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How Do They Do It? – Understanding 
the Success of Marine Invasive Species
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Abstract

From the depths of the oceans to the shallow estuaries and 
wetlands of our coasts, organisms of the marine environ-
ment are teeming with unique adaptations to cope with a 
multitude of varying environmental conditions. With mil-
lions of years and a vast volume of water to call their 
home, they have become quite adept at developing spe-
cialized and unique techniques for survival and – given 
increasing human mediated transport  – biological inva-
sions. A growing world human population and a global 
economy drives the transportation of goods across the 
oceans and with them invasive species via ballast water 
and attached to ship hulls. In any given 24-hour period, 
there are about 10,000 species being transported across 
different biogeographic regions. If any of them manage to 
take hold and establish a range in an exotic habitat, the 
implications for local ecosystems can be costly. This 
review on marine invasions highlights trends among suc-
cessful non-indigenous species (NIS), from vectors of 
transport to ecological and physiological plasticity. Apart 
from summarizing patterns of successful invasions, it dis-
cusses the implications of how successfully established 
NIS impact the local environment, economy and human 
health. Finally, it looks to the future and discusses what 
questions need to be addressed and what models can tell 
us about what the outlook on future marine invasions is.

�Introduction

The continuously rising numbers and extending ranges of 
non-indigenous species (NIS) are today widely seen as a 
major biological aspect of global change, affecting invaded 
ecosystems, economy and even human health (Vitousek 
et al. 1996; Ruiz et al. 2000; Simberloff et al. 2013). Marine 
species have been anthropogenically introduced into new 
habitats since humans travel overseas. However, only in the 
past 150 years, and especially the latter half of the 20th cen-
tury, technical advances and extreme increases in global 
marine trade led to the exponential increase of marine spe-
cies introductions (Carlton and Geller 1993; Bax et al. 2003).

Of the hundreds of species that get introduced to habitats 
out of their native range, only a small fraction actually estab-
lishes permanently in their new environment. An even 
smaller fraction reaches high population densities and/or 
successfully disperses over wider ranges with adverse 
impacts on the recipient system – being consequently termed 
‘invasive species’ (Sakai et al. 2001; Colautti and MacIsaac 
2004). The growing field of invasion biology uses various 
approaches, e.g., ecology, physiology, evolution, and genet-
ics, to investigate mechanisms and consequences of the 
establishment of NIS. Finding answers to the questions what 
makes certain species successful invaders and how invasion 
processes actually happen is a main focus of invasion biol-
ogy. These often include aspects that predict impacts of inva-
sive species on the invaded communities and may disclose 
starting points for possible management strategies (e.g., 
Bremner 2008; Williams and Grosholz 2008). Furthermore, 
the study of biological invasions offers model systems to bet-
ter understand general biological processes such as species 
interactions, physiological and ecological adaptations, and 
evolutionary processes (Ruiz et al. 2000; Stachowicz et al. 
2002; Facon et al. 2006). While marine systems globally are 
amongst the most heavily invaded ones, they have long been 
underrepresented in invasion biology studies compared to 
terrestrial and limnic systems. A main reason for this might 
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be the vastness and open character of marine systems, which 
require higher (technical) efforts and make it generally more 
difficult to detect, investigate and manage marine invasions. 
However, this discrepancy is reduced by a quickly growing 
body of literature in recent years (Grosholz and Ruiz 1996; 
Ruiz et al. 2000; Chan and Briski 2017).

Even though it is difficult to identify universal factors and 
traits that lead to high invasion success due to its apparent 
dependency on the individual conditions of each invasion 
event (Sakai et  al. 2001), some general patterns regularly 
occur in this context. These include for example common 
invasion pathways and vectors (Katsanevakis et al. 2013), as 
well as anthropogenic alterations or perturbations of recipi-
ent habitats (Bax et  al. 2000; Briggs 2012; Mineur et  al. 
2012). Additional factors are high ecological and physiologi-
cal plasticity of successful invaders (Hänfling et  al. 2011; 
Parker et al. 2013; Tepolt and Somero 2014), and the general 
nature of interactions between native and non-native as well 
as among non-native species (Snyder and Evans 2006; 
Johnson et al. 2009; Briggs 2010). This review aims to give 
an introductory overview of important aspects of successful 
marine invasions, including human impacts, species’ traits 
and interactions, and invasion genetics. The second part of 
this review copes with ecological and socio-economic conse-
quences of marine invasions and their implications for policy 
and management, and closes with an outlook on future 
developments of the phenomenon under the perspectives of 
ongoing global (esp. climate) change. For clarification pur-
poses, a glossary defining the most important terms can be 
found in Box 1.

Box 1: Glossary
Cryptogenic species:	 (Crypt-Greek, kryp-

tos, secret; -genic, 
New Latin, genic, ori-
gin) as a species that 
is not demonstrably 
native or introduced 
(Carlton 1996).

Dispersal pathway:	 The combination of 
processes and oppor-
tunities resulting in 
the movement of 
propagules from one 
area to another, 
including aspects of 
the vectors involved, 
features of the origi-

nal and recipient envi-
ronments, and the 
nature and timing of 
what exactly is moved 
(Wilson et al. 2009).

Hybridization:	 The interbreeding of 
individuals of mor-
phologically and pre-
sumably genetically 
distinct populations, 
regardless of the taxo-
nomic status of such 
populations (Short 
1969).

Native/indigenous/original:	 An organism occur-
ring within its natural 
past or present range 
and dispersal potential 
(organisms whose dis-
persal is independent 
of human interven-
tion) (Falk-Petersen 
et  al. 2006, modified 
from IUCN 2000).

Non-native/alien/exo-tic/
foreign/intro-duced/
non-indigenous:	 An organism occur-

ring outside its natural 
past or present range 
and dispersal potential 
including any parts of 
the organism that 
might survive and 
subsequently repro-
duce (organisms 
whose dispersal is 
caused by human 
action) (Falk-Petersen 
et  al. 2006, modified 
from IUCN 2000).

