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ABSTRACT

Ensemble square root filters can either assimilate all observations that are available at a given time at once,

or assimilate the observations in batches or one at a time. For large-scale models, the filters are typically

applied with a localized analysis step. This study demonstrates that the interaction of serial observation

processing and localization can destabilize the analysis process, and it examines under which conditions the

instability becomes significant. The instability results from a repeated inconsistent update of the state error

covariance matrix that is caused by the localization. The inconsistency is present in all ensemble Kalman

filters, except for the classical ensemble Kalman filter with perturbed observations. With serial observation

processing, its effect is small in cases when the assimilation changes the ensemble of model states only slightly.

However, when the assimilation has a strong effect on the state estimates, the interaction of localization and

serial observation processing can significantly deteriorate the filter performance. In realistic large-scale ap-

plications, when the assimilation changes the states only slightly and when the distribution of the observations

is irregular and changing over time, the instability is likely not significant.

1. Introduction

Ensemble square root Kalman filters are an efficient

deterministic variant of the original ensemble Kalman

filter (EnKF; Evensen 1994; Burgers et al. 1998). Com-

mon members of this class of filters are the ensemble

transform Kalman filter (ETKF; Bishop et al. 2001), the

ensemble adjustment Kalman filter (EAKF; Anderson

2001, 2003), and the ensemble square root Kalman filter

with serial processing of observations (EnSRF; Whitaker

andHamill 2002). Recently, also the singular ‘‘evolutive’’

interpolated Kalman (SEIK) filter (Pham et al. 1998a;

Pham 2001) and the newly developed error-subspace

transformKalman filter (ESTKF;Nerger et al. 2012b) have

been classified as ensemble square root filters (Nerger et al.

2012b). All ensemble square root Kalman filters express

the analysis equation of the Kalman filter in a square root

form combined with an explicit transformation of the

state ensemble (see Tippett et al. 2003). Most filter meth-

ods are formulated to assimilate all observations synchro-

nously. However, the EAKF and the EnSRF are typically

described to assimilate single observations serially, which

increases the efficiency of these filter formulations. Further,

both algorithms are algorithmically identical in case of

serial observation processing. For example, the DART

assimilation system (Anderson et al. 2009) provides an

EAKF with serial observation processing.

Localization of covariancematrices in ensemble-based

Kalman filters is required for data assimilation into large-

scale models, because the typical ensemble size is limited

to the order of 10–100 states, which is much smaller than

the degrees of freedom of the models. By damping long-

distance covariances, localization stabilizes the analysis

update of the filter and increases the rank of the forecast

covariance matrix as well as the local number of degrees

of freedom for the analysis. The localization is either

applied to the forecast covariance matrix, here denoted

covariance localization (CL; Houtekamer and Mitchell

1998, 2001), or to the observation error covariancematrix

(Hunt et al. 2007), here denoted observation localization

(OL). The relation of both localization methods was

the focus of several recent studies (Sakov et al. 2010;

Greybush et al. 2011; Janji�c et al. 2011). Further, Nerger

et al. (2012a) proposed a method, denoted regulated lo-

calization, to make the localizing effect of OL and CL

comparable. TheOL is typically applied in algorithms that

do not explicitly compute the forecast error covariance
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matrix like the local ensemble transform Kalman filter

(LETKF; Hunt et al. 2007), the SEIK filter, and the

ESTKF. In contrast, the EAKF and the EnSRF compute

elements of the forecast covariance matrix and apply CL.

While the filters that apply OL assimilate all available

observations at once, the EAKF andEnSRFmethods that

useCLperform a serial assimilation of single observations.

This study examines the interaction between CL and

serial processing of observations in detail and demon-

strates that it can destabilize the analysis update. It is

known in the community (e.g., C. Snyder 2014, personal

communication) that the serial processing of observa-

tions can lead to the situation that the actual analysis

result depends on the order in which the observations

are assimilated. This dependence is caused by the fact

that the update equation for the state error covariance

matrix is not fulfilled when localization is applied. This

was already noted by Whitaker and Hamill (2002), but

there is yet no publication that studies the effect of the

inconsistent update of the state error covariance matrix.

Whitaker et al. (2008) used the observation ordering to

develop a variant of the EnSRF in which the observa-

tions are assimilated in an order of decreasing impact to

the assimilation. The motivation for this scheme was

described to be that it allows for an adaptive observation

thinning algorithm by omitting observations that in-

significantly reduce the estimated state error variance.

Whitaker et al. (2008) also compared the assimilation

performance of the EnSRF with the LETKF when ap-

plied with a global atmospheric model and found only

small differences. Similarly, Holland and Wang (2013)

compared the LETKF with the EnSRF without partic-

ular observation ordering for the assimilation with

a simplified atmospheric model. They found only small

differences in the state estimates with slightly smaller

errors in the LETKF estimates.

While the previous studies found small differences

between the estimates of LETKF andEnSRF it is unclear

which conditions influence the differences and whether

there are conditions under which larger differences can

occur. To some extent the differences in the state esti-

mates are a result of different localization strengths in the

OL and CL schemes for the same localization function

(see Miyoshi and Yamane 2007). Here, this difference

will be reduced by using for OL the regulated localization

function by Nerger et al. (2012a). The instability that can

result from the interaction of localization and serial ob-

servation processing is demonstrated and examined in

numerical experiments with the small Lorenz-96 model

(Lorenz 1996; Lorenz and Emanuel 1998). To compare

the different effects of serial and synchronous assimi-

lation of the observations, the two widely used filter

methods EnSRF and LETKF are applied. For a direct

examination of the influence of serial observation pro-

cessing also a formulation of the EnSRF that assimilates

all observations at once is applied.While this formulation

is too costly to be applied in large-scale systems, it can be

used with the small Lorenz-96 model.

