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Preface 
 
In the machine vision field, the theory has been studied for many decades. Fortunately, 

the computer technique is also developed rapidly simultaneously. Recently, these theories 
of machine vision have been realized practically in variety applications. The machine vision 
system consists of the optics, electronics, machinery and the computer information 
technology systematically. The technique is applied widely industrially including vision 
servoing trajectory motion control, optical measurement and automatic examination, pattern 
identification and system monitoring and so on. The advantages of the vision system are the 
non-contact measurement, versatility, cost effectiveness, and practicality. Therefore, the 
machine vision technology can be investigated and studied enthusiastically to improve the 
industrial development and human engineering. 

In the field of machine vision, there are many technique books about introducing the 
fundamental theory of vision. But there is not a book about how to employ the vision theory 
in the market conditions for students or researchers who want to realize the technique of 
machine vision. It is meaningful to employ the vision theory to the practical application, and 
the vision theory can also be employed originally by different field researchers. 

I am pleasant that the book consists of 10 chapters by different fields about vision 
applications. The authors in chapters are excellent in their research fields. It is honored to 
collect the 10 chapters that depict the multiplicity of the vision theory by the authors. For the 
readers, you can select some kinds of applications you are interesting in this book, and to 
study the detailed contents in each chapter. This book collects the main studies about 
machine vision currently in the world, and has a powerful persuasion in the applications 
employed in the machine vision. The contents, which demonstrate that the machine vision 
theory, are realized in different field. For the beginner, it is easy to understand the 
development in the vision servoing. For engineer, professor and researcher, they can study 
and learn the chapters, and then employ another application method. 

The goal of this book is to introduce the visional application by excellent researchers in 
the world currently and offer the knowledge that can also be applied to another field 
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A Modeling and Simulation Platform for Robot
Kinematics aiming Visual Servo Control 

Lélio R. Soares Jr. and Victor H. Casanova Alcalde 
Electrical Engineering Department, University of Brasilia 

Brazil 

1. Introduction  
A robotic system is a mechanical structure built from rigid links connected by flexible joints.
The arrangement of links and joints (robot architecture) depends on the task the robot was 
designed to perform. The robot links have then different shapes and the joints can be of 
revolute (rotational motion) or prismatic (translation motion) nature. These robots, as 
described, perform task on an open-loop control scheme, i.e. there is not feedback from the
environment (robot workspace) thus it will not notice changes in the workspace. As an attempt 
to establish a closed-loop control scheme a computer-based vision systems is introduced to
detect workspace changes and also to allow guiding the robot (Hutchinson et al., 1996). 
At the University of Brasilia to cope with the study and teaching of robotics an educational
robotic workstation was built around the Rhino XR4 robot (Soares & Casanova Alcalde,
2006). To implement a vision-guided robot a video camera was installed and integrated to 
the robot control system. As an alternative for dealing with the real system and for teaching 
purposes a simulation platform was devised within the Matlab environment (Soares & 
Casanova Alcalde, 2006). The platform was called RobSim and it is based on assembling 
elementary units (primitives) which represent the robot links, being the joints represented
by the motion they perform. This simulation and developing platform then evolved and
now it includes robot visual servo control being presented in this work. Within RobSim
platform control algorithms can be developed for the vision-guided robot to perform tasks 
before implementing them on the real system.
Simulation tools for either conventional robotic systems (Legnani, 2005; Corke, 1996) and for 
vision-based systems (Cervera, 2003) do exist, this work presents a unified environment for 
both systems. The developed simulation tools were assembled as a laboratory platform,
where robotic and vision-based algorithms share similar data structures and block building 
methodologies. Moreover, this platform was developed mainly for educational purposes; 
later on it was found it can be used for research and design of robotic systems. The graphical
presentation is as simple as possible, but allowing an insight and visualization of parts and
motions.
The chapter is organized as follows; initially the RobSim basic mounting blocks, the 
primitives, are defined and described. Then, the RobSim developed Matlab functions for 
initialization, motion, computer display and image acquisition are presented. Following, the 
modeling and simulation capabilities RobSim platform offers are presented together with 
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applications to fixed and mobile robots. Further on, vision-based control schemes are briefly 
discussed. Finally, implementation of visual-based control schemes applied to a robotic 
workstation consisting of a Rhino XR4 robot and a computer vision system is considered. 
Image- and position-based visual servoing schemes are implemented.  

2. RobSim – a modeling and simulation platform for robotic systems 
In order to model and simulate the kinematics of robotic systems a software platform named 
RobSim was developed. Three types of basic elements were defined to assembly a model for 
a vision-guided robotic system: block, wheel and camera. Being basic elements they will be 
called primitives. They will be sufficient to assembly a simulation model for robotic 
manipulators and robotic vehicles guided by a computer vision system. 

2.1 Block primitive 
The block primitive is defined as a regular polyhedron with rectangular faces. The faces 
meet along an edge and three of these intersect orthogonally at a vertex. A block primitive 
consists then of six faces, twelve edges and eight vertexes. Figure 1 shows a block primitive 
with its allocated coordinate frame {Xb,Yb,Zb}. The frame orientation is assigned as follows, 
the Xb-axis along the block length (L), the Yb-axis along the block width (W) and the Zb-axis 
along the block height (H). A general graphical reference coordinate frame {Xg,Yg,Zg} is also 
shown in Figure 1, it indicates the block viewing angle for displaying purposes. 
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Fig. 1. A Block Primitive 

A block primitive will be geometrically defined by nine components: a) eight vectors, each 
one corresponding to the 3D coordinates of its vertexes; and b) a character identifying the 
assigned color to the line edges. 

2.2 Wheel primitive 
For simulating wheeled mobile robots a wheel primitive is defined. The wheel primitive is 
defined as two circles of equal radius assembled parallel to each other at a certain distance. 
The wheel rotation axis passes through the centers of both circles. Figure 2 shows a wheel 
primitive with its allocated coordinate frame. The wheel primitive coordinate frame 
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{Xb,Yb,Zb} is attached to the wheel primitive, being its origin fixed at the middle of the 
internal line between the circle centers. The Zb-axis coordinate is fixed along the rotation 
axis, the Xb-axis along the initial rotation angle (0º). 
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Fig. 2. A Wheel Primitive 

A wheel primitive will be geometrically defined by four components: a) the circle radius (R); 
b) the distance between the circle centers (W); c) the number of points defining both 
circumferences; and d) the color identifying character. 

2.3 Camera primitive 
For vision-guided robotic systems, manipulators or mobile robots, video cameras are 
required. Then, a camera primitive was developed from a modified block primitive. It is a 
small regular polyhedron with rectangular faces but having a larger opening on one extreme 
representing the light capturing entrance. Figure 3 shows a camera primitive with its 
coordinate frame {Xb,Yb,Zb}. The camera primitive coordinate frame is attached to the 
opposite face, where the image is formed. The coordinate frame center is fixed at the center 
of this rectangular face, the Zb-axis along the camera length (L), the Xb-axis along the camera 
height (H) and the Yb-axis along the camera width (W). This orientation follows the 
computer vision convention, so the Zb-axis coincides with the camera optical axis. 
Due to its particular function, a camera primitive will be defined by three groups of 
components: a) twelve vectors to characterize its vertexes spatial coordinates; b) a color 
identifying character; and c) the camera intrinsic parameters (subsection 3.4). 

3. RobSim processing functions 
Within the Matlab environment RobSim functions for processing the primitives were 
developed. These functions allow: defining the primitives (initialization functions); moving 
the primitives (moving functions); and displaying the primitives (displaying functions). An 
image acquisition function to simulate image capture was also developed. 
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axis, the Xb-axis along the initial rotation angle (0º). 
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A wheel primitive will be geometrically defined by four components: a) the circle radius (R); 
b) the distance between the circle centers (W); c) the number of points defining both 
circumferences; and d) the color identifying character. 

2.3 Camera primitive 
For vision-guided robotic systems, manipulators or mobile robots, video cameras are 
required. Then, a camera primitive was developed from a modified block primitive. It is a 
small regular polyhedron with rectangular faces but having a larger opening on one extreme 
representing the light capturing entrance. Figure 3 shows a camera primitive with its 
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3. RobSim processing functions 
Within the Matlab environment RobSim functions for processing the primitives were 
developed. These functions allow: defining the primitives (initialization functions); moving 
the primitives (moving functions); and displaying the primitives (displaying functions). An 
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Fig. 3. A Camera Primitive 

3.1 Primitives initialization functions 
The primitives have to be introduced to the Matlab environment. For that, Matlab structure-
type variables (struct) are used for initialization of the primitives being the dimensions 
expressed in centimeters. 
Initializing a block primitive – The function to initialize the block primitive struct variable 
has the following syntax: 
• blk=init_block(L,W,H,color) 

where L, W, H and color are respectively the  length, width, height and line color of the 
block primitive. 

Initializing a wheel primitive – The function to initialize the wheel primitive struct variable is 
• circ=init_circ(R,W,n,color) 

where R, W, n and color are respectively the radius, width, number of circumference 
points and line color of the wheel primitive. 

Initializing a camera primitive – The function to initialize the camera primitive struct 
variable is 
• cam= init_cam(L,W,H, f,px,py,alpha,u0,v0,color) 

where L,W,H, and color are respectively the length, width, height and line color of the 
camera primitive. The parameters f, px, py, alpha, u0 and v0 are the camera intrinsic 
parameters (Chaumette & Hutchinson, 2006). These camera intrinsic parameters will be 
further discussed in subsection 3.4.  

3.2 Primitives moving functions 
Once defined the primitives within Matlab, other functions are necessary for moving the 
primitives as they simulate the different moving robotic links. For moving the primitives all 
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of its characteristic points have to be moved. A homogeneous transformation (Schilling, 
1990) is then applied upon the vectors which define those characteristic points. 
Moving a block primitive - Given a struct variable blk_i representing an initial block 
primitive pose (position and orientation), a new variable blk_o will represent the final 
primitive pose as a result of a moving function. For a block primitive the developed moving 
function is 
• blk_o=move_block(blk_i,R,t) 

where R and t are respectively the rotation matrix (3×3) and the translation vector (3×1) 
of the homogeneous transformation representing the executed motion. 

Moving a wheel primitive - Given circ_i representing an initial wheel pose, after applying a 
moving function the wheel primitive will assume a final pose circ_o. For this action the 
developed moving function is 
• circ_o=move_circ(circ_i,R,t) 

where R and t have the same meaning as the block primitive. 
Moving a camera primitive – Similarly, for an initial pose of the camera primitive cam_i, a 
final pose cam_o is achieved after a moving function. A developed camera primitive moving 
function is 
• cam_o=move_cam(cam_i,R,t) 

where R and t have the same meaning as for the block and wheel primitives motion. 

3.3 Primitives displaying functions 
For displaying primitives specific functions were developed around the Matlab built-in plot3 
function. As the vertexes define the geometry of primitives, for displaying purposes straight 
lines were drawn to join the vertexes. Thus the displayed primitives look like a wire-frame 
model for solid objects. The graphic displaying functions developed for primitives are 
• plot_block(block) 
• plot_circ(circ) 
• plot_cam(cam) 
for the block, wheel and camera primitives respectively. The function argument in the three 
cases is precisely the struct variable that represents the primitive. 

3.4 Image acquisition function 
A computer-based vision system for robotic systems demands video cameras. A camera 
coordinate frame is attached to the camera, being 0Tc the homogeneous transformation 
matrix relating the camera position (t) and orientation (R) referred to the base coordinate 
frame. R and t constitute the camera extrinsic parameters which together with the intrinsic 
parameters {f, px, py, α, u0, v0} are used to setting up the camera primitive. These intrinsic 
parameters arise from the perspective projection model (Hutchinson et al., 1996) adopted for 
the camera and are shown graphically in Figure 4. 
An image acquisition function point_view was developed to simulate an image point capture 
and its syntax is 
• pimag=point_view(p3D,Ki,0Tc) 

where p3D is a vector representing the 3D position of a point in the camera field-of-view 
(FOV), relative to base frame; Ki is the matrix of the camera intrinsic parameters; and 
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Fig. 3. A Camera Primitive 

3.1 Primitives initialization functions 
The primitives have to be introduced to the Matlab environment. For that, Matlab structure-
type variables (struct) are used for initialization of the primitives being the dimensions 
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camera primitive. The parameters f, px, py, alpha, u0 and v0 are the camera intrinsic 
parameters (Chaumette & Hutchinson, 2006). These camera intrinsic parameters will be 
further discussed in subsection 3.4.  

3.2 Primitives moving functions 
Once defined the primitives within Matlab, other functions are necessary for moving the 
primitives as they simulate the different moving robotic links. For moving the primitives all 
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pimag will return the pimag, the 2D position of the image point measured in pixels. Ki is 
arranged as follows 

 

0

0

0
.cos

.tan

0 0 1

x

i
y y

f u
p
f f v

p p

α
α

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K  (1) 

px

py

α

pixel
Image Plane

Camera Frame

Xc

Yc

Zc

U

V

p

Pv

u

v0

u0

x

y

f

 
Fig. 4. Perspective Projection Model for the Camera 

4. Modeling and simulation of robotic systems kinematics using RobSim 
A robotic manipulator or vehicle can be considered as a chain of rigid links interconnected 
by either revolute or prismatic joints. The proposed modeling and simulation tool RobSim 
associates a primitive to a robotic link. By programming the primitive initialization, moving 
and displaying functions together with Matlab built-in functions it is possible to simulate 
the kinematical model of any robotic structure. Thus, from these basic structures, the 
primitives, the kinematics of complex robotic systems can be simulated for analysis and 
design purposes. 
Within RobSim the robot joints are not graphically represented or displayed, being their 
nature (prismatic- or revolution-type) revealed as the motion progresses. For this reason, 
different colors must be assigned for primitives representing consecutive links. 
As primitives are represented by a structure-type variable, the whole set of assembled 
primitives representing the robot system will be a higher-level structure-type variable. 
The kinematical model of a robotic system is determined by applying the Denavit-
Hartenberg (DH) algorithm (Schilling, 1990). Transformations between successive links (k-1) 
and (k) are characterized by homogenous transformation matrixes like 
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In which R3×3 is the rotation matrix representing the relative orientation between frames and 
t3×1 is the translation vector representing the relative position between the frames origins. 
By using DH kinematical parameters {θ, d, a,α}, Equation (2) can be written as 

 ( 1)

0
0 0 0 1

k k k k k k k

k k k k k k kk
k

k k k

C C S S S a C
S C C S C a S

S C d

θ α θ α θ θ
θ α θ α θ θ

α α
−

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T  (3) 

In which for rotational joints, θ is the joint variable and C and S represent the cosine and sine 
functions respectively. To illustrate DH modeling and link-primitive assignment 
correspondences, Figure 5 shows the coordinate frame assignment for two robotic links. For 
these links, Figure 6 shows the assembling of primitives 
The kinematical model of a particular robot of n joints will be the homogeneous 
transformation relating the tool-tip coordinate frame (frame n) to the base coordinate frame 
(frame 0) obtained as 

 0 0 1 1 1
1 2. k n

n k n
− −=T T T T T  (4) 

An additional transformation will be necessary for displaying purposes relating the base 
coordinate frame to the displaying frame gT0 (Fig. 6). 
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Fig. 5. DH Link Coordinates for two robotic links 
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Fig. 6. Assembling Primitives for two robotic links 

4.1 RobSim modeling and simulation procedure 
The different stages to assembly a RobSim simulation model for a given vision-guided 
robotic system are: 
1. Allocating link coordinates and determining the kinematical parameters for the robotic 

system according to the Denavit-Hartenberg (DH) algorithm; 
2. Representing the different robot links by the block, wheel or camera primitives as 

applied; 
3. Assembling the chosen primitives through their coordinates as referred to the link 

coordinates determined by the DH algorithm; 
4. Determining the primitives configuration referred to the robot base coordinates; 
5. Developing the robotic system initialization as a Matlab struct variable, whose variable 

fields are the individual primitives struct representations; 
6. Developing the moving and displaying functions for the robotic system from the 

individual primitives moving and displaying functions; 
7. Generating trajectories and executing tasks by controlling the joint variables of the 

simulation model. 

4.2 Simulation of robotic systems 
Initially a RobSim model for the Rhino XR4 robot will be developed and a simulation test 
executed. The Rhino XR4, shown in Fig. 7, is an educational desktop robot, classified as a 
five-axis electric-drive articulated coordinates robot. Around this robot an educational 
robotic workstation (Soares & Casanova Alcalde, 2006) was built. 
Applying the RobSim modeling and simulation procedure, link coordinates were allocated 
and the kinematical parameters for the Rhino XR4 robot obtained, as shown in Figure 8. 
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Fig. 7. The Rhino XR4 Educational Robot 
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Fig. 8. Kinematical Model for the Rhino XR4 Robot 

Only block-type primitives were used to simulate each one of the robot links. For the robot 
tool three small block primitives were considered to allow simulating the tool 
opening/closure mechanism. Figure 9 shows the RobSim model for the Rhino XR4 at the 
home position and orientation (initial configuration). 
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Initially a RobSim model for the Rhino XR4 robot will be developed and a simulation test 
executed. The Rhino XR4, shown in Fig. 7, is an educational desktop robot, classified as a 
five-axis electric-drive articulated coordinates robot. Around this robot an educational 
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Fig. 8. Kinematical Model for the Rhino XR4 Robot 

Only block-type primitives were used to simulate each one of the robot links. For the robot 
tool three small block primitives were considered to allow simulating the tool 
opening/closure mechanism. Figure 9 shows the RobSim model for the Rhino XR4 at the 
home position and orientation (initial configuration). 
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Fig. 9. RobSim Model for the Rhino XR4 Robot – Initial Configuration 

Figure 10 shows the robot after executing a moving function towards a final configuration. 
 