Vector:	 The physical means or 
agent by which a spe-
cies is transported, 
such as ballast water, 
ships’ hulls, boats, hik-
ing boats, cars, vehi-
cles, packing material, 
or soil in nursery stock 
(Carlton 2001).
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�Promoters of Successful Spread 
and Establishment

�Vectors, Pathways and Altered Habitats – 
Human Impacts

Anthropogenic activities are, by definition, major prerequi-
sites for the occurrence of marine NIS, as only they allow 
species to reach regions beyond their natural range and dis-
persal limits. Besides obvious examples of direct species 
transportation, either intentional or unintentional, human 
impacts on marine habitats can also indirectly act as strong 
promoters of the spread and establishment of marine NIS.

Ship traffic is the most important vector of species’ intro-
ductions (Fig.  1). Ships act as vectors in two ways. First, 
their hulls provide a habitat for fouling communities of ses-
sile species, which are transported between ports and may 
eventually get removed or detached, or release offspring into 
a new environment (Ruiz et al. 1997; Gollasch 2002). If the 
fouling layer is thick enough, mobile species may survive 
transoceanic transport in sheltered cavities, as for example 
the Asian crab Hemigrapsus takanoi, which was first 
recorded in Europe in 1993 on a ship’s hull (Gollasch 1999, 
then identified as H. penicillatus). Second, the exchange of 
huge amounts of ballast water holds the potential for all spe-
cies with (at least temporal) planktonic or swimming life-
style to be taken up in one and be released in another port. 
Since the 1880s, when seawater started to replace solid bal-
last, the number of marine NIS and the frequency of intro-
ductions has been constantly increasing (Carlton and Geller 
1993; Ruiz et al. 1997; Ruiz and Smith 2005; Wolff 2005). 
The ongoing trend to ever more, bigger, and faster vessels 

fuels this trend by increasing ballast water volume and thus 
the number of transported organisms, as well as their sur-
vival probability. The importance of international ship traffic 
for the dispersal of marine NIS is also underlined by the fact 
that especially international ports and their surroundings 
have often turned into hot-spots for exotic species and that 
the dispersal routes of many species follow the main trans-
oceanic shipping routes (Briggs 2012; Seebens et al. 2013). 
While the big container vessels and other large trading ships 
account to a large extent for primary species introductions 
across continents, regional traffic of smaller ships are impor-
tant vectors for the secondary spread (range-expansion) of 
marine NIS. Recent studies showed that recreational boating 
is a particularly important driver of regional dispersal of non-
native species (e.g. Clarke Murray et al. 2011; Hänfling et al. 
2011).

Aquaculture is another important vector for marine NIS, 
which also accounts for a rising number of introductions par-
allel to the global growth of this economy during the last 
decades (Naylor et al. 2001). Organisms with a planktonic 
larval stage are especially prone to ‘spill over’ from their 
culture areas into the surrounding habitats. This introduction 
pathway led, for example, to the invasion of the Pacific oys-
ter Magallana gigas along the southeastern coast of the 
European North Sea. The species was initially believed to 
not be able to reproduce in the cold climate of the North Sea, 
but a series of warm summers following the introduction of 
M. gigas promoted their dispersal. The case of M. gigas 
highlights how a combination of human actions, environ-
mental change and species’ traits can lead to a successful 
invasion (Diederich et  al. 2005; Smaal et  al. 2009). 
Aquaculture is not only a vector for the cultured target spe-

Fig. 1  Number of marine NIS in Europe, known or likely to be intro-
duced by each of the main vectors. Percentages add to more than 100% 
as 147 out of the 1,264 species are linked to more than one vector. 
Categories refer to the certainty by which a species can be linked to a 

vector: (1) there is direct evidence of a vector; (2) a most likely vector 
can be inferred; (3) one or more possible vectors can be inferred. 
Redrawn and modified from Katsanevakis et al. (2013) with permission 
from Elsevier.
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cies, but often also unintentionally introduces organisms, 
which are associated with them if they are not vigorously 
cleaned before transportation. Worldwide, the introductions 
of more than 40 marine species can be directly linked to the 
translocation of bivalves used in aquaculture (Padilla et al. 
2011), and in total 206 NIS have been linked to this vector in 
Europe alone (Katsanevakis et al. 2013; Fig. 1). Particularly 
invasive ecosystem-engineers like reef-building oysters (esp. 
M. gigas and Crassostrea virginica) promote the establish-
ment of NIS they brought along by providing favorable habi-
tats, which eventually further enhances community shifts in 
the invaded systems (e.g., Ruiz et  al. 2000; Markert et  al. 
2010; Padilla et al. 2011). Another important taxon in this 
context are macroalgae, which are regularly introduced as 
‘blind passengers’ with aquaculture organisms. They can 
likewise change existing or form new habitats, thus affecting 
both native and other alien species (e.g., Jones and Thornber 
2010; Salvaterra et al. 2013; Thomsen et al. 2016).

Floating (plastic) litter is a vector recently gaining atten-
tion. While the marine litter problem is mostly discussed 
under the aspect of pollution and the hazardous effects of 
microplastic accumulation, larger pieces of litter are also a 
possible habitat for fouling organisms, which might then be 
transported over large distances by oceanic currents. Recent 
studies found a variety of species from different taxonomic 
groups (including bryozoans, barnacles and mollusks) set-
tling on macroplastic, with a considerable proportion of 
marine NIS among them (Barnes and Milner 2005; Gregory 
2009; Gil and Pfaller 2016). While driftwood and other 
debris may already historically have played a role in the cos-
mopolitan distribution of species like Teredo navalis 
(Bivalvia, Myoida) or Lepas anatifera (Crustacea, 
Pedunculata), the recent extreme increase in amounts of 
marine litter may lead to a future increase in numbers on 
marine NIS dispersed by this vector (Gregory 2009).

