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Abstract. Glacial isostatic adjustment (GIA) is a major
source of uncertainty for ice and ocean mass balance es-
timates derived from satellite gravimetry. In Antarctica the
gravimetric effect of cryospheric mass change and GIA are of
the same order of magnitude. Inverse estimates from geodetic
observations hold some promise for mass signal separation.
Here, we investigate the combination of satellite gravimetry
and altimetry and demonstrate that the choice of input data
sets and processing methods will influence the resultant GIA
inverse estimate. This includes the combination that spans
the full GRACE record (April 2002–August 2016). Addi-
tionally, we show the variations that arise from combining
the actual time series of the differing data sets. Using the
inferred trends, we assess the spread of GIA solutions ow-
ing to (1) the choice of different degree-1 and C20 prod-
ucts, (2) viable candidate surface-elevation-change products
derived from different altimetry missions corresponding to
different time intervals, and (3) the uncertainties associated
with firn process models. Decomposing the total-mass sig-
nal into the ice mass and the GIA components is strongly
dependent on properly correcting for an apparent bias in
regions of small signal. Here our ab initio solutions force
the mean GIA and GRACE trend over the low precipita-
tion zone of East Antarctica to be zero. Without applying
this bias correction, the overall spread of total-mass change
and GIA-related mass change using differing degree-1 and
C20 products is 68 and 72 Gt a−1, respectively, for the same
time period (March 2003–October 2009). The bias correc-
tion method collapses this spread to 6 and 5 Gt a−1, respec-
tively. We characterize the firn process model uncertainty

empirically by analysing differences between two alterna-
tive surface mass balance products. The differences prop-
agate to a 10 Gt a−1 spread in debiased GIA-related mass
change estimates. The choice of the altimetry product poses
the largest uncertainty on debiased mass change estimates.
The spread of debiased GIA-related mass change amounts to
15 Gt a−1 for the period from March 2003 to October 2009.
We found a spread of 49 Gt a−1 comparing results for the pe-
riods April 2002–August 2016 and July 2010–August 2016.
Our findings point out limitations associated with data qual-
ity, data processing, and correction for apparent biases.

1 Introduction

The quantification of recent and current sea level changes
plays a crucial role for local, regional, and global projections.
Mass changes of the Greenland and Antarctic ice sheets are
responsible for approximately 20 % of the global mean sea
level rise between 1991 and 2010 (Church et al., 2013).
Space gravimetry observes temporal gravity changes which
result from mass redistribution on and in Earth. An ice mass
trend estimation can be determined using time-variable grav-
ity fields from the Gravity Recovery And Climate Experi-
ment (GRACE) mission (e.g. Groh et al., 2014; Forsberg
et al., 2017), which is continued by its follow-on mission
GRACE-FO.

Large uncertainty in the ice mass change estimates derived
from space gravimetry is related to viscoelastic deformation
of the solid Earth by glacial isostatic adjustment (GIA). This
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is the deformation of the solid Earth due to loading varia-
tions through sequences of past glacial advance and retreat
over many millennia. The manifestation of ice sheet and GIA
mass change signals is superimposed and is of the same or-
der of magnitude over Antarctica (Sasgen et al., 2017). This
requires GIA to be carefully considered when determining
ice mass change. Moreover, quantified GIA provides insights
into the glacial history of ice sheets or changing tectonic
stress (Johnston et al., 1998).

One approach to determine the GIA signal is forward mod-
elling (e.g. Ivins and James, 2005). GIA forward models
are obtained using assumptions about the ice load history
and the solid-Earth rheology, which are both subject to large
uncertainties (Whitehouse, 2018; Whitehouse et al., 2019).
GIA-induced vertical bedrock elevation change (BEC) de-
rived from the Global Navigation Satellite System (GNSS)
observations have been used to constrain forward models
(e.g. King et al., 2010; Ivins et al., 2013; Whitehouse et al.,
2012) or, more recently, to test probabilistic information of
a suite of globally consistent forward models (Caron et al.,
2018). Caron and Ivins (2020) used this method to investi-
gate the regional GIA signal over Antarctica and to separate
the contributions from oceanic and far-field regions.

In an alternative approach, satellite gravimetry and altime-
try are combined to separate the GIA and ice-related mass
signals (Wahr et al., 2000). Both spaceborne techniques ob-
serve a superposition of GIA and ice sheet change signals.
For example, satellite altimetry observes surface elevation
changes (SECs), some of which are caused by GIA-induced
BEC. The combination requires assumptions about the re-
lation between surface geometry changes and gravity field
changes induced by GIA and likewise between the respective
changes induced by ice sheet processes. These relations may
be expressed in terms of effective densities. This combina-
tion approach was first implemented by Riva et al. (2009) and
later refined by Groh et al. (2012) and Gunter et al. (2014).
Hereinafter they are called the inverse (Whitehouse, 2018)
because they use present-day observations to determine the
GIA signal (in contrast to forward models). Results from
Riva et al. (2009) fit better with GNSS-derived GIA rates
than forward models (Thomas et al., 2011).

Recent studies separate the individual processes of the
ice sheet and the underlying bedrock with statistical mod-
elling (Zammit-Mangion et al., 2015; Martín-Español et al.,
2016a). They use spatial and temporal a priori informa-
tion (from numerical simulations), additional GNSS obser-
vations, and altimetry data of several satellite missions. Fur-
thermore, a joint inversion has been presented that takes
into account the rheological parameters of the solid Earth
(Sasgen et al., 2017). Engels et al. (2018) use a regularized
parameter estimation approach (dynamic patch) to resolve
the superimposed mass trends in Antarctica. Martín-Español
et al. (2016b) compared available GIA solutions from for-
ward modelling and inverse estimation and have shown that
differences are larger than indicated uncertainties.

We analyse the sensitivity of inverse GIA estimation on
the choice of data input and methodology, thereby identify-
ing both the possible causes of discrepancies and the uncer-
tainty. Our inverse GIA estimation is based on the approach
of Gunter et al. (2014) but uses both contrasting and up-
dated data sets. Special attention is paid to surface processes,
namely changes of mass and volume of the firn layer. By the
term firn, we assume both snow and firn. In inverse GIA es-
timation, changes in the firn layer need to be separated from
those in the ice layer below. For that purpose, the surface
mass balance (SMB) as well as the volume change from the
firn layer are needed. These are usually provided by regional
climate models like RACMO2 (van Wessem et al., 2018) and
firn densification models (FDMs) forced with climate mod-
els, like IMAU FDM (Ligtenberg et al., 2011). Uncertainties
of these model products are poorly known. Here, we charac-
terize the uncertainty by comparing the RACMO2.3p2 SMB
products with those of the MAR model (Agosta et al., 2019).

Another focus of this research is on the use of ice altimetry
data. Different altimeter missions such as Envisat, ICESat, or
CryoSat-2 use different observation techniques and differ in
their spatial and temporal coverage. The multi-mission (MM)
altimetry data set delivered by Schröder et al. (2019a) is well
suited for a GIA inversion over nearly the full GRACE obser-
vation period (April 2002–August 2016). The effect of using
different gravity field solutions from the GRACE process-
ing centres and different filtering options is shown by Gunter
et al. (2014). We use different degree-1 and C20 products to
quantify their effect on inverse GIA estimation. We contrast
estimates derived by combining linear trends of input data to
estimates derived by combining monthly-sampled time series
of input data.

Section 2 derives and describes in detail the combination
approach, bias corrections using the low-precipitation zone
(LPZ) of East Antarctica, estimation of the mass balance,
and filtering. Afterwards, we explain how the errors for the
firn process models are characterized and how the sensitivity
analysis is performed. Furthermore, the approach is adapted
to extract a more nuanced and self-consistent combination of
input-data time series. Section 3 describes the products em-
ployed, processing steps, and additional assumptions. Sec-
tion 4 presents results of derived uncertainties of the firn
process models, the sensitivity analysis, and the time-series-
based combination. Finally, the results are discussed and the
most important findings are summarized in the conclusions.

