
RESEARCH ARTICLE

Ocean acidification effects on

mesozooplankton community development:

Results from a long-term mesocosm

experiment
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Abstract

Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly

via trophic pathways, where changes in carbon availability or pH effects on primary produc-

ers may cascade up the food web thereby altering ecosystem functioning and community

composition. Here, we present results from a mesocosm experiment carried out during 113

days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to pre-

dicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of

the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton

abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two

major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2

sensitivities were detected in copepods, with copepodites being the most responsive stage.

Focusing on the most abundant species, Pseudocalanus acuspes, we observed that cope-

podites were significantly more abundant in the high-pCO2 treatment during most of the

experiment, probably fuelled by phytoplankton community responses to high-pCO2 condi-

tions. Physiological and reproductive output was analysed on P. acuspes females through

two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on

egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton commu-

nity structure is not expected to change much under realistic end-of-century OA scenarios

as used here. However, the positive pCO2 effect detected on mesozooplankton abundance

could potentially affect biomass transfer to higher trophic levels in the future.
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1 Introduction

Continuous burning of fossils fuels is causing an increase of atmospheric carbon dioxide

(CO2), and current atmospheric pCO2 values (ca. 400 μatm) are projected to reach levels of up

to 1000 μatm in less than 100 years [1]. Approximately one-third of the anthropogenic CO2

has been taken up by the oceans [2] leading to a reduction in pH (hence the term “ocean acidi-

fication” [3, 4]) and shifts in seawater carbonate chemistry [5]. Coastal marine ecosystems may

be less sensitive to increased CO2 than open ocean regions, as the natural CO2 fluctuation in

these areas is already substantial [1, 6]. However, ocean acidification (OA) can interact with

other natural and anthropogenic environmental processes such as warming [7], eutrophica-

tion [8], and deoxygenation [9], making it a potential threat in conjunction with other stress-

ors. Furthermore, OA may affect zooplankton not only directly by decreases in pH, but also

indirectly via trophic pathways [10–12]. Consequently, both direct pH as well as pCO2 effects

on primary production [13] may travel up the food web [10] therefore altering ecosystem func-

tioning and community composition (e. g. [14]).

Elevated pCO2 in seawater may have positive effects on primary production, but at the

same time impact marine organisms both via changes in calcification rates [15, 16], and via

disturbance to acid–base (metabolic) physiology [17]. Calcified secretions in marine fauna and

flora are not only limited to skeletal CaCO3 (thus, calcifiers sensu stricto) but there are other

calcium-based structures that might be a target for low pH effects, such as, for example, the

equilibrium organs (statoliths) in gelatinous zooplankton [17]. These organs are calcium mag-

nesium phosphate crystals which may be affected by lowering pH [18], as reported for stato-

liths of scyphomedusae [19].

Copepods are the most abundant marine planktonic metazoans and, together with micro-

zooplankton, are the major primary consumers in most marine food webs, sustaining second-

ary consumers such as fish and jellyfish [20, 21]. Copepods typically prefer larger and moving

prey, i.e. they feed primarily on ciliates and dinoflagellates than on diatoms [22, 23], with pre-

ferred sizes between 20 and 200 μm ([24] and the references therein). As a result, they often

switch from phytoplankton to microzooplankton over the course of a phytoplankton bloom

[22] as larger prey items typically only become available later in the phytoplankton bloom, and

even predate their offspring when resources are scarce [25].

Previously, copepods were considered to be relatively tolerant to OA [26, 27], but several

processes in copepods may in fact be affected by low pH, including metabolism [28], pH bal-

ance [29], reproduction [30], development [31], growth [32] and survival [33]. Furthermore,

diverse sensitivities to OA exist between different species and even between life stages within

species [34]. Early life stages are most sensitive, resulting in a potential negative effect on sur-

vival and/or development (e. g. [29, 30, 35]). Different sensitivities to OA might also be related

to copepod habitats, thus those copepod species more exposed to natural pH fluctuations (as

vertical migrators or coastal species) might be more tolerant to OA than others [33, 36].

During the last decade, numerous studies dealing with the potential effects of high CO2 on

single species were published (e. g. [35, 37]), while ecosystem-level impacts have attracted less

attention. In order to assess future OA effects on natural communities, studies focused on eco-

logical interactions (e. g. [38–41]), as well as long-term multigenerational experiments [42–44]

are of paramount importance. To investigate the effects of end-of-century pCO2 levels on

coastal pelagic ecosystems, we conducted a long-term mesocosm experiment in a boreal fjord.

The present paper is part of the BIOACID II long-term mesocosm study PLoS Collection [45].

Here we focus on the natural mesozooplankton community, in particular on copepods and

hydromedusae as the most abundant taxa. Testing the null hypothesis of no-effect, we assessed

(1) mesozooplankton community development along the winter-to-summer plankton
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succession and the OA effects on the community interactions as well as (2) temporal trends

and high-CO2 effects on species abundances, supported by two onshore experiments in the

case of the most abundant copepod species, Pseudocalanus acuspes.

2 Materials & methods

2.1 Mesocosms setup and experimental design

Within the framework of the BIOACID II project (Biological Impacts of Ocean ACIDifica-

tion), this study was part of the”BIOACID II long-term mesocosm study”, which was con-

ducted from January to July 2013 in the Gullmar Fjord (58˚15’ N, 11˚28’ E), on the Swedish

Skagerrak coast [45]. We deployed ten mesocosms (KOSMOS, M1-M10: “Kiel Off-Shore

Mesocosms for future Ocean Simulation”, [46, 47]) in the fjord to study the effect of changing

carbonate chemistry conditions on mesozooplankton community development. The experi-

mental units consisted of large enclosed water volumes (~50 m3), five of them used as controls

(ambient pCO2 levels = ca. 380 μatm), and the other five were CO2-enriched in levels adjusted

to realistic end-of-century scenarios (RCP 6.0 [1]). Mesocosms were sealed by sediment traps,

installed at the bottom of each mesocosm bag. Target pCO2 was reached at the beginning of

the experiment by adding CO2 saturated seawater to the mesocosms. Subsequent additions

were made on a regular basis in the course of the experiment (day 17, 46, 48, 68 and 88) to

compensate for CO2 loss through outgassing. We established realistic end-of-century pCO2

levels (average = ca. 760 μatm) over the study period (see Fig 1a, [45]). Regular sampling every