Trade of ornamental and aquarium-kept organisms has 
been widely neglected by scientists and policy makers as an 
introduction pathway, although it bears a high potential for 
species invasions (Padilla and Williams 2004). Introductions 
of aquarium organisms to natural environments may occur 
accidentally, when organisms escape during transport or, for 
example, from public aquaria with in-/outflow from/to natural 
water bodies, or intentionally, when hobbyists or traders 
release single individuals or discard the contents of whole 
aquaria into the wild. Fish and macroalgae are the taxa with 
the highest numbers of species (potentially) introduced by 
aquarium trade. Zenetos et al. (2016) list 19 introduced fish 
species with a potential link to this vector in the Mediterranean 
Sea alone, and Vranken et al. (2018) identified at least 23 sea-
weed species commonly found in aquaria across Europe, 
which have the potential to thrive European natural waters, 
with the highly invasive Caulerpa taxifolia as the most strik-
ing example (compare also Padilla and Williams 2004; 

Fig. 1). Besides the usually ornamental target species, aquar-
ium trade may also account for unintentional introductions of 
associated species, especially epibionts on seaweeds and live 
rock used for aquarium decoration, such as macro- and micro-
algae, (hemi)sessile cnidarians, crustaceans, polychaetes or 
mollusks (Padilla and Williams 2004). Aquarium trade is a 
strongly growing economy, and commercial and private 
online retailers make exotic species easily available world-
wide via the internet, rendering this vector extremely difficult 
to control and regulate (Padilla and Williams 2004; Mazza 
et al. 2015; Vranken et al. 2018). Today, the Mediterranean 
and southern European Atlantic are the regions within Europe 
which are most affected by this introduction pathway, due to 
the (sub)tropical origin of most of the traded species. In the 
light of ongoing ocean warming, also more temperate regions 
might get invaded by these species in the future (Vranken 
et al. 2018). Thus, the number of marine invasions promoted 
by aquarium trade are very likely to increase in the future.

Although not thought of as a ‘classical’ vector, canals are 
a major introduction pathway for marine NIS.  The best 
known example is the Suez Canal, connecting the 
Mediterranean Sea to the Red Sea and Indian Ocean, which 
accounts for the vast majority of species invasions to the 
Mediterranean by migration through the canal (Lessepsian 
migration) (Galil 2009). The Baltic Sea, as another example, 
was invaded by numerous ponto-caspian species since it is 
connected to the Black Sea by a system of canals and rivers 
(Leppäkoski et  al. 2002; Katsanevakis et  al. 2013). 
Additionally, the Kiel Canal provides a shortcut route 
between the southwestern Baltic and the southeastern North 
Sea. It likely served as an invasion pathway for numerous 
species native or invasive to the Atlantic, like the crabs 
Rhithropanopeus harrisii and H. takanoi (Fowler et al. 2013; 
Geburzi et al. 2015). An interesting case in this context is the 
shrimp Palaemon elegans, of which an Atlantic type invaded 
the Baltic Sea from the west, and a Mediterranean/Black 
Sea-type invaded from the southeast (Reuschel et al. 2010). 
Besides opening routes for the active migration or natural 
(e.g., larval) dispersal processes, canals also increase the 
probability for successful ship-mediated introductions, as 
they shorten transportation times, thus increasing survival 
probabilities, e.g., for organisms in ballast water tanks.

Human activities not only provide vectors and pathways 
for species’ introductions, but they also impact the environ-
ment in ways that can promote the establishment success of 
marine NIS, in particular by changing natural habitats. The 
‘invasibility’ of a community or habitat, i.e., its receptivity 
towards invasive species, can be strongly influenced by 
human activities. Apart from the propagule pressure of 
invaders, it largely depends on the availability of suitable 
niches and resources. Anthropogenic habitat changes (addi-
tion or depletion of different niches) and disturbances lead-
ing to a reduction in native diversity (increasing resource 
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availability for invaders) are thus important determinants of 
invasibility (Colautti et al. 2006; Fridley et al. 2007; Fig. 2). 
The construction of harbors and coastal defense structures 
such as groins or seawalls on sedimentary coasts or in estuar-
ies, for example, adds artificial rocky habitats to naturally 
soft-bottomed environments. Such new habitats are often 
rapidly colonized by non-native species as native species are 
less adapted to their conditions (Mineur et al. 2012). They 
may also serve as ‘stepping stones’ for the dispersal of 
rocky-shore species (Landschoff et  al. 2013), a function 
which is also currently investigated with regard to the 
increasing number of offshore wind farms (De Mesel et al. 
2015). Water pollution and eutrophication are discussed as 
additional anthropogenic impacts which lead to disturbances 
of marine ecosystems and communities, making them more 
receptive to invasions (Reise et  al. 2006; Briggs 2007). 
Several experimental studies revealed in fact a higher toler-
ance of NIS towards anthropogenic abiotic stress (i.e., water 
pollution) compared to related native taxa in marine com-
munities (e.g., Piola and Johnston 2008; Crooks et al. 2010; 
Lenz et al. 2011). However, observational studies often show 
that invasions occur likewise in disturbed and pristine habi-
tats, and that NIS are affected by disturbances as well (Klein 
et  al. 2005; Boudouresque and Verlaque 2012, and refer-
ences therein), indicating a more complex relationship 
between disturbance, native diversity, and invasibility. Clark 
and Johnston (2011) showed that the relationship between 
disturbance and invader success changes over time, being 
highly positive for initial invasions (due to increased resource 
availability by the reduction in native diversity), but turning 
to a negative relationship for later stages of establishment. 
The high prevalence of marine invasions in disturbed habi-

tats might rather be due to the fact that these are often at the 
same time heavily affected by introduction vectors such as 
shipping and aquaculture (compare Colautti et  al. 2006; 
Boudouresque and Verlaque 2012).