The study is organized as follows: the EnSRF and the

LETKF will be reviewed together with their localiza-

tions in section 2. This section also discusses the reasons

for the inconsistent update of the covariance matrix. The

configuration of the twin experiments with the Lorenz-96

model are described in section 3. The filter instability is

demonstrated in time-mean results in section 4. The in-

teraction of the localization and serial observation pro-

cessing is further examined in section 5, while section 6

examines the effect of the order inwhich the observations

are assimilated. In section 7 the relevance of the findings

with regard to real atmospheric and oceanographic ap-

plications is discussed. Finally, conclusions are drawn in

section 8.

2. Filter algorithms

This section reviews the EnSRF with CL (Whitaker

and Hamill 2002) as a typical method using serial ob-

servation processing and the LETKF using OL (Hunt

et al. 2007), which uses synchronous assimilation.

All ensemble-based Kalman filters use an ensemble

of m vectors xa(a), a5 1, . . . , m, of model state re-

alizations of dimension n,

Xk 5 [x
a(1)
k , . . . , x

a(m)
k ] , (1)

to represent the state estimate and its uncertainty at some

time tk. The state estimate is given by the ensemblemean:

xak 5
1

m
�
m

a51

x
a(a)
k , Xa

k :5 [xak, . . . , x
a
k] , (2)

where the superscript ‘‘a’’ denotes the analysis. The

uncertainty of the state estimate is described by the

ensemble covariance matrix:

Pa
k 5

1

m2 1
(X0a

k )(X
0a
k )

T , (3)

where the prime denotes the matrix X0a
k :5Xa

k 2Xa
k of

ensemble perturbations. The data assimilation pro-

cedure is initialized with an ensembleXa
0 that is generated

based on some initial estimates of the state and the error

covariance matrix. To compute a forecast, all ensemble

members are integrated by the fully dynamical model

resulting in the forecast ensemble X
f
k. In the following,

the time index ‘‘k’’ is omitted as in the analysis step of the

filters all quantities refer to the same time.

MAY 2015 NERGER 1555



a. The EnSRF

Whitaker and Hamill (2002) proposed an ensemble

square root Kalman filter with serial processing of ob-

servations (EnSRF). In this filter, the state estimate and

the ensemble perturbations are updated iteratively in

a loop over all individual observations. This method is

motivated by the fact that for a single observation the

formulation of Potter (see Maybeck 1979, section 7.3)

can be applied to update the state error covariance

matrix. This formulation is particularly efficient because

matrix inversions, required for multiple observations,

reduce to the inverse of a single number.

Let the subscript (i) indicate quantities at the ith it-

eration of the loop over single observations. Likewise,

the subscript denotes the index of the scalar observation

assimilated at the ith iteration. The state estimate is

updated according to

xa(i) 5 x
f
(i) 1K

(i)[y
o
(i) 2H

(i)x
f
(i)] (4)

with the Kalman gain K(i) of size n3 1 given by

K
(i) 5P

f
(i)H

T
(i)(H(i)P

f
(i)H

T
(i) 1R

(i))
21 . (5)

Here H(i) is the observation operator for observation i,

yo(i) is the ith element of the observation vector of size p,

and R is the observation error covariance matrix. To

allow for the serial observation processing, R has to be

diagonal.

For a single observation, the matrices HPfHT and R

are scalars and PfHT is a vector of size n. The matrix of

ensemble perturbations is updated according to

X0a
(i) 5X

0f
(i) 2

~K
(i)H(i)X

0f
(i) (6)

with

~K
(i) 5

2
411

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

(i)

H
(i)P

f
(i)H

T
(i) 1R

(i)

vuut
3
521

K
(i) . (7)

The factor in front of the gain K(i) reduces the Kalman

gain for the update of the ensemble perturbations. This

reduction is required for statistical consistency as with-

out it the analysis error variances would be under-

estimated unless an ensemble of perturbed observations

would be used (Burgers et al. 1998). A forgetting factor

(Pham et al. 1998b) to inflate the covariances can be

applied in this formulation by replacing X0
f by r21/2X0

f

once before the loop over the single observations. The

forgetting factor is the older concept of covariance in-

flation, which is frequently described in terms of the

inflation factor a5 r21/2. Equations (4) to (7) are then

applied in the loop over all observations available at an

analysis time. In the first iteration, xf(1) and P
f
(1) are given

by the mean and covariance matrix of the ensemble

forecast. In subsequent iterations of the loop, the anal-

ysis state and covariance matrix of the previous iteration

serve as the forecast quantities.

While the EnSRF is usually applied with serial obser-

vation processing, it can also be formulated to assimilate

all observations at once. In this case, Eqs. (4)–(6) are

applied with the full vector yo of observations and the

corresponding observation operator. FollowingWhitaker

and Hamill (2002), the reduced Kalman gain for the up-

date of the ensemble perturbations defined by Eq. (7) is

replaced by

~K5PfHT(HPfHT 1R)2T/2[(HPfHT1R)1/21R1/2]21 .

(8)

For large-scale systems the evaluation of Eq. (8) would

be very costly asmatrices of size p3 p have to be inverted.

In the practical implementation used in the numerical

experiments, the matrix square roots are implemented as

the unique symmetric square root, which is also used for

the LETKF. Below, this variant of the EnSRF will be

referred to as EnSRF bulk.

The localization of the EnSRF is performed as CL

by multiplying the forecast state covariance matrix Pf

element-wise with a correlation matrix D of compact

support. As the full Pf will be very large for high-

dimensional models, the localization is often applied in

the observation space to the matrices PfHT and HPfHT.

For a single observation, HPfHT reduces to the single

value of the estimated observed state variance at the

location of the observation. Accordingly, HPfHT is not

modified for the EnSRF. However, the local analysis

uses the modified vector

[PfHT]
loc

(i) 5DPH
(i) +[P

fHT]
(i) , (9)

where + denotes the element-wise product. The term

DPH
(i) is a weight vector, which is a column of the corre-

lation matrix D projected onto the observation space.

In the experiments performed below, the localization

matrix D will be constructed using a fifth-order poly-

nomial that mimics a Gaussian function but has compact

support (Gaspari and Cohn 1999, hereafter GC99). The

localization is determined by the support radius at which

the value of the function reaches zero.

b. The LETKF

The LETKF was introduced by Hunt et al. (2007) as

a localized variant of the ETKF (Bishop et al. 2001). The

LETKF applies a localized analysis with OL. Here, the
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LETKF is reviewed following Nerger et al. (2012a),

which provides a particularly efficient formulation of the

algorithm.

