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[1] Over the last decade, several hundred seals have been
equipped with conductivity-temperature-depth sensors in
the Southern Ocean for both biological and physical
oceanographic studies. A calibrated collection of seal-derived
hydrographic data is now available, consisting of more
than 165,000 profiles. The value of these hydrographic
data within the existing Southern Ocean observing
system is demonstrated herein by conducting two state
estimation experiments, differing only in the use or not of
seal data to constrain the system. Including seal-derived
data substantially modifies the estimated surface mixed-
layer properties and circulation patterns within and south of
the Antarctic Circumpolar Current. Agreement with
independent satellite observations of sea ice concentration
is improved, especially along the East Antarctic shelf.
Instrumented animals efficiently reduce a critical observational
gap, and their contribution to monitoring polar climate
variability will continue to grow as data accuracy and
spatial coverage increase. Citation: Roquet, F., et al. (2013),
Estimates of the Southern Ocean general circulation improved by
animal-borne instruments, Geophys. Res. Lett., 40, doi:10.1002/
2013GL058304.

1. Introduction

[2] Evidence is accumulating that the Southern Ocean is
changing rapidly [Jacobs, 2006], and there is an urgent need
for comprehensive in situ observations to document the spatial
and temporal variability of these changes [Rintoul et al., 2010].
Since the 2000s, the global upper ocean has been continuously
sampled by the Argo array [Gould et al., 2004], including the
Antarctic Circumpolar Current (ACC) region. South of the
ACC, however, the presence of sea ice is a major obstacle for
Argo profilers, and until recently, the only observations available
were a small number of summertime ship-based profiles.
[3] Since 2004, novel observations of the Southern Ocean

have become available through the use of instrumented seals.
Conductivity-temperature-depth satellite relay data loggers
(CTD-SRDLs) were developed in the early 2000s to sample
temperature (T) and salinity (S) profiles during marine
mammal dives [Lydersen et al., 2002; Fedak, 2004]. While
their principle intent was to improve understanding of seal
foraging strategies [Biuw et al., 2007; Fedak, 2013], they
have also provided as a by-product a viable and cost-effective
method of sampling hydrographic properties in many regions
of the Southern Ocean [Charrassin et al., 2008].
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[4] Within the “Marine Mammals Exploring the Oceans
Pole to Pole” (MEOP) program, several international teams
agreed to share their CTD-SRDL data sets to produce a
single, uniformly calibrated, homogeneous database of
hydrographic profiles. Here we present the MEOP-CTD
database, a quality-controlled collection of most seal-derived
hydrographic data obtained in the period 2004–2010 (pub-
licly available at http://people.su.se/~froqu), and we provide
an objective assessment of its contribution to improving the
existing observing system.

2. The MEOP-CTD Database

[5] The MEOP-CTD database includes 349 CTD-SRDLs,
representing 165,000 TS profiles (see Figure 1 and Table S1
in the supporting information). The majority of loggers were
deployed on elephant seals, with a lesser number on Weddell
and crabeater seals. On average, profiles are 500m deep,
although some seals occasionally reach 2000m or more. The
MEOP-CTD collection of profiles produces near circumpolar
coverage, although some regions such as the Weddell and
Ross Seas remain poorly sampled. More than 60% of TS
profiles were obtained south of the southern limit of the
ACC, where few Argo data exist. The migration distance of
seals depends highly on the deployment location and time of
the year, ranging from 100 km to more than 5000 km, while
the life span of a CTD-SRDL varies from 1 to 10 months
(5 months on average). The bulk of measurements were made
in the austral autumn and winter, when other in situ data are
scarce, yielding hydrographic sections with high spatial and
temporal resolution (2.5 profiles per day on average).
[6] CTD-SRDLs record TS profiles during the quasi-vertical

ascent of seals [Boehme et al., 2009; Roquet et al., 2011],
retaining only the deepest dive in each 6 h time interval, and
transmitting profiles in a compressed form (about 20 data points
per profile) through the Advanced Research and Global
Observation Satellite (ARGOS) system—not to be confused

with Argo. Animal positions are determined using ARGOS
telemetry information, with a typical accuracy of ±5km.
[7] Hydrographic profiles were postprocessed using a unified

procedure of editing, correction, and calibration [Roquet et al.,
2011]. A standard set of tests, adapted from Argo standard
quality control procedures, was run to remove bad profiles,
spikes, and outliers. When available (i.e., for about 90 CTD-
SRDLs), at sea comparisons with ship-based CTD profiles were
used to correct pressure-induced biases on TS profiles. For
CTD-SRDLswith profiles in frozen areas, a temperature offset
was estimated using the local freezing temperature (173 CTD-
SRDLs corrected). A salinity offset, which is induced by an
external field effect on the conductivity sensor, was estimated
using comparison of the deepest salinity measurements with a
high-resolution 3 year average derived from the Southern
Ocean State Estimate [Mazloff et al., 2010]. An average
�0.05 ± 0.16 salinity offset was applied, showing the critical
importance of the correction.
[8] Once calibrated, the accuracy of postprocessed CTD-