2nd day included CTD casts, water column sampling, and sediment sampling. Water column

samples were collected with integrating water samplers (IWS, Hydrobios), which collect a total

volume of 5 L from 0–17 m depth evenly through the water column. This water was used for

nutrient analyses, pigment analysis, and microzooplankton microscopy. All analyses are

described in detail in [45] within this PLoS Collection. Briefly, nutrient (NO3
-+ NO2

-) concen-

trations (Fig 1b, [45]) were measured with a SEAL Analytical QuAAtro AutoAnalyzer and a

SEAL Analytical XY2 autosampler. Pigment extracts were used for analysis by means of

reverse phase high performance liquid chromatography (HPLC) (Fig 1c, [45]). Every eight

days, microzooplankton samples were taken from the IWS carboys, immediately fixed with

acidic Lugol’s solution and stored dark until identification (Fig 1d, [48]). Results presented

here correspond to t1 (10th March) up to t103 (20th June) of the 113 days that the mesocosms

experiment lasted [45].

2.2 Mesozooplankton sampling

The mesozooplankton community was sampled in the mesocosms and the fjord by vertical net

hauls with an Apstein net (55μm mesh size, 17 cm diameter) equipped with a closed cod end,

sampling a total volume of 385 L. Sampling depth was restricted to the upper 17m to avoid

resuspension of the material accumulated in the sediment traps, at 20m depth. One net haul

per mesocosm was taken once every eight days, within a narrow time-window (1 to 3 p.m.) to

avoid differences in the community composition caused by diel vertical migration. Note that

sampling frequency was lower than for other water column samples to avoid overharvesting of

the plankton community. Samples were rinsed on board with filtered sea-water, collected in

containers and brought to the laboratory, where samples were preserved in 4% formaldehyde

buffered with sodium tetraborate. For transportation during summer time, the samples were

placed in cooling boxes until fixation of the organisms.

During analysis, organisms were sorted using a stereomicroscope (Olympus SZX16) and

classified to the lowest possible taxonomical level, including gender in the case of adult cope-

pods. Copepodites and adults were classified to species level whereas nauplii from different
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species were pooled together. Taxonomical analyses were carried out focusing on copepods

[49–52] and hydromedusae [53–55] as the most abundant groups. Every sample was sieved

through 50 μm mesh, rinsed with tap water and poured into a calibrated beaker, where organ-

isms were well mixed before taking a 5% aliquot with a Hensen Stempel pipette [56]. Counting

was restricted to 5% (one aliquote) or 10% (two aliquots) of the total sample for the most abun-

dant groups (nauplii, P. acuspes adults and P. acuspes copepodites) when more than 200 indi-

viduals were counted in the first aliquot. Otherwise the subsampling procedure was repeated,

counting a maximum of a 15% of the total sample for all species.

Since some organisms characteristic to a winter-to-summer succession might not have

been included when the experiment started, the community within the mesocosms was

enriched by the addition of 22 L of fjord water every fourth day [45]. Likewise Atlantic herring

(Clupea harengus) eggs and green sea urchin (Strongylocentrotus droebachiensis) gastrulae were

artificially added to each mesocosms on t48 and t56 respectively [45] according to the time of

the year that these groups would have been part of the natural fjord community. Densities of

herring eggs introduced in the mesocosms were ~70–108 eggs per m3 and peak egg-hatching

was estimated to occur around t63, with a final number of 1608 ± 237 hatched larvae per meso-

cosms, i. e. ~27–37 larvae per m3 [57]. These larval densities are within the natural range for

the North Sea [58]. Sea urchin gastrulae were obtained in the onshore laboratory, introduced

in the mesocosms (~110 sea urchin gastrulae per m3) and subsequently monitored from the

mesozooplankton net tows on a weekly basis. An in depth analyses of Atlantic herring and

green sea urchin larvae development are provided by Sswat et al. [57] within the framework of

this PLoS Collection and Dupont et al. (unpubl. data).

2.3 P. acuspes condition experiments

Copepods were the most abundant group within the mesozooplankton community during the

whole experiment, and the calanoid copepod P. acuspes was the most abundant species. To

gain insights in P. acuspes’ physiological response to simulated OA we conducted two addi-

tional incubation experiments during the pre-bloom (March, t19) and senescence phase (May,

Fig 1. Abiotic and biotic factors potentially affecting mesozooplankton community along the

experiment. a) in situ pCO2 levels, b) nutrients (NO3
-+ NO2

-), c) chlorophyll a, and d) microzooplankton

abundances (ciliates and heterotrophic dinoflagellates). Colour code: red = treatment (~760 μatm pCO2),

blue = control (ambient conditions). Solid lines = mean values; striped area = standard error of the mean.

https://doi.org/10.1371/journal.pone.0175851.g001
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t59) of the phytoplankton community (Fig 1). Every mesocosms was sampled by an extra net

haul (see 2.2), and P. acuspes females were sorted immediately and subsequently incubated in a

cold room adjusted to the average in situ temperature (t19: 3˚C and t59: 5˚C [45]) for offspring

viability monitoring (n = 12) and respiration measurements (n = 5), or preserved for carbon

content analyses (n = 20). Normally swimming females with undamaged eggs (60 females per

treatment) were selected and initial clutch sizes were noted prior incubation to assess hatching

rates. We aimed to incubate 12 females per mesocosms (i. e., 60 females per treatment), but

this was not achieved in all cases due to the scarcity of egg carrying females within some sam-

ples or due to mortality of the females after 24h. Considering that incubation in small volumes

does not affect egg production [59], females were incubated for 48h in 6-well plates, one female

per well, in starvation and simulated field temperature. No additional pCO2 treatment was

necessary because the aim of this side experiment was to analyse the memory effects of

increased pCO2 on females in the mesocosm rather than effects on the eggs themselves. Clutch

size and survival of the females were recorded each day during the condition experiments. Pro-

some length of all incubated females was measured upon termination of the experiment.