�Life History, Ecology and Physiology – Species’ 
Traits

Of the high numbers of transported and introduced species, 
only a small proportion successfully establishes and becomes 
invasive. Several ecological and life-history traits regularly 
occur in marine invasive species from different taxa and can, 
therefore, be associated with their success. Overall, the fol-
lowing traits and examples show that plasticity, for example 
in life-history strategies, behavior, and physiology, is a key 
feature of successful invaders.

Many of these traits are associated with reproduction, as 
in the end reproductive success is the one factor determining 
whether a species successfully establishes and spreads 
(Fig.  2). Invaders are often characterized by an r-selected 
breeding strategy (early maturity, short generation time, high 
fecundity, rapid growth rates) or the ability to switch between 
r- and K-selected strategies (reviewed in Sakai et al. 2001), 
enabling them to develop a high propagule pressure even 
from small founder populations. Likewise, the ability of 
females to produce several broods per season when environ-
mental conditions allow for it has been often observed (Hines 
1986; Anderson and Epifanio 2010; van den Brink et  al. 
2013). For crabs in particular, Zeng et al. (2014) discuss the 
ability to switch between, or combine, two strategies of 
resource allocation for reproduction as a potential promoter 

Fig. 2  Factors that have been 
shown to affect invasions of 
non-native species into 
marine communities. 
Propagules of NIS may be 
supplied by various vectors 
and propagule pressure is 
influenced by reproductive 
traits of these species. When 
they are able to survive under 
the environmental conditions 
of the new habitat (‘Abiotic 
filter’), their ability to invade 
the community is influenced 
by several, potentially 
interacting factors that affect 
resource availability, as well 
as the NIS’ biological traits 
(modified after Olyarnik et al. 
2009, with permission from 
Springer). See text for details 
and examples.
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of invasiveness. The authors suggest that successful invaders 
might be able to use both, internal repositories as well as 
external energy sources, during reproduction, allowing for 
higher fecundity or extended breeding periods (Zeng et al. 
2014). In some cases, seasonality also seems to have facili-
tated the establishment of NIS. Temporally shifted breeding 
periods are for example believed to reduce competition 
between early juveniles of native crabs and the invasive 
European shore crab Carcinus maenas in Australia (Garside 
et al. 2015).

Having a planktonic larval stage is a common feature of 
many marine taxa, but it provides particular benefits for 
establishing NIS by increasing their dispersal abilities. This 
trait mostly affects the secondary regional spread after the 
initial introduction of a species. Some marine NIS possess a 
significantly longer duration of larval development com-
pared to native species of the same taxonomic group, which 
is regarded as a mean of further enhancing the dispersal 
potential (Roman and Palumbi 2004; Viard et  al. 2006; 
Delaney et al. 2012; Katsanevakis et al. 2013). The choice of 
recruitment sites by the last larval stages is often positively 
influenced by chemical signals released by conspecifics (gre-
garious settlement), but for some successful invaders cues 
from suitable habitat act as strong as recruitment enhancer as 
conspecific cues. This mechanism has for example been 
shown for the crab Hemigrapsus sanguineus and is believed 
to enhance the species’ ability to colonize new habitats 
(O’Connor 2007; Anderson and Epifanio 2009).

Resource utilization and food preference is another set of 
traits, where successful invaders often show high levels of 
plasticity. Omnivory (in animals) and the ability to quickly 
adapt to a changed food supply is often observed (e.g., Blasi 
and O’Connor 2016) and allows NIS to avoid food competi-
tion with native species of the same guild. On the other hand, 
newly arrived species can also cause dietary shifts in native 
species, being both, beneficial for themselves but detrimental 
for the native competitor (Griffen et al. 2011).

A species physiology is an important component in deter-
mining its ability to take hold in a new habitat (Fig. 2). In 
order for an invader to take hold and remain, it must pass 
biotic and abiotic conditions, known as the “ecological fil-
ter” of the environment (Crowl et al. 2008). Abiotic factors 
are the first part of the filter that NIS must endure. They must 
be able to survive physiological adjustments and abiotic 
stressors such as temperature, desiccation, and disturbance 
(Olyarnik et al. 2009). Granted a species is able to endure the 
abiotic factors, they must also be able to maintain perfor-
mance and fitness through competition (Levine et al. 2004) 
and predation (deRivera et al. 2005) with other species in the 
environment. Failing to survive through this filter can pre-
vent establishment or range expansion (Kelley 2014).

Temperature and salinity are two factors highly regarded 
in limiting an organism’s ability to expand its range as a NIS, 

as is the case in Mytilus studies (Pickens 1965; Helm and 
Trueman 1967; Coleman and Trueman 1971; Stickle and 
Sabourin 1979; Nicholson 2002; Braby and Somero 2006a). 
Mytilus trossulus is native to the North Pacific, however, has 
been replaced along the California coastline from the 
Mexican border to Monterey Bay after the introduction of 
Mytilus galloprovincialis, a Mediterranean native, to 
Southern California via shipping in the 1900s (McDonald 
and Koehn 1988; Geller 1999). A habitat mosaic exists in 
San Francisco and Monterey Bay, which are both character-
ized by varying abiotic environmental conditions (Braby and 
Somero 2006b). While the invasive mussel (Mytilus gallo-
provincialis) is genetically inclined to high temperature ther-
mal tolerance, Mytilus trossulus is well adapted to areas 
achieving a critical salinity level, making the matrix of habi-
tats in Monterey and San Francisco Bay a mixed mosaic, 
where otherwise Mytilus galloprovincialis had displaced it 
along the southern coast given its thermal tolerance acclima-
tion advantage (Braby and Somero 2006a).