2 Methods

2.1 Combination approach

Wahr et al. (2000) were the first to suggest the combination
of satellite geodetic methods – gravimetry and altimetry –
to estimate GIA. We use the analytical approach from Wahr
et al. (1998) to explain gravity changes by mass changes pro-
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jected into a spherical layer (with radius a) – termed area
density changes (ADCs) or surface density changes. Note
that a change of mass is with respect to a reference mass
distribution. Based on GRACE solutions given in the spher-
ical harmonic domain, the conversion of changes in Stokes
coefficients with degree n and order m (1cnm) into spherical
harmonic coefficients of ADC (1κnm) is

1κnm =
2n+ 1
1+ k′n

ME

4πa21cnm, (1)

where ME is the total mass of the Earth, a the equatorial ra-
dius of the reference ellipsoid, and k′n the second-load Love
number to account for the deformation potential of the solid
Earth induced by the mass redistribution. The linear ADC
κ̇nm is synthesized into spatial domain ṁgrav, which is the
superposition of the ADC through GIA, and processes in the
ice (ID) and firn layer:

ṁgrav = ṁGIA+ ṁID+ ṁfirn. (2)

While GIA is not a process of ADC, ṁGIA is defined as
the apparent ADC that would induce a gravity field ef-
fect equal to the GIA-induced gravity field effect. We re-
fer to ṁGIA (as well as spatial integrals of ṁGIA) as GIA-
related mass change. ID summarizes all processes which are
weighted with ice density, e.g. ice-dynamic flow or basal
melt. We summarize the ice-induced, or cryospheric, area
density trend as ṁice = ṁID+ ṁfirn.

Analogously, the overall linear SEC derived from altime-
try ˙̃halt is the sum of the linear SEC through ID, firn, GIA,
and elastic BEC:

˙̃
halt = ḣGIA+ ḣelastic+ ḣID+ ḣfirn. (3)

Note that GIA refers to the viscoelastic deformation of the
solid Earth. The elastic BEC (ḣelastic) triggered by present-
day ice mass changes needs to be subtracted from the overall
SEC observed by altimetry ˙̃halt prior to the combination. We
define ḣalt =

˙̃
halt− ḣelastic. Doing this, the SEC signals in ḣalt

are consistent with ADC signals in ṁgrav.
The process-related elevation and area density changes are

linked with effective density assumptions (ρGIA, ρID):

ṁGIA = ρGIA · ḣGIA, (4)
ṁID = ρID · ḣID. (5)

Rearranging Eq. (3) to

ḣID = ḣalt− ḣfirn− ḣGIA (6)

and substituting it together with Eqs. (4) and (5) into Eq. (2)
leads to

ṁgrav = ρGIAḣGIA+ ρID(ḣalt− ḣfirn− ḣGIA)+ ṁfirn, (7)

which can be solved for

ḣGIA =
ṁgrav− ρID(ḣalt− ḣfirn)− ṁfirn

ρGIA− ρID
. (8)

In Gunter et al. (2014), Eq. (8) is modified with a crite-
rion to include assumptions about the difference ḣalt− ḣfirn
using a priori uncertainties. ρID is replaced by ρα to permit
the following case distinction:

ḣGIA =
ṁgrav− ρα(ḣalt− ḣfirn)− ṁfirn

ρGIA− ρα
, (9)

where

ρα =


ρID, (I) if ḣalt− ḣfirn < 0

and |ḣalt− ḣfirn|> 2σh
ρfirn, (II) if ḣalt− ḣfirn > 0

and |ḣalt− ḣfirn|> 2σh
0, (III) otherwise

(10)

with

σh =
√
σ 2
ḣalt
+ σ 2

ḣfirn
. (11)

The case distinction accounts for uncertainties in altimetry
and in the firn densification model (FDM) as well as a priori
knowledge on ice sheet processes. The GIA-induced BEC
is in the millimetre per year range, whereas ḣfirn and ḣID
can be in the centimetre to metre per year range. If altime-
try and FDM are perfect, ḣalt− ḣfirn would leave essentially
ḣID (apart from a very small ḣGIA). The following case dis-
tinctions are made.

– Case I. If differences between ḣalt and ḣfirn are signif-
icantly negative, an ice-dynamic-induced SEC is as-
sumed (glacial thinning). Gunter et al. (2014) argue that
only one region in Antarctica is known to show glacial
thickening: the area of the Kamb Ice Stream (Retzlaff
and Bentley, 1993; Wingham et al., 2006). This region
is therefore treated separately by a mask which sets ρα
to ρID. The mask is generated from positive SEC from
altimetry in this area.

– Case II. If differences between ḣalt and ḣfirn are signif-
icantly positive, it is assumed that the FDM underesti-
mates SEC due to firn processes and the remaining part
therefore must not be weighted with ice density but with
firn density.

– Case III. If differences between ḣalt and ḣfirn are not sig-
nificant (with an absolute value smaller than 2σh), those
differences are ignored by setting ρα = 0, which means
ṁGIA = ṁgrav−ṁfirn. That is, no mass change in the ice
layer is considered and a mass trend of the ice sheet only
arises by the trend of cumulated surface mass balance
anomalies.
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Making this case distinction for ρα has the advantage of solv-
ing for GIA without a predefined spatial mask to distinguish
between firn and ice processes (e.g. density mask in Riva
et al., 2009) except for the Kamb Ice Stream. An underes-
timated σh leads to differences between ḣalt and ḣfirn being
included in the mass balance, although they are within their
true uncertainty bounds and vice versa if σh is overestimated.

2.2 Bias corrections and estimation of the mass balance

The following steps are performed in sequence.

– Step 1. Estimation of biased ḣGIA using the data combi-
nation approach (Eq. 9).

– Step 2. Removing the bias from ḣGIA, leading to the de-
biased ˙̃hGIA.

– Step 3. Removing the bias from ṁgrav, leading to the
debiased ˙̃mgrav.

– Step 4. Estimation of the debiased ice mass trend from
debiased GIA-related mass trend (Step 2) and debiased
total-mass trend (Step 3).

The bias corrections are necessary to consider offsets intro-
duced by systematic errors in degree-1 and C20. The estima-
tion of the bias is done using the same strategy as Gunter
et al. (2014). They argue that the effect of such offsets is
significantly larger than potential mass signals in a low-
precipitation zone (LPZ) of the East Antarctic Ice Sheet.

In Step 2, the LPZ-based GIA bias correction is applied. It
is assumed that the GIA-induced BEC should be negligibly
small in this area. The GIA estimate from Step 1, averaged
over the LPZ, ˙hGIA,LPZ, is interpreted as a bias due to the
input data sets. It is subtracted from ḣGIA. The debiased GIA-
induced BEC is
˙̃
hGIA = ḣGIA−

˙hGIA,LPZ. (12)

From this we derive the debiased GIA-related mass trend

˙̃mGIA =
˙̃
hGIA · ρGIA. (13)

This means that input-data-set biases are jointly removed.
Removing a small GIA-induced BEC introduces an error in
the final result. GIA models predict approximately −3 to
+1 mm a−1 in the area of the LPZ (Whitehouse et al., 2019).
Gunter et al. (2014) argue that the error introduced by the
LPZ bias correction is smaller than other bias contributors.

In Step 3, the LPZ-based GRACE bias correction is ap-
plied. ADCs from gravimetry are calibrated to the LPZ by
removing the mean ADC in this area, ṁgrav,LPZ. The debi-
ased gravimetric ADC is

˙̃mgrav = ṁgrav− ṁgrav,LPZ. (14)

In Step 4, the debiased ice mass trend is calculated as

˙̃mice = ˙̃mgrav− ˙̃mGIA. (15)

Note that the gravimetric bias correction is not applied to
ṁgrav used in Step 1, the initial combination (Eq. 9).

2.3 Filtering

For the necessary noise suppression we use GRACE data
with a de-striping filter applied (FDS(ṁgrav)) in addition to
the filtering implied by the spherical harmonic truncation.
Ideally, the data and models involved in the combination
should have consistent spatial resolution; that is, they should
be filtered consistently. This is not strictly possible for the
quotient (ṁgrav)/(ρGIA−ρα) in Eq. (9) because no unfiltered
ṁgrav is available that could be divided by (ρGIA−ρα) before
filtering. Pragmatically, components with a similar spatial
resolution are combined before they are filtered with a Gaus-
sian filter F . Hence, we obtain a filtered GIA-induced BEC:

F̃(ḣGIA)=
F(FDS(ṁgrav))

F(ρGIA− ρα)
−F

(
ρα(ḣalt− ḣfirn)− ṁfirn

ρGIA− ρα

)
. (16)

For integrating mass trends in space, the signal redistribution
(leakage) is taken into account by a buffer zone equal to the
half-response width of the Gaussian filter appended to the
grounding line of the ice sheet (Sect. 4.2). We do not cor-
rect for leakage through ocean mass signal separately as it
amounts to only 4.5 Gt a−1 (Gunter et al., 2014). This ocean
mass leakage is the same in every experiment, because we do
not test the sensitivity to filters.