Respiration rates of five egg-carrying females per mesocosm (i. e. 25 animals per treatment)

were measured in the cold room. Females were transferred to 1.6 mL vials equipped with fluo-

rescent O2 foil discs (PSt3 spots, PreSens Precision Sensing, Germany) and filled with seawater

adjusted to the pCO2 levels from corresponding mesocosms, based on the immediately preced-

ing carbonate chemistry measurements in the mesocosms [45]. Vials were then sealed with

Teflon caps and O2 concentrations were measured at 0, 3, and 6 hours using a Fibox 3 optode

system. Respiration rates were calculated by subtracting the average oxygen depletion rate

measured in five controls from the oxygen depletion rate in the vials holding copepods, multi-

plying by vial volume and dividing by number of individuals in each vial. Prior testing of the

optode system at 5˚C showed a 2 min 95% reaction time, i.e. the period of time taken before

the output reached within 5% of the final oxygen concentration value (as estimated by expo-

nential regression). Therefore, at every sampling, oxygen concentrations were read for three

minutes, and an average of values read during the last minute was used for calculations.

To analyse carbon content, 20 non-ovigerous P. acuspes females were sorted from each

mesocosm sample (i. e. 100 animals per treatment). The females were briefly rinsed in Milli-Q

water to remove the excess of salt, and preserved in pre-weighted tin cups, which were in time

dried (60˚C) and preserved in an desiccator until analysed. Weights were obtained with a

microbalance (Sartorius SC2). A Vario MICRO cube CHN analyser (Elementar) was used to

measure carbon content.

2.4 Statistical analysis

To study Gullmar Fjord’s mesozooplankton community we firstly calculated species diversity

for every mesocosm, which were compared using general linear models (GLMs) to detect any

differences among treatments (high-pCO2, ambient). Subsequently, we analysed total abun-

dances and abundances from the most frequent mesozooplankton species using general addi-

tive mixed models (GAMMs) to analyse the effect of the treatments as well as temporal trends.

We compared the development of the community between treatments by a non-metric multi-

dimensional analysis (NMDS) followed by a similarity analysis (ANOSIM). Finally, focusing

on the most abundant species in the mesocosms (P. acuspes), we compared productivity and

females’ condition between treatments by using GLMs.

Mesozooplankton diversity in mesocosms was calculated by using the Simpson’s Diversity

Index (D) for finite communities. This index ranges from 0 to 1, and it is adapted to the form

1-D for a more intuitive interpretation of the results, thus higher values indicate higher sample

Ocean acidification effects on mesozooplankton community
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diversity. Males, females and copepodites of the same copepod species were pooled together.

Nauplii were assumed to be P. acuspes since this species accounted for > 90% of the copepod

abundance during the whole experiment. General linear models (GLMs) were fitted to the

Simpson’s indices to determine the dependence of diversity 1-D on time and pCO2. Calcula-

tions of D were performed in the vegan package of the R environment [60].

A multivariate analysis (NMDS) was used to describe the changes in the mesozooplankton

community throughout the mesocosm experiment. NMDS is an ordination technique which

represents, in an n-dimensional space, the dissimilarities obtained from an abundance data

matrix [61]. NMDS takes a rank based approach, being more robust to datasets like the one

used here, but as a consequence all the information about the magnitude of distances is lost.

NMDS is therefore useful to represent the dissimilarities, and assess the influence of the treat-

ment in the evolution of the community. However, due to the lack of magnitude, this tech-

nique is not ideal to evaluate the influence of environmental gradients on community changes

[62]. The treatment effect was assessed by using permutation tests on the community position

in the NMDS space, by checking if the area of clusters formed by the treatment in the NMDS

were smaller than randomized samples of the same size [62]. In a complementary approach,

we applied an ANalysis Of SIMilarity (ANOSIM) test [63] as a post-analysis to compare the

mean of ranked dissimilarities between treatments (high-pCO2, ambient) to the mean of

ranked dissimilarities within treatments. This analysis tests the assumption of ranges of

(ranked) dissimilarities within groups are equal, or at least very similar [64].

Only those species that were present in at least one of the mesocosms for more than nine

sampling days (2/3 of the number of days sampled) were used for temporal trends and multi-

variate analyses. By this criterion, the species selected for the analyses were: the hydromedusae

Aglantha digitale and Hybocodon prolifer, and the females, males and copepodites of the cope-

pod species Oithona similis, Temora longicornis, and P. acuspes. The aggregated copepod

nauplii (pooled in one group and not identified to species level) were also included in these

analyses.

To describe the temporal trends of each species during the mesocosm experiment we used

GAMMs [61, 65] with a Poisson distribution and with a logarithmic transformation. Four dif-

ferent kinds of models were fitted to each abundance group (Table 1). Each of these models

allowed the temporal trends to vary differently between treatments, representing (a) no differ-

ence between treatments (α + f), (b) differences in temporal trends but not in abundance

(α + fT) (c) difference in absolute abundance but not in temporal trends (αT + f) and (d) differ-

ence both in absolute abundance and temporal trends (αT + fT). In this way potential differ-

ences between pCO2 and ambient mesocosms could be detected as either increase/decrease of

overall abundance or changes in phenology. All models were fitted with an autocorrelation

structure of first order to account for temporal autocorrelation in the data, and the specific

mesocosm was used as a random intercept as the focus of the analyses was not the differences

between mesocosms, but between treatments [61]. The models were compared by means of

the Akaike Information Criterion (AIC). AIC takes into account both the goodness of fit of the

Table 1. Generalized Additive Mixed Model (GAMM) structures.

α + f Temporal trend and absolute abundances are treatment-independent (Model Trtmt_indep)

α + fT Temporal trends depend on the treatment, but absolute abundances are treatment independent

(Model Trtmt_trend)

αT + f Absolute abundances depend on the treatment, temporal trends are treatment independent (Model

Trtmt_absAb)

αT

+ fT

Both absolute abundances and temporal trends are affected by the treatment (Model

Trtmt_absAb_trend)

https://doi.org/10.1371/journal.pone.0175851.t001
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model and model complexity, with lower AIC values indicating models with a better ratio

between the explained variance and the number of variables [65]. For each species, the model

with the lowest AIC was considered to better represent the temporal trends during the experi-

ment, while avoiding overfitting the data.