SRDL measurements was estimated to be ±0.05°C in
temperature and ±0.05 or better in salinity for CTD-SRDLs
built after 2007—against ±0.01°C and ±0.01 for Argo
profiles. The achieved accuracy is highly dependent upon
availability of ship-based CTD comparisons and the type of
water masses sampled during deployment time. In best cases,
an accuracy of ±0.01°C and ±0.02 can be obtained. Pre-2007
CTD-SRDLs (about 20% of profiles) used an older
technology with a poorer accuracy roughly estimated around
±0.1°C and ±0.1. It must be emphasized that uncalibrated
seal-derived data, such as those available on the Global
Telecommunication System, feature much lower accuracies
mainly because the salinity offset is not corrected.

3. Description of State Estimate Experiments

[9] Our goal here is to quantify the contribution the seal-
derived data make to representation of ocean circulation
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a) Number of profiles in the MEOP-CTD database

Figure 1. Number of TS profiles per ECCO grid cell for (a) the MEOP-CTD database, and (b) the Argo profiles used in state
estimate experiments. Superimposed in pink are the ACC limits defined as the �1.5m (southern limit) and �0.5m (northern
limit) contours of sea surface height in the SEAL state estimate.
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patterns. A direct comparison of seal-derived data with the
seasonal climatology WOA09 (World Ocean Atlas 2009)
[Locarnini et al., 2010] shows large differences, with
standard deviations of 3°C in T and 0.43 (nondimensional
on the practical salinity scale) in S (see Table S1). These
differences are both related to the undersampling of
observations and to the interpolation method used to produce
the climatology.
[10] For a more quantitative analysis, we use the ECCO

(Estimating the Circulation and Climate of the Ocean) state
estimation framework [Wunsch and Heimbach, 2013],
originally developed to produce dynamically consistent
syntheses of most existing data (both in situ and satellite) in
the 1992 to present period (products available at http://
ecco-group.org). The state estimation technique produces a
least squares fit of an ocean general circulation model to a
set of observations using the adjoint method. The ECCO
model grid is global, with an approximate 1° × 1° horizontal
resolution and 50 vertical levels [Forget, 2010].
[11] Two 1.5 year long state estimates were carried

out for the period 2007 to mid-2008. The reference state
estimate (here denoted as REF) was constrained with
Argo profiles only (166,000 T + S profiles, see
Figure 1b), while the so-called SEAL state estimate
was constrained with both Argo and seal data. All
CTD-SRDL profiles from the MEOP-CTD database
were used to constrain the SEAL state estimate, pooled
as if they were all obtained during the simulation
period, to obtain an upper limit on the effect of seal
data while simultaneously decreasing the computation
time. Some inconsistencies between seal and Argo data
from different years are possible, but they should be
limited given that the main contribution of seal data is

expected to occur south of the ACC where few Argo
profiles are available.
[12] We focus on a comparison between CTD-SRDL and

Argo data, because the number of ship-based CTD casts is
too small, and because most satellites cannot operate in ice-
covered areas (except for sea ice concentration measure-
ments). The REF and SEAL state estimates will now be com-
pared, using the period April 2007 to March 2008 only and
assuming that most of the observed differences are related
to the use or withholding of CTD-SRDL data.

4. Results

[13] The SEAL state estimate is closer to seal-derived
observations compared to the REF estimate, with a 30% re-
duction in misfit variance (see Table S1). Interestingly, the
REF state estimate itself is already much more consistent
with seal data than the WOA09 climatology (94% reduction
in error variance), although it was not constrained by seal
data, indicating the better skill of state estimation over inter-
polation techniques as used in WOA09 to synthesize
available observations.
[14] Spatial patterns of differences between mixed-layer