2.4 Uncertainty characterization of firn process models

In Eqs. (9) and (10), assumptions on uncertainties of the
FDM and altimetry are crucial. Gunter et al. (2014) take
σḣalt

from the formal uncertainty of the least-squares esti-
mation. σḣfirn

can be derived in the same way from the es-
timated trend of FDM SEC for the observation period. Note
that both uncertainties are derived from stochastic informa-
tion of the least-squares estimation rather than from an uncer-
tainty characterization of the measurements and the model.
Gunter et al. (2014) have also performed an uncertainty anal-
ysis of the combination result. For this purpose, they define
the SMB-related uncertainty as 10 % of the estimated trend
value, referring to Rignot et al. (2008). Note that the uncer-
tainty assessment by Rignot et al. (2008), which amounts to
10 %–30 % of the signal, is applied to a different physical
quantity than ḣfirn: namely to the snow accumulation in a
drainage basin.

Because there is no comprehensive regional climate model
ensemble, we quantify the error of firn process models by
statistics on differences between two models. We use differ-
ences of trends of cumulated surface mass balance anomalies
(cSMBAs) and of firn thickness trends. We assume those dif-
ferences are due to modelling errors. This characterization
comprises only a part of the full uncertainty, because it is
based on two alternative climate model products.
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2.5 Time-series-based combination

Previous studies combining gravimetry and altimetry are
based on linear seasonal deterministic models over certain
periods (Riva et al., 2009; Gunter et al., 2014; Martín-
Español et al., 2016a; Sasgen et al., 2017; Engels et al.,
2018). However, signals in the firn and ice layer over the
Antarctic Ice Sheet (AIS) show inter-annual changes (Hor-
wath et al., 2012; Ligtenberg et al., 2012; Mémin et al.,
2015). In theory, combining observations on a time series
level will lead to a linear GIA signal. For T months the vector

mgrav = {mgrav(t = 1), . . .,mgrav(t = T )} (17)

contains the differences in mass at month t = 1, . . .,T with
respect to a reference mass distribution. The combination of
all time series is

hGIA =
mgrav− ρID(halt−hfirn)−mfirn

ρGIA− ρID
. (18)

This requires that all data are available as monthly gridded
products. To simplify, we assume that effective densities do
not change over time. To be consistent with the combination
of trends, ρID is replaced with ρα from the trend-based ap-
proach.

The data and models of every month are filtered in the
same way as for the trend-based approach to make the res-
olution consistent (Sect. 2.3). Afterwards they are combined
according to Eq. (18), which results in a GIA time series for
each grid cell.

By assumption the GIA signal in the resulting time se-
ries hGIA is linear over decades of satellite observations (e.g.
Huybrechts and Le Meur, 1999). A fitted trend to hGIA is
ḣGIA. We are aware that for regions with a low-viscosity as-
thenosphere, e.g. Pine Island Bay, the viscoelastic deforma-
tion associated with GIA may be non-linear even for decadal
periods (Barletta et al., 2018). In this case, the assumption of
a linear GIA-induced BEC introduces an error.

2.6 Sensitivity analysis

The sensitivity of inverse GIA estimates to different data,
models, and assumptions is quantified. Starting from a refer-
ence experiment, certain parameters are changed. Every ex-
periment is performed with and without the two LPZ-based
bias corrections to demonstrate their effect. It is examined
how different altimetry data (Sect. 3.1), degree-1 and C20
products (Sect. 3.2), and the empirically determined errors
of the firn process models (Sect. 4.1) affect the GIA solution.
Analogous to Riva et al. (2009) and Gunter et al. (2014), a
Gaussian filter (half-response width = 400 km) is applied to
all data sets. For the integration of mass trends over the AIS,
the West Antarctic Ice Sheet (WAIS), and the East Antarctic
Ice Sheet (EAIS), we use a buffer zone of 400 km grounding-
line distance to mitigate leakage. The Antarctic Peninsula
(AP) is not considered separately here.

For each inverse GIA solution, the integrated mass change
is calculated. In addition, a root-mean-square (rms) differ-
ence with respect to the reference experiment is determined,
hereinafter referred to as the rms difference from reference
experiment (RMSRE),

RMSRE =

√√√√ 1
N

N∑
i=1

(
ḣGIA,comp,i − ḣGIA,ref,i

)2
. (19)

Here, N is the number of grid cells of a Cartesian grid in the
polar stereographic projection of the AIS area (EPSG: 3031)
including the buffer zone. ḣGIA,comp refers to the GIA
solution which is compared to the reference experiment
(ḣGIA,ref). The RMSRE values are sensitive to regional differ-
ences, which may be hidden in the comparison of integrated
mass trends.

The sensitivity to the choice of firn process models is in-
vestigated as follows: based on the comparison of two firn
process models, empirical samples of error patterns are gen-
erated. They are added to ḣfirn and ṁfirn and propagated to
the empirical GIA estimates. Additionally, all identified trend
differences of cSMBAs are added to ḣfirn and ṁfirn.

Furthermore, the dependency on differing time periods
is investigated. Under the assumption that GIA is linear in
time, the used time interval should have negligible influ-
ence. While the time interval for the reference experiment
is March 2003–October 2009 (according to Gunter et al.,
2014), alternative periods are the main GRACE observation
period (April 2002–August 2016) and the overlap period be-
tween GRACE and CryoSat-2 (July 2010–August 2016).

3 Data and models

This section specifies the data sets and processing steps used
in the sensitivity experiments which are summarized in Ta-
ble 1. Furthermore, models and assumptions are explained.
Reference system parameters are chosen according to the
IERS Conventions (Petit and Luzum, 2010).

3.1 Altimetry

The SECs from Schröder et al. (2019a) are based on a
repeat-altimetry analysis in a multi-mission altimetry (MM
altimetry) framework. Data from the Seasat, Geosat, ERS-1,
ERS-2, Envisat, ICESat, and CryoSat-2 missions are com-
bined, resulting in a monthly sampled time series on a 10 km
grid. The reader is referred to Schröder et al. (2019a) for
details on processing and background information. In order
to combine the altimetry time series with GRACE, we use
the monthly results from April 2002 at the earliest to Au-
gust 2016 at the latest. This period involves observations of
ERS-2, Envisat, ICESat, and CryoSat-2 missions (Fig. 1a).
The altimetry missions have a different spatial and temporal
sampling, e.g. ICESat’s campaign-style temporal sampling.

www.the-cryosphere.net/14/349/2020/ The Cryosphere, 14, 349–366, 2020
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Figure 1. (a) Surface elevation change (SEC) from the multi-mission altimetry product (Schröder et al., 2019a), (b) GRACE-derived area
density changes (ADC), and (c) FDM-derived SEC (time period: April 2002–August 2016). A Gaussian filter was applied to the GRACE
result (half-response 250 km). Low-precipitation zone (LPZ) (green, c).

Further, the data quality varies over mission lifetime. For
this reason every month of the combined time series differs
in spatial coverage. We obtain a linear rate over the respec-
tive intervals by adjusting an offset and a linear trend to the
MM time series for each cell of the 10 km grid. For the ref-
erence experiment no annual periodic signal is co-estimated
in order to be consistent with Gunter et al. (2014). We apply
weights according to the uncertainty estimates of each epoch
of the MM time series. We took the criterion that the trend
would only be estimated for a grid cell if more than 5 months
with observations are available and at least 80 % of the se-
lected total time span is covered. This criterion should avoid
outlier trends through insufficient sampling. The uncertainty
σḣalt

used in Eq. (11) is the a posteriori standard deviation
derived from the least-squares adjustment of the MM time
series.