In the case of copepods, we analysed the effects of the end-of-century pCO2 treatment on P.

acuspes productivity by estimating a nauplii-to-adult ratio. Afterwards, GLMs were fitted to

these ratios. The differences in the physiological and reproductive condition of P. acuspes
females were analysed by GLMs comparing the potential effect of treatment and month in res-

piration rates, carbon content, prosome length, clutch size and hatching success. The effect of

the time of the year (March and May), treatment and their interaction was considered in the

models.

We used R (version 3.0.2, [66]) to fit abundances data with the GAMMs and GLMs. The

significance level for all statistical analysis was set to p< 0.05.

3 Results

3.1 Mesozooplankton community: Composition, diversity and

development

The mesozooplankton community comprised 27 different species and taxonomic groups (for

a complete taxon list, see Table 2). The morphological classification of the most abundant

groups (copepods and hydromedusae) was consistent with the genetic analyses conducted dur-

ing the experiment (see [55] for more details). Copepods were the most abundant group

throughout the experiment, representing 93–97% of the total abundances. P. acuspes was the

dominant species in terms of abundance; based on the sum of adults and copepodites, P.

acuspes represented 99.9% of the total copepod population at the beginning of the experiment

and 33.6% at the end. Together with P. acuspes, only two other copepod species (T. longicornis,
O. similis) and two hydromedusae (A. digitale, H. prolifer) were regularly recorded in our

quantitative analyses. Other copepods and hydromedusae, polychaetae, chaetognatha, and

appendicularians, as well as echinodermata, pteropoda, fish (larvae, eggs), bivalvia, cirripedia,

and cladocera were rare (counted in less than 2/3 of the number of days sampled) or very rare

(recorded in less than 3 sampling days during the experiment) in the studied community.

Mesozooplankton abundances (Fig 2A) increased after the first phytoplankton built-up

(t17), and decreased during the phytoplankton post-bloom phase (t41-t77) and before micro-

zooplankton increase (t81) (Fig 1C and 1D). GAMM analysis showed a treatment effect in total

mesozooplankton abundances, which were higher under acidification scenarios (Trtmt_ab-
dAb, Table 3). Averaged total catch (M1-M10) at the beginning of the experiment (t1) was

14571 ± 2857 individuals per m3, reached maximum in t49 (136342 ± 24451 individuals

per m3), to decrease until minimum levels at t103 (9497 ± 3111 individuals per m3). Mesozoo-

plankton biodiversity (1-D) was low during the experiment (Fig 2B), with average values of

0.094 ± 0.018 in ambient conditions and 0.098 ± 0.043 in the high-pCO2 mesocosms. No dif-

ferences between ambient conditions and high-pCO2 treatment were observed (non-signifi-

cant effect of treatment in a GLM). Independently from the pCO2 treatment, Simpson’s index

(1-D) stayed below 0.1 in both treatments until t81. Then the index increased, with maxima on

t103 (0.552 ± 0.045 in ambient and 0.535 ± 0.126 in high-pCO2, respectively).

The 2-dimensional representation of the community did not show different patterns

between treatments (Fig 3). Permutation tests (with 999 permutations) did not show the areas

(i. e. clusters of samples) representing the treatment to be significantly smaller than random-

ized areas, indicating no treatment effect in the ordination. On the contrary, areas representing

the sampling day (Fig 3) were significantly smaller than randomized areas using the same test.
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Table 2. Complete list of species and taxa present in the mesocosms registered throughout the study

period. Based on our records, species were classified as common (recorded on at least 9 sampling days,

hence used for the GAMM analyses), rare (counted on 3 to 9 sampling days) or very rare (on less than 3 sam-

pling days). C = common, R = rare, VR = very rare.

Taxonomic groups Records

1 Aglantha digitale C

2 Hybocodon prolifer C

3 Sarsia tubulosa VR

4 Rathkea octopunctata VR

5 Obelia sp. VR

6 Phialella quadrata VR

7 Bivalvia VR

8 Pteropoda R

9 Polychaeta R

10 Evadne sp. R

11 Podon sp. R

12 Copepod nauplii C

13 Pseudocalanus acuspes C

14 Temora longicornis C

15 Oithona similis C

16 Acartia clausi R

17 Tisbe sp. R

18 Centropages cf. hamatus R

19 Calanus sp. VR

20 Monstrilla sp. VR

21 Ectinosoma sp R

22 Parasagitta elegans R

23 Cirripedia R

24 Ophiopluteus larvae VR

25 Sea urchin larvae and juveniles R

26 Oikopleura dioica R

27 Teleostei (fish larvae) VR

https://doi.org/10.1371/journal.pone.0175851.t002

Fig 2. Mesozooplankton community. A) Mesozooplankton abundances. Solid lines = prediction from Generalized Additive Mixed Models (GAMMs)

(smoother trends p-value < 0.05) with ambient and high-pCO2 mesocosms separately; striped area = confidence interval. B) Simpson’s Diversity Index

(1-D) in relation to pCO2 levels within the mesocosms along the study period. Symbols and colours (blue = ambient; red = high-pCO2 treatment)

identify each mesocosm.

https://doi.org/10.1371/journal.pone.0175851.g002
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This result indicates clear community differences throughout the study period. Results from

the ANOSIM test (p-value = 0.322) matched with the NMDS, suggesting that there was no sig-

nificant difference between the community development under the high-pCO2 treatment and

the ambient conditions.

3.2 Species abundances

Temporal trends of the selected species were analysed by using GAMMs (Figs 4 and 5;

Table 3). The model selection procedure discerned whether there was a difference in the tem-

poral trends and abundances in between the two different treatments (i.e. high or ambient

pCO2).

