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Supplementary Figure 1 – Site characterisation for 36Cl sample site on the Fiamignano 
fault. a) Structural and geomorphic map of the area around the sample site (previously 
published in ref.1), b) View onto the sample site with the key geomorphic features 
annotated, c) Close up view of the sampled fault plane, d) View of the fault plane in 
the trench prior to sampling. All field photos were taken and annotated by the authors. 
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Supplementary Figure 2 - Site characterisation for 36Cl sample site on the Barete fault. 
a) Structural and geomorphic map of the area (overlayed on Google Earth imagery) 
around the sample site (previously published in ref.2), b) View onto the sample site 
showing the planar nature of the fault plane, c) View of the fault plane in the trench 
prior to sampling. All field photos were taken and annotated by the authors. 
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Supplementary Figure 3 - Site characterisation for 36Cl sample site on the Mt. Le 
Scalette fault. a) Structural and geomorphic map of the area (overlayed on Google 
Earth imagery) around the sample site (previously published in ref.2) b) View onto the 
sample site showing the 1997 coseismic rupture and trench, c) View along the sample 
site showing the planar nature of the fault plane. All field photos were taken and 
annotated by the authors. 
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Supplementary Figure 4 - Site characterisation for 36Cl sample site on the Leonessa 
fault. a) Geomorphic map of the area around the sample site mapped from Google 
Earth imagery and in the field, b) Stereonets of structural data from the sample site 
and along the mapped fault, c) View onto the sample site showing the planar nature 
of the fault plane and the location of samples. All field photos were taken and 
annotated by the authors.  
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Supplementary Figure 5 - Site characterisation for 36Cl sample site on the Laga fault. 
a) Structural and geomorphic map of the area (overlayed on Google Earth imagery) 
around the sample site (previously published in ref.2), b) View onto the sample site 
showing the planar nature of the fault plane and sample locations, c) View along the 
fault at the sample site showing along-strike continuity of the scarp. All field photos 
were taken and annotated by the authors. 
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Supplementary Figure 6 - Site characterisation for 36Cl sample site on the Mt. 
Vettore fault. a) Structural and geomorphic map of the area (overlayed on Google 
Earth imagery) around the sample site (previously published in ref.2), b) View onto 
the sample site with the key geomorphic features annotated, c) View onto the 
sample site showing the planar nature of the fault plane and locations of samples. All 
field photos were taken and annotated by the authors.  

1760
1780

1800

0

1820
1820

1840
1840

1860

1860

1880

1880

1900
1920

1940

3002802602402202001801601400355060

710

690

670

650

630

610

590

570

550

530

510

490

470

450

4747
310

100080 120

430

330

350

370

390

410

320

A

A’

141/63

151/68

138/64

172/67

142/57

144/65

145/62

145/72

184/57

199/65

165/62

30
164/59 30

30

25

25

30

30 35

30

35

25

62    245

65    222

68   234

72   214

Holocene gullies,
eroded into the

lower slope 

degraded free
face/upper slope

<0.5m relief
gully

<0.5m relief
gully

slight convex
slope

Last Glacial Maximum
slope- limestone

Last Glacial Maximum
slope- colluvium

KEY

limestone outcrop

Holocene scree

Holocene gully

LGM surface- colluvium

LGM surface- limestone
cosmogenic sampling site
scree (on colluvium)
geomorphic slope shape

brecciated limestone outcrop
slope orientation and dip
strike and dip measurement
kinematics, plunge - trend
drainage channel
geomorphic feature
upper slope boundary
fault scarp, poorly constrained
fault scarp, moderately constrained
fault scarp, degraded free face
fault scarp, extent of good free face

30

62   245
090/60

5.7  m

Stereonet of all measured striae
(n=4). Mean slip vector 67   230

10mA A’Scarp pro!le

mean vector
poles to planes

Mean strike/dip = 157.3/61.6 

n = 13

Striae

Fault 
planes

Mt Vettore fault. Lat.  42.86695°, Long. 13.22707°, Elevation 1800m.