In some cases, NIS are able to sustain populations in new 
ranges despite not being physiologically capable of repro-
duction in the surrounding environment. This is a leading 
hypothesis for the Chinese Mitten Crab Eriocheir sinensis in 
the Baltic Sea. Though other theories exist, evidence sug-
gests that the Elbe River estuary is a donor area for E. sinen-
sis, and that individuals are migrating to the Baltic via the 
Kiel Canal, traveling distances up to 1,500 km (Ojaveer et al. 
2007). Under unfavourable combinations of temperature and 
salinity, it has been shown that additional larval stages may 
occur in E. sinensis (Ojaveer et al. 2007), which is a phenom-
enon unique among brachyuran crabs (Montú et al. 1996). 
Other crab species have also shown regional adaptations to 
physiological parameters. Populations of the European shore 
crab C. maenas in the Baltic Sea (salinity 15) have shown a 
higher capacity for hyper-regulation than populations of C. 
maenas in the North Sea (salinity 30) (Theede 1969).

�Competition, Facilitation and Parasitism – 
Species’ Interactions

Wherever NIS are introduced, they develop interactions with 
both native and other non-native species in their new habitat. 
At the same time, detrimental interactions with species of 
their native range, such as predators, parasites or pathogens, 
may fall away in the invaded range (‘enemy-release-
hypothesis’, see e.g., Jeschke et al. 2012; Papacostas et al. 
2017). Either way, shifts in the interaction regimes of NIS 
during the invasion process are probably among the most 
important factors determining the long-term potential for a 
successful establishment after initial introduction.

Many invasive species are known as strong competitors, 
having negative effects on native species occupying the same 
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niche, which, in turn, facilitates their own or their offspring’s 
establishment. Common mechanisms are superiority in the 
competition for food and shelter or for optimal settlement 
space in the case of sessile animals and plants, respectively 
(Ruiz et al. 1999; Jensen et al. 2002; Levin et al. 2002; van 
den Brink et  al. 2012; Katsanevakis et  al. 2013). Several 
studies also reported direct predation pressure by invaders on 
native species within the same guild (Ruiz et al. 1999, and 
references therein). Some authors (Briggs 2010) relate the 
strong competitiveness of many NIS to a regularly observed 
biogeographical pattern of marine invasions: They often 
originate from regions with high biodiversity (e.g., the west-
ern and central Indo-Pacific and the NW-Pacific for NIS in 
Europe, see Tsiamis et  al. 2018) and are, therefore, well 
adapted to strong competition. This makes them superior 
over native species of their recipient regions, which are often 
characterized by lower biodiversity. This pattern is also 
incorporated in the ‘enemy-release-hypothesis’ (Bax et  al. 
2001; Brockerhoff and McLay 2011), and assumed to sig-
nificantly contribute to the observation that successful invad-
ers often ‘perform better’ (grow bigger, reproduce more) in 
their invaded compared to their native ranges (Parker et al. 
2013).

The success of marine NIS may also be enhanced by posi-
tive interactions which benefit the invader. They have been 
described to occur among species invading the same region, 
where the establishment of a first species (often an ecosystem-
engineer, see section “Vectors, Pathways and Altered 
Habitats – Human Impacts”) facilitates subsequent invasions 
of further species (Fridley et  al. 2007; Altieri and Irving 
2017). The initial invader might either directly provide ben-
eficial effects for subsequent invaders (e.g., habitat or food) 
or exert detrimental effects for native competitors of subse-
quent invaders (e.g., predation, pathogens, structural habitat 
changes, Fig.  2). Such cascading effects have led to the 
assumption that increasingly invaded systems become more 
susceptible to further introductions, cumulating in ‘inva-
sional meltdown’ scenarios (Simberloff and Von Holle 1999; 
Grosholz 2005). Empirical evidence for ‘invasional melt-
down’ is however scarce (Simberloff 2006; Briggs 2012). At 
the same time, an increasing number of studies report both 
negative interactions between NIS (Lohrer and Whitlatch 
2002; Griffen et al. 2008; Griffen 2016) and positive effects 
of NIS on native species (Rodriguez 2006, and references 
therein). In summary, these studies underline the complexity 
of species interactions in the context of NIS establishment, 
making predictions on general interaction patterns and long-
term invasion success extremely difficult.

Parasitism is another type of species’ interaction with the 
potential to strongly affect invasion success. Just like being 
released from enemies, a release from parasites often occurs 
during the translocation process of many species, resulting in 
a much lower parasite load of introduced compared to native 

populations (Snyder and Evans 2006; McDermott 2011; 
Fowler et al. 2013). Direct positive effects of reduced para-
site load include, for example, increased survival and fecun-
dity (especially, when released from sterilizing parasites). 
Even more important are the indirect effects by the reduced 
need to invest in parasite defense, allowing organisms to 
reallocate those resources to traits like growth or reproduc-
tion (Goedknegt et al. 2016). Reduced investment in parasite 
defense, however, results in higher susceptibility to parasite 
infections, which may in turn negatively impact establish-
ment success (Keogh et  al. 2016). Introduced non-native 
parasites, on the other hand, can reach extreme invasion suc-
cess when they are able to infect native species which are 
closely related to their original host, but have only weak 
defensive traits due to the lack of coevolution (examples in 
Ruiz et al. 1999; Feis et al. 2016). This could theoretically 
even promote the invasion success of the original host, which 
may gain competitive advantages over its native relative by 
being better adapted to infections.

�Selection, Multiple Introductions 
and Hybridization – Invasion Genetics

Species introductions have the potential to trigger rapid evo-
lutionary changes and adaptation processes acting on the 
genetic level. Invasion genetics, therefore, play an important 
role in determining long-term success of species introduc-
tions and their evolutionary consequences for the respective 
species (Holland 2000; Geller et  al. 2010). Furthermore, 
invasion genetics is a tool to determine the origin of invasive 
species and potential pathways of introduction. The Veined 
rapa whelk (Rapana venosa), for example, is genetically 
highly diverse in native Chinese populations (Yang et  al. 
2008), but genetically monomorphic in all introduced popu-
lations in Europe and the Americas. This implies that all 
introduced populations originate from one single introduc-
tion, which has been localized in the Black Sea (Chandler 
et  al. 2008). Similarly, all invasive populations of the sea-
weed Caulerpa taxifolia in the Mediterranean, Australia and 
North America could be traced back genetically to a strain 
that was released or escaped from a European aquarium 
(Wiedenmann et al. 2001; Padilla and Williams 2004).