  
 

Fig. 10. RobSim Model for the Rhino XR4 Robot – Final Configuration 

As part of a research project, prototypes of an inspection mobile robot were devised. The 
RobSim platform was particularly suitable to analyze the robots kinematics. The envisaged 
mobile robot will travel along suspended cables and will execute vision-guided maneuvers 
in order to overcome obstacles. Figures 11 and 12 show RobSim models of two prototypes. 
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Fig. 11. RobSim Model of an inspection mobile robot (Soares & Casanova Alcalde, 2008) 

 
Fig. 12. RobSim model of another inspection mobile robot (Soares & Casanova Alcalde, 2008) 

5. Visual servo control of robotic systems 
Visual servo control of robotic systems uses visual data to implement a feedback control 
loop to guide the robot in performing a certain task. Therefore the chosen machine vision 
strategy has to be considered into the robotic system dynamics. The camera for image 
capture can be mounted on the robot end-effector, or fixed at a certain place to observe the 
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5. Visual servo control of robotic systems 
Visual servo control of robotic systems uses visual data to implement a feedback control 
loop to guide the robot in performing a certain task. Therefore the chosen machine vision 
strategy has to be considered into the robotic system dynamics. The camera for image 
capture can be mounted on the robot end-effector, or fixed at a certain place to observe the 
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robot workspace. The  first approach is called an eye-in-hand configuration and the second, 
an eye-to-hand configuration. Other possibilities combining schemes are also possible 
(Chaumette & Hutchinson, 2007). A variant of the eye-to-hand configuration consists on 
mounting the camera on another robot or on a pan/tilt structure in order to improve the 
viewing angle. A single camera arrangement for gathering visual data lacks information 
about depth measurements. Algorithms for position and orientation (pose) estimation could 
then be introduced or two-cameras can be used to implement a stereo-vision scheme to 
calculate depth information. This section discusses briefly the main visual-based control 
schemes. First, a characterization of the control error for a visual servo control strategy is 
discussed. Then, the position- and the image-based visual servo control schemes are 
discussed. Some considerations about the system stability are finally pointed out. 

5.1 Characterization of the control error for visual servo control schemes 
In visual servo control schemes the image coordinates of points of interest are captured. 
These measurements constitute a set of image measurements represented by m(t).  From 
these measurements an actual visual features vector s is calculated to represent the actual 
value of k visual features. It is defined as s(m(t),a) (Chaumette & Hutchinson, 2006), where a 
is a set of parameters that represent additional knowledge about the system. Vector a can be 
an approximation of the camera intrinsic parameters or 3D models of objects being 
observed. The desired visual features vector is represented by s*, usually constant, being 
changes in s dependent only on camera motion. The objective of the visual servo control is 
therefore to minimize a visual features error vector e(t) defined by 

 *)),(()( samse −= tt  (5) 

The visual servo control schemes depend on how the visual features vector s is determined, 
as it will be seen in the following subsections.  To minimize the visual features error vector 
e(t) (Equation 5) a common approach is to implement a velocity controller. Defining the 
spatial velocity of the camera Vc = [vc Ωc]T, being vc the instantaneous linear velocity of the 
origin of the camera frame and Ωc the instantaneous angular velocity of the camera 
coordinate frame. A relation is then established between the time derivative of s and Vc 

 cs VLs .=  (6) 

Where sL is a k×6 matrix related to s called the image interaction matrix or also a feature 
Jacobian. Assuming a constant s* as usual, and using Equations (5) and (6) results in 

 cs VLe .=  (7) 

A simple strategy could be adopted, for example, an exponential decay of the error 
( ee .λ−= ) for a certain λ>0. Then using Equation (7) and the Moore-Penrose pseudo-inverse 
matrix +

sL , Vc the input of the robot velocity controller will be given by 

 eLV .. +−= sc λ  (8) 

For a full rank Ls, the pseudo-inverse will be T
ss

T
ss LLLL )..(=+  and cV and eLLe ss ... Tλ− will 

turn to be minimal. For a square matrix Ls, Equation (8) would be eLV .. 1−−= sc λ . As in 
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practice it is impossible to know sL and +
sL , an approximation or estimative, for the 

pseudo-inverse must be determined, this approximation will be denoted as +
sL̂ .  

As mentioned, depending upon the way the visual features vector s is established, different 
visual servoing schemes are possible. Two schemes are considered: a) the image-based 
visual servo control (IBVS); and b) the position-based visual servo control (PBVS). 

5.2 Image-Based Visual Servo control scheme (IBVS) 
In this scheme the image features to be determined can be: image-plane coordinates of 
points of interest, regions of interest of the image, parameters that define straight lines over 
the image, etc. From these features a visual features vector s(m(t),a) is established. 
Considering the simplest situation, the image measurements vector m(t) consists of the pixel 
coordinates of the set of image points of interest. Finally, vector a consists of the installed 
camera intrinsic parameters. In this situation the interaction matrix Ls can be easily 
determined. As shown in Figure 4, for a 3D point TS ZYXc ][=P referred to Sc, the camera 
coordinate frame, its projection onto the image plane will be a 2D point with coordinates 

TS fyxc ][=p , where  f is the camera focal length. From geometrical relation (Figure 4) x and 
y are given by 

 

fXx Z
fYy Z

=

=
 (9) 

By using the camera intrinsic parameters (f, px, py, u0, v0, α), u and v, p coordinates referred 
to the image plane, are given by 

αcos.0
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From Equation (10), given X, Y and Z it is possible to calculate u and v. But in the other way 
round it is not possible to calculate Z, the depth of P relative to the camera frame. 
Time derivatives of x and y (velocities) in Equation (9) results in 

 

Z
ZyYy

Z
ZxXx

−=

−=
 (11) 

The 3D velocity of point P (Sc coordinates) is related (Hutchinson et al., 1996) to the camera 
linear and angular velocities, Vc and Ωc respectively, as  

 PΩVP ×−−= cc  (12) 

or 
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robot workspace. The  first approach is called an eye-in-hand configuration and the second, 
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turn to be minimal. For a square matrix Ls, Equation (8) would be eLV .. 1−−= sc λ . As in 
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practice it is impossible to know sL and +
sL , an approximation or estimative, for the 

pseudo-inverse must be determined, this approximation will be denoted as +
sL̂ .  

As mentioned, depending upon the way the visual features vector s is established, different 
visual servoing schemes are possible. Two schemes are considered: a) the image-based 
visual servo control (IBVS); and b) the position-based visual servo control (PBVS). 

5.2 Image-Based Visual Servo control scheme (IBVS) 
In this scheme the image features to be determined can be: image-plane coordinates of 
points of interest, regions of interest of the image, parameters that define straight lines over 
the image, etc. From these features a visual features vector s(m(t),a) is established. 
Considering the simplest situation, the image measurements vector m(t) consists of the pixel 
coordinates of the set of image points of interest. Finally, vector a consists of the installed 
camera intrinsic parameters. In this situation the interaction matrix Ls can be easily 
determined. As shown in Figure 4, for a 3D point TS ZYXc ][=P referred to Sc, the camera 
coordinate frame, its projection onto the image plane will be a 2D point with coordinates 

TS fyxc ][=p , where  f is the camera focal length. From geometrical relation (Figure 4) x and 
y are given by 

 

fXx Z
fYy Z

=

=
 (9) 

By using the camera intrinsic parameters (f, px, py, u0, v0, α), u and v, p coordinates referred 
to the image plane, are given by 

αcos.0
xp

f
Z
Xuu −=  

yy p
f

Z
X

p
f

Z
Yvv αtan.

0 ++=  
(10)

From Equation (10), given X, Y and Z it is possible to calculate u and v. But in the other way 
round it is not possible to calculate Z, the depth of P relative to the camera frame. 
Time derivatives of x and y (velocities) in Equation (9) results in 

 

Z
ZyYy

Z
ZxXx

−=

−=
 (11) 

The 3D velocity of point P (Sc coordinates) is related (Hutchinson et al., 1996) to the camera 
linear and angular velocities, Vc and Ωc respectively, as  

 PΩVP ×−−= cc  (12) 

or 
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Substituting Equation (13) into Equation (11) and with p = [x y]T results in 

 cp VLp .=  (14) 
where Lp is given by 
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Matrix Lp then depends on P coordinates, on p coordinates and on the camera intrinsic 
parameters. Any control scheme using this Lp must estimate Z, the depth of P relative to the 
camera frame. Due to Lp dimension, to control a six axis robot, a minimum of three points 
will be necessary, so 6≥k . For a visual features vector s = (p1, p2, p3) three interaction 
matrixes Lp1, Lp2 and Lp3 must be stacked. To avoid local minimal solutions more than three 
points are usually considered. For N points, Lp will be a 2N×6 matrix. 
The main advantage of the IBVS schemes results form the fact that the visual features error 
is defined only in the image domain, not being necessary any parameter or variables 
estimation in the 3D space. A disadvantage is lack of information about the scene depth. 

5.3 Position-Based Visual Servo control scheme (PBVS) 
In position-based visual servo control schemes the visual features vector s is defined using 
the camera pose (position and orientation) relative to a reference coordinate frame. 
Determining the camera pose from a set of measurements in one image requires the camera 
intrinsic parameters and the 3D model of the object being observed, this is the classical 3D 
localization problem. As the PBVS approach needs 3D reconstruction it is prone to fail due 
to calibration errors. The general PBVS will not be treated here, only a particular case 
implemented with a robotic manipulator and a stereo-vision device whose simulation in the 
RobSim platform is reported in Section 6. 
From 2D image data captured by each of a two cameras arrangement (stereo vision) it is 
possible to reconstruct the 3D pose of an object in the cartesian manipulator workspace.  
Once the specification of a desired pose of an object handled by the robot end-effector is 
given, it is possible to define an error between the actual object pose and the desired one. 
Since this error is specified in the 3D workspace and the robot joints are actuated in order to 
cancel it, this kind of procedure can be considered a position-based control scheme.  

5.4 Some considerations about stability 
Vision-based control systems have non-linear and highly coupled dynamics. For stability 
analysis Lyapunov direct method can be applied. A particular Lyapunov function would be  

 2)(
2
1 teV =  (16) 
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In case of IBVS, by using Equations (7) and (8) the time derivative of V(t) is 

 eLLeee .ˆ.... +−== ss
TTV λ  (17) 

A global asymptotic stability is assured if V is positive definite or 

 0LL >+
ss

ˆ.  (18) 

If the number of image features k is equal to the camera DOF and a proper control scheme is 
implemented, then full rank sL and +

sL̂  matrixes will result and the stability condition 
(Equation 18) will be assured if a well approximated +

sL̂ is determined (Chaumette & 
Hutchinson, 2006). But considering a robot with 6 DOF under a IBVS control, where k is 
usually greater than 6, then the stability condition could never be assured. The resultant k×k 
matrix in Equation (18) would have at most a rank of 6, then a nontrivial null space will exist 
and local minima will result. 

6. Visual servo control of a robotic manipulator using RobSim 
The RobSim platform can help designers to analyze a robotic manipulator under a control 
scheme. To illustrate this approach a visual servo control scheme is applied to a robotic 
workstation consisting of the Rhino XR4 robot and a computer vision device. Visual servo 
control uses visual information to control the pose (position and orientation) of the robot 
end-effector in order to perform a specified task. 

6.1 An image-based visual servoing scheme within RobSim 
For camera simulation within the RobSim platform it is necessary to set up the camera 
primitive (Section 3), i.e. introduce the camera intrinsic and extrinsic parameters into its 
initialization, moving and displaying functions. Using the perspective projection model 
(Hutchinson et al., 1996) two reference frames are of concern: the camera reference frame, Sc, 
and the sensor reference frame, Ss. The camera reference frame is the one attached to the 
primitive camera as shown in Figure 3. Given a point P, represented in the Sc frame as 

[ ]TS ZYXc =P , its 2D projection point p onto the image sensor plane referred to the Ss frame 
will be, in homogeneous coordinates, [ ]Th

S vuc 1=p , being its pixel coordinates calculated 
from Figure 4. Executing the RobSim image acquisition function pimag=point_view(p3D,Ki,oTc) 
(Subsection 3.4) is possible to simulate a (Chaumette & Hutchinson, 2006)point capture as 
the camera moves. The p3D vector, a workspace point relative to the base coordinates, is 
measured in centimeters. The pimag vector, the 2D corresponding point onto the image plane, 
is measured in pixels. 
The RobSim features for visual servo control will be shown in a vision-guided operation with 
the Rhino XR4 robot. Figure 13 shows the robot RobSim model at its home pose (initial 
configuration) with a camera attached to its end-effector (gripper), so with the 5 DOF motion 
capability the robot allows. Resting over the base plane there is a cube (a block primitive) with 
color marks (asterisks) at its four top vertexes. Figure 13 also shows a window displaying the 
cube image as captured by the camera, in which the cube is represented by the four top color 
marks. An additional mark represents the image plane center. 



 Visual Servoing 

 

14 

 

XYvZ

ZXvY

YZvX

yxz

xzy

zyx

..

..

..

ωω

ωω

ωω

+−−=

+−−=

+−−=

 (13) 

Substituting Equation (13) into Equation (11) and with p = [x y]T results in 
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Matrix Lp then depends on P coordinates, on p coordinates and on the camera intrinsic 
parameters. Any control scheme using this Lp must estimate Z, the depth of P relative to the 
camera frame. Due to Lp dimension, to control a six axis robot, a minimum of three points 
will be necessary, so 6≥k . For a visual features vector s = (p1, p2, p3) three interaction 
matrixes Lp1, Lp2 and Lp3 must be stacked. To avoid local minimal solutions more than three 
points are usually considered. For N points, Lp will be a 2N×6 matrix. 
The main advantage of the IBVS schemes results form the fact that the visual features error 
is defined only in the image domain, not being necessary any parameter or variables 
estimation in the 3D space. A disadvantage is lack of information about the scene depth. 

5.3 Position-Based Visual Servo control scheme (PBVS) 
In position-based visual servo control schemes the visual features vector s is defined using 
the camera pose (position and orientation) relative to a reference coordinate frame. 
Determining the camera pose from a set of measurements in one image requires the camera 
intrinsic parameters and the 3D model of the object being observed, this is the classical 3D 
localization problem. As the PBVS approach needs 3D reconstruction it is prone to fail due 
to calibration errors. The general PBVS will not be treated here, only a particular case 
implemented with a robotic manipulator and a stereo-vision device whose simulation in the 
RobSim platform is reported in Section 6. 
From 2D image data captured by each of a two cameras arrangement (stereo vision) it is 
possible to reconstruct the 3D pose of an object in the cartesian manipulator workspace.  
Once the specification of a desired pose of an object handled by the robot end-effector is 
given, it is possible to define an error between the actual object pose and the desired one. 
Since this error is specified in the 3D workspace and the robot joints are actuated in order to 
cancel it, this kind of procedure can be considered a position-based control scheme.  

5.4 Some considerations about stability 
Vision-based control systems have non-linear and highly coupled dynamics. For stability 
analysis Lyapunov direct method can be applied. A particular Lyapunov function would be  

 2)(
2
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In case of IBVS, by using Equations (7) and (8) the time derivative of V(t) is 
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TTV λ  (17) 

A global asymptotic stability is assured if V is positive definite or 

 0LL >+
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ˆ.  (18) 

If the number of image features k is equal to the camera DOF and a proper control scheme is 
implemented, then full rank sL and +

sL̂  matrixes will result and the stability condition 
(Equation 18) will be assured if a well approximated +

sL̂ is determined (Chaumette & 
Hutchinson, 2006). But considering a robot with 6 DOF under a IBVS control, where k is 
usually greater than 6, then the stability condition could never be assured. The resultant k×k 
matrix in Equation (18) would have at most a rank of 6, then a nontrivial null space will exist 
and local minima will result. 

6. Visual servo control of a robotic manipulator using RobSim 
The RobSim platform can help designers to analyze a robotic manipulator under a control 
scheme. To illustrate this approach a visual servo control scheme is applied to a robotic 
workstation consisting of the Rhino XR4 robot and a computer vision device. Visual servo 
control uses visual information to control the pose (position and orientation) of the robot 
end-effector in order to perform a specified task. 