To investigate how the choice of altimetry products affects
the GIA estimation, single-mission time series are calcu-
lated for Envisat and ICESat. They consistently use the same
processing steps as the MM altimetry from Schröder et al.
(2019a), with the exception that the final step of weighted
spatio-temporal smoothing is applied to single-mission data
rather than multi-mission data. In total three different altime-
try time series are used for testing the gravimetry–altimetry
combination approach. To assess the sensitivity of results to
the co-estimation of seasonal signals, an additional version
of the MM altimetry trends is calculated by co-estimating
the annual sinusoidal signal (MM seasonal in Table 1). This
is consistent with the treatment of GRACE and the firn pro-
cess models.

Part of the altimetry-derived SEC is caused by the elastic
BEC of the solid Earth due to present-day ice mass change
(ḣelastic), which needs to be subtracted from the altimetry ob-
servations ( ˙̃halt) prior to the combination (Eq. 9). We esti-
mate ḣelastic to be −1.5 % of ˙̃halt (Riva et al., 2009). Hence,

the elastic-corrected altimetry-derived SEC is

ḣalt =
˙̃
halt− ḣelastic ≈ 1.015 · ˙̃halt. (20)

The approximative nature of this elastic correction leaves
an error, but its influence on the GIA estimate is negligible
(Gunter et al., 2014).

3.2 Gravimetry

GRACE-derived monthly mass variations are calculated
from the ITSG-Grace2016 monthly gravity field solutions up
to a degree and order of 90 (Mayer-Gürr et al., 2016) us-
ing Eq. (1). Monthly solutions from other processing cen-
tres are not considered because ITSG-Grace2016 is identi-
fied through internal comparison as the gravity field solu-
tion series with a high signal-to-noise ratio. This is supported
by Jean et al. (2018), who found that the precursor ITSG-
Grace2014 show a lower noise level compared to solutions
from other processing centres. The influence of the differ-
ent GRACE monthly solutions on the inverse GIA result was
shown and discussed in Gunter et al. (2014). We do not use
solutions after August 2016. Those solutions show a much
higher noise level due to accelerometer issues.

GRACE monthly solutions need to be complemented by
the degree-1 term of the spherical harmonic coefficients, as
this is not observed by GRACE. Three different products to
replace the degree-1 coefficients are evaluated. (1) A prod-
uct is determined following Swenson et al. (2008) using
ITSG-Grace2016 monthly solutions (d1_ITSG). (2) A satel-
lite laser ranging (SLR) product by Cheng et al. (2013b)
(d1_SLR) and (3) degree-1 coefficients by Rietbroek et al.
(2016) are used (d1_ITG).

Furthermore, the influence of the flattening term C20 is in-
vestigated. Because C20 is poorly determined by GRACE
(Cheng and Ries, 2017), external products are compared.
(1) SLR-based time series are used from the Center for Space
Research at the University of Texas, USA (c20_SLR_CSR;
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Cheng et al., 2013a). (2) SLR-based time series from the Ger-
man Research Centre for Geosciences, Potsdam, Germany
are used (c20_SLR_GFZ; König et al., 2019). (3) A time se-
ries from the Delft University of Technology, Delft, Nether-
lands (c20_TU_Delft), which is derived from GRACE obser-
vations themselves and an ocean model is used (Sun et al.,
2015).

A critical point is filtering because the monthly solutions
are noisy and have a correlated error pattern (Horwath and
Dietrich, 2009). A de-striping filter is applied in the spherical
harmonic domain (Swenson and Wahr, 2006).

A linear seasonal model is adjusted to fit the filtered Stokes
coefficients (offset, linear, annual periodic, and 161 d peri-
odic). The trend is synthesized from the spherical harmonic
into the spatial domain on the altimetry grid with 50 km res-
olution. In this way for each grid cell a linear area density
trend in kilogrammes per square metre per year is determined
(Fig. 1b).

3.3 Firn process models

Information on variations in the firn layer is required in the
combination approach (Eq. 10). SMB is the sum of pre-
cipitation, snow drift, sublimation, and meltwater runoff.
The SMB components are numerically simulated with the
RACMO2.3p2 model, which contains a multilayer snow
model developed by the Royal Netherlands Meteorolog-
ical Institute (KNMI) and the Institute for Marine and
Atmospheric Research, Utrecht, Netherlands (IMAU) (van
Wessem et al., 2018). These results are compared to the
MAR model of the Laboratory of Climatology, Liège, Bel-
gium (Agosta et al., 2019). The regional climate models are
forced at their lateral boundaries with the ERA-40 and ERA-
Interim reanalyses. Mass fluxes (snowfall, snow drift, subli-
mation, erosion–deposition, and surface melt) as well as sur-
face temperature are then used to force an offline firn den-
sification model that includes firn compaction, vertical melt-
water transport and refreezing, and thermodynamics of the
firn layer.

The RACMO2 and MAR SMB products are appropri-
ate for comparison as both are similar in terms of tem-
poral (monthly) and spatial resolution (RACMO2: 27 km;
MAR: 35 km). Moreover, both variants considered here use
the same forcing. There is no independent knowledge (in a
spatial resolution similar to that of SMB models) about the
ice flow contribution to ice mass balance and hence about the
degree of balance or imbalance between SMB and ice flow.
Therefore, the modelled SMB is only used to derive SMB-
induced mass variations with respect to any background sig-
nal of mass change. The unknown background signal of mass
change is the possible imbalance between the mean SMB
over a multi-year reference period and the mean effect of ice
flow over the same reference period. The considered SMB-
induced mass variations hence arise from the temporal cumu-
lation of SMB anomalies with respect to the mean SMB over

the reference period. Here, we define the reference period to
be the entire model period for RACMO2.3p2 and MAR (Jan-
uary 1979–December 2016). For the satellite observation pe-
riods (e.g. April 2002–August 2016) the surface mass trend
(ṁfirn), or literally the trend of cumulated surface mass bal-
ance anomalies (cSMBAs), is estimated (co-estimated with
bias and annual periodic signal).

The used firn model IMAU FDM (Ligtenberg et al., 2011)
is forced at the upper boundary by SMB components from
RACMO2. The firn layer is initialized by forcing the FDM
repeatedly with the 1979–2016 surface mass fluxes and tem-
perature, until an equilibrium firn layer is established. This
implies that present-day conditions represent a state of equi-
librium and that there is no net firn thickness change over the
model period January 1979–December 2016. One result of
the actual model run is the firn-elevation-change time series.
A linear seasonal model (bias, trend, annual periodic sig-
nal) of firn-process-induced SEC is adjusted to fit the FDM
time series for the observation periods under investigation
(Fig. 1c).

The LPZ (Fig. 1c) is defined based on the ECMWF ERA-
Interim reanalysis precipitation product. We use 20 mm a−1

annual precipitation as a threshold for low precipitation (Riva
et al., 2009), rather than 21.9 mm a−1 used by Gunter et al.
(2014).

The trend differences between RACMO2.3p2 and MAR
SMB products are used for uncertainty characterization of
firn process models. In order to gain statistical information on
possible trend differences over a 7-year interval, we calculate
trend differences over 32 intervals of 7 years (January 1979–
December 1965; January 1980–December 1966;...; Jan-
uary 2010–December 2016) covered by RACMO2.3p2 and
MAR. The 7-year length is the approximate length of the ob-
servation period of our reference experiment (March 2003–
October 2009) defined by the ICESat observation period. A
FDM forced with MAR SMB does not exist. However, the
RACMO2.3p2 SMB and the derived FDM are directly linked
to each other. For this reason we assume that derived con-
clusions on errors of SMB are transferable to the FDM as
a lower bound. Pseudo FDM trend differences are estimated
out of the cSMBA trends by

1ḣfirn,j =
1ṁfirn,j

ρMAR
. (21)

1ṁfirn,j is the j th trend difference between cSMBA from
RACMO2 and cSMBA from MAR. ρMAR is calculated from
MAR density fields by taking their average over the near-
surface layers (0–1 m) and over the whole model period. This
does not consider the evolution of the firn layer, as an inde-
pendent FDM driven by MAR outputs would consider it. Fur-
thermore, uncertainties associated with equilibrium assump-
tions are not considered.

Prior to the combination, cSMBA and FDM trends are lin-
early interpolated to the polar stereographic grid. The high-
resolution products (altimetry and firn process models) are
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modified as follows. NaN-Grid cells on the grounded part of
the ice sheet (missing data) are treated as case III in Eq. (10).