For the global ETKF, the forecast ensemble is pro-

jected onto the space of ensemble perturbations of di-

mension m by

Xf 0:5XfT . (10)

The projection matrix T has sizem3m and its elements

are defined by

Ti,j :5

8>><
>>:
12

1

m
for i5 j

2
1

m
for i 6¼ j

. (11)

For the analysis update, the transform matrix A of size

m3m is defined by

A21:5 r(m2 1)I1 (HXf 0)TR21HXf 0 , (12)

where I is the identity and r with 0, r# 1 is the for-

getting factor (Pham et al. 1998b) that is used to im-

plicitly inflate the forecast error covariance estimate.

Using A, the analysis covariance matrix is given by

Pa5Xf 0A(Xf 0)T . (13)

The analysis state estimate is computed from the

forecast as

xa 5 xf 1Xf 0w , (14)

where the weight vector w of size m is given by

w :5A(HXf 0)TR21(y2Hxf ) . (15)

The ensemble is now transformed as

Xa5Xa1
ffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

p
Xf 0C . (16)

HereC is the symmetric square root ofA. It is computed

from the singular value decomposition USV5A21 such

that C5US21/2UT. Using the definition of Xf 0 in Eq.

(10) one can avoid the need to explicitly compute Xf 0,
which leads to a very efficient algorithm in the typical

situation in which both the state dimension and the

number of observations are much larger than the en-

semble size. Namely, HXf 0 in Eq. (14) can be computed

as (HXf )T. Further, in Eq. (16), the term Xf 0C can be

computed as Xf (TC), which is a much cheaper operation

than computing Xf 0 explicitly.
To obtain the LETKF as a localized form of the

ETKF, the analysis and the ensemble transformation

are performed in a loop through disjoint local analysis

domains. In the simplest case, each single grid point is

independently updated. For each local analysis domain,

the observations are weighted by their distance from this

domain using an element-wise product of thematrixR21

with a localization matrix ~D. Matrix ~D is usually con-

structed from a correlation function with compact sup-

port, like the GC99 function. Thus, observations beyond

a certain distance obtain zero weight and can be ne-

glected for the local analysis update. Using the subscript

s to denote the local analysis domain and d to denote the

domain of the corresponding observations of nonzero

weight, the LETKF can be written as

xas 5 x
f
s 1Xf 0

s wd , (17)

wd5Ad(HdX
f 0)T(~Dd+R

21
d )(yd2Hdx

f ) , (18)

A21
d 5 rd(m2 1)I1 (HdX

f 0)T(~Dd+R
21
d )HdX

f 0 , (19)

Xa
s 5Xa

s 1
ffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

p
Xf 0Cd , (20)

where the matrix Cd is the symmetric square root of Ad.

In the experiments described below, the localization

matrix ~Dd is constructed using the GC99 function as for

the EnSRF. Note that ~Dd is not a correlation matrix,

because the diagonal elements vary with the distance.

The effective localization length will be different from

the prescribed support radius for OL (Nerger et al.

2012a). To make the effective localization lengths in the

EnSRF with CL and the LETKF with OL comparable,

the regulated localization function introduced by Nerger

et al. (2012a) is used for the LETKF. The function en-

sures that the localization effect in the analysis step is

identical for CL and OL in case of a single observation.

For multiple observations, the exact function depends on

the number of observations, but the function for a single

observation can be used as an approximation. For a given

localization function dCL used for CL (e.g., the fifth-order

polynomial of GC99), the regulated weight function for

assimilating a single observation with OL is

dOLR5
dCLs2

R

HPfHT 1s2
R

 
12

dCLHPfHT

HPfHT 1s2
R

!21

. (21)

Here HPfHT is the single element of the matrix HPfH

corresponding to the single observation. The term s2
R is

the observation error variance. In the local analysis of

the LETKF, several observations within the support

radius around a local analysis domain are assimilated at

once. A weight is computed for each observation, with

the term HPfHT being computed as the square of the

corresponding row of HdX
f 0 divided by m2 1.
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c. Inconsistency of the covariance update with
localization

Whitaker and Hamill (2002) noted that the update

equation for the state covariance matrix in the EnSRF,

Eq. (6), is not consistent if localization with a smooth

correlation function is used. Whitaker and Hamill

(2002) reported that their study used the GC99 function

despite the possible violation of Eq. (6), because it re-

sulted in estimates with lower estimation errors com-

pared to the case when a Heaviside step function was

used, which would avoid the inconsistency.

The reason for the inconsistency lies in the used up-

date equation for the covariance matrix. In the deriva-

tion of the Kalman filter one obtains

Pa5 (I2KH)Pf (I2KH)T 1KRKT . (22)

If the same Pf and R are used in Eq. (22) and in the

Kalman gain K5PfHT(HPfHT 1R)21, Eq. (22) sim-

plifies to

Pa5 (I2KH)Pf . (23)

Equation (23) is used to update the covariance matrix in

all ensemble Kalman filters, except the classical EnKF

with perturbed observations (Evensen 1994; Burgers

et al. 1998). The localization methods CL and OL only

modify the Kalman gain, but not Pf and R in Eq. (22).

Hence, Eqs. (22) and (23) are no longer equivalent if

localization is applied.WhenEq. (23) is directly usedwith

a localized gain K one can even obtain a nonsymmetric

matrix Pa. This, however, will not occur in the ensemble-

based Kalman filters as these update the covariance

matrix implicitly by updating the state ensemble.

Over all, the inconsistency of the covariance matrix

update does occur in all filter algorithms that are based

on the simplified single-sided update in Eq. (23). The

difference between synchronous observation assimila-

tion (as in the LETKF) and serial observation process-

ing (as in the EnSRF) is, however, that the former

method computes a single update of the matrix Pf be-

cause it assimilates all observations at a given time at

once, while the EnSRF computes an update of Pf for

each single observation. In the LETKF, the ensemble

members representingPa are immediately propagated by

themodel after the ensemble transformation. In contrast,

in the serial observation processing of the EnSRF, each

intermediately computed P(i) (represented by the en-

semble states) is used to assimilate the next observation.