Usually, introduction and colonization processes of spe-
cies into new habitats are associated with a considerable 
reduction of genetic diversity by strong genetic drift or bot-
tleneck effects. One would, therefore, expect to regularly 
observe negative effects of genetic depletion in newly estab-
lishing populations, especially a reduced ability to adapt to 
changing environmental conditions. This seems, however, 
often not to be the case (a terrestrial example in Tsutsui et al. 
2000; Hänfling 2007). Possible reasons are for example co-
segregation of fixed loci or changes in frequencies of rare 
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(recessive) alleles caused by the reduction of population size, 
leading to an actual increase in additive genetic diversity 
(Hänfling 2007, and references therein; Facon et al. 2008). 
If, by chance events, advantageous genotypes develop under 
these conditions, they can rapidly become fixed in a small 
founder population due to the strong selective forces. 
Multiple introductions of the same species can further miti-
gate possibly negative effects of small founder populations. 
They will be often not recognized as long as no genetic stud-
ies are performed (‘cryptic invasions’), but are likely to occur 
in many introduced species. If repeated introductions origi-
nate from different source populations, this leads to an 
admixture of genotypes, holding the potential to strongly 
increase the adaptive abilities of the species by novel combi-
nation of alleles (Hänfling 2007; Herborg et al. 2007; Chan 
and Briski 2017). This is believed to considerably contribute 
to the invasiveness of global invaders like the European shore 
crab Carcinus maenas (Geller et al. 1997; Roman 2006).

Hybridization between native species and NIS regularly 
occurs in animals with external fertilization like mollusks 
and fish, and especially in plants. From the invaders perspec-
tive, it increases the chances to successfully establish despite 
small founder population sizes either by introgression of 
native alleles which enhance adaptive evolution, or by the 
development of new hybrid lineages combining beneficial 
traits from both parental lineages (Sakai et al. 2001; Hänfling 
2007). The latter can occasionally lead to hybrid superiority 
and eventually result in the displacement of native species by 
newly evolved hybrids. This has been for example observed 
for cordgrass, Spartina sp., in Great Britain and North 
America, where hybrids between native and invasive species 
disperse more successfully than their parent species (Huxel 
1999; Williams and Grosholz 2008, and references therein).

�Why Does It Matter?

�Ecological Impacts

The evidence is overwhelming that NIS invasions are a sig-
nificant stressor to marine communities and has been 
observed in invasions by plants, fish, crabs, snails, clams, 
mussels, bryozoans, and nudibranchs (Ruiz et  al. 1999). 
Furthermore, anthropogenic derived disturbances and the 
introduction of new species are skewing food webs towards 
a loss of higher trophic groups and a gain in lower order con-
sumers (Byrnes et al. 2007). On the other hand, the invasion 
of marine NIS may increase local biodiversity, as marine 
invaders often appear to accommodate besides native species 
rather than replacing them (Briggs 2007; an example in 
Reise et  al. 2017). As a higher biodiversity stabilizes 
communities, invaders may also have overall positive effects, 
especially in otherwise disturbed habitats. This can also 

include the resistance against further invasions (Stachowicz 
et al. 2002; Marraffini and Geller 2015). Species most likely 
to have wide-reaching ecosystem impacts are those that alter 
the biotic and abiotic factors of the environment, namely 
ecosystem engineers (Vitousek et al. 1996).

An ecosystem engineer is an organism that alters the 
availability of resources to other species. Jones et al. (1994) 
described ecosystem engineers as falling into two categories, 
autogenic and allogenic. Autogenic engineers change the 
environment through their own physical structure. Corals for 
example, provide habitats for many reef dwelling species. 
Allogenic engineers alter the environment by transforming 
living or non-living materials between physical states, as is 
the case for sea urchins which alter the environment by eat-
ing the kelp that would otherwise be providing a habitat for 
organisms as autogenic engineers (Jones et al. 1994). Broadly 
speaking, NIS as ecosystem engineers can provide both posi-
tive and negative impacts on their environments. As a promi-
nent example, Pacific oysters (Magallana gigas) have been 
introduced globally for aquaculture purposes and have in 
some cases established wild oyster beds among its intro-
duced ranges (Lejart and Hily 2011). The impact of Pacific 
oysters has varied from displacement of Sabellaria reefs, a 
species of conservation importance, to increases in sessile 
invertebrate diversity via secondary settlement on oyster 
shells (Olyarnik et al. 2009; Herbert et al. 2016).

Apart from the introduction of ecosystem engineers them-
selves, the introduction of pathogens can indirectly cause a 
significant alteration to the physical environment by infect-
ing ecosystem engineers. The introduced protistan pathogens 
Haplosporidium nelsoni and Perkinsus marinus were partly 
responsible for the decline of the Virginia oyster (Crassostrea 
virginica) (Crooks 2002), a historically important ecosystem 
engineer in the Chesapeake Bay. The Chesapeake Bay has 
seen a decrease in over 90% of its oyster population in the 
last century and the pathogen introduction has been recorded 
as a dominant factor of mortality. Additionally, results of the 
pathogen introduction have limited the physical structure of 
oysters as a habitat and as a filter feeder, altering the benthic 
and planktonic food webs (Ruiz et al. 1999).