Sample
site

ScarpScarp

Inter"uve between
2 gullies

Photo showing the planar nature of the fault. 1 m rule for scale

Samples

20 m

(a)

(b) (c)



Supplementary Figure 7 – 36Cl concentrations and associated slip history inversion for 
the Fiamignano fault. a) Measured 36Cl concentrations and modelled concentrations, 
b) Values for Potential Scale Reduction Factor (PSRF), PSRF < 1.05 indicates MCMC 
convergence between parallel Markov chains, c) 20 kyrs slip history with ensembles 
of least squares solutions, d) 4 kyrs slip history with ensembles of least squares 
solutions, e) 20 kyrs slip intensity, f) 4 kyrs slip intensity, g) 20kyrs slip sizes, h) 4 kyrs 
slip sizes. Panels a, e, f, g and h show the ensembles of highest likelihood solutions 
that take account of uncertainties and are penalized by priors. Panels g and h show 
events from posterior samples (with grey scale to indicate frequencies). 

-4 -3 -2 -1 0
0

500

1000

1500

2000

2500

0

Least squares solution

1000500 20001500
Number of models

Top 10,000 least squares solutions

Ac
cu

m
ul

at
ed

 d
is

pl
ac

em
en

t (
cm

)

Time (kyr)
-20 -15 -10 -5 0

0

500

1000

1500

2000

2500
Least squares solution

8006004002000
Number of models

Top 10,000 least squares solutions

Ac
cu

m
ul

at
ed

 d
is

pl
ac

em
en

t (
cm

)

Time (kyr)

-500 0 500 1000 1500 2000 2500
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Measurements
Medians
90% confidence bands
Least squares solution

C
on

ce
nt

ra
tio

ns
 o

f 36
C

l (
x1

05  a
t/g

)

Height (cm)
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

1.040

1.045

PS
R

F

Time (kyr)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0.0

0.4

0.8

1.2

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 00
50

100
150
200
250
300
350

D
is

pl
ac

em
en

t s
iz

e 
(c

m
)

Time (kyr)

In
te

ns
ity

 (c
m

/y
r)

Time (kyr)
-4 -3 -2 -1 00.0

0.4

0.8

1.2

-4 -3 -2 -1 00
50

100
150
200
250
300
350

D
is

pl
ac

em
en

t s
iz

e 
(c

m
)

Time (kyr)

In
te

ns
ity

 (c
m

/y
r)

Time (kyr)

Fiamignano fault 36Cl results

(a) 36Cl concentrations
(b) Assessing MCMC convergence of 
parallel Markov chains 