In the repeated update of the covariance matrix, the in-

consistencies can accumulate. This effect will result in the

observed dependence of the assimilation result on the

order in which the observations are processed and in an

inferior assimilation result compared to filter algorithms

that assimilate all observation synchronously.

For the EnSRF, the covariance matrix update is de-

rived from Eq. (23). For the i’s observation it follows

from Eq. (6) as

Pa
(i) 5 [I2 ~K

(i)H(i)]P
f
(i)[I2

~K
(i)H(i)]

T , (24)

with ~K(i) defined by Eq. (7). Even though the matrix

update in Eq. (24) is symmetric, it is inconsistent with

Eq. (22) whenP
f
(i) is localized in ~K(i). One can check that

it is not possible to rederive the single-observation up-

date of Potter (see Maybeck 1979, section 7.3) when the

localization is taken into account. Thus, it is not possible

to derive an alternative factor ~a(i) that ensures the equality

of Pa in Eqs. (22) and (24), because there is in general no

solution for ~a(i) that ensures the equality. However, even if

the symmetric update in Eq. (22) could be used, the

analysis result of the serial observation processing would

still depend on the order in which the observations are

assimilated unless one localizes P
f
(i) in Eq. (22). The ap-

pendix provides a simple two-dimensional example for

applying Eqs. (22)–(24) with serial and bulk processing of

observations.

3. Configuration of numerical experiments

To assess the assimilation performances of the EnSRF

and LETKF, identical twin experiments are conducted

using the Lorenz-96 model (Lorenz 1996; Lorenz and

Emanuel 1998). This nonlinear model has been used in

several studies to examine the behavior of different

ensemble-based Kalman filters (e.g., Anderson 2001;

Whitaker and Hamill 2002; Ott et al. 2004; Lawson and

Hansen 2004; Sakov andOke 2008; Janji�c et al. 2011). The

same configuration as in Nerger et al. (2012a) is used and

the results can be directly compared with their results.

The Lorenz-96 model uses the nondimensional

equations:

dxj

dt
5 (xj112 xj22)xj212 xj 1F , (25)

where j5 1, . . . , 40 is the gridpoint index with cyclic

boundary conditions and F5 8 is a forcing parameter.

The time stepping is performed using a fourth-order

Runge–Kutta scheme with a nondimensional time step

size of 0.05. The model and the filter algorithms have

been implemented within the Parallel Data Assimila-

tion Framework (PDAF; Nerger et al. 2005; Nerger and

Hiller 2013, http://pdaf.awi.de).

A trajectory representing the ‘‘truth’’ is computed

over 60 000 time steps from the initial state of constant

1558 MONTHLY WEATHER REV IEW VOLUME 143

http://pdaf.awi.de


value of 8.0, but x20 5 8.008, following Lorenz and

Emanuel (1998). Synthetic observations of the full state

are generated by disturbing the true trajectory by un-

correlated random normal noise. Three cases will be

examined in which the standard deviation sR of the

observation error will be 1, 0.5, and 0.1. The strength of

the assimilation impact increases when the observation

errors shrink. The initial error estimate from the en-

semble used in the experiments is 2.5. Thus, the largest

sR is 40% of the error estimate, while the smallest value

is only 4% of it.

Second-order exact sampling from the true trajectory

Pham (2001) is used to generate the initial ensemble. To

assess the assimilation performance over a long assimi-

lation experiment, the assimilation is performed at each

time step over 50 000 time steps with an ensemble of 10

states. For the observations, an offset of 1000 time steps

of the true trajectory is used to avoid the spinup phase of

the model. The localization is applied with a fixed sup-

port radius. All experiments are repeated 10 times with

varying random numbers for the generation of the initial

ensemble. The assimilation performance will be as-

sessed by the root-mean-square error of each experi-

ment averaged over each set of 10 experiments. The

random numbers used to perturb the observations are

not varied. It would have a similar effect to varying the

initial ensemble.

4. Mean assimilation performance

The effect of the serial observation processing can be

demonstrated in a full-length experiment with the

Lorenz-96 model. Figure 1 shows the averaged RMS

errors for a range of forgetting factors and support radii

of the localization function and three different obser-

vations errors. The filters diverge when the time-mean

RMS error is larger than the observation error. If at least

one of the 10 repetitions of each experiment diverges,

the rectangle for this parameter pair is left white. The

overall shape of the RMS error distribution, namely,

FIG. 1. Average RMS errors for the (top) EnSRF, (middle) LETKF, and (bottom) EnSRF bulk for three different observational errors:

(left) 1.0, (middle) 0.5, and (right) 0.1. White fields denote filter divergence, which is defined here as where the averaged RMS error is

larger than the observational error.
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a minimum error region that is surrounded by larger

errors, shows that the parameter ranges chosen for the

experiments cover the optimal parameter values.

The first two rows in Fig. 1 show the average RMS

errors for the serial EnSRF and LETKF, respectively.

As discussed by Nerger et al. (2012a), the regulated lo-

calization as used here in the LETKF should make the

filter results with OL very similar to those with CL.

However, there are significant differences, which are

most pronounced for the smallest observation error of

s5 0:1 (right panels of Fig. 1). In this case, the LETKF

converges in a much larger parameter region than the

EnSRF. Further, the LETKF yields significantly smaller

mean RMS errors than the EnSRF. When the assimi-

lation strength is reduced by increasing the observation

error, the error differences become smaller. For

sR 5 0:5 (middle column in Fig. 1), the minimum RMS

errors obtained with the EnSRF are slightly larger than

for the LETKF. In addition, there is a parameter range

(forgetting factors 0.95 and 0.96, localization radii 18 and

20), where the EnSRF yields larger errors than the

LETKF. This effect is unusual as one typically obtains

a closed area of minimal errors (see, e.g., Janji�c et al.