6.1 An image-based visual servoing scheme within RobSim 
For camera simulation within the RobSim platform it is necessary to set up the camera 
primitive (Section 3), i.e. introduce the camera intrinsic and extrinsic parameters into its 
initialization, moving and displaying functions. Using the perspective projection model 
(Hutchinson et al., 1996) two reference frames are of concern: the camera reference frame, Sc, 
and the sensor reference frame, Ss. The camera reference frame is the one attached to the 
primitive camera as shown in Figure 3. Given a point P, represented in the Sc frame as 

[ ]TS ZYXc =P , its 2D projection point p onto the image sensor plane referred to the Ss frame 
will be, in homogeneous coordinates, [ ]Th

S vuc 1=p , being its pixel coordinates calculated 
from Figure 4. Executing the RobSim image acquisition function pimag=point_view(p3D,Ki,oTc) 
(Subsection 3.4) is possible to simulate a (Chaumette & Hutchinson, 2006)point capture as 
the camera moves. The p3D vector, a workspace point relative to the base coordinates, is 
measured in centimeters. The pimag vector, the 2D corresponding point onto the image plane, 
is measured in pixels. 
The RobSim features for visual servo control will be shown in a vision-guided operation with 
the Rhino XR4 robot. Figure 13 shows the robot RobSim model at its home pose (initial 
configuration) with a camera attached to its end-effector (gripper), so with the 5 DOF motion 
capability the robot allows. Resting over the base plane there is a cube (a block primitive) with 
color marks (asterisks) at its four top vertexes. Figure 13 also shows a window displaying the 
cube image as captured by the camera, in which the cube is represented by the four top color 
marks. An additional mark represents the image plane center. 
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Fig. 13. RobSim vision-guided operation – initial configuration 
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In this image-based servoing scheme the visual features error vector is defined as the 
difference between current and desired cube vertex positions. An exponential decoupled 
decay for this error was imposed by a velocity control policy. Camera reference velocities 
were then obtained using the image interaction matrix. In turn, the joint reference velocities 
for the robot joints controllers were obtained from the robot Jacobian. 
Figure 14 shows the robot after executing a moving command towards a new configuration 
while the cube remains fixed. The window image shows the cube image, represented by the 
correspondent color marks (now circle marks). Another window shows the time variations 
of the camera velocity components. Visual information can be then used to guide the robot 
to describe a trajectory from an initial configuration to a new configuration through 
individual joint control. 

6.2 A position-based visual servoing scheme within RobSim 
Here, the PBVS architecture was implemented to simulate a vision-guided placing operation 
with the Rhino XR4 robot and a stereo-vision system with two cameras in the robot 
workspace. The object to be handled is a cube represented by a block-type primitive. Three 
marking points are located at three vertexes of the cube in order to visually represent the 
cube for translation and rotation displacements. Figure 16 shows the initial configuration of 
the robotic manipulator with the cube being grasped by the end effector, the cube initial 
pose (green) and the cube final pose (cyan). 
 

 
Fig. 15. Vision-guided placing operation – initial configuration 

A computer vision algorithm is not required in this case because the object is synthetic and a 
simple one. Determination of the coordinates of the three vertexes that identifies the cube is 
performed by the stereo-vision system (Hutchinson, 1996). The coordinates of the three 
identifying vertexes representing the cube at its initial pose are, pa1 (middle vertex), pb1 and 
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were then obtained using the image interaction matrix. In turn, the joint reference velocities 
for the robot joints controllers were obtained from the robot Jacobian. 
Figure 14 shows the robot after executing a moving command towards a new configuration 
while the cube remains fixed. The window image shows the cube image, represented by the 
correspondent color marks (now circle marks). Another window shows the time variations 
of the camera velocity components. Visual information can be then used to guide the robot 
to describe a trajectory from an initial configuration to a new configuration through 
individual joint control. 
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Here, the PBVS architecture was implemented to simulate a vision-guided placing operation 
with the Rhino XR4 robot and a stereo-vision system with two cameras in the robot 
workspace. The object to be handled is a cube represented by a block-type primitive. Three 
marking points are located at three vertexes of the cube in order to visually represent the 
cube for translation and rotation displacements. Figure 16 shows the initial configuration of 
the robotic manipulator with the cube being grasped by the end effector, the cube initial 
pose (green) and the cube final pose (cyan). 
 

 
Fig. 15. Vision-guided placing operation – initial configuration 

A computer vision algorithm is not required in this case because the object is synthetic and a 
simple one. Determination of the coordinates of the three vertexes that identifies the cube is 
performed by the stereo-vision system (Hutchinson, 1996). The coordinates of the three 
identifying vertexes representing the cube at its initial pose are, pa1 (middle vertex), pb1 and 
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pc1. The corresponding three coordinates at the final pose are pa2, pb2 and pc2. From these 
points four 3D vectors are generated: Pab1 pointing from pa1 to pb1; Pac1 pointing from pa1 to 
pc1; Pab2 from pa2 to pb2; and finally Pac2 from pa2 to pc2. All these vectors are normalized 
before use. 
To describe the robot joint dynamics a first-order model without dissipation is considered. 
Once the end-effector velocity vector )(tr (translational and rotational motion) referred to 
the base frame coordinates is known, the robot inverse kinematics model can be used to 
determine the joint velocities vector )(tq (Schilling, 1990). These velocities vectors are related 
by the pseudo-inverse of the robot Jacobian matrix, J(q) as 

 )().()( tt rqJq +=  (19) 

The end effector velocity )(tr is known as the screw velocity, consisting of a linear velocity 
along a line and an angular velocity around that line. Its first three elements are the linear 
velocities Tr = [vx vy vz]T and its last three elements Ωr = [ωx ωy ωz]T the angular velocities, 
being all components referred to the base coordinate frame. Thus, the end effector velocity is 

 T
rrt ][)( ΩTr =  (20) 

A task function characterizing position and orientation errors of the cube handling task was 
implemented. By vector analysis, it can be shown that if Pr = (Pab1×Pac1)×(Pab2×Pac2) = 0 
(where × denotes vector cross product), the handled cube attains the reference or desired 
orientation, in the particular cases where Pab1 and Pab2 or Pac1 and Pac2 have the same 
direction. The angular control velocity is adjusted as Ω = k1Pr, where k1 is a positive 
proportional gain. 
It is also verified that, being ta a vector from point pa1 to point pa2 and pa1v, a vector from the 
frame origin to point pa1, the vector Pt = k2ta + Ω×pa1v, with k2 a positive proportional gain, is 
equal to the null vector when the handled cube assumes the reference pose. In this case the 
translation control velocity is given by Tr =Pt. By adequately adjusting k1 and k2 it is possible 
to improve the regulation velocity of position and orientation errors. 
Figure 16 shows the final configuration of the vision-guided placing operation, a window 
shows the initial image as seen by the left camera. Another window shows the time 
evolution of the end-effector velocity components (Equation 20), in which case, due to the 
initial and desired cube pose, the angular components ωx and ωy are zero. 

7. Conclusion 
A software platform RobSim for analysis and design of robotic systems that includes image 
capturing devices was presented. It was developed within the Matlab environment to 
simulate kinematics of robotic structures and it allows implementing control strategies in 
order to follow trajectories, perform tasks, etc. Thus it is very suitable to implement robotic 
experiments before dealing with the real system. The platform is based on basic units called 
primitives that assembled together can simulate any robotic structure. Being modular it is 
expandable, another advantage is the inclusion of a video capturing device that allows 
implementing vision-guided robotic experiments. The platform was used here to model and 
simulate fixed and mobile robots. Image- and position-based servoing schemes were 
implemented for a robotic manipulator with a single and a two-camera arrangement and 
 

A Modeling and Simulation Platform for Robot Kinematics aiming Visual Servo Control  

 

19 

-60
-40

-20
0

20
40

60
-50

0

50
0

20

40

60

80

100

0 10 20 30 40 50 60
-6

-4

-2

0

2

4

6

8

10

12

14

ve
lo

ci
tie

s

iteration

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

 
Fig. 16. Vision-guided placing operation – final configuration 

simulations carried out within the RobSim platform. Further work is being addressed to 
introduce dynamical parameters into the primitives and simulation of more complex image 
features acquisition rather than image points. 

8. References 
Cervera, E. (2003) Visual Servoing Toolbox for Matlab/Simulink, 

http://vstoolbox.sourceforge.net/ 
Corke, P. I. (1996), A Robotics Toolbox for Matlab, IEEE Robotics and Automation Magazine, 

Vol. 3, No. 1, pp. 24-32. 
Chaumette, F. and Hutchinson, S. (2006), Visual Servo Control – Part I: Basic Approach, 

IEEE Robotics and Automation Magazine, Vol. 13, No. 4, December 2006, pp. 82-90. 
Chaumette, F. and Hutchinson, S. (2007), Visual Servo Control – Part II: Advanced 

Approaches, IEEE Robotics and Automation Magazine, Vol. 14, No. 1, March 2007, pp. 
109-118. 

Hutchinson, S.; Hager, D. & Corke, P. I. (1996), A Tutorial on Visual Servo Control, IEEE 
Transactions on Robotics and Automation, Vol. 12, No. 5, October 1996, pp. 651-670. 



 Visual Servoing 

 

18 

pc1. The corresponding three coordinates at the final pose are pa2, pb2 and pc2. From these 
points four 3D vectors are generated: Pab1 pointing from pa1 to pb1; Pac1 pointing from pa1 to 
pc1; Pab2 from pa2 to pb2; and finally Pac2 from pa2 to pc2. All these vectors are normalized 
before use. 
To describe the robot joint dynamics a first-order model without dissipation is considered. 
Once the end-effector velocity vector )(tr (translational and rotational motion) referred to 
the base frame coordinates is known, the robot inverse kinematics model can be used to 
determine the joint velocities vector )(tq (Schilling, 1990). These velocities vectors are related 
by the pseudo-inverse of the robot Jacobian matrix, J(q) as 

 )().()( tt rqJq +=  (19) 

The end effector velocity )(tr is known as the screw velocity, consisting of a linear velocity 
along a line and an angular velocity around that line. Its first three elements are the linear 
velocities Tr = [vx vy vz]T and its last three elements Ωr = [ωx ωy ωz]T the angular velocities, 
being all components referred to the base coordinate frame. Thus, the end effector velocity is 

 T
rrt ][)( ΩTr =  (20) 

A task function characterizing position and orientation errors of the cube handling task was 
implemented. By vector analysis, it can be shown that if Pr = (Pab1×Pac1)×(Pab2×Pac2) = 0 
(where × denotes vector cross product), the handled cube attains the reference or desired 
orientation, in the particular cases where Pab1 and Pab2 or Pac1 and Pac2 have the same 
direction. The angular control velocity is adjusted as Ω = k1Pr, where k1 is a positive 
proportional gain. 
It is also verified that, being ta a vector from point pa1 to point pa2 and pa1v, a vector from the 
frame origin to point pa1, the vector Pt = k2ta + Ω×pa1v, with k2 a positive proportional gain, is 
equal to the null vector when the handled cube assumes the reference pose. In this case the 
translation control velocity is given by Tr =Pt. By adequately adjusting k1 and k2 it is possible 
to improve the regulation velocity of position and orientation errors. 
Figure 16 shows the final configuration of the vision-guided placing operation, a window 
shows the initial image as seen by the left camera. Another window shows the time 
evolution of the end-effector velocity components (Equation 20), in which case, due to the 
initial and desired cube pose, the angular components ωx and ωy are zero. 

7. Conclusion 
A software platform RobSim for analysis and design of robotic systems that includes image 
capturing devices was presented. It was developed within the Matlab environment to 
simulate kinematics of robotic structures and it allows implementing control strategies in 
order to follow trajectories, perform tasks, etc. Thus it is very suitable to implement robotic 
experiments before dealing with the real system. The platform is based on basic units called 
primitives that assembled together can simulate any robotic structure. Being modular it is 
expandable, another advantage is the inclusion of a video capturing device that allows 
implementing vision-guided robotic experiments. The platform was used here to model and 
simulate fixed and mobile robots. Image- and position-based servoing schemes were 
implemented for a robotic manipulator with a single and a two-camera arrangement and 
 

A Modeling and Simulation Platform for Robot Kinematics aiming Visual Servo Control  

 

19 

-60
-40

-20
0

20
40

60
-50

0

50
0

20

40

60

80

100

0 10 20 30 40 50 60
-6

-4

-2

0

2

4

6

8

10

12

14

ve
lo

ci
tie

s

iteration

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

 
Fig. 16. Vision-guided placing operation – final configuration 
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Models and Control Strategies for Visual Servoing
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1. Introduction
Visual servoing is the process of steering a robot towards a goal using visual feedback in a
closed control loop as shown in Figure 1. The output un of the controller is a robot movement
which steers the robot towards the goal. The state xn of the system cannot be directly ob-
served. Instead a visual measurement process provides feedback data, the vector of current
image features yn. The input to the controller is usually the difference between desired (y�) and
actual values of this vector—the image error vector Δyn.

y� � �+ Δyn � Controller

Model
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Fig. 1. Closed-loop image-based visual servoing control

In order for the controller to calculate the necessary robot movement it needs two main com-
ponents:

1. a model of the environment—that is, a model of how the robot/scene will change after
issuing a certain control commmand; and

2. a control law that governs how the next robot command is determined given current
image measurements and model.

In this chapter we will look in detail on the effects different models and control laws have
on the properties of a visual servoing controller. Theoretical considerations are combined
with experiments to demonstrate the effects of popular models and control strategies on the
behaviour of the controller, including convergence speed and robustness to measurement er-
rors.

2. Building Models for Visual Servoing
2.1 Task Description
The aim of a visual servoing controller is to move the end-effector of one or more robot arms
such that their configuration in relation to each other and/or to an object fulfils certain task-
specific conditions. The feedback used in the controller stems from visual data, usually taken

2
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Fig. 2. Robot Arm with Camera and Object

from one or more cameras mounted to the robot arm and/or placed in the environment. A
typical configuration is shown in Figure 2. Here a camera is mounted to the robot’s gripper
(“eye-in-hand” setup), looking towards a glass jar. The controller’s task in this case is to
move the robot arm such that the jar can be picked up using the gripper. This is the case
whenever the visual appearance of the object in the image has certain properties. In order to
detect whether these properties are currently fulfilled a camera image can be taken and image
processing techniques applied to extract the image positions of object markings. These image
positions make up the image feature vector.
Since the control loop uses visual data the goal configuration can also be defined in the image.
This can be achieved by moving the robot and/or the object in a suitable position and then
acquiring a camera image. The image features measured in this image can act as desired image
features, and a comparison of actual values at a later time to these desired values (“image
error”) can be used to determine the degree of agreement with the desired configuration. This
way of acquiring desired image features is sometimes called “teaching by showing”.
From a mathematical point of view, a successful visual servoing control process is equivalent
to solving an optimisation problem. In this case a measure of the image error is minimised
by moving the robot arm in the space of possible configurations. Visual servoing can also be
regarded as practical feedback stabilisation of a dynamical system.

2.2 Modelling the Camera-Robot System
2.2.1 Preliminaries
The pose of an object is defined as its position and orientation. The position in 3D Euclidean
space is given by the 3 Cartesian coordinates. The orientation is usually expressed by 3 angles,
i.e. the rotation around the 3 coordinate axes. Figure 3 shows the notation used in this chapter,
where yaw, pitch and roll angles are defined as the mathematically positive rotation around
the x, y and z axis. In this chapter we will use the {·}-notation for a coordinate system, for
example {W} will stand for the world coordinate system. A variable coordinate system—one
which changes its pose to over time—will sometimes be indexed by the time index n ∈ IN =
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Fig. 4. World, Flange, Camera, Sensor and Image coordinate systems

0, 1, 2, . . . . An example is the camera coordinate system {Cn}, which moves relative to {W}
as the robot moves since the camera is mounted to its hand.
Figure 4 lists the coordinate systems used for modelling the camera-robot system. The world
coordinate system {W} is fixed at the robot base, the flange coordinate system {F} (sometimes
called “tool coordinate system”, but this can be ambiguous) at the flange where the hand is
mounted. The camera coordinate system {C} (or {Cn} at a specific time n) is located at the
optical centre of the camera, the sensor coordinate system {S} in the corner of its CCD/CMOS
chip (sensor); their orientation and placement is shown in the figure. The image coordinate
system which is used to describe positions in the digital image is called {I}. It is the only
system to use pixel as its unit; all other systems use the same length unit, e.g. mm.
Variables that contain coordinates in a particular coordinate system will be marked by a su-
perscript left of the variable, e.g.

A
x for a vector x ∈ IRn in {A}-coordinates. The coordinate

transform which transforms a variable from a coordinate system {A} to another one, {B}, will
be written

B

A T. If
A
x and

B
x express the pose of the same object then

A
x =

A

B T
B
x, and always

A

B T =
(B

A T
)−1

. (1)

The robot’s pose is defined as the pose of {F} in {W}.
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2.2.2 Cylindrical Coordinates

ρ

ϕ

p

x y

z

z

Fig. 5. A point p = (ρ, ϕ, z) in cylindrical coordinates.

An alternative way to describe point positions is by using a cylindrical coordinate system
as the one in Figure 5. Here the position of the point p is defined by the distance ρ from a
fixed axis (here aligned with the Cartesian z axis), an angle ϕ around the axis (here ϕ = 0 is
aligned with the Cartesian x axis) and a height z from a plane normal to the z axis (here the
plane spanned by x and y). Using the commonly used alignment with the Cartesian axes as
in Figure 5 converting to and from cylindrical coordinates is easy. Given a point p = (x, y, z)
in Cartesian coordinates, its cylindrical coordinates p = (ρ, ϕ, z) ∈ IR× ]− π, π] × IR are as
follows:

ρ =
�

x2 + y2

ϕ = atan2 (y, x)

�
=

⎧⎪⎨
⎪⎩

0 if x = 0 and y = 0

arcsin(
y
ρ ) if x ≥ 0

arcsin(
y
ρ ) + π if x < 0

z = z,

(2)

(� up to multiples of 2π), and, given a point p = (ρ, ϕ, z) in cylindrical coordinates:

x = ρ cos ϕ

y = ρ sin ϕ

z = z.