(c) 20 kyrs slip history (d) 4 kyrs slip history 

(g) 20 kyrs slip sizes (h) 4 kyrs slip sizes 

(e) 20 kyrs slip intensity (f ) 4 kyrs slip intensity 



Supplementary Figure 8 – 36Cl concentrations and associated slip history inversion 
for the Barete fault. a) Measured 36Cl concentrations and modelled concentrations, 
b) Values for Potential Scale Reduction Factor (PSRF), PSRF < 1.05 indicates 
MCMC convergence between parallel Markov chains, c) 20 kyrs slip history with 
ensembles of least squares solutions, d) 4 kyrs slip history with ensembles of least 
squares solutions, e) 20 kyrs slip intensity, f) 4 kyrs slip intensity, g) 20kyrs slip sizes, 
h) 4 kyrs slip sizes. Panels a, e, f, g and h show the ensembles of highest likelihood 
solutions that take account of uncertainties and are penalized by priors. Panels g 
and h show events from posterior samples (with grey scale to indicate frequencies). 
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Supplementary Figure 9 – 36Cl concentrations and associated slip history inversion 
for the Mt. Le Scalette fault. a) Measured 36Cl concentrations and modelled 
concentrations, b) Values for Potential Scale Reduction Factor (PSRF), PSRF < 1.05 
indicates MCMC convergence between parallel Markov chains, c) 20 kyrs slip history 
with ensembles of least squares solutions, d) 4 kyrs slip history with ensembles of 
least squares solutions, e) 20 kyrs slip intensity, f) 4 kyrs slip intensity, g) 20kyrs slip 
sizes, h) 4 kyrs slip sizes. Panels a, e, f, g and h show the ensembles of highest 
likelihood solutions that take account of uncertainties and are penalized by priors. 
Panels g and h show events from posterior samples (with grey scale to indicate 
frequencies). 
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Supplementary Figure 10 – 36Cl concentrations and associated slip history inversion 
for the Leonessa fault. a) Measured 36Cl concentrations and modelled 
concentrations, b) Values for Potential Scale Reduction Factor (PSRF), PSRF < 1.05 
indicates MCMC convergence between parallel Markov chains, c) 20 kyrs slip history 
with ensembles of least squares solutions, d) 4 kyrs slip history with ensembles of 
least squares solutions, e) 20 kyrs slip intensity, f) 4 kyrs slip intensity, g) 20kyrs slip 
sizes, h) 4 kyrs slip sizes. Panels a, e, f, g and h show the ensembles of highest 
likelihood solutions that take account of uncertainties and are penalized by priors. 
Panels g and h show events from posterior samples (with grey scale to indicate 
frequencies). 
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Supplementary Figure 11 – 36Cl concentrations and associated slip history inversion 
for the Laga fault. a) Measured 36Cl concentrations and modelled concentrations, b) 
Values for Potential Scale Reduction Factor (PSRF), PSRF < 1.05 indicates MCMC 
convergence between parallel Markov chains, c) 20 kyrs slip history with ensembles 
of least squares solutions, d) 4 kyrs slip history with ensembles of least squares 
solutions, e) 20 kyrs slip intensity, f) 4 kyrs slip intensity, g) 20kyrs slip sizes, h) 4 
kyrs slip sizes. Panels a, e, f, g and h show the ensembles of highest likelihood 
solutions that take account of uncertainties and are penalized by priors. Panels g 
and h show events from posterior samples (with grey scale to indicate frequencies). 

-4 -3 -2 -1 0
0

200

400

600

800

1000

Ac
cu

m
ul

at
ed

 d
is

pl
ac

em
en

t (
cm

)

Time (kyr)

Least squares solution

150010005000
Number of models

Top 10,000 least squares solutions

-20 -15 -10 -5 0
0

200

400

600

800

1000
Least squares solution

150010005000
Number of models

Top 10,000 least squares solutions

Ac
cu

m
ul

at
ed

 d
is

pl
ac

em
en

t (
cm

)

Time (kyr)

-100 -50 0 50 100 150 200 250 300
1.0

1.5

2.0

2.5

3.0

3.5

4.0
Measurements
Medians
90% confidence bands
Least squares solution

C
on

ce
nt

ra
tio

ns
 o

f 36
C

l (
x1

05  a
t/g

)

Height (cm)

PS
R

F

Time (kyr)
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

1.000

1.001

1.002

1.003

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0

0.1

0.2

0.3

0.4

0.5

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0

100

200

300

D
is

pl
ac

em
en

t s
iz

e 
(c

m
)

Time (kyr)

In
te

ns
ity

 (c
m

/y
r)

Time (kyr)
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

0

0.1

0.2

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0

100

200

300

D
is

pl
ac

em
en

t s
iz

e 
(c

m
)

Time (kyr)

In
te

ns
ity

 (c
m

/y
r)

Time (kyr)