2011) as is visible for the LETKF. For the largest ob-

servation error of sR 5 1:0 (left panels of Fig. 1), the

RMS error in dependence of the forgetting factor and

the support radius are very similar for the EnSRF and

LETKF.

The EnSRF-bulk update scheme discussed in section

2a avoids the serial observation processing, but applies

CL. Hence, comparing the serial EnSRF with EnSRF

bulk allows us to directly see the influence of serial ob-

servation processing. The averaged RMS errors for

EnSRF bulk are shown in the third row of Fig. 1. In the

stable assimilation regime (e.g., for sR 5 0:1 with a sup-

port radius below 18 grid points), the serial EnSRF is

about 2% smaller RMS errors than the EnSRF bulk.

This behavior is probably due to the fact that the serial

observation processing avoids matrix inversions. For

larger support radii and smaller inflation the EnSRF

bulk shows smaller RMS errors and less tendency to

diverge compared to the serial EnSRF. The parameter

region in which the EnSRF bulk converges is larger than

for the serial EnSRF and similar to the convergence

region of the LETKF. However, in the case of

sR 5 0:1 the EnSRF bulk diverges for support radii

above 28 grid points. This divergence can be attributed

to a large condition number of the matrix HPfHT 1R,

which needs to be inverted in the EnSRF bulk. Overall,

the LETKF shows the largest convergence region and

the smallest RMS errors. This behavior is influenced

by the OL with a regulated localization function, which

is used by the LETKF.

5. Stability of the EnSRF analysis with localization

To examine the reasons for the differences in the

RMS errors obtained with the EnSRF, EnSRF bulk, and

LETKF, the first analysis step of the experiments dis-

cussed above is examined inmore detail.While obviously

the first analysis step is not necessarily representative for

the whole assimilation experiment it nonetheless allows

us to study the different behaviors of the filters. At the

first analysis step, the experiments start with a ‘‘climato-

logical’’ state estimate with an RMS error of about 3.5.

The initial ensemble estimate of the error is slightly lower

with about 2.5. The error of the analysis state after the

first analysis step depends on the observation error. It is

larger than the asymptotic error level, which is reached

only after several forecast-analysis cycles. The advantage

of examining the first analysis step is that it shows the

instability in a very clear way. Further, the results are

practically uninfluenced by the model nonlinearity as

only a single time step was computed.

The parameters considered in this section are a for-

getting factor of 0.95 and a support radius of 20 grid

points. For these parameters, all three filter formula-

tions converge and the averaged RMS errors discussed

in section 4 are close to their minimum.

The EnSRF is configured to assimilate each observa-

tion in a loop starting from the observation at the grid

point with index 1 and then ordered with increasing in-

dex. Thus, when the state of size 40 is fully observed, the

state estimate and the ensemble are modified 40 times in

each analysis step. The panels in Fig. 2 show the true and

estimated RMS errors of the state for the sequence of

assimilating 1–40 observations. To be able to directly

examine one assimilation series, only one ensemble re-

alization is shown here. The exact shape of the curves

shown in Fig. 2 is specific for the set of random numbers

used to generate the ensemble and those used to gen-

erate the observations. However, using other random

numbers does not change the overall conclusions. Fig-

ure 2 also shows the RMS errors from the analogous

experiments with the LETKF and the EnSRF bulk.

Here all observations are assimilated at once. To be able

to study the dependence of the RMS error on the

number of observations, 40 experiments are performed

for each filter and each observation error in which be-

tween 1 and 40 observations are assimilated. In contrast

to the EnSRF, the intermediate results would not be

realized in an experiment with 40 observations.

For sR 5 1:0 the top panel in Fig. 2 shows that with

a growing number of observations, the true and esti-

mated RMS errors generally decrease. However, when

about half of the observations are assimilated the true

RMS errors (solid lines) increase, but finally decrease
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again when more observations are assimilated. This in-

terim increase is larger for the EnSRF and EnSRF bulk

than for the LETKF. Overall, it is visible that the esti-

mated errors (dashed lines) of the EnSRF and EnSRF

bulk are smaller than those of the LETKF. In addition,

when 40 observations are assimilated, the true error of

the EnSRF is 2.02 and, hence, slightly larger than the

true error of 1.86 of the LETKF, while the true error of

the EnSRF bulk is 1.8. The difference between EnSRF

and LETKF for 40 observations is statistically signifi-

cant, when repeating the experiment with different

random numbers, while it is not significant for LETKF

and EnSRF bulk.

For smaller observation errors, the interim increase of

the true errors for the EnSRF and EnSRF bulk is larger.

When 3, 27, or 28 observations are assimilated for

sR 5 0:5, the true error for the EnSRF is larger than

without assimilating any observations. In contrast, the

LETKF reduces the RMS error for 28 observations by

about 40% compared to assimilating no observations.

For sR 5 0:1 the true error in the EnSRF for assimi-

lating between 23 and 30 observations is up to about

twice as large than without assimilation. The error esti-

mate of the EnSRF misses this error increase and

strongly underestimates the true error. The EnSRF bulk

shows a similar behavior, but with smaller peak values

and a smaller error when 40 observations are assimi-

lated. In contrast, the estimated error of the LETKF is

much closer to the true error. The comparison of the

RMS errors of the LETKF with those of the EnSRF

and EnSRF bulk show that the different localization

methods lead to state estimates of significantly different

quality, in particular when not all available observations

are assimilated. However, for 40 observations the serial

processing of the EnSRF, in which the ensemble states

for each number of assimilated observations are ex-

plicitly computed, leads to larger errors compared to the

synchronous analysis of the EnSRF bulk.

