − 31‰, were obtained for well-varved sediments in both the long and short, sediment–water interface cores. In contrast, δ13COM values from non-varved sediments in all cores were significantly less negative (− 29‰). The δ13COM values in the sediment–water interface cores from different water depths differ for sediments of the same age, if oxygen conditions at the time of deposition were different at these sites, as suggested by the state of varve preservation. Sediments deposited from AD 1924 to 1980 at 62 m water depth are varved and exhibit δ13COM values around − 31‰, whereas sediments of the same age in the core from 35 m water depth are not varved and show less negative δ13COM values of about − 29‰. The relation between varve occurrence and δ13COM values suggests that δ13COM is associated with oxygen conditions because varve preservation depends on hypolimnetic anoxia. A mechanism that likely influences δ13COM is selective degradation of OM under oxic conditions, such that organic components with more negative δ13COM are preferably decomposed, leading to less negative δ13COM values in the remaining, undegraded OM pool. Greater decomposition of OM in non-varved sediments is supported by lower TOC concentrations in these deposits (~ 5%) compared to well-varved sediments (~ 15%). Even in lakes that display small variations in productivity and terrestrial OM input through time, large spatial and temporal differences in hypolimnetic oxygen concentrations may be an important factor controlling sediment δ13COM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bastviken D, Persson L, Odham G, Tranvik LJ (2004) Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol Oceanogr 49:109–116

    Article  Google Scholar 

  • Birks HH (2007) Plant macrofossil introduction. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 2266–2288

    Chapter  Google Scholar 

  • Brauer A, Casanova J (2001) Chronology and depositional processes of the laminated sediment record from Lac d’Annecy, French Alps. J Paleolimnol 25:163–177

    Article  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  • Brodie CR, Leng MJ, Casford JSL, Kendrick CP, Lloyd JM, Yongqiang Z, Michael IB (2011) Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem Geol 282:67–83

    Article  Google Scholar 

  • Canuel EA, Martens CS (1996) Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment-water interface. Geochim Cosmochim Acta 60:1793–1806

    Article  Google Scholar 

  • Cheung MC, Zong Y, Wang N, Aitchison JC, Zheng Z (2015) δ13Corg and n-alkane evidence for changing wetland conditions during a stable mid-late Holocene climate in the central Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 438:203–212

    Article  Google Scholar 

  • Cranwell PA (1981) Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org Geochem 3:79–89

    Article  Google Scholar 

  • Dräger N, Theuerkauf M, Szeroczyńska K, Wulf S, Tjallingii R, Plessen B, Kienel U, Brauer A (2017) A varve micro-facies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). Holocene 27:450–464

    Article  Google Scholar 

  • Dreibrodt S, Lubos C, Terhorst B, Damm B, Bork HR (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 222:80–95

    Article  Google Scholar 

  • Ellingboe J, Wilson J (1964) A quantitative separation of non-carbonate minerals from carbonate minerals. J Sediment Petrol 34:412–418

    Google Scholar 

  • Gong C, Hollander DJ (1997) Differential contribution of bacteria to sedimentary organic matter in oxic and anoxic environments, Santa Monica Basin, California. Org Geochem 26:545–563

    Article  Google Scholar 

  • Hedges JI, Hu FS, Devol AH, Hartnett HE, Tsamakis E, Keil RG (1999) Sedimentary organic matter preservation: a test for selective degradation under oxic conditions. Am J Sci 299:529–555

    Article  Google Scholar 

  • Herczeg A, Fairbanks RG (1987) Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochim Cosmochim Acta 51:895–899

    Article  Google Scholar 

  • Heyng AM, Mayr C, Lücke A, Striewski B, Wastegård S, Wissel H (2012) Environmental changes in northern New Zealand since the Middle Holocene inferred from stable isotope records (δ15N, δ13C) of Lake Pupuke. J Paleolimnol 48:351–366

    Article  Google Scholar 

  • Hollander DJ, Smith MA (2001) Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochim Cosmochim Acta 65:4321–4337

    Article  Google Scholar 

  • Ingalls AE, Aller RC, Lee C, Wakeham SG (2004) Organic matter diagenesis in shallow water carbonate sediments. Geochim Cosmochim Acta 68:4363–4379

    Article  Google Scholar 

  • Katz NJ, Katz SV, Skobiejeva EI (1977) Atlas rastitielnych ostatkov v torfach. Nedra, Moskva, p 370

    Google Scholar 

  • Kienel U, Dulski P, Ott F, Lorenz S, Brauer A (2013) Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. J Paleolimnol 50:535–544