3.4 Density assumptions

The ratio between volume changes and area density changes
is defined by the effective densities ρGIA, ρfirn, and ρID for
GIA-related, firn-related, and ice-related processes, respec-
tively. We use a ρID of 917 kg m−3. The firn density is vari-
able in space and time. The location-dependent estimation
for ρfirn is calculated using the empirical Eq. (2) in Ligten-
berg et al. (2011).

The density mask for ρGIA is generated as follows: The
ratio between the GIA-induced BEC and the GIA-induced
ADC is about 3700 kg m−3 (Wahr et al., 2000). We use
4000 kg m−3 over the Antarctic continent and 3400 kg m−3

under the ice shelves and the ocean with a smooth transition
(according to Riva et al., 2009; Gunter et al., 2014). These
numbers account for the redistribution of ocean mass through
GIA and are derived from forward-model results. This den-
sity is not a density in a material-science sense. It is an ef-
fective value which sets GIA-induced BEC and the ADC in
relation. The term rock used in the literature might be mis-
leading.

4 Results

4.1 SMB uncertainty

There are considerable differences between the time series
of cSMBA from the RACMO2 and MAR SMB products for
each cell. Figure 2 shows the integrated values for the AIS.
Note that a ∼ 400 Gt cSMBA difference in 1987 (8 years af-
ter model start) represents a 50 Gt a−1 difference in SMB,
which is ∼ 2 % of the total grounded ice sheet SMB. The in-
tegrated SMB from RACMO2.3p2 is 2229 Gt a−1 with an in-
terannual variability of 109 Gt a−1 (van Wessem et al., 2018).
We use the 32 trend differences from the moving 7-year in-
tervals to quantify discrepancies of derived cSMBA trends
between both models. Figure 3 shows (1) the rms of all
trend differences and compares it with (2) the formal un-
certainty we derive from the least-squares estimation and
with (3) the 10 % uncertainty assumption (Sect. 2.4). The
last two are derived from the estimated cSMBA trends of
the RACMO2.3p2 SMB product over the ICESat observation
period (March 2003–October 2009). The formal uncertainty
and the 10 % assumption are similar in spatial pattern and
magnitude. The rms of trend differences is similar in spatial
pattern, too, but approximately 3 times larger in magnitude.

To extract the dominant error patterns, a spectral decom-
position of the 32 7-year trend differences (see Sect. 3.3) is
carried out using principal-component analysis (using sin-
gular value decomposition). Hence, the dominant empiri-
cal orthogonal functions (EOFs) and accompanying principal
components are computed. From this analysis we obtain the

dominant error patterns that are uncorrelated to each other
and capture characteristic features of uncertainty. The first
three EOFs of the trend differences explain∼ 68 % of the to-
tal variance (Fig. 4a–c). The normalized EOF is scaled with
the square root of the particular eigenvalue. Figure 4d shows
the principle components indicating the scaling of the corre-
sponding EOF. For instance, EOF-1 is dominated by varia-
tions in the WAIS. EOF-2 shows more variations on smaller
scales. Without an attempt to further interpret the patterns
of trend differences between the two models, the explored
trend differences are used here to investigate the sensitivity
of the inverse GIA estimates to these differences characteriz-
ing firn process uncertainty. For this purpose, (1) we add the
EOFs to the firn process trends (ṁfirn, ḣfirn), which we use
as input for the data combination. Because a FDM forced
with MAR products does not exist, we transfer the cSMBA-
derived EOFs to FDM EOFs by calculating pseudo EOFs us-
ing MAR density fields (see Sect. 3.3, Eq. 21). The pseudo
EOFs account for a lower bound of uncertainties of the firn
thickness trends. True firn thickness trend differences are
presumably higher as they would contain the potential mis-
modelling of firn densification. From the added EOFs we get
three GIA estimates to be compared with our reference solu-
tion. (2) Moreover, we add each trend difference separately
to the cSMBA trend and each pseudo trend difference sepa-
rately to the firn thickness trend. The pseudo firn thickness
trend differences are likewise calculated using MAR density.
This results in another 32 GIA estimates.

4.2 Sensitivity analysis

Inverse GIA estimates are calculated using different
choices of (1) degree-1 solutions, (2) C20 substitutions,
(3) altimetry products, (4) empirical orthogonal functions
(EOFs) of firn process errors, and (5) time intervals (Ta-
ble 1). The reference experiment refers to the time pe-
riod March 2003–October 2009 and uses the MM-altimetry-
derived SEC, ITSG-Grace2016 monthly solution (degree-1:
d1_ITSG, C20: SLR_CSR) and the firn process trends from
RACMO2.3p2 over this period. The rms of the reference
GIA-induced BEC estimate is 2.2 mm a−1. The estimated ρα
(Eq. 10) is shown in Fig. 5a. Apart from the gridded GIA-
induced BEC (Figs. 5b, S5 in the Supplement), we com-
pare the integrated trends ˙̃mgrav, ˙̃mGIA, and ˙̃mice correspond-
ing to total-mass change (from GRACE), GIA-related mass
change, and ice mass change, respectively. The results are
summarized in Table 2. Furthermore, the RMSRE (Eq. 19)
quantifies the discrepancy to the reference experiment GIA
estimate. Figure 6 shows the mass balance estimates for
March 2003–October 2009.

Biased total-mass changes for different C20 and degree-1
products vary between −43 Gt a−1 (c20_TU_Delft) and
+25 Gt a−1 (d1_SLR), a range of 68 Gt a−1. Debiased total-
mass change (Eq. 14) only differ by 6 Gt a−1 for the same
time period (Table 2). Figure 6 illustrates biased and debi-

The Cryosphere, 14, 349–366, 2020 www.the-cryosphere.net/14/349/2020/



M. O. Willen et al.: Sensitivity of inverse GIA estimates 357

Table 1. Overview of all performed experiments of the sensitivity analysis (Sects. 2.6 and 4.2, Table 2). All experiments use ITSG-Grace2016
monthly solutions (Mayer-Gürr et al., 2016) over the March 2003–October 2009 time period, except for the last two experiments which use
the quoted time period.

Experiment Degree-1 repl. C20 repl. Used altimetry Used firn process
Sect. 3.2 Sect. 3.2 Sect. 3.1 model Sect. 3.3

Reference d1_ITSG c20_SLR_CSR Multi-mission (incl. ERS-2, RACMO2.3p2
Envisat, ICESat)

d1_SLR d1_SLR c20_SLR_CSR Multi-mission RACMO2.3p2

d1_ITG d1_ITG c20_SLR_CSR Multi-mission RACMO2.3p2

c20_SLR_GFZ d1_ITSG c20_SLR_GFZ Multi-mission RACMO2.3p2

c20_TU_Delft d1_ITSG c20_TU_Delft Multi-mission RACMO2.3p2

ICESat only d1_ITSG c20_SLR_CSR ICESat RACMO2.3p2

Envisat only d1_ITSG c20_SLR_CSR Envisat RACMO2.3p2

MM seasonal d1_ITSG c20_SLR_CSR Multi-mission, co-estimation RACMO2.3p2
of seasonal components

RACMO2+EOFx d1_ITSG c20_SLR_CSR Multi-mission RACMO2.3p2 with empirical orthogonal
functions (EOFs) of firn process
uncertainty (Sect. 4.1)

Jul 2010–Aug 2016 d1_ITSG c20_SLR_CSR Multi-mission (incl. RACMO2.3p2
Envisat, CryoSat-2)

Apr 2002–Aug 2016 d1_ITSG c20_SLR_CSR Multi-mission (incl. ERS-2, RACMO2.3p2
Envisat, ICESat, CryoSat-2)

Figure 2. Cumulated surface mass balance anomalies (cSMBAs) of the regional climate models RACMO2.3p2 (blue; van Wessem et al.,
2018) and MAR (red; Agosta et al., 2019), integrated over the grounded AIS.

ased total-mass changes of the entire AIS. Note that the bi-
ased total-mass change of 0 Gt a−1 in Table 2 arises coinci-
dentally.