The effect that leads to the large increase of the RMS

error for the EnSRF and EnSRF bulk is further dem-

onstrated in Fig. 3. Here, the state estimates for the

EnSRF, EnSRF bulk, and LETKF are shown when

different numbers of observations are assimilated in the

case of sR 5 0:1. For 20 observations, the estimates of all

three filters are very similar. In particular, the state es-

timate is very close to the truth in the left half of the

domain, where the observations were already assimi-

lated. For 25 observations, where the mean RMS error

of the EnSRF jumped to a value of 8.0, an unrealistically

large amplitude of the wave is visible for the EnSRF in

the part of the domain, where no observations have been

assimilated yet. The behavior is similar for the EnSRF

bulk, but the RMS error remains smaller than for the

FIG. 2. True and estimatedRMS errors for the first analysis step as

a function of the number of assimilated observations for observation

errors (top) sR 5 1:0, (middle) 0.5, and (bottom) 0.1 for the case of

r5 0:95 and a support radius of 20 grid points. Shown are errors for

the cases EnSRF (red), LETKF (green), and EnSRF bulk (blue).

The solid lines represent the true RMS errors, while the dashed lines

are estimate errors. The black dotted line marks the RMS error be-

fore the assimilation of observations. The bottom panel also shows

the RMS errors for the case in which the LETKF performs serial

observation processing (black solid line for true and dashed for es-

timated). The error increase for serial observation processing is

caused by the inconsistent covariance update induced by the locali-

zation and by different localization influences of OL and CL.
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serial EnSRF. In contrast, the LETKF estimates a wave

of realistic amplitude.When the number of observations

is further increased, the EnSRF and EnSRF bulk con-

tinue to estimate a state with a large wave amplitude in

the part where the observations have not yet been as-

similated. The large amplitude persists up to about 30

assimilated observations. Finally, the amplitude is re-

duced and for 40 observations the state estimates of all

three filters are realistic, but the error in the estimated

state is larger for the EnSRF than for the LETKF and

EnSRF bulk.

The differences between the serial EnSRF and the

EnSRF bulk are only caused by the serial observation

processing. From Fig. 2 it is visible that the difference

between both filters accumulates with a growing number

of assimilated observations. The repeated inconsistent

covariance updates of the serial EnSRF do not always

result in larger errors of the state estimate. For example,

if only observations in the first half of the model domain

are assimilated, the serial EnSRF shows smaller errors

compared to the EnSRF bulk. However, for more than

30 observations, the RMS errors from EnSRF bulk are

smaller than those from the serial EnSRF for all ex-

periments. The estimated RMS errors are almost iden-

tical for the EnSRF and EnSRF bulk. However, the

serial observation processing of the EnSRF results in

covariance matrices that are distinct from those ob-

tained with the EnSR bulk as is also demonstrated in the

appendix. The different variance and covariance esti-

mates are tapered by the localization matrix and result

in state updates that are different in both filters. The

differences are most pronounced for the smallest ob-

servation error of sR 5 0:1.

The differences between the EnSRF bulk and the

LETKF are mainly caused by the different localization

schemes. While for a single observation, the regulated

OL used for the LETKF results in a localization effect

that is identical to the CL in the EnSRF and EnSRF bulk,

this is no longer the case if multiple observations are as-

similated at the same time [see Nerger et al. (2012a) for

a detailed discussion of the regulated OL]. However, the

regulated OL results in much better state estimates in

particular if the observations are incomplete as is visible

fromFigs. 2 and 3. For theKalman gain, the regulatedOL

results in a different localization function that improves

the state estimates without reducing the support radius of

the localization. For the EnSRF, one would need to

strongly reduce the localization support radius for CL

(e.g., to eight grid points for sR 5 0:1) to obtain a simi-

larly stable analysis as for the LETKF at the first analysis

time. However, as Fig. 1 shows, the RMS error for an

experiment over 50000 time steps would be significantly

larger for this smaller support radius.

As pointed out in section 2c, the inconsistent update

of the state error covariance matrix should not only

appear in the EnSRF, but also in other filters that pro-

cess observations serially. The LETKF method can

be easily modified to perform a loop of analysis steps

with single observations. For consistency, the forget-

ting factor has to be removed from Eq. (19). Instead,

the ensemble perturbations are inflated once before the

FIG. 3. Sequence of state estimates from EnSRF (red), LETKF

(green), and EnSRF bulk (blue) for (top to bottom) different

numbers of assimilated observations for sR 5 0:1, r5 0:95, and

a support radius of 20 grid points. Shown are also the true state

(black) and the observations (asterisks).
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analysis step by the square root of the inverse forgetting

factor as done in the EnSRF. The bottom panel in Fig. 2

shows also the RMS error for the LETKF with serial

observation processing. Similar to the EnSRF, the RMS

error shows a peak for 3 observations and the instability

around 25 observations. The true RMS errors are lower

than for the EnSRF and the estimated RMS errors are

slightly larger. This shows that the influence of the lo-

calization on the update of the covariance matrix in the

serial variant of the LETKF is not identical to that in the

EnSRF. However, the general instability of the analysis

also occurs for the LETKF when it is applied with serial

observation processing.

Note, that the change of the EnSRF behavior that is

demonstrated here for different observation errors is not

an effect of model nonlinearity. Only a single model

time step has been computed before the first analysis

time, which does not have much influence on the en-

semble distribution. Actually, the behavior shown in

Figs. 2 and 3 would look very similar when the analysis

would be performed at the initial time without any time

stepping. Thus, one could perform this experiment even

without the Lorenz-96 model. That is, one only needs

a covariance matrix, and initial state estimate and a set

of observations together with their error estimate. By

sampling the covariance matrix and state estimate with

a small ensemble of 10 members one could compute the

analysis step. The larger differences in the state update

for decreasing observation errors are due to the fact that

the effect of the inconsistently updated covariances

grows with the influence of the observations on the state

estimate. However, the effect of the differences can

sometimes average out, as is visible from the nearly

identical RMS errors for sR 5 0:5 for about 20–28 as-

similated observations (middle panel in Fig. 2).

6. Influence of the observation order

The analysis result in case of serial observation pro-

cessing depends on the order in which the observations

are assimilated. Hence, one might wonder whether one

can improve the analysis results obtained with the serial

EnSRF by changing the order in which the observations

are assimilated. Accordingly, the influence of the order

is examined here for the application with the Lorenz-96

model. Only the case sR 5 0:1 is considered, which

showed the largest influence of the serial observation

processing before. Further, only the serial EnSRF is

examined and compared to the LETKF.