Positive ecological impacts of NIS also occur outside the 
group of ecosystem engineers. For example, the mitten crab 
E. sinensis is able to transfer native and non-native inverte-
brates to new habitats (Ojaveer et al. 2007). The large cara-
pace acts as a substrate for flora and fauna (e.g., algae and 
barnacles) to inhabit. Furthermore, the ‘hairy’ patches on the 
crabs’ claws could also provide a habitat for nematodes, 
bivalves, crustaceans, oligocheates, and gastropods (Normant 
et al. 2007). Other ecological advantages include new food 
sources for fish, novel habitats, and increased biofiltration. In 
a recent meta-analysis, Katsanevakis et al. (2014) found that 
among the assessed NIS, 35% had been reported to have a 
positive impact on other species.
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�The Economy and Human Health

Social and economic impacts are linked to invasive species 
altering fisheries, aquaculture, tourism, and marine infra-
structure activities. Human health is also impacted, when the 
consequence of these alterations results in lost revenue and, 
potentially, a direct decrease in human health (Bax et  al. 
2001).

The economy drives the exchange of goods across the 
globe via shipping routes and trade and with it come new 
NIS. In some instances, NIS have negative economic impacts 
by altering ecosystems and reducing the stocks of exportable 
fish and shellfish through competition and disease. Few stud-
ies focus on the economic impacts of aquatic species alone 
and even fewer separate out marine from freshwater species 
impacts. In a recent case study, Ünal and Bodur (2017) inves-
tigated the negative impacts of Silver-cheeked toadfish 
Lagocephalus scleratus on small-scale fisheries in the east-
ern Mediterranean Sea. Marine invasions pose an additional 
challenge because of the widely dispersing planktonic larvae 
of some marine species (Thresher and Kuris 2004).

The European green crab Carcinus maenas, ranked in the 
IUCN list of the ‘world’s worst invasive alien species’ (Lowe 
et  al. 2004) has had quite an economic impact in North 
America since emerging from its native European range over 
200 years ago (Carlton and Cohen 2003). The estimated 
annual losses to shellfisheries on the East Coast of the United 
States due to predation by C. maenas alone range from $14.7 
to $18.7 million a year and sum up to $805.9 million during 
the period from 1975 to 2005 (Abt Associates Inc. 2008). In 
addition to loss of profit from shellfish sales, green crabs are 
also responsible for the loss of eelgrass in restoration proj-
ects through bioturbation activities such as foraging and bur-
rowing (Davis et al. 1998). The associated costs from these 
activities range from $60,150 to $77,433 as an estimate for 
the year 2006 (Abt Associates Inc. 2008). Apart from the 
costs associated with direct shellfish predation and eelgrass 
restoration projects, there are also projected costs for han-
dling further losses from the NIS. Expenditures for a pro-
posed monitoring and control program to the US 
Environmental Protection Agency would cost $285,000 per 
year (Abt Associates Inc. 2008). The European shore crab is 
just one NIS, in one country and calculations are based on 
only the known impacts. Carlton (1999) and others demon-
strated through the European shore crab that the economic 
cost of a single NIS can be quite significant, highlighting the 
need for effective control and management implementation. 
Keller et al. (2011) highlight the possibility that there may be 
economic benefits in some cases. The release of the Red king 
crab Paralithodes camtschaticus into the Barents Sea and 
subsequent expansion into the Norwegian coast provided an 
income of over 9 million EUR for fisherman (Galil et  al. 
2009). Other edible NIS used in fisheries or aquaculture 

include the fish Planiliza haematocheila, Saurida lessepsia-
nus, Siganus luridus, S. rivulatus, the molluscs Ensis direc-
tus, Mercenaria mercenaria and Aerococcus viridans var. 
homari (Katsanevakis et al. 2014).

While known impacts of NIS can be calculated to the dol-
lar, other factors may not have a monetary label, especially 
those concerning human health. Lafferty and Kuris (1996) 
describe the risk that the Chinese mitten crab in California 
presents as a second intermediate host for the Oriental lung 
fluke Paragonimus westermani, which can cause paralysis in 
humans. If the mitten crab becomes widely abundant, it may 
serve as a suitable host for the native North American lung 
flukes and increase the potential for infection in humans 
(Lafferty and Kuris 1996).

�Management and Policy

As Thresher and Kuris (2004) summarize, there are manage-
ment efforts in outbreaks across the globe, from the marine 
alga Caulerpa taxifolia in California, the Mediterranean Sea 
and Australia (Meinesz et  al. 2001; Cheshire et  al. 2002; 
Williams and Grosholz 2002) to the Asian whelk Rapana 
venosa in the Chesapeake Bay (Mann and Harding 2000) 
and the Asian mussel Perna viridis in Cairns, Australia 
(Thresher and Kuris 2004). These examples illustrate that 
marine invasions are truly a global challenge. In meeting this 
challenge, the study highlights four key differences between 
management in marine and terrestrial invasion approaches. 
The first is that the ocean is perceived as an open system and 
that, due to global patterns of circulation, pelagic larvae and 
large-scale migrations, local eradication efforts are insignifi-
cant. The open nature of the ocean establishes a defeatist atti-
tude among public managers. Another challenge to marine 
invasions is who should bear the burden of cost. The benefits 
of management actions can be widespread and, therefore, 
which parties should be involved in paying for them can 
become convoluted. Furthermore, the public perceives the 
ocean and open coastline to be pristine, allowing invasions to 
go largely unnoticed by the public. Thus, public awareness 
typically does not arise until the later stages of the invasion 
process (expansion and persistence), while at the same time 
containment and other management efforts grow increas-
ingly difficult (Fig.  3). Finally, scientific literature on the 
biology of most marine taxa is limited, making decisions and 
predicting outcomes of management practices difficult 
(Thresher and Kuris 2004). Despite these additional chal-
lenges in managing marine invasions, there have been 
approaches developed which have produced mixed results.

Lovell et  al. (2006) highlights some of the policies 
developed to limit the spread of NIS. Two main approaches 
to international policy have been to focus on shipping vec-
tors as a means of distribution, and by limiting the amount 

How Do They Do It? – Understanding the Success of Marine Invasive Species



118

of imports via quarantine bans or tariffs (Lovell et al. 2006). 
Despite regulations, trade among the North Atlantic Free 
Trade Area (NAFTA) countries spreads invasive species 
that were introduced as a result of trade with countries out-
side of NAFTA (Perrault et al. 2003). It is in this manner 
that NIS can be introduced and widely distributed among 
trade partners who themselves adhere to stringent treaty 
regulations.