(3)

2.2.3 Modelling the Camera
A simple and popular approximation to the way images are taken with a camera is the pinhole
camera model (from the pinhole camera/camera obscura models by Ibn al-Haytham “Alha-
cen”, 965–1039 and later by Gérard Desargues, 1591–1662), shown in Figure 6. A light ray
from an object point passes an aperture plate through a very small hole (“pinhole”) and ar-
rives at the sensor plane, where the camera’s CCD/CMOS chip (or a photo-sensitive film in
the 17th century) is placed. In the digital camera case the sensor elements correspond to pic-
ture elements (“pixels”), and are mapped to the image plane. Since pixel positions are stored
in the computer as unsigned integers the centre of the {I} coordinate system in the image
plane is shifted to the upper left corner (looking towards the object/monitor). Therefore the
centre

I
c �= (0, 0)T .

24 Visual Servoing

y

x

z

u

v

u

v Camera image

{I}

y

x

f
{C}

Image plane
Sensor plane

Object point

Optical axis

{I}
{S}

c

Aperture plate
with pinhole

(CCD/CMOS)

Fig. 6. Pinhole camera model

Sometimes the sensor plane is positioned in front of the aperture plate in the literature (e.g.
in Hutchinson et al., 1996). This has the advantage that the x- and y-axis of {S} can be (direc-
tionally) aligned with the ones in {C} and {I} while giving identical coordinates. However,
since this alternative notation has also the disadvantage of being less intuitive, we use the one
defined above.
Due to the simple model of the way the light travels through the camera the object point’s
position in {C} and the coordinates of its projection in {S} and {I} are proportional, with a

shift towards the new centre in {I}. In particular, the sensor coordinates
S
p = (

S
x,

S
y)

T
of the

image of an object point
C
p = (

C
x,

C
y,

C
z)

T
are given as

S
x =

C
x · f

C
z

and
S
y =

C
y · f

C
z

, (4)

where f is the distance the aperture plate and the sensor plane, also called the “focal length”
of the camera/lens.
The pinhole camera model’s so-called “perspective projection” is not an exact model of the
projection taking place in a modern camera. In particular, lens distortion and irregularities in
the manufacturing (e.g. slightly tilted CCD chip or positioning of the lenses) introduce devi-
ations. These modelling errors may need to be considered (or, corrected by a lens distortion
model) by the visual servoing algorithm.

2.3 Dening the Camera-Robot System as a Dynamical System
As mentioned before, the camera-robot system can be regarded as a dynamical system. We
define the state xn of the robot system at a time step n ∈ IN as the current robot pose, i.e.
the pose of the flange coordinate system {F} in world coordinates {W}. xn ∈ IR6 will con-
tain the position and orientation in the x, y, z, yaw, pitch, roll notation defined above. The
set of possible robot poses is X ⊂ IR6. The output of the system is the image feature vec-
tor yn. It contains pairs of image coordinates of object markings viewed by the camera,
i.e. (

S
x1,

S
y1, . . . ,

S
xM,

S
yM)T for M = m

2 object markings (in our case M = 4, so yn ∈ IR8).
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Let Y ⊂ IRm be the set of possible output values. The output (measurement) function is
η : X → Y , xn �→ yn. It contains the whole measurement process, including projection onto
the sensor, digitisation and image processing steps.
The input (control) variable un ∈ U ⊂ IR6 shall contain the desired pose change of the camera
coordinate system. This robot movement can be easily transformed to a new robot pose ũn in
{W}, which is given to the robot in a move command. Using this definition of un an input
of (0, 0, 0, 0, 0, 0)T corresponds to no robot movement, which has advantages, as we shall see
later. Let ϕ : X × U → X , (xn, un) �→ xn+1 be the corresponding state transition (next-state)
function.

With these definitions the camera-robot system can be defined as a time invariant, time dis-
crete input-output system:

xn+1 = ϕ (xn, un)

yn = η (xn).
(5)

When making some mild assumptions, e.g. that the camera does not move relative to {F}
during the whole time, the state transition function ϕ can be calculated as follows:

ϕ(xn, un) = xn+1 =
W
xn+1 =

W
ũn =̂

W

Fn+1
T

=
W

Fn
T

︸︷︷︸
=̂xn

◦
Fn

Cn
T

︸︷︷︸
�

◦
Cn

Cn+1
T

︸ ︷︷ ︸
=̂un

◦
Cn+1

Fn+1
T

︸ ︷︷ ︸
�

, (6)

where {Fn} is the flange coordinate system at time step n, etc., and the =̂ operator expresses
the equivalence of a pose with its corresponding coordinate transform.

� = external (“extrinsic”) camera parameters;
Tn

Cn
T =

Tn+1

Cn+1
T =

( Cn+1

Tn+1
T
)−1

∀n ∈ IN.

For m = 2 image features corresponding to coordinates (
S
x,

S
y) of a projected object point

W
p

the equation for η follows analogously:

η(x) = y =
S
y =

S

C T
C
p

=
S

C T ◦
C

T T ◦
T

W T
W
p,

(7)

where
S

C T is the mapping of the object point
C
p depending on the focal length f according to

the pinhole camera model / perspective projection defined in (4).

2.4 The Forward Model—Mapping Robot Movements to Image Changes
In order to calculate necessary movements for a given desired change in visual appearance
the relation between a robot movement and the resulting change in the image needs to be
modelled. In this section we will analytically derive a forward model, i.e. one that expresses
image changes as a function of robot movements, for the eye-in-hand setup described above.
This forward model can then be used to predict changes effected by controller outputs, or (as
it is usually done) simplified and then inverted. An inverse model can be directly used to
determine the controller output given actual image measurements.
Let Φ : X × U → Y the function that expresses the system output y depending on the state x
and the input u:

Φ(x, u) := η ◦ ϕ(x, u) = η(ϕ(x, u)). (8)
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For simplicity we also define the function which expresses the behaviour of Φ(xn, ·) at a time
index n, i.e. the dependence of image features on the camera movement u:

Φn(u) := Φ(xn, u) = η(ϕ(xn, u)). (9)

This is the forward model we wish to derive.
Φn depends on the camera movement u and the current system state, the robot pose xn. In
particular it depends on the position of all object markings in the current camera coordinate
system. In the following we need assume the knowledge of the camera’s focal length f and the
C
z component of the positions of image markings in {C}, which cannot be derived from their
image position (

S
x,

S
y). Then with the help of f and the image coordinates (

S
x,

S
y) the complete

position of the object markings in {C} can be derived with the pinhole camera model (4).
We will first construct the model Φn for the case of a single object marking, M = m

2 = 1.
According to equations (6) and (7) we have for an object point

W
p:

Φn(u) = η ◦ ϕ(xn, u)

=
S

Cn+1
T ◦

Cn+1

Cn
T ◦

Cn

T
T ◦

T

W
T

W
p

=
S

Cn+1
T ◦

Cn+1

Cn
T

Cnx,

(10)

where
Cnx are the coordinates of the object point in {Cn}.

In the system state xn the position of an object point
Cnx =: p = (p1, p2, p3)

T
can be derived

with (
S
x,

S
y)

T
, assuming the knowledge of f and

C
z, via (4). Then the camera changes its pose

by
C
u =: u = (u1, u2, u3, u4, u5, u6)

T
; we wish to know the new coordinates (

S
x̃,

S
ỹ)

T
of p in the

image. The new position p̃ of the point in new camera coordinates is given by a translation by
u1 through u3 and a rotation of the camera by u4 through u6. We have

p̃ = rotx(−u4) roty(−u5) rotz(−u6)

⎛
⎝

p1 − u1

p2 − u2

p3 − u3

⎞
⎠

=

⎛
⎝

c5c6 c5s6 −s5

s4s5c6 − c4s6 s4s5s6 + c4c6 s4c5

c4s5c6 + s4s6 c4s5s6 − s4c6 c4c5

⎞
⎠

⎛
⎝

p1 − u1

p2 − u2

p3 − u3

⎞
⎠

(11)

using the short notation

si := sin ui, ci := cos ui for i = 4, 5, 6. (12)

Again with the help of the pinhole camera model (4) we can calculate the {S} coordinates of
the projection of the new point, which finally yields the model Φn:

�S
x̃

S
ỹ

�
= Φ(xn, u)

= Φn(u)

= f ·

⎡
⎢⎢⎢⎢⎣

c5 c6 (p1 − u1) + c5 s6 (p2 − u2)− s5 (p3 − u3)

(c4 s5 c6 + s4 s6) (p1 − u1) + (c4 s5 s6 − s4 c6) (p2 − u2) + c4 c5 (p3 − u3)

(s4 s5 c6 − c4 s6) (p1 − u1) + (s4 s5 s6 + c4 c6) (p2 − u2) + s4 c5 (p3 − u3)

(c4 s5 c6 + s4 s6) (p1 − u1) + (c4 s5 s6 − s4 c6) (p2 − u2) + c4 c5 (p3 − u3)

⎤
⎥⎥⎥⎥⎦

.

(13)
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Let Y ⊂ IRm be the set of possible output values. The output (measurement) function is
η : X → Y , xn �→ yn. It contains the whole measurement process, including projection onto
the sensor, digitisation and image processing steps.
The input (control) variable un ∈ U ⊂ IR6 shall contain the desired pose change of the camera
coordinate system. This robot movement can be easily transformed to a new robot pose ũn in
{W}, which is given to the robot in a move command. Using this definition of un an input
of (0, 0, 0, 0, 0, 0)T corresponds to no robot movement, which has advantages, as we shall see
later. Let ϕ : X × U → X , (xn, un) �→ xn+1 be the corresponding state transition (next-state)
function.

With these definitions the camera-robot system can be defined as a time invariant, time dis-
crete input-output system:

xn+1 = ϕ (xn, un)

yn = η (xn).
(5)

When making some mild assumptions, e.g. that the camera does not move relative to {F}
during the whole time, the state transition function ϕ can be calculated as follows:
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W
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Fn
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◦
Fn
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T
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�

◦
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T

︸ ︷︷ ︸
=̂un

◦
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Fn+1
T

︸ ︷︷ ︸
�

, (6)

where {Fn} is the flange coordinate system at time step n, etc., and the =̂ operator expresses
the equivalence of a pose with its corresponding coordinate transform.

� = external (“extrinsic”) camera parameters;
Tn

Cn
T =

Tn+1

Cn+1
T =

( Cn+1

Tn+1
T
)−1

∀n ∈ IN.

For m = 2 image features corresponding to coordinates (
S
x,

S
y) of a projected object point

W
p

the equation for η follows analogously:

η(x) = y =
S
y =

S

C T
C
p

=
S

C T ◦
C

T T ◦
T

W T
W
p,

(7)

where
S

C T is the mapping of the object point
C
p depending on the focal length f according to

the pinhole camera model / perspective projection defined in (4).

2.4 The Forward Model—Mapping Robot Movements to Image Changes
In order to calculate necessary movements for a given desired change in visual appearance
the relation between a robot movement and the resulting change in the image needs to be
modelled. In this section we will analytically derive a forward model, i.e. one that expresses
image changes as a function of robot movements, for the eye-in-hand setup described above.
This forward model can then be used to predict changes effected by controller outputs, or (as
it is usually done) simplified and then inverted. An inverse model can be directly used to
determine the controller output given actual image measurements.
Let Φ : X × U → Y the function that expresses the system output y depending on the state x
and the input u:

Φ(x, u) := η ◦ ϕ(x, u) = η(ϕ(x, u)). (8)
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For simplicity we also define the function which expresses the behaviour of Φ(xn, ·) at a time
index n, i.e. the dependence of image features on the camera movement u:

Φn(u) := Φ(xn, u) = η(ϕ(xn, u)). (9)

This is the forward model we wish to derive.
Φn depends on the camera movement u and the current system state, the robot pose xn. In
particular it depends on the position of all object markings in the current camera coordinate
system. In the following we need assume the knowledge of the camera’s focal length f and the
C
z component of the positions of image markings in {C}, which cannot be derived from their
image position (

S
x,

S
y). Then with the help of f and the image coordinates (

S
x,

S
y) the complete

position of the object markings in {C} can be derived with the pinhole camera model (4).
We will first construct the model Φn for the case of a single object marking, M = m

2 = 1.
According to equations (6) and (7) we have for an object point

W
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S
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T ◦
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Cn
T ◦

Cn

T
T ◦

T

W
T

W
p

=
S

Cn+1
T ◦

Cn+1

Cn
T

Cnx,

(10)

where
Cnx are the coordinates of the object point in {Cn}.

In the system state xn the position of an object point
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T
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S
x,
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T
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T
; we wish to know the new coordinates (
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ỹ)

T
of p in the

image. The new position p̃ of the point in new camera coordinates is given by a translation by
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si := sin ui, ci := cos ui for i = 4, 5, 6. (12)

Again with the help of the pinhole camera model (4) we can calculate the {S} coordinates of
the projection of the new point, which finally yields the model Φn:
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(13)

27Models and Control Strategies for Visual Servoing



2.5 Simplied and Inverse Models
As mentioned before, the controller needs to derive necessary movements from given desired
image changes, for which an inverse model is beneficial. However, Φn(u) is too complicated
to invert. Therefore in practice usually a linear approximation Φ̂n(u) of Φn(u) is calculated
and then inverted. This can be done in a number of ways.

2.5.1 The Standard Image Jacobian
The simplest and most common linear model is the Image Jacobian. It is obtained by Taylor
expansion of (13) around u = 0:

yn+1 = η(ϕ(xn, u))

= Φ(xn, u)

= Φn(u)

= Φn(0 + u)

= Φn(0) + JΦn
(0) u +O(�u�2).

(14)

With Φn(0) = yn and the definition Jn := JΦn
(0) the image change can be approximated

yn+1 − yn ≈ Jn u (15)

for sufficiently small �u�2.
The Taylor expansion of the two components of (13) around u = 0 yields the Image Jacobian
Jn for one object marking (m = 2):

Jn =

⎛
⎜⎜⎜⎜⎝

−
f

C
z

0

S
x

C
z

S
x

S
y

f
−f −

S
x2

f
S
y

0 −
f

C
z

S
y

C
z

f+

S
y2

f
−

S
x

S
y

f
−

S
x

⎞
⎟⎟⎟⎟⎠

(16)

where again image positions where converted back to sensor coordinates.
The Image Jacobian for M object markings, M ∈ IN>1, can be derived analogously; the change
of the m = 2M image features can be approximated by
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yn+1 − yn ≈ Jn u

=
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⎞
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⎛
⎜⎝

u1
...

u6

⎞
⎟⎠ ,

(17)

for small �u�2, where (
S
xi,

S
yi) are the sensor coordinates of the ith projected object marking

and
C
zi their distances from the camera, i = 1, . . . , M.

2.5.2 A Linear Model in the Cylindrical Coordinate System
Iwatsuki and Okiyama (2005) suggest a formulation of the problem in cylindrical coordinates.

This means that positions of markings on the sensor are given in polar coordinates, (ρ, ϕ)T

where ρ and ϕ are defined as in Figure 5 (z = 0). The Image Jacobian Jn for one image point is
given in this case by

Jn =

⎛
⎜⎜⎜⎜⎝

−
f cϕ
C
z

−
f sϕ
C
z

C
ysϕ +

C
xcϕ

C
z

�
f +

C
y2

f

�
sϕ +

C
x

C
ycϕ

f

�
− f −

C
x2

f

�
cϕ −

C
x

C
ysϕ

f
C
ycϕ −

C
xsϕ

f sϕ
C
z

−
f cϕ
C
z

C
ycϕ +

C
xsϕ

C
z

�
f +

C
y2

f

�
cϕ −

C
x

C
ysϕ

f

�
f +

C
x2

f

�
sϕ −

C
x

C
ycϕ

f
−

C
ysϕ −

C
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⎞
⎟⎟⎟⎟⎠

(18)

with the short notation
sϕ := sin ϕ and cϕ := cos ϕ. (19)

and analogously for M > 1 object markings.

2.5.3 Quadratic Models
A quadratic model, e.g. a quadratic approximation of the system model (13), can be obtained
by a Taylor expansion; a resulting approximation for M = 1 marking is

yn+1 =

�S
x̃

S
ỹ

�
= Φn(0) + JΦn

(0) u +
1

2

�
uT HSx

u

uT HSy
u

�
+O(�u�3). (20)
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2.5 Simplied and Inverse Models
As mentioned before, the controller needs to derive necessary movements from given desired
image changes, for which an inverse model is beneficial. However, Φn(u) is too complicated
to invert. Therefore in practice usually a linear approximation Φ̂n(u) of Φn(u) is calculated
and then inverted. This can be done in a number of ways.

2.5.1 The Standard Image Jacobian
The simplest and most common linear model is the Image Jacobian. It is obtained by Taylor
expansion of (13) around u = 0:

yn+1 = η(ϕ(xn, u))
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(0) u +O(�u�2).

(14)

With Φn(0) = yn and the definition Jn := JΦn
(0) the image change can be approximated

yn+1 − yn ≈ Jn u (15)

for sufficiently small �u�2.
The Taylor expansion of the two components of (13) around u = 0 yields the Image Jacobian
Jn for one object marking (m = 2):
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where again image positions where converted back to sensor coordinates.
The Image Jacobian for M object markings, M ∈ IN>1, can be derived analogously; the change
of the m = 2M image features can be approximated by
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for small �u�2, where (
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yi) are the sensor coordinates of the ith projected object marking

and
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zi their distances from the camera, i = 1, . . . , M.

2.5.2 A Linear Model in the Cylindrical Coordinate System
Iwatsuki and Okiyama (2005) suggest a formulation of the problem in cylindrical coordinates.