The biased GIA-related mass change of the AIS with MM
altimetry (reference experiment) is very close to the Envisat-
only estimate (174 vs. 172 Gt a−1). The biased ICESat-
only result differs from the reference experiment by about
30 Gt a−1 (142 vs. 172 Gt a−1). Debiased estimates that use
Envisat-only or ICESat-only results differ from the estimate
of the reference experiment by 10 and 15 Gt a−1, respec-
tively. The differences due to the co-estimation of seasonal
components are marginal (∼ 2 Gt a−1).

Applying the approach to different time intervals
April 2002–August 2016 and July 2010–August 2016 leads
to debiased total-mass changes of −121 and −181 Gt a−1,
respectively (biased estimates: −48 and −70 Gt a−1).

The addition of the EOFs (Sect. 4.1) propagates to dif-
ferences in the GIA solution of up to 7 Gt a−1 for the de-
biased GIA-related mass change and up to 18 Gt a−1 for
the biased GIA-related mass change. Additionally, Fig. S6
shows the standard deviation of the 32 GIA estimates re-
sulting from propagating the 32 trend differences between
RACMO2 and MAR.
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Table 2. Results from the sensitivity experiments. This table is structured like Table 2 in Gunter et al. (2014). Each line reports results from
one experiment, where line one reports the reference experiment. The time period is March 2003–October 2009 except where it is quoted by
experiment name. Column 1: experiment name, according to Table 1. Column 2: rms difference of the GIA-induced bedrock elevation change
(BEC) estimate (RMSRE) to the reference experiment. Columns 3 and 4: applied LPZ-based bias correction (see Sect. 2.2) for GIA-induced
BEC and GRACE area density change, respectively. Columns 5, 6, and 7: spatial integral of total-mass change (Eq. 14) over the Antarctic
Ice Sheet (AIS), the West Antarctic Ice Sheet (AIS), and the East Antarctic Ice Sheet (EAIS), including a 400 km buffer zone. Columns 8–10
and 11–13: same as columns 5–7, but for the GIA-related mass change (Eq. 13) and for the ice mass change (Eq. 15), respectively. Numbers
in brackets give results of experiments with no bias corrections.

Experiment RMSRE LPZ bias Total-mass change GIA-related mass change Ice mass change

GIA GRACE AIS WAIS EAIS AIS WAIS EAIS AIS WAIS EAIS
mm a−1 mm a−1 kg m−2 a−1 Gt a−1 Gt a−1 Gt a−1

Reference 0.0 1.6 1.9 −40 −78 39 44 21 24 −84 −99 15
(1.6) (0.0) (0.0) (0) (−68) (68) (172) (53) (119) (−173) (−121) (−51)

Degree-1

d1_SLR 0.1 2.0 3.2 −42 −79 38 43 20 23 −85 −99 15
(2.0) (0.0) (0.0) (25) (−62) (86) (199) (60) (139) (−174) (−122) (−53)

d1_ITG 0.1 1.8 2.5 −41 −80 39 43 19 24 −84 −99 15
(1.8) (0.0) (0.0) (12) (−66) (78) (185) (55) (130) (−173) (−121) (−52)

C20

c20_SLR_GFZ 0.0 1.4 1.2 −39 −78 39 46 21 25 −85 −99 15
(1.4) (0.0) (0.0) (−14) (−72) (57) (157) (49) (108) (−171) (−121) (−50)

c20_TU_Delft 0.1 1.0 −0.4 -36 −77 42 48 21 26 −83 −99 15
(1.1) (0.0) (0.0) (−43) (−79) (36) (127) (41) (85) (−170) (−121) (−49)

Altimetry

ICESat only 1.1 1.1 1.9 −40 −78 39 59 20 39 −99 −98 −1
(1.7) (0.0) (0.0) (0) (−68) (68) (142) (41) (101) (−142) (−109) (−34)

Envisat only 0.8 1.5 1.9 −40 −78 39 54 33 22 −94 −111 17
(1.8) (0.0) (0.0) (0) (−68) (68) (174) (63) (111) (−174) (−131) (−43)

MM seasonal 0.1 1.7 1.9 −40 −78 39 46 21 25 −86 −99 14
co-estimated (1.7) (0.0) (0.0) (0) (−68) (68) (177) (54) (122) (−177) (−122) (−55)

Firn process error

RACMO2+EOF1 0.5 1.8 1.9 −40 −78 39 48 29 18 −87 −108 20
(1.9) (0.0) (0.0) (0) (−68) (68) (190) (65) (124) (−190) (−133) (−57)

RACMO2+EOF2 0.3 1.7 1.9 −40 −78 39 51 31 20 −90 −109 19
(1.8) (0.0) (0.0) (0) (-68) (68) (181) (64) (117) (−181) (−132) (−50)

RACMO2+EOF3 0.3 1.6 1.9 −40 −78 39 41 20 21 −80 −98 18
(1.6) (0.0) (0.0) (0) (−68) (68) (169) (52) (117) (−169) (−120) (−49)

Time interval

Apr 2004–Aug 2016 1.1 1.8 3.5 −121 −160 39 18 −4 22 −140 −156 17
(1.7) (0.0) (0.0) (−48) (−141) (93) (158) (32) (126) (−205) (−172) (−33)

Jul 2010–Aug 2016 1.4 2.2 5.3 −181 −189 8 67 37 30 −248 −227 −21
(2.9) (0.0) (0.0) (−70) (−160) (90) (239) (81) (158) (−309) (−241) (−68)

Time-series-based combination

Jul 2010–Aug 2016 2.1 5.3 −181 −189 8 39 17 23 −220 −206 −14
(0.0) (0.0) (−70) (−160) (90) (207) (59) (148) (−277) (−219) (58)

The Cryosphere, 14, 349–366, 2020 www.the-cryosphere.net/14/349/2020/



M. O. Willen et al.: Sensitivity of inverse GIA estimates 359

Figure 3. Three uncertainty assessments for the area density change (ADC) trend induced by cumulated surface mass balance anomalies
(cSMBA). (a) The rms of cSMBA trend differences between RACMO2.3p2 and MAR for all 7-year intervals (Sect. 3.3), (b) the formal
uncertainty from least-squares estimation for March 2003–October 2009, and (c) the 10 % uncertainty assumption.

Figure 4. (a)–(c) Area density change (ADC) of the first three EOFs of the trend differences between RACMO2.3p2 and MAR cumulated
surface mass balance anomalies (cSMBA). (d) The respective principal components (PCs).

4.3 Time-series-based combination

Our time-series-based combination takes advantage of the
fact that gravimetry, altimetry, SMB, and FDM are available
as monthly gridded products with sufficient spatial coverage
from July 2010 to August 2016, owing to the availability of
GRACE, CryoSat-2, and RACMO2.3p2. Riva et al. (2009)
and Gunter et al. (2014) only use ICESat altimetry data,
which does not allow a monthly sampling, as it has only 2–3
months of observation per year.

We used the values of ρα estimated from the trend-based
combination during the same time interval (Fig. S4I) to be
consistent for comparison. Figure 7 shows the GIA-related
mass change time series for the AIS (with 400 km buffer-
zone). For applying the LPZ-based GIA bias correction, the
linear GIA trend in the LPZ is estimated (offset and trend
only). Figure 8A shows the debiased GIA-induced BEC
based on the time series combination. Figure 8c shows its for-
mal uncertainty from least-squares estimation, which should
be considered as a lower bound. For comparison, Fig. 8B

shows the GIA-induced BEC following the trend-based com-
bination approach. The GIA-related mass changes from the
time-series-based and trend-based combinations are 39 and
67 Gt a−1 for the AIS, 17 and 37 Gt a−1 for the WAIS, and
23 and 30 Gt a−1 for the EAIS, respectively (Table 2). The ice
mass changes are −220 and −248 Gt a−1 for the AIS, −206
and −227 Gt a−1 for the WAIS, and −14 and −21 Gt a−1

for the EAIS, respectively. The integrated formal uncertainty
of the GIA-related mass change for the AIS with a 400 km
buffer zone is 25 Gt a−1 (Fig. 8c).

5 Discussion

Since the aim of this study is to examine the sensitivity of
the inverse approach to several data input and methodolog-
ical choices, differences from the reference experiment are
discussed on the basis of the selected processing parameters.
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Figure 5. (a) Estimated ρα density (Eq. 10) of the reference experi-
ment. (b) GIA-induced bedrock elevation change (BEC) of the ref-
erence experiment (rms: 2.2 mm a−1); 400 km buffer zone (green
line); geographical regions indicated: Antarctic Peninsula (AP),
Marie Byrd Land (MBL), Victoria Land (VL), and Queen Mary
Land (QML). For results from the other simulation experiments see
Figs. S4 and S5.