A mere handful of marine focused management recom-
mendations have been suggested and are summarized by 
Secord (2003). Recommendations are centered around pre-
vention and control. The least disturbing to the environment 
is the prevention of invasions in the first place (Fig. 3). This 
may be manifested through public education and outreach 
programs, ballast water exchange and treatment options, and 
regulation in the aquaculture industry and aquarium trade 
(Secord 2003). Second is the eradication of small invasive 
populations, while they are still susceptible to localized 
chemical or mechanical control methods (Fig. 3). This may 
take form through shading algal species, chlorine treatment 

of marinas, or the physical smashing of individual snail hosts 
of an invasive parasite (Bax 1999; Culver and Kuris 2000; 
Dalton 2000). Invasions can further be augmented through 
biocontrol using native species. The advantage of this method 
is that it introduces no further NIS, however, the implications 
for affected community dynamics may be put at risk. The 
most risky method to local ecosystem dynamics is through 
the introduction of other NIS to eat, parasitize, infect or com-
pete with the invader (Secord 2003). Finally, public educa-
tion, supporting research, and monitoring all help to inform, 
when management actions should be implemented or when 
new invaders have arrived.

Returning to the example of C. maenas, one considered 
bioinvasion control for this species was the introduction of 
the castrating barnacle Sacculina carcini. After infiltrating 
the crab body, the parasite castrates both male and females, 
effectively prohibiting its hosts from reproducing (Lafferty 
and Kuris 1996). The danger in this form of bioinvasion con-
trol is how it would impact native as well as commercially 
valuable crabs or shrimp (Secord 2003).

Fig. 3  Theoretical invasion curve (black line), stages of the invasion 
process and according stages of invasive species management (after 
Boudouresque et al. 2005; State of Victoria 2010; Gothland et al. 2014). 
Preventive measures before the introduction are the most effective and 

least disturbing to the environment. Once the expansion stage is 
reached, management is limited to containment of the invader and mini-
mization of its impacts.
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�Future Implications in Light of Climate 
Change

Future studies should consider marine invasions in light of 
changing climate conditions. As sea level rises, how will it 
influence the expansion of NIS ranges? If bodies of water are 
connected by larger channels and increased water flow, how 
will this impact the spread of future invasions? Will prone to 
acclimatizing NIS thrive, when new areas of land sink 
beneath the rising oceans?

Educating the public on marine NIS is an important step 
towards keeping invasions in check. The ocean is large and 
looking out at it from on land, it can seem undisturbed and 
peaceful. Beneath the surface, however, NIS are thriving 
under rocks and floating through the water column as micro-
scopic plankton. Using molecular genetic techniques, we can 
first study the past and use it to understand how established 
NIS came to be. Through further monitoring, we can keep 
invasions in check and observe, whether new invasions are 
underway. Finally, by carefully predicting climatic condi-
tions of the future, we can hypothesize about the course of 
future marine invasions and begin to plan future manage-
ment campaigns in light of global climate change.

Climate change is expected to impact aquatic invasions 
by warming water temperatures, altering water flow patterns, 
and increasing storm events (Poff et al. 2002). Aquatic sys-
tems that are naturally saline will likely increase in salinity, 
though, whether this will necessarily allow marine species to 
invade inland waters is still largely unknown (Rahel and 
Olden 2008). Climate change will also result in physiologi-
cal changes, which will become apparent at the population 
level and as seen by shifts in abundance, timing of annually 
recurring events and distribution and dispersion of organisms 
(Doney et al. 2012). For example, invasive ectotherms have a 
greater ability to acclimate their thermal tolerance and can 
achieve a higher upper thermal tolerance threshold than 
native ectotherms (Kelley 2014). As Occhipinti-Ambrogi 
(2007) highlights, the range expansions of populations of 
NIS has already been observed to be coupled with increasing 
water temperatures. The Mediterranean Sea has witnessed 
the establishment of alien microalgae species, an increase 
that is largely attributed to increased water temperatures 
(Gómez and Claustre 2003). Other microalgae, whose spread 
is also thought to be linked to increasing water temperatures, 
has impacted human health. The NIS Ostreopsis cf. ovata, 
which bloomed in the Ligurian sea, caused respiratory ill-
ness in tourists exposed to it (Brescianini et al. 2006; Durando 
et al. 2007; Vila et al. 2016).

One of the most comprehensive models for predicting the 
fate of marine invasions found that overall there would be a 
high species turnover rate attributed to invasions and extinc-

tions by the mid-21st century. In considering the distribu-
tional ranges of 1,066 marine fish and invertebrates for 
2050 in a bioclimate envelope model, Cheung et al. (2009) 
found that patterns of species invasion as well as turnover 
(accounting for invading and locally extinct species) were 
predicted in high latitude regions of the Arctic and Southern 
Ocean and that, combined with global extinctions, invasions 
and extinctions will amount to a turnover of 60% of the pres-
ent biodiversity. The potential disruptions in ecosystem ser-
vices in the future based on this model remain yet to be 
known. With a growing world population and in light of a 
changing global climate, studies are needed to better under-
stand how marine invasions will further impact our environ-
ment and economy, and how managers can better prepare for 
future invasions.
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�Appendix

This article is related to the YOUMARES 8 conference ses-
sion no. 11: “How Do They Do It?  – Understanding the 
Success of Marine Invasive Species”. The original Call for 
Abstracts and the abstracts of the presentations within this 
session can be found in the appendix “Conference sessions 
and Abstracts”, chapter “7  How Do They Do It?  – 
Understanding the Success of Marine Invasive Species”, of 
this book.
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