    Article  Google Scholar 

  • Kienel U, Kirillin G, Brademann B, Plessen B, Lampe R, Brauer A (2017) Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. J Paleolimnol 57:37–49

    Article  Google Scholar 

  • Küster M, Fülling A, Kaiser K, Ulrich J (2014) Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: holocene land-use history and pedo-geomorphic response. Geomorphology 211:64–76

    Article  Google Scholar 

  • Lamb AL, Leng MJ, Mohammed MU, Lamb HF (2004) Holocene climate and vegetation change in the Main Ethiopian Rift Valley, inferred from the composition (C/N and δ13C) of lacustrine organic matter. Quat Sci Rev 23:881–891

    Article  Google Scholar 

  • Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern (2000) Geologische Karte von Mecklenburg-Vorpommern 1:500000. Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, Güstrow

  • Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584

    Article  Google Scholar 

  • Lücke A, Schleser GH, Zolitschka B, Negendank JFW (2003) A Lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany. Quat Sci Rev 22:569–580

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  • Meyers PA, Lallier-Vergés E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Developments in paleoenvironmental research, vol 2. Springer, Dordrecht, pp 239–269

    Chapter  Google Scholar 

  • Mollenhauer G, Eglinton TI (2007) Diagenetic and sedimentological controls on the composition of organic matter preserved in California Borderland Basin sediments. Limnol Oceanogr 52:558–576

    Article  Google Scholar 

  • Müller A, Voss M (1999) The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II. δ13C and δ15N ratios of organic matter—sources and sediments. Palaeogeogr Palaeoclimatol Palaeoecol 145:17–32

    Article  Google Scholar 

  • Nixdorf E, Hemm M, Hoffmann A, Richter P (2004) Dokumentation von Zustand und Entwicklung der wichtigsten Seen Deutschlands Teil 2 Mecklenburg-Vorpommern. In: Umweltbundesamt (ed) Brandenburgische Technische Universität Cottbus, Lehrstuhl Gewässerschutz, Cottbus

  • Stuiver M (1975) Climate versus changes in 13C content of the organic component of lake sediments during the Late Quarternary. Quat Res 5:251–262

    Article  Google Scholar 

  • Szeroczyńska K (2016) Long term subfossil Cladocera record from the partly varved sediment of Lake Tiefer See (NE Germany). Adv Oceanogr Limnol 7:184–196

    Google Scholar 

  • Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27, 500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110:23–37

    Article  Google Scholar 

  • Teranes JL, Bernasconi SM (2005) Factors controlling d13C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnol Oceanogr 50:914–922

    Article  Google Scholar 

  • Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geophys Geosyst 8:1–12

    Article  Google Scholar 

  • van Bree LGJ, Peterse F, van der Meer MTJ, Middelburg JJ, Negash AMD, De Crop W, Cocquyt C, Wieringa JJ, Verschuren D, Sinninghe Damasté JS (2018) Seasonal variability in the abundance and stable carbon-isotopic composition of lipid biomarkers in suspended particulate matter from a stratified equatorial lake (Lake Chala, Kenya/Tanzania): implications for the sedimentary record. Quat Sci Rev 192:208–224

    Article  Google Scholar 

  • Velichkevich FU, Zastawniak E (2008) Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe, Part 2—herbaceous dicotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  • Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Whiticar M, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim Cosmochim Acta 50:693–709

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the technicians and the coring team of GFZ-section Climate Dynamics and Landscape Evolution who assisted in the field and lab (G. Arnold, D. Berger, B. Brademann, S. Lauterbach, P. Meier, F. Ott, R. Schedel, R. Weißbach). We further acknowledge M. Köhler (MKfactory) for assistance during coring, M. Groß-Schmölders (GFZ) for helping with thin section analyses and D. Balanzategui for suggestions that improved the manuscript. We are grateful to two anonymous reviewers and the editor for their constructive comments on this manuscript. This study is a contribution to the Virtual Institute of Integrated CLimate and Landscape Evolution Analysis, ICLEA, of the Helmholtz Association (Grant Number VH-VI-415). It is also a contribution to the climate initiative REKLIM Topic 8 “Abrupt climate change derived from proxy data” and uses infrastructure of the TERrestrial ENvironmental Observatory (TERENO), both of the Helmholtz Association. Geochemical data files for the investigated Tiefer See sediment intervals are stored in the PANGAEA data library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Dräger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dräger, N., Plessen, B., Kienel, U. et al. Hypolimnetic oxygen conditions influence varve preservation and δ13C of sediment organic matter in Lake Tiefer See, NE Germany. J Paleolimnol 62, 181–194 (2019). https://doi.org/10.1007/s10933-019-00084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-019-00084-2

Keywords

Navigation