5.1 Assessment of the results

To test our data processing we performed a run with similar
input data as used in Gunter et al. (2014). We used GFZ RL05
GRACE solutions, ICESat Altimetry, the RACMO2.1 SMB
product, and the corresponding IMAU FDM. Table 3 shows
the comparison of both results. AIS total-mass, GIA-related
mass, and ice mass change estimates reproduce results by
Gunter et al. (2014) to within 6, 5, and 1 Gt a−1, respectively.
Those differences might be attributed to a slightly different
LPZ, altimetry processing, and the missing ocean mass leak-
age correction. Gunter et al. (2014) indicate that the uncer-
tainty for the GIA-related mass change and ice mass change
from various GRACE solutions and filtering variants is 40
and 44 Gt a−1, respectively.

In general our GIA estimate (Fig. 5b) shows a similar spa-
tial pattern compared to estimates by Gunter et al. (2014).
Nonetheless, notable differences appear in the AP, Marie
Byrd Land (MBL), Victoria Land (VL), and Queen Mary
Land (QML).

In the AP, altimetry-derived SECs are available for a part
of the area only (Fig. S1). As a result of missing altime-
try data, GRACE-derived area density changes are attributed
mainly to GIA-related mass change. The result is a neg-
ative GIA-induced BEC. Although negative GIA-induced
BECs are predicted by forward models for other regions (e.g.
Whitehouse et al., 2019), we consider it unphysical for this
particular region because we cannot find any further indica-
tions to substantiate it. Furthermore, the missing altimetry
leads to unconsidered elastic deformation. The negative sig-
nal in MBL is of a similar order of magnitude as in Riva
et al. (2009) and Sasgen et al. (2017). A negative GIA signal
in QML can be found in Martín-Español et al. (2016a). The

uncertainty of the GIA signal is sometimes so large that even
its sign cannot be determined.

For example, propagating trend differences between
RACMO2.3p2 and MAR cSMBA products to GIA estimates
(Fig. S6) leads to a high standard deviation of the GIA signal
in MBL and Victoria Land (VL). This issue cannot be re-
solved by considering the results of forward models because
they also show large variations and sign differences in the
predicted spatial pattern of the GIA-induced BEC (Martín-
Español et al., 2016b; Whitehouse et al., 2019).

5.2 Sensitivity to degree-1 and C20 products and the
effect of bias estimation

The use of several degree-1 and C20 products for the GRACE
processing leads to a differing total-mass trend for the AIS
(Barletta et al., 2013). The Gunter et al. (2014) Supple-
ment showed the influence of two different degree-1 prod-
ucts. Here we show how the bias corrections eliminate
those differences in total-mass and GIA-related mass change
(Sect. 4.2, Table 2). The RMSRE of all debiased GIA esti-
mates amounts to only 0.1 mm a−1 (Table 2). As discussed
in Sect. 2.2, any GIA signal over the LPZ would be re-
moved erroneously in the method of Gunter et al. (2014),
but the uncertainty in low-degree harmonics is assumed to
be much higher than a potential GIA signal within the LPZ.
The bias correction regionalizes the GIA estimate; i.e. de-
rived mass changes are always given relative to the mean
LPZ mass change. The bias correction defines how the total-
mass change is decomposed into mass signals and is made to
ensure that the combination approach produces robust mass
estimates. The large uncertainty introduced by degree-1 and
C20 is suppressed at the cost of global consistency.

Several objections can be made to the assumption that
over the LPZ the mean GIA-induced BEC, the mean total-
mass change, and hence the mean ice mass change are zero.
(1) The precipitation of the last 40 years is not directly linked
to GIA. (2) Areas are included which show quite relevant
GIA-induced BEC in forward models, e.g. close to the Ross
Ice Shelf (Martín-Español et al., 2016b). (3) The threshold
for low precipitation is arbitrary and cannot be based on
physical reasons in relation to GIA. For a given threshold,
the definition of the LPZ still depends on the precipitation
product used. (4) The LPZ is a large area in which even a
low GIA effect can cause several gigatonnes per year of mass
changes. (5) The LPZ bias correction does not allow for a
simple transfer of the approach to Greenland or to a global
framework. Nevertheless, the calibration over the LPZ is at
least one possibility to consider the presumably existing bi-
ases.

Shepherd et al. (2012, Fig. 3) show large differences in the
EAIS mass change estimates derived from satellite gravime-
try and altimetry. In principle, the question of quantifying
GIA in the EAIS arises. For this discussion, the reader is re-
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Figure 6. Mass change results for the entire AIS over the interval March 2003–October 2009 from experiments with different data products
and methodological choices. The LPZ-based bias correction was applied. Debiased total-mass change (solid black lines) is separated into
debiased GIA-related mass (red) and ice mass change (blue). Dotted lines show the total-mass changes that arise when no bias corrections
are applied. The case of no bias correction is further illustrated in Fig. S7.

Figure 7. The GIA-related mass time series of the AIS (with 400 km buffer zone) resulting from the combination of the monthly gridded
time series (July 2010–August 2016) with (blue) and without (red) LPZ-based bias correction of the determined GIA signal.

ferred to Whitehouse (2018) and Whitehouse et al. (2019),
for example.

5.3 Sensitivity to altimetry product

The choice of the altimetry product has a major effect on
the GIA estimate. Using ICESat-only and Envisat-only prod-
ucts leads to a RMSRE of 1.1 and 0.8 mm a−1, respectively
(Table 2). Both missions use different observation meth-
ods and have different spatial coverage. The radar altime-
try time series of Envisat is sampled monthly but only to
a latitude of 81.5◦ south. ICESat uses laser altimetry and
its polar gap is smaller (south of 86◦). These differences
affect the results across Kamb Ice Stream where a domi-

nant ice-dynamic signal is expected (Retzlaff and Bentley,
1993). ICESat’s campaign-style temporal sampling may af-
fect the trend estimation significantly. For the time period
March 2003–October 2009 the MM altimetry product uses
mainly observations from ICESat and Envisat. The trend de-
rived from the MM altimetry product shows a spatial dis-
continuity at the 81.5◦ latitude limit of Envisat coverage
(Figs. S1A, 5a). We attribute this to the sparse time sam-
pling of the ICESat mission. The spread of debiased GIA-
related mass change estimates of the AIS using various al-
timetry products is 15 Gt a−1 (Table 2). Furthermore, differ-
ences in the spatial GIA pattern are remarkable in MBL and
VL (Fig. S5f, g). The co-estimation of an annual seasonal
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Figure 8. For the July 2010–August 2016 time period. (a) Debiased GIA bedrock elevation change (BEC) by combining time series of all
data sets and models, (b) combination of trends, and (c) the formal uncertainty from least-squares estimation.

Table 3. The comparison of integrated mass changes calculated in this study and those published in Gunter et al. (2014). For this we used
GFZ RL05 GRACE solutions, ICESat-only altimetry, and RACMO2.1 products during March 2003–October 2009.

Solution Total-mass GIA-related Ice mass
change in Gt a−1 mass change in Gt a−1 change in Gt a−1

AIS WAIS EAIS AIS WAIS EAIS AIS WAIS EAIS

This study −51 −90 39 49 12 37 −100 −102 2
Gunter et al. (2014) −45 −86 41 54 18 36 −99 −104 5

signal in altimetry only leads to small changes in the overall
result (Sect. 4.2, RMSRE: 0.1 mm a−1) but is more consistent
with processing of other data and models.

5.4 Firn process assumptions and uncertainties

A crucial point in the combination approach is the case dis-
tinction for ρα (Eq. 9). As mentioned in Sect. 2.1, it accounts
for the uncertainty of altimetry and the FDM but does not ac-
count for the uncertainty of GRACE and the cSMBA trends.
The resulting map of ρα (Figs. 5a, S4) does not agree with
predefined, physically reasonable density maps. For exam-
ple, ρα is set to ice density in large areas of the EAIS where
dynamically induced ice mass losses are not plausible. The
values of ρα largely depend on used data sets (Fig. S4b, c).
An alternative to the ρα approach could be the formal ap-
proach shown in Eq. (8). Technically this would be correct.
However, it results in an ice density weight for the whole
AIS. We are aware that this is not correct either because pre-
sumable processes in the firn layer are not completely con-
sidered by input data and models. Another strategy may use
a predefined density mask similar to Riva et al. (2009), but
with a predefined significance criterion for all input data sets.
This would need further investigation.