This means that positions of markings on the sensor are given in polar coordinates, (ρ, ϕ)T

where ρ and ϕ are defined as in Figure 5 (z = 0). The Image Jacobian Jn for one image point is
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with the short notation
sϕ := sin ϕ and cϕ := cos ϕ. (19)

and analogously for M > 1 object markings.

2.5.3 Quadratic Models
A quadratic model, e.g. a quadratic approximation of the system model (13), can be obtained
by a Taylor expansion; a resulting approximation for M = 1 marking is
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where again Φn(0) = yn and JΦn
(0) = Jn from (16), and the Hessian matrices are
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as well as

HSy
=
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. (22)

2.5.4 A Mixed Model
Malis (2004) proposes a way of constructing a mixed model which consists of different linear
approximations of the target function Φ. Let xn again be the current robot pose and x� the
teach pose. For a given robot command u we set again Φn(u) := Φ(xn, u) and now also
Φ
�(u) := Φ(x�, u) such that Φn(0) = yn und Φ

�(0) = y�. Then Taylor expansions of Φn and
Φ
� at u = 0 yield

yn+1 = yn + JΦn
(0)u +O(�u�2) (23)

and
yn+1 = yn + JΦ� (0)u +O(�u�2). (24)

In other words, both Image Jacobians, Jn := JΦn
(0) and J� := JΦ� (0) can be used as linear

approximations of the behaviour of the robot system. One of these models has its best validity
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at the current pose, the other at the teach pose. Since we are moving the robot from one
towards the other it may be useful to consider both models. Malis proposes to use a mixture
of these two models, i.e.

yn+1 − yn ≈
1

2
(Jn + J�) u. (25)

In his control law (see Section 3 below) he calculates the pseudoinverse of the Jacobians, and
therefore calls this approach “Pseudo-inverse of the Mean of the Jacobians”, or short “PMJ”.
In a variation of this approach the computation of mean and pseudo-inverse is exchanged,
which results in the “MPJ” method. See Section 3 for details.

2.5.5 Estimating Models
Considering the fact that models can only ever approximate the real system behaviour it may
be beneficial to use measurements obtained during the visual servoing process to update the
model “online”. While even the standard models proposed above use current measurements
to estimate the distance

C
z from the object to use this estimate in the Image Jacobian, there

are also approaches that estimate more variables, or construct a complete model from scratch.
This is most useful when no certain data about the system state or setup are available. The
following aspects need to be considered when estimating the Image Jacobian—or other mod-
els:

• How precise are the measurements used for model estimation, and how large is the
sensitivity of the model to measurement errors?

• How many measurements are needed to construct the model? For example, some meth-
ods use 6 robot movements to measure the 6-dimensional data within the Image Jaco-
bian. In a static look-and-move visual servoing setup which may reach its goal in 10-
20 movements with a given Jacobian the resulting increase in necessary movements, as
well as possible mis-directed movements until the estimation process converges, need
to be weighed against the flexibility achieved by the automatic model tuning.

The most prominent approach to estimation methods of the whole Jacobian is the Broyden ap-
proach which has been used by Jägersand (1996). The Jacobian estimation uses the following
update formula for the current estimate Ĵn:

Ĵn :=
Cn

Cn−1
T

(
Ĵn−1 +

(yn − yn−1 − Ĵn−1 un) u
T

n

u
T

nun

)
, (26)

with an additional weighting of the correction term

Jn := γ Ĵn−1 + (1 − γ) Ĵn, 0 ≤ γ < 1 (27)

to reduce the sensitivity of the estimate to measurement noise.
In the case of Jägersand’s system using an estimation like this makes sense since he worked
with a dynamic visual servoing setup where many more measurements are made over time
compared to our setup (“static look-and-move”, see below).
In combination with a model-based measurement a non-linear model could also make sense.
A number of methods for the estimation of quadratic models are available in the optimisation
literature. More on this subject can be found e.g. in Fletcher (1987, chapter 3) and Sage and
White (1977, chapter 9).
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2.5.4 A Mixed Model
Malis (2004) proposes a way of constructing a mixed model which consists of different linear
approximations of the target function Φ. Let xn again be the current robot pose and x� the
teach pose. For a given robot command u we set again Φn(u) := Φ(xn, u) and now also
Φ
�(u) := Φ(x�, u) such that Φn(0) = yn und Φ

�(0) = y�. Then Taylor expansions of Φn and
Φ
� at u = 0 yield

yn+1 = yn + JΦn
(0)u +O(�u�2) (23)

and
yn+1 = yn + JΦ� (0)u +O(�u�2). (24)

In other words, both Image Jacobians, Jn := JΦn
(0) and J� := JΦ� (0) can be used as linear

approximations of the behaviour of the robot system. One of these models has its best validity
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at the current pose, the other at the teach pose. Since we are moving the robot from one
towards the other it may be useful to consider both models. Malis proposes to use a mixture
of these two models, i.e.

yn+1 − yn ≈
1

2
(Jn + J�) u. (25)

In his control law (see Section 3 below) he calculates the pseudoinverse of the Jacobians, and
therefore calls this approach “Pseudo-inverse of the Mean of the Jacobians”, or short “PMJ”.
In a variation of this approach the computation of mean and pseudo-inverse is exchanged,
which results in the “MPJ” method. See Section 3 for details.
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C
z from the object to use this estimate in the Image Jacobian, there

are also approaches that estimate more variables, or construct a complete model from scratch.
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following aspects need to be considered when estimating the Image Jacobian—or other mod-
els:
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sensitivity of the model to measurement errors?

• How many measurements are needed to construct the model? For example, some meth-
ods use 6 robot movements to measure the 6-dimensional data within the Image Jaco-
bian. In a static look-and-move visual servoing setup which may reach its goal in 10-
20 movements with a given Jacobian the resulting increase in necessary movements, as
well as possible mis-directed movements until the estimation process converges, need
to be weighed against the flexibility achieved by the automatic model tuning.

The most prominent approach to estimation methods of the whole Jacobian is the Broyden ap-
proach which has been used by Jägersand (1996). The Jacobian estimation uses the following
update formula for the current estimate Ĵn:
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with an additional weighting of the correction term

Jn := γ Ĵn−1 + (1 − γ) Ĵn, 0 ≤ γ < 1 (27)

to reduce the sensitivity of the estimate to measurement noise.
In the case of Jägersand’s system using an estimation like this makes sense since he worked
with a dynamic visual servoing setup where many more measurements are made over time
compared to our setup (“static look-and-move”, see below).
In combination with a model-based measurement a non-linear model could also make sense.
A number of methods for the estimation of quadratic models are available in the optimisation
literature. More on this subject can be found e.g. in Fletcher (1987, chapter 3) and Sage and
White (1977, chapter 9).
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Fig. 7. Typical closed-loop image-based visual servoing controller

3. Designing a Visual Servoing Controller
Using one of the models defined above we wish to design a controller which steers the robot
arm towards an object of unknown pose. This is to be realised in the visual feedback loop
depicted in Figure 7. Using the terminology defined by Weiss et al. (1987) the visual servo-
ing controller is of the type “Static Image-based Look-and-Move”. “Image-based” means that
goal and error are defined in image coordinates instead of using positions in normal space
(that would be “position-based”). “Static Look-and-Move” means that the controller is a sam-
pled data feedback controller and the robot does not move while a measurement is taken.
This traditionally implies that the robot is controlled by giving world coordinates to the con-
troller instead of directly manipulating robot joint angles (Chaumette and Hutchinson, 2008;
Hutchinson et al., 1996).
The object has 4 circular, identifiable markings. Its appearance in the image is described by the
image feature vector yn ∈ IR8 that contains the 4 pairs of image coordinates of these markings
in a fixed order. The desired pose relative to the object is defined by the object’s appearance
in that pose by measuring the corresponding desired image features y� ∈ IR8 (“teaching by
showing”). Object and robot are then moved so that no Euclidean position of the object or
robot is known to the controller. The input to the controller is the image error Δyn := y� − yn.
The current image measurements yn are also given to the controller for adapting its internal
model to the current situation. The output of the controller is a relative movement of the robot
in the camera coordinate system, a 6-dimensional vector (x, y, z, yaw, pitch, roll) for a 6 DOF
movement.
Controllers can be classified into approaches where the control law (or its parameters) are
adapted over time, and approaches where they are fixed. Since these types of controllers can
exhibit very different controlling behaviour we will split our considerations of controllers into
these two parts, after some general considerations.

3.1 General Approach
Generally, in order to calculate the necessary camera movement un for a given desired image
change Δỹn := ỹn+1 − yn we again use an approximation Φ̂n of Φn, for example the image
Jacobian Jn. Then we select

un ∈ argmin
u∈U (xn)

∥∥Δỹn − Φ̂n(u)
∥∥2

2 . (28)
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where a given algorithm may or may not enforce a restriction u ∈ U (xn) on the admissible
movements when determining u. If this restriction is inactive and we are using a Jacobian,
Φ̂n = Jn, then the solution to (28) with minimum norm �un�2 is given by

un = J+n Δỹn (29)

where J+n is the pseudo-inverse of Jn.
With 4 coplanar object markings m = 8 and thereby Jn ∈ IR8×6. One can show that Jn has
maximum rank1, so rk Jn = 6. Then the pseudo-inverse J+n ∈ IR6×8 of Jn is given by:

J+n = (J
T

n Jn)
−1 J

T

n (30)

(see e.g. Deuflhard and Hohmann, 2003, chapter 3).

When realising a control loop given such a controller one usually sets a fixed error threshold
ε > 0 and repeats the steps

Image Acquisition,

Feature Extraction
� Controller Calculates

Robot Command
� Robot Executes

Given Movement

until
�Δyn�2 = �y� − yn�2 < ε, (31)

or until
�Δyn�∞ = �y� − yn�∞ < ε (32)

if one wants to stop only when the maximum deviation in any component of the image feature
vector is below ε. Setting ε := 0 is not useful in practice since measurements even in the
same pose tend to vary a little due to small movements of the robot arm or object as well as
measurement errors and fluctuations.

3.2 Non-Adaptive Controllers
3.2.1 The Traditional Controller
The most simple controller, which we will call the “Traditional Controller” due to its heritage,
is a straightforward proportional controller as known in engineering, or a dampened Gauss-
Newton algorithm as it is known in mathematics.
Given an Image Jacobian Jn we first calculates the full Gauss-Newton step Δun for a complete
movement to the goal in one step (desired image change Δỹn := Δyn):

Δun := J+n Δyn (33)

without enforcing a restriction u ∈ U (xn) for the admissibility of a control command.
In order to ensure a convergence of the controller the resulting vector is then scaled with a
dampening factor 0 < λn ≤ 1 to get the controller output un. In the traditional controller
the factor λn is constant over time and the most important parameter of this algorithm. A
typical value is λn = λ = 0.1; higher values may hinder convergence, while lower values also
significantly slow down convergence. The resulting controller output un is given by

1 One uses the fact that no 3 object markings are on a straight line,
C
zi > 0 for i = 1, . . . , 4 and all markings

are visible (in particular, neither all four
C
xi nor all four

C
yi are 0).
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3. Designing a Visual Servoing Controller
Using one of the models defined above we wish to design a controller which steers the robot
arm towards an object of unknown pose. This is to be realised in the visual feedback loop
depicted in Figure 7. Using the terminology defined by Weiss et al. (1987) the visual servo-
ing controller is of the type “Static Image-based Look-and-Move”. “Image-based” means that
goal and error are defined in image coordinates instead of using positions in normal space
(that would be “position-based”). “Static Look-and-Move” means that the controller is a sam-
pled data feedback controller and the robot does not move while a measurement is taken.
This traditionally implies that the robot is controlled by giving world coordinates to the con-
troller instead of directly manipulating robot joint angles (Chaumette and Hutchinson, 2008;
Hutchinson et al., 1996).
The object has 4 circular, identifiable markings. Its appearance in the image is described by the
image feature vector yn ∈ IR8 that contains the 4 pairs of image coordinates of these markings
in a fixed order. The desired pose relative to the object is defined by the object’s appearance
in that pose by measuring the corresponding desired image features y� ∈ IR8 (“teaching by
showing”). Object and robot are then moved so that no Euclidean position of the object or
robot is known to the controller. The input to the controller is the image error Δyn := y� − yn.
The current image measurements yn are also given to the controller for adapting its internal
model to the current situation. The output of the controller is a relative movement of the robot
in the camera coordinate system, a 6-dimensional vector (x, y, z, yaw, pitch, roll) for a 6 DOF
movement.
Controllers can be classified into approaches where the control law (or its parameters) are
adapted over time, and approaches where they are fixed. Since these types of controllers can
exhibit very different controlling behaviour we will split our considerations of controllers into
these two parts, after some general considerations.

3.1 General Approach
Generally, in order to calculate the necessary camera movement un for a given desired image
change Δỹn := ỹn+1 − yn we again use an approximation Φ̂n of Φn, for example the image
Jacobian Jn. Then we select

un ∈ argmin
u∈U (xn)

∥∥Δỹn − Φ̂n(u)
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where a given algorithm may or may not enforce a restriction u ∈ U (xn) on the admissible
movements when determining u. If this restriction is inactive and we are using a Jacobian,
Φ̂n = Jn, then the solution to (28) with minimum norm �un�2 is given by

un = J+n Δỹn (29)

where J+n is the pseudo-inverse of Jn.
With 4 coplanar object markings m = 8 and thereby Jn ∈ IR8×6. One can show that Jn has
maximum rank1, so rk Jn = 6. Then the pseudo-inverse J+n ∈ IR6×8 of Jn is given by:

J+n = (J
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−1 J

T

n (30)

(see e.g. Deuflhard and Hohmann, 2003, chapter 3).

When realising a control loop given such a controller one usually sets a fixed error threshold
ε > 0 and repeats the steps
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until
�Δyn�2 = �y� − yn�2 < ε, (31)

or until
�Δyn�∞ = �y� − yn�∞ < ε (32)

if one wants to stop only when the maximum deviation in any component of the image feature
vector is below ε. Setting ε := 0 is not useful in practice since measurements even in the
same pose tend to vary a little due to small movements of the robot arm or object as well as
measurement errors and fluctuations.

3.2 Non-Adaptive Controllers
3.2.1 The Traditional Controller
The most simple controller, which we will call the “Traditional Controller” due to its heritage,
is a straightforward proportional controller as known in engineering, or a dampened Gauss-
Newton algorithm as it is known in mathematics.
Given an Image Jacobian Jn we first calculates the full Gauss-Newton step Δun for a complete
movement to the goal in one step (desired image change Δỹn := Δyn):

Δun := J+n Δyn (33)

without enforcing a restriction u ∈ U (xn) for the admissibility of a control command.
In order to ensure a convergence of the controller the resulting vector is then scaled with a
dampening factor 0 < λn ≤ 1 to get the controller output un. In the traditional controller
the factor λn is constant over time and the most important parameter of this algorithm. A
typical value is λn = λ = 0.1; higher values may hinder convergence, while lower values also
significantly slow down convergence. The resulting controller output un is given by

1 One uses the fact that no 3 object markings are on a straight line,
C
zi > 0 for i = 1, . . . , 4 and all markings

are visible (in particular, neither all four
C
xi nor all four

C
yi are 0).
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un := λ · J+n Δyn. (34)

3.2.2 Dynamical and Constant Image Jacobians
As mentioned in the previous section there are different ways of defining the Image Jacobian.
It can be defined in the current pose, and is then calculated using the current distances to the
object,

C
zi for marking i, and the current image features. This is the Dynamical Image Jacobian

Jn. An alternative is to define the Jacobian in the teach (goal) pose x�, with the image data
y� and distances at that pose. We call this the Constant Image Jacobian J�. Unlike Jn, J� is
constant over time and does not require image measurements for its adaptation to the current
pose.
From a mathematical point of view the model Jn has a better validity in the current system
state and should therefore yield better results. We shall later see whether this is the case in
practice.

3.2.3 The Retreat-Advance Problem

Fig. 8. Camera view in the start pose with a pure rotation around the
C
z axis

When the robot’s necessary movement to the goal pose is a pure rotation around the optical
axis (

C
z, approach direction) there can be difficulties when using the standard Image Jacobian

approach (Chaumette, 1998). The reason is that the linear approximation Jn models the rele-
vant properties of Φn badly in these cases. This is also the case with J� if this Jacobian is used.
The former will cause an unnecessary movement away from the object, the latter a movement
towards the goal. The larger the roll angle, the more pronounced is this phenomenon, an ex-
treme case being a roll error of ±π (all other pose elements already equal to the teach pose)
where the Jacobians suggest a pure movement along the

C
z axis. Corke and Hutchinson (2001)

call this the “Retreat-Advance Problem” or the “Chaumette Conundrum”.

3.2.4 Controllers using the PMJ and MPJ Models
In order to overcome the Retreat-Advance Problem the so-called “PMJ Controller” (Malis,
2004) uses the pseudo-inverse of the mean of the two Jacobians Jn and J�. Using again a
dampening factor 0 < λ ≤ 1 the controller output is given by

un = λ ·

(
1

2
(Jn + J�)

)+

Δyn. (35)
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Analogously, the “MPJ Controller” works with the mean of the pseudo-inverse of the Jaco-
bians:

un = λ ·

(
1

2

(
J+n + J�+

))
Δyn. (36)

Otherwise, these controllers work like the traditional approach, with a constant dampening
λ.