Laga fault 36Cl results
(a) 36Cl concentrations

(b) Assessing MCMC convergence of 
parallel Markov chains 

(c) 20 kyrs slip history (d) 4 kyrs slip history 

(g) 20 kyrs slip sizes (h) 4 kyrs slip sizes 

(e) 20 kyrs slip intensity (f ) 4 kyrs slip intensity 



Supplementary Figure 12 – 36Cl concentrations and associated slip history inversion 
for the Mt. Vettore fault. a) Measured 36Cl concentrations and modelled 
concentrations, b) Values for Potential Scale Reduction Factor (PSRF), PSRF < 1.05 
indicates MCMC convergence between parallel Markov chains, c) 20 kyrs slip history 
with ensembles of least squares solutions, d) 4 kyrs slip history with ensembles of 
least squares solutions, e) 20 kyrs slip intensity, f) 4 kyrs slip intensity, g) 20kyrs slip 
sizes, h) 4 kyrs slip sizes. Panels a, e, f, g and h show the ensembles of highest 
likelihood solutions that take account of uncertainties and are penalized by priors. 
Panels g and h show events from posterior samples (with grey scale to indicate 
frequencies). 
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Supplementary Figure 13 – Effect of uncertainty in H-Sc (total slip in the plane of the 
fault) on the MCMC inverted slip history and resultant differential stress change 
(Dsdiff) for the Mt. Vettore fault scarp. This figure shows that the derived slip-histories 
are relatively insensitive to metre-scale errors in throw across the scarps that may 
occur due to scarp profile construction and interpretation. Repeat surveys provide 
confidence that errors in throw across the scarps are, in general, <± 1m and 
therefore we are confident in the first-order patterns of the slip history derived from 
our modelling. 
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Supplementary Figure 14 - Degradation of Fiamignano data to investigate sensitivity 
to sample spacing. We progressively degrade the dense sampling for the 
Fiamignano fault to investigate the effect of lower sampling resolution on other fault 
scarps. The data is degraded to a point where two well-constrained historical 
earthquake sequences (1349 AD; 485-505 to 847AD, see ref.1) resolvable with the 
full data disappear. This supplement shows that the <~0.5 m 36Cl sample spacing we 
have achieved for the sites analysed is adequate to resolve the slip-rate changes we 
claim, and thus lends confidence to our interpretation of other sites in the paper. 
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Supplementary Figure 15 – Total Coulomb Stress Transferred (CST) on the 
Leonessa fault from contributing faults during the period of quiescence from 16 – 3.5 
ka (as evidenced from 36Cl analyses). a) Total CST accumulated on the Leonessa 
fault, b) CST contribution from slip on the Barete fault, c) CST contribution from slip 
on the Fiamignano fault, d) CST contribution from slip on the Laga fault, e) CST 
contribution from slip on the Mt. Le Scalette fault, f) CST contribution from slip on the 
Mt. Vettore fault. 
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Supplementary Figure 16 – Total Coulomb Stress Transferred (CST) on the Mt. 
Vettore fault from contributing faults during the period of quiescence from 3.5 - 0 ka 
(as evidenced from 36Cl analyses). a) Total CST accumulated on the Mt. Vettore 
fault, b) CST contribution from slip on the Leonessa fault, c) CST contribution from 
slip on the Fiamignano fault, d) CST contribution from slip on the Barete fault, e) 
CST contribution from slip on the Laga fault, f) CST contribution from slip on the Mt. 
Le Scalette fault. 
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Supplementary Figure 17 – Total differential stress (Dsdiff) on the Leonessa shear 
zone from contributing faults during the period of quiescence from 16 – 3.5 ka (as 
evidenced from 36Cl analyses). a) Total Dsdiff accumulated on the Leonessa fault, b) 
Dsdiff contribution from slip on the Barete fault, c) Dsdiff contribution from slip on the 
Fiamignano fault, d) CST contribution from slip on the Laga fault, e) Dsdiff 
contribution from slip on the Mt. Le Scalette fault, f) Dsdiff contribution from slip on the 
Mt. Vettore fault. 
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Supplementary Figure 18 – Total differential stress (Dsdiff) on the Mt. Vettore shear 
zone from contributing faults during the period of quiescence from 3.5 - 0 ka (as 
evidenced from 36Cl analyses). a) Total Dsdiff accumulated on the Mt. Vettore fault, b) 
Dsdiff contribution from slip on the Leonessa fault, c) Dsdiff contribution from slip on 
the Fiamignano fault, d) Dsdiff contribution from slip on the Barete fault, e) Dsdiff 
contribution from slip on the Laga fault, f) Dsdiff contribution from slip on the Mt. Le 
Scalette fault. 
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Supplementary Figure 19 - Sensitivity tests for chosen values of stress exponent3 
and absolute differential stress4 (sdiff) at 15-24 km. Our chosen values from the 
literature show a high R2 value (i.e. low misfit) between measured and implied Slip 
Rate Enhancement (SRE). 
 