The ρα approach (Eq. 10) to assign height changes to
either ice dynamics or firn processes may be a source of
bias. For example, if a negative SEC is firn-related, but er-

roneously attributed to the density of ice by Eq. (10), this
will lead to a higher ice mass decrease assigned to altime-
try. GRACE would sense the true smaller ice mass decrease.
Through combination of both, this discrepancy in ice mass
change would be assigned to a positive GIA signal. We sup-
pose this is qualitatively visible for ice-density-weighted re-
gions in the EAIS (Fig. 5a, b), e.g. the sector between a
longitude of 30 and 100◦ (Dome F). We presume this erro-
neously introduced positive GIA signal explains a part of the
GIA bias.

The propagation of the empirically determined error pat-
terns (EOFs 1–3) of the firn process models (Sect. 4.1) shows
small effects on the spatial pattern of inverse GIA estimates
(Fig. S5i–k). The RMSRE for the EOF 1, EOF 2, and EOF 3
experiments is 0.5, 0.3, and 0.3 mm a−1, respectively (Ta-
ble 2). Note that this deviation arises solely from differences
in similar climate models that use the same forcing data.

Uncertainties assumed in Gunter et al. (2014) for σḣfirn
are

very small compared to our results (Sect. 4.1, Fig. 3). In ad-
dition, any long-term trend in firn mass and firn thickness is
ignored by the equilibrium assumption made by the firn mod-
elling. SEC from Altimetry and the IMAU FDM show major
differences even with a different sign for some areas, such as
the AP and QML (Fig. 1a, c). These differences may indicate
that the equilibrium assumption of the FDM (Sect. 3.3) is not
fulfilled for those areas of the AIS, i.e. that net firn thickness
changes occur over the modelling period.
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5.5 Sensitivity to time interval

We also investigate a GIA solution derived from data
sets over almost the entire GRACE period (April 2002–
August 2016) and the approximately 6-year period
of CryoSat-2 overlapping with GRACE (July 2010–
August 2016). The variability of these estimates cannot be
attributed to a single processing choice. On the one hand,
different data sets are used (depending on assembled altime-
try missions). On the other hand, cSMBA trends and FDM-
derived SEC differ largely depending on the selected time
interval (Sect. 3.3, Fig. S3). Ice mass change estimates are
very high for the time interval July 2010–August 2016 (Ta-
ble 2). The quality of input data varies over time, e.g. due
to the changing availability of data. Therefore the GIA esti-
mates show large discrepancies among different time inter-
vals, which is incompatible with the assumption of a con-
stant linear rate of GIA-induced BEC. However, regions
(e.g. Pine Island Bay) are known where a non-linear defor-
mation through GIA is plausible during decadal periods (Bar-
letta et al., 2018).

5.6 The role of time-series-based combination

The combination of time series leads to similar results com-
pared to the trend-based approach for the same July 2010–
August 2016 interval (Sect. 4.3). We combined time series
only for this time period, where CryoSat-2 and GRACE data
are available with monthly sampling and sufficient spatial
coverage. A closer examination of the time series approach is
the aim of ongoing research. It needs to account for monthly
uncertainties in all input data sets. Similar to the trend-based
combination, challenges include (1) the consideration of un-
certainties of all data sets, (2) differences in spatio-temporal
sampling of both sensors, and (3) dealing with the resolu-
tion discrepancies including the consideration of signal leak-
age in GRACE observations. For further discussion of the
challenges associated with combining geodetic time series,
the reader is referred to King et al. (2006), for example. It
should be noted that state-space approaches in geodetic Earth
system research show promising results dealing with time-
variable geophysical signals in observational time series (Di-
dova et al., 2016; Frederikse et al., 2016).

6 Conclusions

We investigated a combination method to isolate the GIA sig-
nal from satellite gravimetry and altimetry data. Our analysis
is an extension of ideas presented by Gunter et al. (2014)
for the inverse estimation of GIA-induced BEC. We investi-
gated the sensitivity of this approach (Eq. 9) to the variation
in input parameters (Table 1): (1) degree-1 and C20 products
in satellite gravimetry, (2) different satellite altimetry prod-
ucts, (3) empirically determined errors of firn process models

(SMB and FDM), and (4) the use of different time epochs in-
cluding diverse data.

The comparison between the data sets used in this study
shows impressive similarities in terms of the spatial pattern
of determined trends (Fig. 1), given that the results of al-
timetry, gravimetry, and the FDM are independent. The sep-
aration of GIA and ice mass signals following Gunter et al.
(2014) depends strongly on the input parameters and pro-
cessing steps (Table 2).

Following Gunter et al. (2014), gravimetry data are treated
differently for (1) estimating the GIA signal and (2) deter-
mining the mass balance (Sect. 2.2). (1) A Gaussian filter
and a de-striping filter are applied to gravimetry observa-
tions. This predetermines the smoothness of the GIA solu-
tion. The GIA-induced BEC is calibrated over the LPZ. It
is converted to mass change by an effective density mask.
(2) GRACE-derived area density change is calibrated over
the LPZ, too. The mass balance is the difference between
the debiased total-mass change and the debiased GIA-related
mass change. The estimated biases and the Gaussian filtering
are an implementation of a priori information which region-
ally constrains the GIA solution and the ice mass balance.
We conclude that the LPZ-based bias correction facilitates
regional but robust mass change estimates (Figs. 6, S7, Ta-
bles 2, S1).

The definition of ρα according to Eq. (10) does not lead
to a readily decipherable density pattern that can account for
processes in the firn and ice layer (Figs. 5a, S4). Furthermore,
it is highly sensitive to input data sets.

A critical feature of the combination approach is the ob-
servational constraints that are imposed on the inversions by
the limitations of the actual geodetic satellite sensors. On the
one hand, altimetry enables the derivation of SEC with a high
resolution. However, observations are missing in some areas,
especially in areas of high topographic relief, such as val-
leys and mountainous coastal regions. In many of these re-
gions lateral ice mobility may have a more complex relation-
ship to ice heights that are extracted from altimetry as SEC.
On the other hand, GRACE records all mass changes, al-
beit with lower resolution and signal-to-noise ratio. Because
of the availability of the MM altimetry from Schröder et al.
(2019a), the used GRACE observations limit the time period
to 14 years from April 2002 to August 2016. This may be ex-
tended with GRACE-FO (and bridging solutions). We note
that Sasgen et al. (2019) have presented a new combination
approach in the spherical harmonic domain with the potential
to take advantage of both sensors.

For the integrated mass changes over the AIS area, results
of our sensitivity analysis are as follows. (1) The use of dif-
ferent degree-1 and C20 products in GRACE processing leads
to biased total-mass changes from −43 to 25 Gt a−1. The
LPZ-based bias correction almost completely eliminates the
effect on the GIA estimate (RMSRE ≤ 0.1 mm a−1) and on
derived mass change estimates. (2) Using different altimetry
products generates a spread of GIA-related mass change of
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15 Gt a−1 if the GIA bias correction is applied. The spread is
35 Gt a−1 without correcting for a bias. (3) The uncertainty
patterns empirically estimated from the firn process models
generate a spread of debiased and biased GIA-related mass
estimates of 7 and 21 Gt a−1, respectively. (4) The spread of
GIA-related mass change estimated between the time peri-
ods April 2002–August 2016 and July 2010–August 2016 is
49 (debiased) and 81 Gt a−1 (biased). (5) The debiased GIA-
related mass change derived by the time-series-based com-
bination is 28 Gt a−1 smaller than the corresponding trend-
based estimate.

Our results do not fully address the uncertainty introduced
by input parameters. Especially important may be the as-
sumption of an equilibrium state assumed in the firn model.
In future work, improvement is needed for the correction of
apparent biases and for the separation of processes in the firn
and the ice layer. This might improve the self-consistency of
GIA inverse estimates from satellite observations and gener-
ate a more appropriate time-series-based estimate.
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