3.2.5 Dening the Controller in the Cylindrical Coordinate System
Using the linear model by Iwatsuki and Okiyama (2005) in the cylindrical coordinate system
as discussed in Section 2.5.2 a special controller can also be defined. The authors define the
image error for the ith object marking as follows:

ei :=

(
ρ� − ρ

ρ(ϕ� − ϕ)

)
(37)

where (ρ, ϕ)T is the current position and (ρ�, ϕ�) the teach position. The control command u
is then given by

u = λ J̃+ e, (38)

J̃+ being the pseudo-inverse of the Image Jacobian in cylindrical coordinates from equa-
tion (18). e is the vector of pairs of image errors in the markings, i.e. a concatenation of the ei

vectors.
It should be noted that even if e is given in cylindrical coordinates, the output u of the con-
troller is in Cartesian coordinates.
Due to the special properties of cylindrical coordinates, the calculation of the error and control
command is very much dependent on the definition of the origin of the coordinate system.
Iwatsuki and Okiyama (2005) therefore present a way to shift the origin of the coordinate
system such that numerical difficulties are avoided.

One approach to select the origin of the cylindrical coordinate system is such that the cur-
rent pose can be transformed to the desired (teach) pose with a pure rotation around the axis
normal to the sensor plane, through the origin. For example, the general method given by
Kanatani (1996) can be applied to this problem.
Let l = (lx, ly, lz)T be the unit vector which defines this rotation axis, and o = (ox, oy)T the

new origin, obtained by shifting the original origin (0, 0)T in {S} by (η, ξ)T .
If |lz| is very small then the rotation axis l is almost parallel to the sensor. Then η and ξ are very
large, which can create numerical difficulties. Since the resulting cylindrical coordinate sys-
tem approximates a Cartesian coordinate system as η, ξ → ∞, the standard Cartesian Image
Jacobian Jn from (17) can therefore used if |lz| < δ for a given lower limit δ.

3.3 Adaptive Controllers
Using adaptive controllers is a way to deal with errors in the model, or with problems result-
ing from the simplification of the model (e.g. linearisation, or the assumption that the camera
works like a pinhole camera). The goal is to ensure a fast convergence of the controller in spite
of these errors.
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If |lz| is very small then the rotation axis l is almost parallel to the sensor. Then η and ξ are very
large, which can create numerical difficulties. Since the resulting cylindrical coordinate sys-
tem approximates a Cartesian coordinate system as η, ξ → ∞, the standard Cartesian Image
Jacobian Jn from (17) can therefore used if |lz| < δ for a given lower limit δ.

3.3 Adaptive Controllers
Using adaptive controllers is a way to deal with errors in the model, or with problems result-
ing from the simplification of the model (e.g. linearisation, or the assumption that the camera
works like a pinhole camera). The goal is to ensure a fast convergence of the controller in spite
of these errors.
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3.3.1 Trust Region-based Controllers
Trust Region methods are known from mathematics as globally convergent optimisation
methods (Fletcher, 1987). In order to optimise “difficult” functions one uses a model of its
properties, like we do here with the Image Jacobian. This model is adapted to the current
state/position in the solution space, and therefore only valid within some region around the
current state. The main idea in trust region methods is to keep track of the validity of the
current system model, and adapt a so-called “Trust Region”, or “Model Trust Region” around
the current state within which the model does not exhibit more than a certain pre-defined
“acceptable error”.
To our knowledge the first person to use trust region methods for a visual servoing controller
was Jägersand (1996). Since the method was adapted to a particular setup and cannot be
used here we have developed a different trust region-based controller for our visual servoing
scenario (Siebel et al., 1999). The main idea is to replace the constant dampening λ for Δun

with a variable dampening λn:

un := λn · Δun = λn · J+n Δyn. (39)

The goal is to adapt λn before each step to balance the avoidance of model errors (by making
small steps) and the fast movement to the goal (by making large steps).
In order to achieve this balance we define an actual model error en which is set in relation to
a desired (maximum) model error edes

2 to adapt a bound αn for the movement of projected
object points on the sensor. Using this purely image-based formulation has advantages, e.g.
having a measure to avoid movements that lead to losing object markings from the camera’s
field of view.

Our algorithm is explained in Figure 9 for one object marking. We wish to calculate a robot
command to move such that the current point position on the sensor moves to its desired
position. In step �1 , we calculate an undampened robot movement Δun to move as close to
this goal as possible (Δỹn := Δyn) according to an Image Jacobian Jn:

Δun := J+n Δyn. (40)

This gives us a predicted movement �n on the sensor, which we define as the maximum move-
ment on the sensor for all M markings:

�n := max
i=1,...,M

∥∥∥∥
[
(Jn Δun)2i−1

(Jn Δun)2i

]∥∥∥∥
2

, (41)

where the subscripts to the vector Jn Δun signify a selection of its components.
Before executing the movement we restrict it in step �2 such that the distance on the sensor is
less or equal to a current limit αn:

un := λn · Δun

= min

{
1,

αn

�n

}
· J+n Δyn.

(42)

2 While the name “desired error” may seem unintuitive the name is chosen intentionally since the α
adaptation process (see below) can be regarded as a control process to have the robot system reach
exactly this amount of error, by controlling the value of αn.
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Fig. 9. Generation of a robot command by the trust region controller: view of the image sensor
with a projected object marking

After this restricted movement is executed by the robot we obtain new measurements yn+1

and thereby the actual movement and model (prediction) error en+1 �3 , which we again define
as the maximum deviation on the sensor for M > 1 markings:

en+1 := max
i=1,...,M

∥∥∥∥
[
(ŷn+1)2i−1

(ŷn+1)2i

]
−

[
(yn+1)2i−1

(yn+1)2i

]∥∥∥∥
2

. (43)

where ŷn+1 is the vector of predicted positions on the sensor,

ŷn+1 := yn + Jn un. (44)

The next step is the adaptation of our restriction parameter αn. This is done by comparing the
model error en+1 with a given desired (maximum admissible) error edes:

rn+1 :=
en+1

edes
(45)

where rn is called the relative model error. A small value signifies a good agreement of model
and reality. In order to balance model agreement and a speedy control we adjust αn so as to
achieve rn = 1. Since we have a linear system model we can set

αn+1 := αn ·
edes

en+1
=

αn

rn+1
(46)

with an additional restriction on the change rate, αn+1
αn

≤ 2. In practice, it may make sense to
define minimum and maximum values αmin and αmax and set α0 := αmin.
In the example shown in Figure 9 the actual model error is smaller than edes, so αn+1 can be
larger than αn.
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Let n := 0; α0 := αstart; y� given

Measure current image features yn and calculate Δyn := y� − yn

WHILE �Δyn�∞ ≥ ε

Calculate Jn

IF n > 0

Calculate relative model error rn via (43)

Adapt αn by (46)

END IF

Calculate usdn
:= JT

n Δyn, λn :=
�usdn

�

�sdn

and ugnn
:= J+n Δyn

Calculate udln
via (52)

Send control command udln
to the robot

Measure yn+1 and calculate Δyn+1; let n := n + 1

END WHILE

Fig. 10. Algorithm: Image-based Visual Servoing with the Dogleg Algorithm

3.3.1.1 Remark:
By restricting the movement on the sensor we have implicitly defined the set U (xn) of admis-
sible control commands in the state xn as in equation (33). This U (xn) is the trust region of the
model Jn.

3.3.2 A Dogleg Trust Region Controller
Powell (1970) describes the so-called Dogleg Method (a term known from golf) which can be
regarded as a variant of the standard trust region method (Fletcher, 1987; Madsen et al., 1999).
Just like in the trust region method above, a current model error is defined and used to adapt
a trust region. Depending on the model error, the controller varies between a Gauss-Newton
and a gradient (steepest descent) type controller.

The undampened Gauss-Newton step ugnn
is calculated as before:

ugnn
= J+n Δyn, (47)

and the steepest descent step usdn
is given by

usdn
= JT

n Δyn. (48)

The dampening factor λn is set to

λn :=
�usdn

�2
2

�sdn

(49)

where again

�sdn
:= max

i=0,...,M

∥∥∥∥
(
(Δŷsdn

)2i−1

(Δŷsdn
)2i

)∥∥∥∥
2

2

(50)
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Fig. 11. Experimental setup with Thermo CRS F3 robot, camera and marked object

is the maximum predicted movement on the sensor, here the one caused by the steepest de-
scent step usdn

. Analogously, let

�gnn
:= max

i=0,...,M

����
�
(Δŷgnn

)2i−1

(Δŷgnn
)2i

�����
2

2

(51)

be the maximum predicted movement by the Gauss Newton step. With these variables the
dog leg step un = udln

is calculated as follows:

udln
:=

⎧⎪⎪⎨
⎪⎪⎩

ugnn
if �gnn

≤ αn

αn
usdn

�usdn �2

if �gnn
> αn and �sdn

≥ αn

λnusdn
+ βn(ugnn

− λnusdn
) else

(52)

where in the third case βn is chosen such that the maximum movement on the sensor has
length αn.

The complete dogleg algorithm for visual servoing is shown in Figure 10.

4. Experimental Evaluation
4.1 Experimental Setup and Test Methods
The robot setup used in the experimental validation of the presented controllers is shown
in Figure 11. Again a eye-in-hand configuration and an object with 4 identifiable markings
are used. Experiments were carried out both on a Thermo CRS F3 (pictured here) and on
a Unimation Stäubli RX-90 (Figure 2 at the beginning of the chapter). In the following only
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Fig. 12. OpenGL Simulation of camera-robot system with simulated camera image (bottom
right), extracted features (centre right) and trace of objects markings on the sensor (top right)

the CRS F3 experiments are considered; the results with the Stäubli RX-90 were found to be
equivalent. The camera was a Sony DFW-X710 with IEEE1394 interface, 1024 × 768 pixel
resolution and an f = 6.5 mm lens.
In addition to the experiments with a real robot two types of simulations were used to study
the behaviour of controllers and models in detail. In our OpenGL Simulation3, see Figure 12,
the complete camera-robot system is modelled. This includes the complete robot arm with
inverse kinematics, rendering of the camera image in a realistic resolution and application of
the same image processing algorithms as in the real experiments to obtain the image features.
Arbitrary robots can be defined by their Denavit-Hartenberg parameters (cf. Spong et al., 2005)
and geometry in an XML file. The screenshot above shows an approximation of the Stäubli
RX-90.
The second simulation we use is the Multi-Pose Test. It is a system that uses the exact model as
derived in Section 2.2, without the image generation and digitisation steps as in the OpenGL
Simulation. Instead, image coordinates of objects points as seen by the camera are calculated
directly with the pinhole camera model. Noise can be added to these measurements in order to
examine how methods react to these errors. Due to the small computational complexity of the
Multi-Pose Test it can be, and has been applied to many start and teach pose combinations (in
our experiments, 69,463 start poses and 29 teach poses). For a given algorithm and parameter
set the convergence behaviour (success rate and speed) can thus be studied on a statistically
relevant amount of data.

3 The main parts of simulator were developed by Andreas Jordt and Falko Kellner when they were stu-
dents in the Cognitive Systems Group.
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4.2 List of Models and Controllers Tested
In order to test the advantages and disadvantages of the models and controllers presented
above we combine them in the following way:

Short Name Controller Model Parameters

Trad const Traditional Δyn ≈ J� u λ = 0.2
Trad dyn Traditional Δyn ≈ Jn u λ = 0.1, sometimes λ = 0.07

Trad PMJ Traditional Δyn ≈ 1
2 (Jn + J�) u λ = 0.25

Trad MPJ Traditional u ≈ 1
2 (J+n + J�+)Δyn λ = 0.15

Trad cyl Traditional Δyn ≈ J̃n u (cylindrical) λ = 0.1
TR const Trust-Region Δyn ≈ J� u α0 = 0.09, edes = 0.18
TR dyn Trust-Region Δyn ≈ Jn u α0 = 0.07, edes = 0.04

TR PMJ Trust-Region Δyn ≈ 1
2 (Jn + J�) u α0 = 0.07, edes = 0.09

TR MPJ Trust-Region u ≈ 1
2 (J+n + J�+)Δyn α0 = 0.05, edes = 0.1

TR cyl Trust-Region Δyn ≈ J̃n u (cylindrical) α0 = 0.04, edes = 0.1

Dogleg const Dogleg u ≈ J�+Δyn and u ≈ JT
n Δyn α0 = 0.22, edes = 0.16, λ = 0.5

Dogleg dyn Dogleg u ≈ J+n Δyn and u ≈ JT
n Δyn α0 = 0.11, edes = 0.28, λ = 0.5

Dogleg PMJ Dogleg Δyn ≈ 1
2 (Jn + J�) u and u ≈ JT

n Δyn α0 = 0.29, edes = 0.03, λ = 0.5

Dogleg MPJ Dogleg u ≈ 1
2 (J+n + J�+)Δyn and u ≈ JT

n Δyn α0 = 0.3, edes = 0.02, λ = 0.5

Here we use the definitions as before. In particular, Jn is the dynamical Image Jacobian as
defined in the current pose, calculated using the current distances to the object,

C
zi for marking

i, and the current image features in its entries. The distance to the object is estimated in the real
experiments using the known relative distances of the object markings, which yields a fairly
precise estimate in practice. J� is the constant Image Jacobian, defined in the teach (goal) pose
x�, with the image data y� and distances at that pose. Δyn = yn+1 − yn is the change in the
image predicted by the model with the robot command u.
The values of the parameters detailed above were found to be useful parameters in the Multi-
Pose Test. They were therefore used in the experiments with the real robot and the OpenGL
Simulator. See below for details on how these values were obtained.
λ is the constant dampening factor applied as the last step of the controller output calcula-
tion. The Dogleg controller did not converge in our experiments without such an additional
dampening which we set to 0.5. The Trust-Region controller works without additional damp-
ening. α0 is the start and minimum value of αn. These, as well as the desired model error
edes are given in mm on the sensor. The sensor measures 4.8 × 3.6 mm which means that at its
1024 × 768 pixel resolution 0.1 mm ≈ 22 pixels after digitisation.

4.3 Experiments and Results
The Multi-Pose Test was run first in order to find out which values of parameters are useful for
which controller/model combination. 69,463 start poses and 29 teach poses were combined
randomly into 69,463 fixed pairs of tasks that make up the training data. We studied the
following two properties and their dependence on the algorithm parameters:

1. Speed: The number of iterations (steps/robot movements) needed for the algorithm to
reach its goal. The mean number of iterations over all successful trials is measured.

2. Success rate: The percentage of experiments that reached the goal. Those runs where
an object marking was lost from the camera view by a movement that was too large
and/or mis-directed were considered not successful, as were those that did not reach
the goal within 100 iterations.
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Fig. 12. OpenGL Simulation of camera-robot system with simulated camera image (bottom
right), extracted features (centre right) and trace of objects markings on the sensor (top right)
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(a) Teach pose (b) Pose 1 (0,0,-300,0°,0°,0°)

(c) Pose 2 (20,-50,-300,-10°,-10°,-10°) (d) Pose 3 (0,0,0,-5°,-3°,23°)

(e) Pose 4 (150,90,-200,10°,-15°,30°) (f) Pose 5 (0,0,0,0°,0°,45°)

Fig. 13. Teach and start poses used in the experiments; shown here are simulated camera
images in the OpenGL Simulator. Given for each pose is the relative movement in {C} from
the teach pose to the start pose. Start pose 4 is particularly difficult since it requires both a far
reach and a significant rotation by the robot. Effects of the linearisation of the model or errors
in its parameters are likely to cause a movement after which an object has been lost from the
camera’s field of view. Pose 5 is a pure rotation, chosen to test for the retreat-advance problem.
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,2 ,4 ,6 ,8 1
Reglerparameter k

2

4

6

8

1

Ite
ra

tio
ns

sc
hr

itt
e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0 00000

(d) Trad dyn, speed

Fig. 14. Multi-Pose Test: Traditional Controller with const. and dyn. Jacobian. Success rate and
average speed (number of iterations) are plotted as a function of the dampening parameter λ.

Using the optimal parameters found by the Multi-Pose Test we ran experiments on the real
robot. Figure 13 shows the camera images (from the OpenGL simulation) in the teach pose and
five start poses chosen such that they cover the most important problems in visual servoing.
The OpenGL simulator served as an additional useful tool to analyse why some controllers
with some parameters would not perform well in a few cases.

4.4 Results with Non-Adaptive Controllers
Figures 14 and 15 show the results of the Multi-Pose Test with the Traditional Controller using
different models. For the success rates it can be seen that with λ-values below a certain value
≈ 0.06–0.07 the percentages are very low. On the other hand, raising λ above ≈ 0.08–0.1
also significantly decreases success rates. The reason is the proportionality of image error and
(length of the) robot movement inherent in the control law with its constant factor λ. During
the course of the servoing process the norm of the image error may vary by as much as a factor
of 400. The controller output varies proportionally. This means that at the beginning of the
control process very large movements are carried out, and very small movements at the end.
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(e) Pose 4 (150,90,-200,10°,-15°,30°) (f) Pose 5 (0,0,0,0°,0°,45°)

Fig. 13. Teach and start poses used in the experiments; shown here are simulated camera
images in the OpenGL Simulator. Given for each pose is the relative movement in {C} from
the teach pose to the start pose. Start pose 4 is particularly difficult since it requires both a far
reach and a significant rotation by the robot. Effects of the linearisation of the model or errors
in its parameters are likely to cause a movement after which an object has been lost from the
camera’s field of view. Pose 5 is a pure rotation, chosen to test for the retreat-advance problem.
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(d) Trad dyn, speed

Fig. 14. Multi-Pose Test: Traditional Controller with const. and dyn. Jacobian. Success rate and
average speed (number of iterations) are plotted as a function of the dampening parameter λ.