There was no pCO2 effect on the abundance of adult P. acuspes and T. longicornis but cope-

podite stages of both species responded to increased pCO2. P. acuspes adults did not show dif-

ferences in abundances nor in temporal trends between treatments (Table 3 Trtmt_indep for

Table 3. Mesozooplankton community models selection. Generalized Additive Mixed Models (GAMMs) for the mesozooplankton community: a) α + f, no

difference between treatments (Model Trtmt_indep), b) α + fT, pCO2 treatment effect on temporal trends but not in abundance (Model Trtmt_trend), c) αT + f,

pCO2 treatment effect on absolute abundance but not on temporal trends (Model Trtmt_absAb) and d) αT + fT, treatment causes differences both in absolute

abundance and seasonal trends (Model Trtmt_absAb_trend). Only those species that were present in at least one of the mesocosms more than 9 days (2/3 of

the number of days sampled) and only convergent models were used for this analyses. The smoother of all selected models had a p-value < 0.05. For each

species, the model with the lowest AIC (boldface) was considered to better represent the temporal trend during the experiment. Hyphens (-) indicate non-con-

vergent models.

Taxa Model type R2 AIC Taxa Model type R2 AIC

nauplii Trtmt_indep 0.855 257.797 T. longicornis copepodites Trtmt_indep 0.123 544.681

Trtmt_trend 0.855 278.645 Trtmt_trend 0.127 540.113

Trtmt_absAb 0.859 258.568 Trtmt_absAb 0.169 544.147

Trtmt_absAb_trend 0.854 279.925 Trtmt_absAb_trend 0.122 536.422

P. acuspes ♀ Trtmt_indep 0.441 189.89 O. similis ♀ Trtmt_indep 0.558 463.501

Trtmt_trend 0.491 195.135 Trtmt_trend 0.583 445.861

Trtmt_absAb 0.443 191.887 Trtmt_absAb 0.552 465.903

Trtmt_absAb_trend 0.5 197.739 Trtmt_absAb_trend 0.582 448.497

P. acuspes ♂ Trtmt_indep 0.564 282.254 O. similis ♂ Trtmt_indep 0.605 484.982

Trtmt_trend 0.586 307.326 Trtmt_trend 0.635 482.307

Trtmt_absAb 0.573 283.754 Trtmt_absAb 0.599 482.24

Trtmt_absAb_trend 0.586 310.298 Trtmt_absAb_trend 0.633 479.176

P. acuspes copepodites Trtmt_indep 0.727 210.277 O. similis copepodites Trtmt_indep 0.767 447.67

Trtmt_trend 0.752 232.495 Trtmt_trend 0.759 469.749

Trtmt_absAb 0.76 209.844 Trtmt_absAb 0.766 449.509

Trtmt_absAb_trend 0.75 234.226 Trtmt_absAb_trend 0.758 471.615

T. longicornis ♀ Trtmt_indep - - A. digitale Trtmt_indep 0.118 735.989

Trtmt_trend - - Trtmt_trend 0.114 734.663

Trtmt_absAb 0.044 635.237 Trtmt_absAb 0.11 736.248

Trtmt_absAb_trend 0.197 668.866 Trtmt_absAb_trend 0.11 739.801

T. longicornis ♂ Trtmt_indep 0.157 614.175 H. prolifer Trtmt_indep 0.083 811.073

Trtmt_trend - - Trtmt_trend 0.151 764.543

Trtmt_absAb 0.148 615.588 Trtmt_absAb 0.19 812.093

Trtmt_absAb_trend 0.069 614.303 Trtmt_absAb_trend 0.173 764.455

Total catch Trtmt_indep 0.852 92.57

Trtmt_trend 0.867 104.36

Trtmt_absAb 0.868 91.95

Trtmt_absAb_trend 0.866 106.35

https://doi.org/10.1371/journal.pone.0175851.t003
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both males and females; Fig 4A and 4B). However, the absolute abundance of P. acuspes cope-

podites differed between treatments, being higher under the high-pCO2 treatment (Table 3

Trtmt_absAb; Fig 4C). Abundance of T. longicornis adults did not show a difference between

treatments (Fig 4D and 4E); even though the selected model showed slightly higher abun-

dances of T. longicornis females in the high-pCO2 mesocosms (Table 3 Trtmt_absAb; Fig 4D),

the confidence intervals of the modelled abundances were overlapping throughout the study

period. This indicates that the difference were small, and probably caused by extreme values at

the end of the experiment. Only T. longicornis copepodites (Table 3 Trtmt_absAb_trend; Fig

4F) showed different absolute abundances and a different temporal trend between treatments,

being more abundant in the ambient pCO2 mesocosms, particularly during the last 20 days of

the study. O. similis adults negatively responded to the elevated pCO2 conditions with an ear-

lier abundance decrease towards the end of the experiment (Fig 4G and 4H). In case of O. simi-
lis males the absolute abundance and the temporal trend were negatively affected by the high-

pCO2 treatment (Table 3 Trtmt_absAb_trend). However, this effect was not detected on O.

similis copepodites (Table 3 Trtmt_indep; Fig 4I), which showed no significant difference

between both treatments. Copepod nauplii, the most abundant group in the mesozooplankton

(Fig 4J), did not show a difference in temporal trends nor abundance between treatments

(Table 3 Trtmt_indep). When analysing abundances in certain time-points, we could detect

different pCO2 effects that were not detected by the GAMMs. In the case of P. acuspes, adult

copepods were significantly more abundant on t81 (t-test, p-value = 0.010), but the effect disap-

peared afterwards. Different responses were also observed on nauplii abundances, which were

significantly higher under high-pCO2 conditions between t49 and t65 (t-test, p-value = 0.03),

whilst we did not detect differences in abundances between treatments when analysing abun-

dances from t65 until the end of the experiment (t-test, p-value = 0.622).

Fig 3. Non-metric Multidimensional Scaling analysis (NMDS) of the mesozooplankton community

(stress value = 0.17). Colour code: red = treatment (~760 μatm pCO2), blue = control (ambient conditions).