 



 
Supplementary Figure 20 - Sensitivity test of a) the calculated differential stresses, b) 
the slip rate difference factor which compares the slip rate in clusters/anti-clusters, 
and c) implied slip-rate histories associated with the interpreted values of slip across 
the fault scarps. We calculate the effect of assuming that throw values for all scarps 
could be ±2 m (a range bigger than our estimate of the uncertainty for individual 
scarps made in the field which is in the range of ±1 m, shown by the red lines). The 
similarity between implied slip histories in (c) suggests our overall conclusions are 
relatively insensitive to the interpreted slip across the scarps. 
 



Fault (Site 
ID) 

Elevation 
(m) 

Latitude 
(˚N) 

Longitude 
(˚E) α1 (˚) β2 (˚) γ3 (˚) 

Scarp 
H-Sc4 
(cm) 

Trench H-tr4 
(cm) 

Leonessa (L) 1063 42.56138 12.95964 25.5 63.0 26.7 793 140 
Barete (BAR) 871 42.46875 13.26943 18.0 40.0 31.0 1730 140 
Mt. Vettore 
(MV) 1800 42.86695 13.22707 29.0 60.0 29.0 654 75 
Mt. Le 
Scalette (CO) 975 43.06345 12.91527 14.0 60.0 29.0 1286 120 
Laga (LA) 1502 42.59829 13.36777 29.0 54.0 29.0 1112.5 100 
(1) Dip of the colluvial wedge 
(2) Dip of the preserved bedrock fault scarp 
(3) Dip of the upper slope 
(4) Calculated in the plane of the fault 

 
Supplementary Table 1 – Scarp modelling parameters used for 36Cl modelling. 
Parameters used for modelling the 36Cl samples from the Fiamignano fault are 
published in ref. 1. The Site ID given corresponds to the site IDs used in 
Supplementary Data 1. 
 

Fault name Fault 

length 

(km) 

Fault 

dip 

(•) 

Downdip 

length 

(km) 

Fault 

area 

(km2) 

Mmax ASS/

MS 

ASS/

AS 

Max. 

slip 

(m) 

Slip @ 

cosmo 

site (m) 

Barete 19.7 42 22.4 441.6 6.66 0.71 1.41 2.40 0.64 

Fiamignano 30.7 53 18.8 576.6 6.78 0.70 1.39 3.10 1.22 

Laga 30.2 53 18.8 567.2 6.77 0.72 1.39 3.00 1.16 

Leonessa 14.3 62 17.0 242.9 6.41 0.69 1.38 2.00 0.43 

Mt. Le 

Scalette 

18.0 62 17.0 305.8 6.51 0.68 1.40 2.40 0.83 

Mt. Vettore 32.9 63 17.0 558.9 6.76 0.69 1.32 3.20 1.13 

 
Supplementary Table 2 – Parameters used to calculate the characteristic earthquake 
magnitude modelled on the faults discussed and to constrain the proportion of slip that 
occurs at the surface compared to depth. The concentric slip distribution assumes a 
symmetrical triangular surface slip distribution.  ASS/MS = Average SubSurface 
displacement/Mean Surface displacement. AS/MS = Average subsurface 
displacement/Average Surface displacement. 
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