Using the optimal parameters found by the Multi-Pose Test we ran experiments on the real
robot. Figure 13 shows the camera images (from the OpenGL simulation) in the teach pose and
five start poses chosen such that they cover the most important problems in visual servoing.
The OpenGL simulator served as an additional useful tool to analyse why some controllers
with some parameters would not perform well in a few cases.

4.4 Results with Non-Adaptive Controllers
Figures 14 and 15 show the results of the Multi-Pose Test with the Traditional Controller using
different models. For the success rates it can be seen that with λ-values below a certain value
≈ 0.06–0.07 the percentages are very low. On the other hand, raising λ above ≈ 0.08–0.1
also significantly decreases success rates. The reason is the proportionality of image error and
(length of the) robot movement inherent in the control law with its constant factor λ. During
the course of the servoing process the norm of the image error may vary by as much as a factor
of 400. The controller output varies proportionally. This means that at the beginning of the
control process very large movements are carried out, and very small movements at the end.
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(a) Trad PMJ, success rate
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(e) Trad cyl, success rate
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(f) Trad cyl, speed

Fig. 15. Multi-Pose Test: Traditional Controller with PMJ, MPJ and cylindrical models. Shown
here are again the success rate and speed (average number of iterations of successful runs)
depending on the constant dampening factor λ. As before, runs that did not converge in the
first 100 steps were considered unsuccessful.

44 Visual Servoing

Real Robot OpenGL Sim. Multi-Pose
Controller param. start pose start pose speed success

λ 1 2 3 4 5 1 2 3 4 5 (iter.) (%)

Trad const 0.2 49 55 21 46 31 44 44 23 44 23 32 91.53
Trad dyn 0.1 63 70 48 ∞ 58 46 52 45 ∞ 47 52 98.59

0.07 121 81 76 99.11
Trad MJP 0.15 41 51 33 46 37 35 39 31 41 32 37 99.27
Trad PMJ 0.25 29 29 17 ∞ 35 26 26 18 ∞ 32 38 94.52
Trad cyl 0.1 59 ∞ 50 70 38 46 49 49 58 49 52 91.18

Table 1. All results, Traditional Controller, optimal value of λ. “∞” means no convergence

The movements at the beginning need strong dampening (small λ) in order to avoid large mis-
directed movements (Jacobians usually do not have enough validity for 400 mm movements),
those at the end need little or no dampening (λ near 1) when only a few mm are left to move.
The version with the constant image Jacobian has a better behaviour for larger (≥ 0.3) values
of λ, although even the optimum value of λ = 0.1 only gives a success rate of 91.99 %. The
behaviour for large λ can be explained by J�’s smaller validity away from the teach pose;
when the robot is far away it suggests smaller movements than Jn would. In practise this acts
like an additional dampening factor that is stronger further away from the object.
The adaptive Jacobian gives the controller a significant advantage if λ is set well. For λ = 0.07
the success rate is 99.11 %, albeit with a speed penalty, at as many as 76 iterations. With λ = 0.1
this decreases to 52 at 98.59 % success rate.
The use of the PMJ and MJP models show again a more graceful degradation of performance
with increasing λ than Jn. The behaviour with PMJ is comparable to that with J�, with a
maximum of 94.65 % success at λ = 0.1; here the speed is 59 iterations. Faster larger λ, e.g. 0.15
which gives 38 iterations, the success rate is still at 94.52 %. With MJP a success rate of 99.53 %
can be achieved at λ = 0.08, however, the speed is slow at 72 iterations. At λ = 0.15 the
controller still holds up well with 99.27 % success and significantly less iterations: on average
37.
Using the cylindrical model the traditional controller’s success is very much dependant on
λ. The success rate peaks at λ = 0.07 with 93.94 % success and 76 iterations; a speed 52 can
be achieved at λ = 0.1 with 91.18 % success. Overall the cylindrical model does not show an
overall advantage in this test.
Table 1 shows all results for the traditional controller, including real robot and OpenGL results.
It can be seen that even the most simple pose takes at least 29 steps to solve. The Trad MJP
method is the clearly the winner in this comparison, with a 99.27 % success rate and on average
37 iterations. Pose 4 holds the most difficulties, both in the real world and in the OpenGL
simulation. In the first few steps a movement is calculated that makes the robot lose the
object from the camera’s field of view. The Traditional Controller with the dynamical Jacobian
achieves convergence only when λ is reduced from 0.1 to 0.07. Even then the object marking
comes close to the image border during the movement. This can be seen in Figure 16 where
the trace of the centre of the object markings on the sensor is plotted. With the cylindrical
model the controller moves the robot in a way which avoids this problem. Figure 16(b) shows
that there is no movement towards the edge of the image whatsoever.

45Models and Control Strategies for Visual Servoing



,2 ,4 ,6 ,8 1
Reglerparameter k

2

4

6

8

1

E
rfo

lg
sq

uo
te

 [%
]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0 00000

(a) Trad PMJ, success rate

,2 ,4 ,6 ,8 1
Reglerparameter k

2

4

6

8

1

Ite
ra

tio
ns

sc
hr

itt
e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0 00000

(b) Trad PMJ, speed

0,2 0,4 0,6 0,8 1
dampening λ

2

4

6

8

10

su
cc

es
s 

ra
te

 in
 %

without noise
with noise

0

0

0

0

0

00

(c) Trad MJP, success rate

,2 ,4 ,6 ,8 1
Reglerparameter k

2

4

6

8

1

Ite
ra

tio
ns

sc
hr

itt
e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0 00000

(d) Trad MJP, speed

,2 ,4 ,6 ,8 1
Reglerparameter k

2

4

6

8

1

E
rfo

lg
sq

uo
te

 [%
]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0 00000

(e) Trad cyl, success rate
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(f) Trad cyl, speed

Fig. 15. Multi-Pose Test: Traditional Controller with PMJ, MPJ and cylindrical models. Shown
here are again the success rate and speed (average number of iterations of successful runs)
depending on the constant dampening factor λ. As before, runs that did not converge in the
first 100 steps were considered unsuccessful.
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Real Robot OpenGL Sim. Multi-Pose
Controller param. start pose start pose speed success

λ 1 2 3 4 5 1 2 3 4 5 (iter.) (%)

Trad const 0.2 49 55 21 46 31 44 44 23 44 23 32 91.53
Trad dyn 0.1 63 70 48 ∞ 58 46 52 45 ∞ 47 52 98.59

0.07 121 81 76 99.11
Trad MJP 0.15 41 51 33 46 37 35 39 31 41 32 37 99.27
Trad PMJ 0.25 29 29 17 ∞ 35 26 26 18 ∞ 32 38 94.52
Trad cyl 0.1 59 ∞ 50 70 38 46 49 49 58 49 52 91.18

Table 1. All results, Traditional Controller, optimal value of λ. “∞” means no convergence

The movements at the beginning need strong dampening (small λ) in order to avoid large mis-
directed movements (Jacobians usually do not have enough validity for 400 mm movements),
those at the end need little or no dampening (λ near 1) when only a few mm are left to move.
The version with the constant image Jacobian has a better behaviour for larger (≥ 0.3) values
of λ, although even the optimum value of λ = 0.1 only gives a success rate of 91.99 %. The
behaviour for large λ can be explained by J�’s smaller validity away from the teach pose;
when the robot is far away it suggests smaller movements than Jn would. In practise this acts
like an additional dampening factor that is stronger further away from the object.
The adaptive Jacobian gives the controller a significant advantage if λ is set well. For λ = 0.07
the success rate is 99.11 %, albeit with a speed penalty, at as many as 76 iterations. With λ = 0.1
this decreases to 52 at 98.59 % success rate.
The use of the PMJ and MJP models show again a more graceful degradation of performance
with increasing λ than Jn. The behaviour with PMJ is comparable to that with J�, with a
maximum of 94.65 % success at λ = 0.1; here the speed is 59 iterations. Faster larger λ, e.g. 0.15
which gives 38 iterations, the success rate is still at 94.52 %. With MJP a success rate of 99.53 %
can be achieved at λ = 0.08, however, the speed is slow at 72 iterations. At λ = 0.15 the
controller still holds up well with 99.27 % success and significantly less iterations: on average
37.
Using the cylindrical model the traditional controller’s success is very much dependant on
λ. The success rate peaks at λ = 0.07 with 93.94 % success and 76 iterations; a speed 52 can
be achieved at λ = 0.1 with 91.18 % success. Overall the cylindrical model does not show an
overall advantage in this test.
Table 1 shows all results for the traditional controller, including real robot and OpenGL results.
It can be seen that even the most simple pose takes at least 29 steps to solve. The Trad MJP
method is the clearly the winner in this comparison, with a 99.27 % success rate and on average
37 iterations. Pose 4 holds the most difficulties, both in the real world and in the OpenGL
simulation. In the first few steps a movement is calculated that makes the robot lose the
object from the camera’s field of view. The Traditional Controller with the dynamical Jacobian
achieves convergence only when λ is reduced from 0.1 to 0.07. Even then the object marking
comes close to the image border during the movement. This can be seen in Figure 16 where
the trace of the centre of the object markings on the sensor is plotted. With the cylindrical
model the controller moves the robot in a way which avoids this problem. Figure 16(b) shows
that there is no movement towards the edge of the image whatsoever.
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(a) Trad dyn, λ = 0.07, 81 steps (b) Trad cyl, λ = 0.1, 58 steps

Fig. 16. Trad. Controller, dyn. and cyl. model, trace of markings on sensor, pose 4 (OpenGL).

4.5 Results with Adaptive Controllers
In this section we wish to find out whether the use of dynamical dampening by a limitation
of the movement on the sensor (image-based trust region methods) can speed up the slow
convergence of the traditional controller. We will examine the Trust-Region controller first,
then the Dogleg controller.
Figure 17 shows the behaviour for the constant and dynamical Jacobians as a function of the
main parameter, the desired maximum model error edes. The success rate for both variants is
only slightly dependent on edes, with rates over 91 % (Trust const) and 99 % (Trust dyn) for the
whole range of values from 0.01 to 0.13 mm when run without noise. The speed is significantly
faster than with the Traditional Controller at 13 iterations (edes = 0.18, 91.46 % success) and 8
iterations (edes = 0.04, 99.37 % success), respectively. By limiting the step size dynamically the
Trust Region methods calculate smaller movements than the Traditional Controller at the be-
ginning of the experiment but significantly larger movements near the end. This explains the
success rate (no problems at beginning) and speed advantage (no active dampening towards
the end). The use of the mathematically more meaningful dynamical model Jn helps here since
the Trust Region method avoids the large mis-directed movements far away from the target
without the need of the artificial dampening through J�. The Trust/dyn. combination shows
a strong sensitivity to noise; this is mainly due to the amplitude of the noise (standard devia-
tion 1 pixel) which exceeds the measurement errors in practice when the camera is close to the
object. This results in convergence problems and problems detecting convergence when the
robot is very close to its goal pose. In practise (see e.g. Table 2 below) the controller tends to
have fewer problems. In all five test poses, even the difficult pose 4 the controller converges
with both models without special adjustment (real world and OpenGL), with a significant
speed advantage of the dynamical model. In pose 5 both are delayed by the retreat-advance
problem but manage to reach the goal successfully.
The use of the MJP model helps the Trust-Region Controller to further improve its results.
Success rates (see Figure 18) are as high as 99.68 % at edes = 0.01 (on average 16 iterations),
with a slightly decreasing value when edes is increased: still 99.58 % at edes = 0.1 (7 iterations,
which makes it the fastest controller/model combination in our tests).
As with the Traditional Controller the use of the PMJ and cylindrical model do not show
overall improvements for visual servoing over the dynamical method. The results, are also
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(a) Trust-Region const, success rate
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(c) Trust-Region dyn, success rate
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(d) Trust-Region dyn, speed

Fig. 17. Multi-Pose Test: Trust-Region Controller with const. and dyn. Jacobian

shown also in Figure 18. Table 2 details the results for all three types of tests. It can be seen
that while both models have on average better results than with the constant Jacobian they do
have convergence problems that show in the real world. In pose 2 (real robot) the cylindrical
model causes the controller to calculate an unreachable pose for the robot at the beginning,
which is why the experiment was terminated and counted as unsuccessful.

The Dogleg Controller shows difficulties irrespective of the model used. Without an addi-
tional dampening with a constant λ = 0.5 no good convergence could be achieved. Even with
dampening its maximum success rate is only 85 %, with J� (at an average of 10 iterations).
Details for this combination are shown in Figure 19 where we see that the results cannot be
improved by adjusting the parameter edes. With other models only less than one in three poses
can be solved, see results in Table 2.
A thorough analysis showed that the switching between gradient descent and Gauss-Newton
steps causes the problems for the Dogleg controller. This change in strategy can be seen in
Figure 20 where again the trace of projected object markings on the sensor is shown (from the
real robot system). The controller first tries to move the object markings towards the centre of
the image, by applying gradient descent steps. This is achieved by changing yaw and pitch
angles only. Then the Dogleg step, i.e. a combination of gradient descent and Gauss-Newton
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(a) Trad dyn, λ = 0.07, 81 steps (b) Trad cyl, λ = 0.1, 58 steps

Fig. 16. Trad. Controller, dyn. and cyl. model, trace of markings on sensor, pose 4 (OpenGL).

4.5 Results with Adaptive Controllers
In this section we wish to find out whether the use of dynamical dampening by a limitation
of the movement on the sensor (image-based trust region methods) can speed up the slow
convergence of the traditional controller. We will examine the Trust-Region controller first,
then the Dogleg controller.
Figure 17 shows the behaviour for the constant and dynamical Jacobians as a function of the
main parameter, the desired maximum model error edes. The success rate for both variants is
only slightly dependent on edes, with rates over 91 % (Trust const) and 99 % (Trust dyn) for the
whole range of values from 0.01 to 0.13 mm when run without noise. The speed is significantly
faster than with the Traditional Controller at 13 iterations (edes = 0.18, 91.46 % success) and 8
iterations (edes = 0.04, 99.37 % success), respectively. By limiting the step size dynamically the
Trust Region methods calculate smaller movements than the Traditional Controller at the be-
ginning of the experiment but significantly larger movements near the end. This explains the
success rate (no problems at beginning) and speed advantage (no active dampening towards
the end). The use of the mathematically more meaningful dynamical model Jn helps here since
the Trust Region method avoids the large mis-directed movements far away from the target
without the need of the artificial dampening through J�. The Trust/dyn. combination shows
a strong sensitivity to noise; this is mainly due to the amplitude of the noise (standard devia-
tion 1 pixel) which exceeds the measurement errors in practice when the camera is close to the
object. This results in convergence problems and problems detecting convergence when the
robot is very close to its goal pose. In practise (see e.g. Table 2 below) the controller tends to
have fewer problems. In all five test poses, even the difficult pose 4 the controller converges
with both models without special adjustment (real world and OpenGL), with a significant
speed advantage of the dynamical model. In pose 5 both are delayed by the retreat-advance
problem but manage to reach the goal successfully.
The use of the MJP model helps the Trust-Region Controller to further improve its results.
Success rates (see Figure 18) are as high as 99.68 % at edes = 0.01 (on average 16 iterations),
with a slightly decreasing value when edes is increased: still 99.58 % at edes = 0.1 (7 iterations,
which makes it the fastest controller/model combination in our tests).
As with the Traditional Controller the use of the PMJ and cylindrical model do not show
overall improvements for visual servoing over the dynamical method. The results, are also
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(a) Trust-Region const, success rate
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(d) Trust-Region dyn, speed

Fig. 17. Multi-Pose Test: Trust-Region Controller with const. and dyn. Jacobian

shown also in Figure 18. Table 2 details the results for all three types of tests. It can be seen
that while both models have on average better results than with the constant Jacobian they do
have convergence problems that show in the real world. In pose 2 (real robot) the cylindrical
model causes the controller to calculate an unreachable pose for the robot at the beginning,
which is why the experiment was terminated and counted as unsuccessful.