Sampling days represented as t-day; lines represent patterns. The underlying data implemented in the

analysis are shown in Fig 1.

https://doi.org/10.1371/journal.pone.0175851.g003
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Fig 4. Copepod abundances along the study period. A) P. acuspes females, B) P. acuspes males, C) P.

acuspes copepodites, D) T. longicornis females, E) T. longicornis males, F) T. longicornis copepodites, G) O.

similis females, H) O. similis males, I) O. similis copepodites, J) nauplii. Colour code: red = treatment (~760 μatm

pCO2), blue = control (ambient conditions). M = mesocosms. Solid lines = prediction from Generalized Additive

Mixed Models (GAMMs) (smoother trends p-value < 0.05) with the ambient and high-pCO2 mesocosms shown

separately; striped area = confidence interval. Black lines indicate that the prediction of the model for high-pCO2

treatment and ambient conditions are the same.

https://doi.org/10.1371/journal.pone.0175851.g004
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In the case of both hydromedusa species, we also detected species-specific pCO2 effects (Fig

5, Table 3). Under the high-pCO2 treatment, H. prolifer abundance was lower; the GAMM

detected an effect not only on the temporal trend, but also on the abundances of this species

(Table 3 Trtmt_absAb_trend). The model representing A. digitale also showed a different tem-

poral trend between treatments (Table 3 Trtmt_trend) despite of the confidence intervals over-

lapping of both patterns.

To sum up, after analysing the abundance of each species under high-pCO2 conditions dur-

ing the whole study period we observed positive (P. acuspes copepodites, A. digitale), negative

(T. longicornis copepodites, H. prolifer, O. similis adults) and no effects of elevated pCO2 (nau-

plii, P. acuspes and T. longicornis adults, O. similis copepodites). It is worth mentioning that the

predictive power (R2) of these models was low in some cases (see Table 3) due to the complete

absence of some species in some mesocosms. However, the models represented well the overall

trend differences between treatments (Figs 4 and 5). Differences between treatments were at

times significant for specific time periods.

3.3 P. acuspes: Productivity and females’ condition

Copepod productivity was assessed by computing the ratio between nauplii and adults for

the most abundant species, P. acuspes. We calculated the nauplii-to-adult ratio from t17 until

the end of the experiment, since the fraction < 200 μm was preserved only from t17 on. At a

significance level of 0.05, no differences in this ratio between the ambient and high-pCO2

treatment (GLM, p-value = 0.576), but a significant effect of time (GLM, p-value < 0.001)

was detected. Productivity increased from the beginning of the experiment until t65 or t73

independently of the pCO2 treatment (see Fig 6), and rapidly decreased afterwards. A second

increase in the productivity was detected from t97, with the highest ratios in some of the

high-pCO2 mesocosms.

Regarding the P. acuspes females’ condition, none of the physiological and reproductive

parameters investigated (respiration, carbon content, prosome length, clutch size, hatching

success) showed a significant difference between treatments, nor in the interaction between

month and treatment (p-value> 0.05; Fig 7, Table 4). However, significant differences

Fig 5. Hydromedusae abundances along the study period. A) A. digitale, B) H. prolifer. Colour code:

red = treatment (~760 μatm pCO2), blue = control (ambient conditions). M = mesocosms. Solid

lines = prediction from Generalized Additive Mixed Models (GAMMs) (smoother trends p-value < 0.05), with

the ambient and high-pCO2 mesocosms shown separately; striped area = confidence interval.

https://doi.org/10.1371/journal.pone.0175851.g005
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between the first (March, t19: first phytoplankton bloom) and the second experiment (May, t59:

second phytoplankton bloom) were observed. Respiration rate (Fig 7A) was lower during May

compared to March (p-value = 0.001). Females’ carbon content and prosome length, as well as

the hatching success after 48h incubation (Fig 7B, 7C and 7E) were not different between

months, nor between pCO2 conditions. Yet, at the beginning of the incubations (0h), clutch

size (Fig 7D) was significantly higher in May (p-value = 0.021). None of the interactions

between pCO2 treatment and month rendered in a significant effect on the studied variables.

4 Discussion

During this winter-to-summer experiment on the effect of ocean acidification on plankton

communities, we did not detect an effect of pCO2 on either the diversity of the mesozooplank-

ton community, nor on its development as a whole. At first sight, this may seem surprising as

some taxa showed a response to OA, where others did not. The most parsimonious explana-

tion for this apparent contradiction is the strong dominance of the copepod P. acuspes. As a

result, changes in the relative composition of the community were small and were not be

picked up by relatively coarse indicators such as Simpson’s Diversity or rank-based methods

such as NMDS. Only on the last two sampling days, when P. acuspes abundances declined

strongly, a trend towards a higher diversity under high-pCO2 conditions became visible

(Figs 2B and 3), and the communities under the two treatments diverged (observed also for

Fig 6. P. acuspes productivity in relation to pCO2 levels along the study period. Symbols and colours

(blue = ambient; red = high-pCO2 treatment) identify each mesocosm. Production estimated as the ratio

between nauplii and adults. P. acuspes nauplii abundances were estimated from the relative abundances of

P. acuspes in relation to total copepod abundances per sampling day and mesocosm.

https://doi.org/10.1371/journal.pone.0175851.g006
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Fig 7. P. acuspes females’ condition. General Linear Models (GLMs) comparing the potential pCO2 effect on P. acuspes females: A) respiration

rate, B) carbon content, C) prosome length, D) clutch size at the beginning of the incubation (0h), E) hatching success after 48h incubation. Error bars

represent standard deviation. Colour code: red = treatment (~760 μatm pCO2), blue = control (ambient conditions). March = t19 (first phytoplankton

bloom), May = t59 (decline phase of the second phytoplankton bloom).

https://doi.org/10.1371/journal.pone.0175851.g007

Table 4. Results from P. acuspes females’ condition experiment. Generalized Linear Models (GLMs) based on two laboratory experiments (March,

May), n = 120 females per experiment. Boldface represent p-values < 0.05.