The bottom panel in Fig. 2 shows that the true RMS

was largest when observations at the grid points 25–30

were assimilated. This is far from grid point 1 where the

assimilation series started. Thus, a first test is whether

one can stabilize the analysis by using a more uniform

sorting of the observations. To this end, the observation

order is revised so that the gridpoint indices of the as-

similated observations are chosen like 1, 21, 11, 31, 6, 26,

16, 36, and continued so that the remaining gaps are filled

in an approximately uniform way. The top panel in Fig. 4

shows the RMS error over the number of assimilated ob-

servations for this observation order. For comparison, the

LETKF also assimilated the same observations. Using the

revised observation order, the large peak in theRMS error

of the EnSRF at around 25 assimilated observations

(Fig. 2, bottom panel) has actually disappeared. In this

FIG. 4. True and estimated RMS errors for the first analysis step

as a function of the number of assimilated observations with

sR 5 0:1 for the case of r5 0:95 and a support radius of 20 grid

points. (top) Errors for EnSRF with observations ordered for

maximum distance and (bottom) error for the EnSRF with local

analysis and observations sorted for decreasing influence.
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respect, the reordering of the observations is successful.

However, up to about 20 assimilated observations, the

RMS errors are now very close to the error without as-

similation. Also, there are smaller peaks where the true

RMS error exceeds the error without assimilation with

values up to about 4.5. Further, the final RMS error after

assimilating all 40 observations in the revised order is

0.91 and, hence, almost identical to the error of 0.94

without reordering. Figure 4 also shows that for the

LETKF more than 20 observations need to be assimi-

lated to significantly reduce the RMS error. However,

the RMS error remains smaller than that of the EnSRF

and reaches a value of 0.13 when 40 observations are

assimilated.

The top panel in Fig. 5 shows the mean RMS error for

the full experiment in which the EnSRF with the re-

ordered observations is applied over 50 000 analysis

steps. Compared to the case sR 5 0:1 in Fig. 1, the mean

RMS errors are identical, except for some parameter

choices at the edge to filter divergence. Even, if the

observation order is randomized and a different order is

used at each analysis time, a very similar distribution of

the errors would be found (not shown). Thus, the state

estimate of the EnSRF with 40 observations is not sig-

nificantly influenced by the observation order.

An alternative to the series of global state updates in

theEnSRFwas introduced byWhitaker et al. (2008). This

variant of the EnSRF, denoted below the L-EnSRF,

performs individual local analysis updates for each grid

point with the observations ordered by their influence on

the state at the grid point. For this method one computes

for each grid point the variance reduction in the analysis

update induced by a single observation. Then the obser-

vations are assimilated individually at each grid point in

decreasing order according to the variance reduction.

The bottom panel in Fig. 4 shows the RMS error for

the L-EnSRF as a function of the number of assimilated

observations. The RMS error remains close to the RMS

error without assimilation, or even above it, until about

29 observations are assimilated. Thus, the individual

sorting of the observations in the L-EnSRF also avoids

the instability peak around grid points 25–30 in the

original EnSRF without reordering. For more than 29

observations, the RMS error decreases strongly. The

final error for 40 assimilated observations is reduced to

0.51. Hence, it is significantly smaller than the error of

the EnSRF with the original order, but larger than that

of the LETKF. The reduction of the RMS error is also

visible in the full experiment over 50 000 analysis steps

as is shown in the bottom panel in Fig. 5. The minimum

mean RMS error is reduced from 0.0193 to 0.0190. This

change is small, but statistically significant. Further, the

filter is stabilized and the parameter region in which the

assimilation converges is increased. However, the RMS

errors obtained with the L-EnSRF are still larger than

those of the LETKF. In addition, the region of filter con-

vergence is larger for the LETKF than for the L-EnSRF.

7. Practical relevance of the EnSRF instability

The numerical experiments conducted in the sections

above clearly show the effect of the instability in the

EnSRF analysis. However, these experiments are highly

idealized. In particular, the Lorenz-96 model simulates

only a single model field. Further, the dynamics of the

model are homogenous and, hence, also the distribution

of the errors in the state estimate and the ensemble

perturbations is rather uniform. Also, the full model

state was observed. The observation errors were varied

by one order of magnitude in the experiments. This

allowed us to vary the strength of the assimilation im-

pact. The largest influence of the serial observation

FIG. 5. Average RMS errors for sR 5 0:1. Errors for the (top)

EnSRF with observations ordered for maximum distance and

(bottom) theEnSRFwith local analysis and observations sorted for

decreasing influence.
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processing in case of the EnSRF and of the regulatedOL

in case of the LETKF occurred for the smallest obser-

vation error, which was only 4%of the error of the initial

state estimate.

For real-world cases (e.g., Whitaker et al. 2008; Sakov

et al. 2012; Losa et al. 2014), the mean RMS error esti-

mated by the ensemble is typically of the same order as

the observation errors. In this respect, these applications

should operate in the regime of the largest observation

errors used in the idealized experiments. In this case, no

significant differences between the LETKF and EnSRF

are to be expected. However, in realistic cases the esti-

mated errors will show spatial variations and larger error

estimates can occur locally. For example, if eddies ap-

pear in a high-resolution ocean model, the ensemble

spread could become large due to varying locations of

the eddies or when only some ensemble members

simulate the eddies while other miss them. In the at-

mosphere a situation might appear with convective-

scale models, when some ensemble members estimate

convection while others do not. When in this situation

accurate observations are assimilated, the effect of se-

rial observation processing might deteriorate the as-

similation performance. However, in this case also the

spatial extent of the region with large state error esti-

mates and small observation errors will influence the

effect of the serial observation processing. It is unclear

which spatial extent is necessary to make the effect

visible.

The experiments with the Lorenz-96 model showed

only a negligible effect of reordering or randomizing the

observation sequence, unless one sorts the observations

explicitly with decreasing influence and performs local

analyses. However, in atmospheric data assimilation the

location of the observations can also vary nearly ran-

domly between successive analysis times. This kind of

randomization might also influence the effect of the

serial observation processing.