properties of the two state estimates are shown in Figure 2
(see also Figures S1 and S2). Typical differences are of order
0.5°C for sea surface temperature (SST), 0.2 for sea surface
salinity (SSS), 60m for winter mixed-layer depth (MLD,
definition of Kara et al. [2000]), and 3 cm s�1 for surface
velocity with complicated patterns of negative and positive
anomalies seen over most of the Southern Ocean. The largest
differences in SST and SSS are found south of the ACC, in
the seasonally ice covered zone. This region is markedly
cooler almost everywhere in the SEAL state estimate,
especially during summertime (up to 1.8°C differences).
The ACC area is slightly warmer on average, but with a
large spatial and temporal variability in such regions as
the Drake Passage (60°W) and the Kerguelen Plateau
(70°E). Temperature anomalies fade away rapidly north
of the ACC outside the influence zone of seal data.
[15] The pattern of SSS differences (Figure 2a) is not

obviously connected to the SST pattern, highlighting the
importance of having observations of both T and S. The
largest differences in SSS are observed west of the
Antarctic Peninsula. There, an SSS increase exceeding 0.2
is observed during most of the year, consistent with a
recently documented increase in surface salinity [Meredith
and King, 2005]. Elsewhere, SSS is reduced on average,
especially in the eastern Weddell Sea (0°E) and in the
Kerguelen Plateau sector. MLD and SSS differences are
generally well correlated, as expected, with salinity being
a key controller of upper ocean stratification within and
south of the ACC.
[16] Observed differences in surface mixed layer proper-

ties south of the ACC are clearly related to changes in the
sea ice distribution. A significantly larger sea ice cover
(+12%) is seen in the SEAL experiment (Figure 3), most
notably west of the Antarctic Peninsula (80°W) and along
the East Antarctic margin (between 0°E and 160°E). As
expected from an increased production rate of sea ice
during wintertime, the mixed layer is deeper and more
saline along the continental shelf regions where sea ice is
formed and less saline and shallower off the continental
slope. As a direct consequence of the observed changes in

Figure 2. Spatial distributions of differences in mixed-layer
properties between REF and SEAL state estimates (SEAL
minus REF).
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mixed-layer properties, and thus, in near-surface density
gradients, the surface circulation is significantly intensified
along the Antarctic continental slope, where lies the west-
ward Antarctic slope current (see Figure 2d).
[17] The distribution of sea ice concentration in the

state estimates was compared with independent satellite
observations, using a 2004–2010 average of Special
Sensor Microwave Imager (SSM/I) data [Kaleschke
et al., 2001] (Figure 3). Overall, the SEAL estimate of
sea ice distribution shows better agreement with satellite
observations than the REF state estimate (28% closer
on average). The improvement is particularly clear
around East Antarctica. Large deficits of sea ice remain
around West Antarctica and particularly in the Weddell
and Ross Seas most likely due to the still insufficient
sampling effort in these regions. More CTD-SRDL data
are currently being sampled in these regions, which
should allow further improvements in the representation
of sea ice in state estimates.

5. Discussion and Conclusions

[18] After a decade of continuous deployments of CTD-
SRDLs on seals in the Southern Ocean, a large collection
of hydrographic profiles exists with a near circumpolar
distribution, turning the long foreseen idea of using marine
mammals as integrated oceanographic platforms [Evans
and Leatherwood, 1972] into reality. The analysis of the
impact of seal-derived profiles on a global state estimate
shows significant improvements in the immediate region of
the data sets, with cooler and fresher surface waters resulting
in a sea ice distribution closer to satellite observations. This
study is not definitive both because the model resolution at
high latitudes is relatively coarse, and the importance of
interannual variability and of the heterogeneity in spatial
distribution has not been properly assessed. Nevertheless,
improvements already seen in the crucial region of sea ice
formation are expected to be of growing importance as more
seal data become available.

Figure 3. Annual mean sea ice concentration averaged over the whole year period, for (a) the REF and (b) the SEAL state
estimates, and (c) for the 2004–2010 climatology of SSM/I satellite observations (the thin black line shows the 60% contour).
(d) Comparison of the concentration-weighted sea ice area as a function of longitude.
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[19] The MEOP-CTD database is constantly expanding, as
more CTD-SRDLs are being deployed every year. New sites
of deployments are being used, or will be soon, such as the
Ross, Weddell, and Amundsen seas, thus improving the
spatial coverage around Antarctica. Improvements to the
CTD-SRDL technology are underway, in terms of sensor ac-
curacy, life duration, storage capacity, and satellite trans-
mission. The challenge now is to broaden coverage by
extending the methods to new sensors, such as fluorometers
[Guinet et al., 2013], and using more diverse animal types.
Miniaturization techniques are improving at a fast pace,
and the true potential of animal-borne instruments is yet to
be revealed.

[20] Acknowledgments. MEOP (Marine Mammals Exploring the
Oceans Pole to Pole) is an IPY (International Polar Year) project that
coordinates researchers and institutions from eight different countries. A list
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