Respiration Estimate Std.Error t-value p-value

(Intercept) 5.035 0.786 6.406 0

pCO2 treatment 0.553 0.37 1.492 0.154

month -0.786 0.185 -4.246 0.001

Carbon content

(Intercept) 5.586 0.958 5.829 0

pCO2 treatment 0.541 0.452 1.198 0.247

month -0.056 0.226 -0.246 0.808

Prosome length

(Intercept) 0.728 0.039 18.875 0

pCO2 treatment -0.016 0.018 -0.895 0.383

month -0.005 0.009 -0.536 0.599

Clutch size (0h)

(Intercept) 2.394 1.103 2.17 0.044

pCO2 treatment -0.563 0.52 -1.082 0.294

month 0.661 0.26 2.542 0.021

Hatching success

(Intercept) 11.465 9.875 1.161 0.262

pCO2 treatment 0.275 4.655 0.059 0.954

month -0.823 2.328 -0.354 0.728

https://doi.org/10.1371/journal.pone.0175851.t004
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microzooplankton [48]). Potentially this indicates a long-term effect of high pCO2 on the com-

munities, but this is impossible to say as, at that time the mesocosm set-up started to deterio-

rate and the experiment was terminated.

Unlike previous mesocosms studies focusing on the effect of OA on natural coastal plank-

ton communities in the Arctic [67] and the Baltic [39], we detected a positive pCO2 effect on

the total mesozooplankton abundance from Gullmar Fjord. This effect was mostly caused by

the CO2-driven increase in the abundances of P. acuspes copepodites. This was somewhat

unexpected, as previously work on the same species from the same location [42, 68] found sig-

nificant negative pCO2 effects on egg production and metabolism. The two studies cited above

were highly controlled laboratory experiments, where the copepods were cultured under uni-

form environmental conditions (except for the pCO2 treatments) and offered identical prey in

all treatments. Thus, the effects observed were directly caused by changes in carbonate chemis-

try of the water as all other environmental factors were identical. In semi-natural experiments

such as the one described here, these effects are easily masked, either through bottom-up

effects (changes in the availability or quality of the food), or as a result of top-down effects

(changes in predation rates). In our two condition experiments we excluded the latter effects,

and focused on the effects of the overall growing conditions in the mesocosms. In contrast to

the laboratory experiments cited above, we did not find significant differences in the physio-

logical condition of P. acuspes females between ambient and high-pCO2 treatments (Fig 7).

Secondary production in P. acuspes followed a temporal trend, with higher clutch sizes and

nauplii abundances on t59 (May), responding to higher phytoplankton concentration (chla)

and microzooplankton biomass. However, this increase in food quantity might not have been

coupled with food quality to maintain the copepod population in the mesocosms, which

increased from ~260 ± 5 copepods L-1 (t19) to ~1245 ± 32 copepods L-1 (t59). This could explain

lower respiration rates in May than in March [69, 70]. Potential food items for copepods on t19

(March) consisted mainly of phytoplankton between 5 and 40 μm and microzooplankton bio-

mass below 2 μg C L-1 before the first phytoplankton bloom in the mesocosms [48, 71]. On t59

the entire mesocosms system was dominated by Coscinodiscus concinnus (representing 47% of

the biomass) and the nanophytoplankton fraction (accounting for 21%) [71], both largely out-

side the food spectrum of P. acuspes. Microzooplankton biomass was ~12 μg C L-1 on t59 [48],

but might not have been enough to supply the whole P. acuspes population, so copepods might

have searched for alternative food sources such as sinking material. In fact, the decrease in

adults from t97 in all mesocosms matched high resolution images taken from sediment trap

material, where high abundances of adult P. acuspes were found (Tim Boxhammer, pers.

comm.). This observation suggest that, towards the end of the experiment, copepods might

have migrated downward searching for food and stayed close to the sediment traps, as previ-

ously observed in a mesocosms experiment in a Norwegian fjord [72].

In view of the result of the two laboratory experiments, where we observed no effects of

pCO2 on egg production, the most plausible explanation for the higher P. acuspes abundances

under the high-pCO2 treatment is a community CO2-driven bottom-up effect [10, 12, 73].

This is not a contradiction, as in the laboratory experiments we specifically looked at the mem-

ory pCO2 effect on the clutch, which was not expected to be affected by the 48h food depriva-

tion regime [74]. Thus, the higher abundance of P. acuspes copepodites was probably fuelled

by phytoplankton community responses to high-pCO2 conditions during our mesocosms

experiment. Higher primary production [75] and higher chla levels under high-pCO2 [45]

resulted in higher copepodite abundances. Interestingly, this CO2-driven increase in copepo-

dite abundances did not result in higher abundances of adults later in the season except on t81,

when adult P. acuspes were significantly more abundant under high-pCO2 conditions. The

most plausible explanation for this trend in adult P. acuspes abundance after t81 is, apart from
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the potential downward migration as indicated above, that the level of top-down control

through herring larvae was different, with higher predation pressure in high-pCO2 meso-

cosms. As detailed in Sswat et al. [57], after hatching on ~t63, herring larvae would have gradu-

ally switched from endogenous to exogenous feeding, preying then firstly on nauplii and

ciliates, afterwards increasing the size of their prey gradually with their own body size until

they reached copepodites (~t65-t81) and finally adults (~t81-t105)[76–78]. From t77 (14th day

post-hatching, DPH) survival of herring larvae was significantly higher in the high-pCO2

mesocosms [57], which would imply higher grazing pressures on P. acuspes. Since consump-

tion rates of smaller larvae are much lower than those of larger ones, we would have only

detected a top-down effect of the herring larvae on adult abundance at the end of the experi-

ment. This, together with a more intensive feeding activity by herring larvae because of the

higher larvae survival rates under the acidic treatment [57], could have caused lower abun-

dances of adult P. acuspes relative to the opposite pattern in the copepodites.

In the case of T. longicornis, no effects of pCO2 were observed on the adults but copepodites

were more abundant under ambient conditions, especially during the last 20 days of the exper-

iment (Table 3, Fig 4D–4F). This finding fits to the last two sampling days divergence between

treatments in the NMDS analysis (Fig 3), which points to a different development of the com-

munity under ambient and high-pCO2 conditions. The particular tolerance in T. longicornis
female reproductive fitness to end-of-century pCO2 scenarios had already been described by

McConville et al. [27]. However, the higher abundances of T. longicornis copepodites observed

in ambient conditions suggest that this tolerance might be diminished in early life stages, as

previously observed in other calanoid copepods [29, 79].