8. Conclusions

This study examined the influence of localization in

ensemble-based Kalman filter formulations that per-

form the assimilation of an observation vector as a series

over single observations. Filter algorithms of this type

are the ensemble adjustment Kalman filter (EAKF) and

the ensemble square root filter (EnSRF).

Most ensemble Kalman filters update in the analysis

step the state error covariance matrix, which is repre-

sented by the ensemble of model states, using the non-

symmetric update equation of the Kalman filter. This

equation is cheaper to evaluate than the more general

symmetric update equation, but only valid when the

Kalman gain is computed with the same forecast state

error covariance matrix as used in the update equation.

Using a localized covariance matrix in the gain while

using the nonlocalized matrix in the update equation,

results in an inconsistent analysis state error covariance

matrix. To some extent this inconsistency is inherent in

all ensemble-based Kalman filters because they ap-

proximate the state error covariance matrix by the low-

rank ensemble covariance matrix, but they increase the

rank for the analysis step by applying localization. Filter

algorithms that assimilate a whole observation vector

simultaneously, update the covariance matrix only once

during an analysis step. In contrast, in filters with serial

observation processing, the size of the observation vec-

tor defines how often the covariance matrix is updated.

The assimilation performance of the EnSRF was

compared with that of the local ensemble transform

Kalman filter (LETKF) with regulated observation lo-

calization using twin experiments with the Lorenz-96

model. When the observation errors were of a similar

magnitude as the initial errors of the state estimate, both

filter methods showed a similar behavior. When the

observation errors were decreased, the EnSRF showed

a stronger tendency to diverge and larger minimum

RMS errors than the LETKF and a variant of the

EnSRF that assimilates all observations at once.

Changing the observation order resulted in an im-

provement of the assimilation performance of the

EnSRF. For this, each single grid point needed to be

updated with an individual order of the observations. As

proposed by Whitaker et al. (2008), ordering the obser-

vation with decreasing influence to reduce the estimate

variance resulted in the best assimilation performance.

However, in the twin experiments the EnSRF with lo-

calized update and individually ordered observations still

exhibited larger minimum errors and a stronger tendency

to diverge than the LETKF.

The idealized experiments used the Lorenz-96 model.

However, the repeated inconsistent update of the co-

variance matrix and, hence, the ensemble states is

a general property with serial observation processing.

Thus, the instability of the analysis with serial observa-

tion processing should also occur with other models.

However, for practical applications the deterioration of

the filter performance of the EnSRF will often not be

relevant. Overall, the experiments indicate that the in-

consistent ensemble update does only deteriorate the

filter performance of the EnSRF in cases when the ob-

servations have a strong influence (i.e., when the ob-

servation error is small compared to the estimated error

of the state). In most real-world applications, the ob-

servation and state errors have a similar magnitude and

the serial observation processing should be stable. This
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finding is consistent with the fact that the EnSRF or

EAKF algorithms have been successfully applied for

a wide range of data assimilation problems. However,

one should be careful that the observation errors do not

become significantly smaller than the estimated state

errors and, hence, induce a strong assimilation influence.

The LETKF method performed better than the

EnSRF with smaller estimation errors and better sta-

bility. This difference was caused by the different lo-

calization schemes and the application of regulated

observation localization for the LETKF. However, it is

obvious that the LETKF—as all other ensembleKalman

filters—performs an inconsistent update of the state

error covariance matrix when it is applied with locali-

zation. Thus, while the localization methods are empiric

schemes that have been demonstrated to improve the

state estimates and the stability of ensemble Kalman

filters, their influence on the error estimates is still un-

clear. For example, Janji�c et al. (2011) examined a lo-

calization variant of the SEIK filter in which the

covariance matrix is updated using a Heaviside step

function and only using the smooth weighting function

for the update of the state estimate. While the update of

the ensemble perturbations is also not fully consistent in

this formulation, it exhibited very good assimilation

performance with the Lorenz-96 model. Further re-

search into localization is required to ensure consistent

corrections of both the state estimate and the ensemble

perturbations in the analysis steps of the ensemble-

based Kalman filters.
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APPENDIX

2D Example of the Serial Observation Assimilation

This appendix shows a simple example of the in-

fluence of serial observation processing with localization

and of the application of a single-sided update of the

covariance matrix. Let the forecast state and covariance

matrix be

xf 5

�
1

1

�
; Pf 5

�
1 0:8

0:8 1

�
. (A1)

Two observations are available, which are defined by

y5

�
0

0

�
; R5

�
0:1 0

0 0:1

�
; H5

�
0 1

1 0

�
. (A2)

The localization matrix is

D5

�
1 0:25

0:25 1

�
. (A3)

Now compute the analysis covariance matrices, ap-

plying the covariance localization only in the Kalman

gain. When all observations are assimilated at once, one

obtains

Pa
(Eq.22) 5

�
0:089 0:007

0:007 0:089

�
; Pa

(Eq.23) 5

�
0:080 0:058

0:058 0:080

�
.

(A4)

Using the serial observation processing, assimilating

first the observation defined by the first row of H, fol-

lowed by the second row, one obtains

Pa
(Eq.22,serial) 5

(
0:088 0:009

0:009 0:088

)
;

Pa
(Eq.24,serial) 5

(
0:089 0:055

0:055 0:076

)
. (A5)

The analysis state estimates after assimilating both

observations are

xa(bulk) 5

�
0:077
0:077

�
; xa(Eq.22,serial) 5

�
0:097
0:073

�
; xa(Eq.24,serial) 5

�
0:091
0:046

�
. (A6)

The correct state estimate is xa(bulk) with the same value

in both elements. With serial observation processing,

both state estimates show significant errors. However,

the second element of xa(Eq.22,serial), which results from

applying the symmetric update in Eq. (22), is close to the

true value. For the covariance matrices, the single-sided

update in Eqs. (23) and (24) results in much larger co-

variances than the symmetric update equation. This ef-

fect is similar for both the bulk and the serial updates.

However, when the update in Eq. (24) of the EnSRF is

used, the variance estimate for the second state element

is also significantly underestimated.
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