Our results suggest a negative effect of pCO2 on adult O. similis, which were more abundant

under ambient conditions when considering the whole experimental period. The explanation

for O. similis’ sensitivity to OA observed in adults might be in the life history of this copepod.

According to Lewis et al. [33] there is a correlation between sensitivity to OA and vertical

migration behaviour. Species that do not exhibit diel vertical migration behaviour (as O. simi-
lis) are typically less exposed to variation in pCO2 levels compared to other copepods and

more prone to be sensitive to OA [33, 80]. For O. similis, these researchers detected reduced

adult and naupliar survival under 700 and 1000 μatm pCO2. Our study would support this

observation by lower O. similis adult abundances under high-pCO2 conditions. Towards the

end of the experiment, however, we observed an increase in O. similis abundance, likely react-

ing to the increase in ciliates and dinoflagellates biomass [48]. Adults showed a significant

reaction to OA with firstly higher and subsequently lower abundances in the high-pCO2 treat-

ment. As also observed on adult P. acuspes, the differential decrease in adult O. similis within

treatments from t81 might respond to herring larvae abundance and the size-dependent feed-

ing activity [57, 77]. Thus considering that during the last two sampling days adults would

probably be in the preferred size range for the herring larvae, the release in preying pressure

on copepodites and the built-up of protozooplankton [48] might explain the final increase in

copepodite abundance in both treatments.

Whilst the connection between jellyfish blooms (scyphomedusae, hydromedusae, siphono-

phores and ctenophores) and anthropogenic climate change remains unclear (e. g. [81, 82]),

the effects of changing seawater carbonate chemistry on planktonic gelatinous species have

been rarely tested. However, all results on different gelatinous zooplankton groups (schypho-

medusa ephyrae [19, 83, 84], coelenterate records [85]) point to the tolerance of jellyfish to

future changes in pCO2. In this study we showed for the first time the species-specific sensitiv-

ity of hydromedusae to OA. Thus H. prolifer (Anthomedusa) reacted negatively to high pCO2

by lower abundances, while A. digitale (Trachymedusa) was more abundant in the high-pCO2

treatment (Table 3, Fig 5). This result was unexpected, given the fact that A. digitale has
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statoliths, which could be a target for lower pH (as Richardson and Gibbons [85] also noted).

Our findings suggest that hydromedusae with statoliths are not necessarily more sensitive than

those without these calcium-based structures, and consequently hydromedusa statoliths might

not be sensitive to OA, at least in realistic end-of-century scenarios. Further ecophysiological

analyses, however, are still required for these and other hydromedusae species to confirm this

hypothesis.

Conclusion

During this study, we observed species-specific sensitivities to pCO2 in copepods and hydro-

medusae abundance. In the case of copepods, responses to elevated pCO2 depended also on

the life-stage of the individuals, copepodites generally being the most sensitive stage. Our

results point that OA could positively affect the calanoid P. acuspes by a bottom-up effect in

pCO2-fuelled food webs. Nonetheless, the effect of OA on single species was not detectable in

the structure or diversity of this community, probably due to the overwhelmingly dominance

of P. acuspes in the studied community. Hence, under a realistic end-of-century OA scenario,

the Gullmar Fjord mesozooplankton community structure is not expected to change much,

although it could well be that the OA effect on copepodites would potentially affect biomass

transfer to higher trophic levels in the future.

Ethic statement
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14. Lischka S, Büdenbender J, Boxhammer T, Riebesell U. Impact of ocean acidification and elevated tem-

peratures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation,

and shell growth. Biogeosciences. 2011; 8(4):919–32.

15. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, et al. Anthropogenic ocean acidification

over the twenty-first century and its impact on calcifying organisms. Nature. 2005; 437(7059):681–6.

https://doi.org/10.1038/nature04095 PMID: 16193043

16. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM. Reduced calcification of marine

plankton in response to increased atmospheric CO2. Nature. 2000; 407(6802):364–7. https://doi.org/

10.1038/35030078 PMID: 11014189

Ocean acidification effects on mesozooplankton community

PLOS ONE | https://doi.org/10.1371/journal.pone.0175851 April 14, 2017 18 / 21

https://doi.org/10.1126/science.1097403
http://www.ncbi.nlm.nih.gov/pubmed/15256665
https://doi.org/10.1038/425365a
http://www.ncbi.nlm.nih.gov/pubmed/14508477
https://doi.org/10.1126/science.1189930
http://www.ncbi.nlm.nih.gov/pubmed/20558709
https://doi.org/10.1126/science.1152509
https://doi.org/10.1126/science.1152509
http://www.ncbi.nlm.nih.gov/pubmed/18079392
https://doi.org/10.1038/nature04095
http://www.ncbi.nlm.nih.gov/pubmed/16193043
https://doi.org/10.1038/35030078
https://doi.org/10.1038/35030078
http://www.ncbi.nlm.nih.gov/pubmed/11014189
https://doi.org/10.1371/journal.pone.0175851


17. Fabry VJ, Seibel BA, Feely RA, Orr JC. Impacts of ocean acidification on marine fauna and ecosystem

processes. ICES J Mar Sci. 2008; 65(3):414–32.

18. Purcell JE, Uye S-i, Lo W-T. Anthropogenic causes of jellyfish blooms and their direct consequences for

humans: a review. Mar Ecol Prog Ser. 2007; 350:153–74.

19. Winans AK, Purcell JE. Effects of pH on asexual reproduction and statolith formation of the scyphozoan,

Aurelia labiata. Hydrobiologia. 2010; 645(1):39–52.

20. Turner JT. The importance of small planktonic copepods and their roles in pelagic marine food webs.

Zool Stud. 2004; 43(2):255–66.

21. Landry MR, Calbet A. Microzooplankton production in the oceans. ICES Journal of Marine Science.

2004; 61:501–7.
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