The Dogleg Controller shows difficulties irrespective of the model used. Without an addi-
tional dampening with a constant λ = 0.5 no good convergence could be achieved. Even with
dampening its maximum success rate is only 85 %, with J� (at an average of 10 iterations).
Details for this combination are shown in Figure 19 where we see that the results cannot be
improved by adjusting the parameter edes. With other models only less than one in three poses
can be solved, see results in Table 2.
A thorough analysis showed that the switching between gradient descent and Gauss-Newton
steps causes the problems for the Dogleg controller. This change in strategy can be seen in
Figure 20 where again the trace of projected object markings on the sensor is shown (from the
real robot system). The controller first tries to move the object markings towards the centre of
the image, by applying gradient descent steps. This is achieved by changing yaw and pitch
angles only. Then the Dogleg step, i.e. a combination of gradient descent and Gauss-Newton
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(b) Trust-Region MJP, speed
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(c) Trust-Region PMJ, success rate
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(d) Trust-Region PMJ, speed
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(e) Trust-Region cyl, success rate
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(f) Trust-Region cyl, speed

Fig. 18. Multi-Pose Test: Trust-Region Controller with PMJ, MPJ and cylindrical model. Plot-
ted are the success rate and the speed (average number of iterations of successful runs) de-
pending on the desired (maximum admissible) error, edes.
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Real Robot OpenGL Sim. Multi-Pose
Controller param. start pose start pose speed success

αstart edes 1 2 3 4 5 1 2 3 4 5 (iter.) (%)

Trust const 0.09 0.18 22 29 11 39 7 20 26 6 31 7 13 91.46
Trust dyn 0.07 0.04 10 15 9 17 17 9 12 7 14 6 8 99.37
Trust MJP 0.05 0.1 8 9 11 13 7 7 9 6 11 5 7 99.58
Trust PMJ 0.07 0.09 21 28 7 ∞ 13 20 25 6 ∞ 5 13 94.57
Trust cyl 0.04 0.1 10 ∞ 7 11 15 8 18 6 11 6 9 93.5

Dogleg const 0.22 0.16 19 24 8 ∞ 12 17 25 4 21 9 10 85.05
Dogleg dyn 0.11 0.28 13 ∞ ∞ ∞ 13 8 ∞ 6 ∞ 16 9 8.4
Dogleg MJP 0.3 0.02 ∞ ∞ 10 ∞ 13 ∞ ∞ 5 ∞ 7 8 26.65
Dogleg PMJ 0.29 0.03 14 13 5 ∞ 12 9 13 5 14 7 8 31.47

Table 2. All results, Trust-Region and Dogleg Controllers. “∞” means no success.
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(a) Dogleg const, success rate
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(b) Dogleg const, speed

Fig. 19. Multi-Pose Test: Dogleg Controller with constant Image Jacobian

step (with the respective Jacobian), is applied. This causes zigzag movements on the sensor.
These are stronger when the controller switches back and forth between the two approaches,
which is the case whenever the predicted and actual movements differ by a large amount.

5. Analysis and Conclusion
In this chapter we have described and analysed a number of visual servoing controllers and
models of the camera-robot system used by these controllers. The inherent problem of the
traditional types of controllers is the fact that these controllers do not adapt their controller
output to the current state in which the robot is: far away from the object, close to the object,
strongly rotated, weakly rotated etc. They also cannot adapt to the strengths and deficien-
cies of the model, which may also vary with the current system state. In order to guarantee
successful robot movements towards the object these controllers need to restrict the steps the
robot takes, and they do so by using a constant scale factor (“dampening”). The constancy
of this scale factor is a problem when the robot is close to the object as it slows down the
movements too much.
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(c) Trust-Region PMJ, success rate
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(d) Trust-Region PMJ, speed
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(e) Trust-Region cyl, success rate
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(f) Trust-Region cyl, speed

Fig. 18. Multi-Pose Test: Trust-Region Controller with PMJ, MPJ and cylindrical model. Plot-
ted are the success rate and the speed (average number of iterations of successful runs) de-
pending on the desired (maximum admissible) error, edes.
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Fig. 19. Multi-Pose Test: Dogleg Controller with constant Image Jacobian

step (with the respective Jacobian), is applied. This causes zigzag movements on the sensor.
These are stronger when the controller switches back and forth between the two approaches,
which is the case whenever the predicted and actual movements differ by a large amount.

5. Analysis and Conclusion
In this chapter we have described and analysed a number of visual servoing controllers and
models of the camera-robot system used by these controllers. The inherent problem of the
traditional types of controllers is the fact that these controllers do not adapt their controller
output to the current state in which the robot is: far away from the object, close to the object,
strongly rotated, weakly rotated etc. They also cannot adapt to the strengths and deficien-
cies of the model, which may also vary with the current system state. In order to guarantee
successful robot movements towards the object these controllers need to restrict the steps the
robot takes, and they do so by using a constant scale factor (“dampening”). The constancy
of this scale factor is a problem when the robot is close to the object as it slows down the
movements too much.
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(a) Dogleg const, pose 2, 24 steps (b) Dogleg MJP, pose 3, 10 steps

Fig. 20. Dogleg, const and MJP model, trace of markings on sensor, poses 2 and 3 (real robot).

Trust-region based controllers successfully overcome this limitation by adapting the dampen-
ing factor in situations where this is necessary, but only in those cases. Therefore they achieve
both a better success rate and a significantly higher speed than traditional controllers.
The Dogleg controller which was also tested does work well with some poses, but on average
has much more convergence problems than the other two types of controllers.
Overall the Trust-Region controller has shown the best results in our tests, especially when
combined with the MJP model, and almost identical results when the dynamical image Jaco-
bian model is used. These models are more powerful than the constant image Jacobian which
almost always performs worse.
The use of the cylindrical and PMJ models did not prove to be helpful in most cases, and
in those few cases where they have improved the results (usually pure rotations, which is
unlikely in most applications) the dynamical and MJP models also achieved good results.
The results found in experiments with a real robot and those carried out in two types of sim-
ulation agree on these outcomes.
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The Uncalibrated Microscope Visual Servoing 
for Micromanipulation Robotic System 
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Dep. Of Control Science & Engineering, Huazhong University of Science & Technology 

P. R. China 

1. Introduction  
MEMS technology exploits the existing microelectronics infrastructure to create complex 
machines with micron feature sizes. These machines can perform complex functions 
including communication, actuation and sensing. However, micron sized devices with 
incompatible processes, different materials, or complex geometries, have to be ‘assembled’. 
Manual assembly tasks need highly skilled operator to pick and place micro-parts manually 
by means of microscopes and micro-tweezers. This is a difficult, tedious and time 
consuming work. Visual feedback is an important approach to improve the control 
performance of micro manipulators since it mimics the human sense of vision and allows for 
operating on the noncontact measurement environment. 
The image jacobian matrix model has been proved to be an effective tool to approach the 
robotic visual servoing problem theoretically and practically. It directly bridges the visual 
sensing and the robot motion with linear relations, without knowing the calibration model 
of the visual sensor such as cameras. However, image jacobian matrix is a dynamic time-
varying matrix, which cannot be calibrated by fix robotic or CCD camera parameters, 
especially for micro-manipulation based on micro vision. So, it is an exigent request for us to 
estimate parameters of image jacobian matrix on-line. 
Many papers about image jacobian matrix online estimation have been reported. Clearly, 
Performance of the online estimation of the image jacobian matrix is the key issue for the 
quality of the uncalibrated micro-vision manipulation robotic. Unfortunately, the current 
estimation methods have problems such as estimation-lag, singularity, convergence and its 
speed. Especially in dynamic circumstances, these problems become more serious. There are 
other efforts to deal with the online estimation of the image jacobian matrix and the 
uncalibrated coordination control. Piepmeier et al. present a moving target tracking task 
based on the quasi-Newton optimization method. In order to compute the control signal, the 
jacobian of the objective function is estimated on-line with a broyden’s update formula 
(equivalent to a RLS algorithm). This approach is adaptive, but cannot guarantee the 
stability of the visual servoing. Furthermore, the cost function using RLS is restricted by 
prior knowledge for obtaining some performance. 
To deal with those problems discussed above, we apply an improved broyden's method to 
estimate the image jacobian matrix. Without prior knowledge, the method employs 
chebyshev polynomial as a cost function to approximate the best value. Our results show 
that, when calibration information is unavailable or highly uncertain, chebyshev polynomial 
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algorithm can achieve a satisfactory result, which can bring additional performance and 
flexibility for the control of complex robotic systems. To verify the effectiveness of the 
method, both the simulations and experiments are carried out, and its jacobian estimation 
results show that our proposed method can attain a good performance. 

2. Overview of micromanipulation robotic system 
IRIS have developed the autonomous embryo pronuclei DNA injection system, visual 
servoing and precision motion control are combined in a hybrid control scheme. 
Experimental results demonstrate that the success rate of automatic injection is 100%. The 
time required of performing the injections is comparable with manual operation by a 
proficient technician. Nagoya University Fukuda Professor’s research team have developed 
nano manipulation hybrid system based on the scanning electron microscope (FE-SEM) and 
the emission electron microscopy, which has been used for operating the single-cell and the 
individual biological cells. Columbia University Dr. Tie Hu and Dr. Allen have developed 
the medical micro-endoscopic imaging system. Georgiev has employed the micro-robotic 
system to manipulate the protein crystal and his team have established the planting robot – 
automatic stripe planting robotics. Ferreira has presented a self-assembly method based on 
the microscopy visual servoing and virtual reality technology. Kemal has proposed a visual 
feedback method based on the closed-loop control. 
The complete micromanipulation system in our lab consists of micromanipulation stage, 
microscopes vision and micro-gripper. The system construction is showed in Fig.1. 
 

 
Fig. 1. The system construction of three hands cooperation micromanipulation stage 
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Micromanipulation hands 
The left and right hands consist of 3D high precise micro-motion stage driven by the AC 
servoing motor and one DOF pose adjust joint driven by the DC servoing motor. The 
motion range of the 3D micro-motion stage is 50 x 50 x 50mm and the position of precise is 
2.5μm. The rotary range of the pose adjust joint motor is ±180° and the resolution is 0.01. The 
third hand consists of three DOF motors driven by the DC servoing motor and the operation 
range is 20 x 20 x 20mm.  
Microscope vision 
Microscope vision is a main method that the micromanipulation robotic obtains 
environment information. A microscopic vision unit with two perpendicular views was 
developed to reduce the structural complexity of mechanism. The vision system consists of 
vertical crossed two rays, which can monitor micro-assembly space by stereo method and 
obtain the space and pose information of objects and end-effector, providing control and 
decision-making information for robotic.  
End-effector 
There are two driven types micro-gripper developed by us. One is driven by vacuum and 
the other one is driven by piezoelectricity ceramic, which can operate the micro parts with 
different size, shape and material.    

3. Problems statement 
Obtaining accurate camera parameters is crucial to the performance of an image-based 
visual controller because the image Jacobian or interaction matrix is widely used to map the 
image errors into the joint space of the manipulator. It is well known that camera calibration 
is tedious and time consuming. To avoid this, tremendous efforts have been made for on-
line estimation of the image Jacobian. 
The micro-assembly technology based on microscope visual servoing can be used to obtain 
good performance in micro size parts assembly. To obtain this level of performance and 
precision, one need is to identify and position the multi microsize objects. Therefore, we 
must consider the effective of the identifying algorithm and the position algorithm.  
For an autonomous micro-assembly under microscope, it is difficult to maintain the 
identifying precisely since there are no reliable microsize objects sources for the reason of 
poor shine. So, the feature attributes reduce can become necessary for enhancing the 
identifying preciseness. After identifying the multi microsize parts, it is a very important 
issue we faced that converts the image space coordinate into robotic space coordinate, 
namely, how we compute the image jacobian matrix. Focusing on the microscope 
environment, calibrating the parameters may be not meet the requirement. So, using the 
uncalibrated microscope visual servoing method becomes the best path for us. Then, the 
uncalibrated microscope visual servoing systems can be built without considering the real-
time performance and the stability of system. It means that we employ the time-consuming 
for exchanging the good performance. Nevertheless, the real-time performance and the 
stability of system are also important for micromanipulation. So the new algorithms have to 
be developed to cope with this information. The visual control law is essential to 
successfully produce high-resolution micro-assembly tasks. Its role is to improve control 
system performance. Are the classical control laws such as PID and intelligence control law 
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algorithm can achieve a satisfactory result, which can bring additional performance and 
flexibility for the control of complex robotic systems. To verify the effectiveness of the 
method, both the simulations and experiments are carried out, and its jacobian estimation 
results show that our proposed method can attain a good performance. 
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Fig. 1. The system construction of three hands cooperation micromanipulation stage 
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Micromanipulation hands 
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The micro-assembly technology based on microscope visual servoing can be used to obtain 
good performance in micro size parts assembly. To obtain this level of performance and 
precision, one need is to identify and position the multi microsize objects. Therefore, we 
must consider the effective of the identifying algorithm and the position algorithm.  
For an autonomous micro-assembly under microscope, it is difficult to maintain the 
identifying precisely since there are no reliable microsize objects sources for the reason of 
poor shine. So, the feature attributes reduce can become necessary for enhancing the 
identifying preciseness. After identifying the multi microsize parts, it is a very important 
issue we faced that converts the image space coordinate into robotic space coordinate, 
namely, how we compute the image jacobian matrix. Focusing on the microscope 
environment, calibrating the parameters may be not meet the requirement. So, using the 
uncalibrated microscope visual servoing method becomes the best path for us. Then, the 
uncalibrated microscope visual servoing systems can be built without considering the real-
time performance and the stability of system. It means that we employ the time-consuming 
for exchanging the good performance. Nevertheless, the real-time performance and the 
stability of system are also important for micromanipulation. So the new algorithms have to 
be developed to cope with this information. The visual control law is essential to 
successfully produce high-resolution micro-assembly tasks. Its role is to improve control 
system performance. Are the classical control laws such as PID and intelligence control law 
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all adapted for the micromanipulation system? Therefore, we must consider this status. 
Now, we will discuss all the above problems. 

4. Multi-objects identifying and recognizing   
In order to assemble the multi micro objects under microscope, it is necessary that identifies 
firstly these objects. In pattern recognition field, the moment feature is one of the shape 
feature that be used in extensive application. Invariant moments are the statistical properties 
of the image, meeting that the translation, reduction and rotation are invariance. Hu (Hu, 
1962)has presented firstly invariant moments to be used for regional shape recognition. For 
closed structure and not closed structure, because the moment feature can not be calculated 
directly, it needs to construct firstly regional structure. Besides, because the moment 
involves in the calculation of all the pixels of intra-regional and border, it means that it can 
be more time-consuming. Therefore, we apply the edge extraction algorithm to process 
image firstly, and then calculate the edge image’s invariant moments to obtain the feature 
attribute, which solves the problem discussed above. 
After feature attribute extraction, the classification algorithm should be provided during the 
final target identification. The main classifier used at present can be divided into three 
categories: one is the statistics-based method and its representatives are such as the bayes 
method, KNN method like centre vector and SVM (Emanuela B et al., 2003), (Jose L R et al., 
2004), (Yi X C & James Z W, 2003), (Jing P et al., 2003), (Andrew H S & Srinivas M, 2003), 
(Kaibo D et al., 2002) ; One is the rule-based method and its representatives are decision tree 
and rough sets; the last one is the ANN-based method. Being SVM algorithm is a convex 
optimization problem, its local optimal solution must be global optimal solution, which is 
better than the other learning algorithms. Therefore, we employ SVM classification 
algorithm to classify the targets. However, the classic SVM algorithm is established on the 
basis of the quadratic planning. That is, it can not distinguish the attribute’s importance 
from training sample set. In addition, it is high time to solve the large volume data 
classification and time series prediction, which must improve its real-time data processing 
and shorten the training time and reduce the occupied space of the training sample set. 
For the problem discussed above, we present an improved support vector machine 
classification, which applies edge extraction’s invariant moments to obtain object’s feature 
attribute. In order to enhance operation effectiveness and improve classification 
performance, a feature attribute reduction algorithm based on rough set (Richard Jensen & 
Qiang Shen, 2007), (Yu chang rui et al., 2006) has been developed, with the good result to 
distinguish training data set’s importance. 

Invariant moments theory 

Image ( )+p q  order moments: we presume that ( , )f i j represents the two-dimensional 
continuous function. Then, it’s ( )+p q  order moments can be written as (1). 

 ( )( , ) , 1,2,...= =∫ ∫ p q
pqM i j f i j didj p q   (1) 

In terms of image computation, we use generally the sum formula of ( )+p q  order moments 
shown as (2). 
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Where p and q can choose all of the non-negative integer value, they create infinite sets of 
the moment. According to Papulisi’s theorem, the infinite sets can determine completely a 
two-dimensional image ( , )f i j . 
In order to ensure location invariance of the shape feature, we must compute the image 
( )+p q  order center moment. That is, calculates the invariant moments using the center of 
object as the origin of the image. The center of object ' '( , )i j can be obtained from zero-order 
moment and first-order moment. The centre-moment formula can be shown as (3). 
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At present, most studies about the two-dimensional invariant moments focus on extracting 
the moment from the full image. This should increase the computation amount and can 
impact on the real-time of system. Therefore, we propose the invariant moments method 
based on edge extraction, which gets firstly the edge image and then achieves the invariant 
moments feature attribute. Obviously, it keeps the region feature of moment using the 
proposed method. In addition, being the role of edge detection, the data that participate 
calculation have made a sharp decline, reducing greatly the computation amount.The 
invariant moments are the functions of the seven moments, meeting the invariance of the 
translation, rotation and scale.   
Improved support vector machine and target identify 
1) Support Vector Machine: The basic idea of SVM is that applies a nonlinear mapping Φ  to 
map the data of input space into a higher dimensional feature space, and then does the 
linear classification in this high-dimensional space. 
Presumes that the sample set ( , )i ix y , ( 1,..., )=i n , ∈ dx R  can be separated linearly, where x is 
d dimensional feature vector and { 1,1}∈ −y is the class label. The general form of judgement 
function in its linear space is ( ) = +if x w x b , Then, the classification hyperplane equation can 
be shown as (4).   

 0+ =iw x b   (4) 

If class m and n can be separated linearly in the set, there exists (w, b) to meet formula as (5). 
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Where w is weight vector and b is the classification threshold. According to (4), if w and b are 
zoomed in or out at the same time, the classification hyperplane in (4) will keep invariant . 
We presume that the all sample data meet ( ) 1≥f x , and the samples that is closest 
classification hyperplane meet ( ) 1=f x , then, this classification gap is equivalent to 2 / w . 
So the classification gap is biggest when w  is minimum. 
Although the support vector machine with a better classification performance, but it can 
only classify two types of samples, and the practical applications often require multiple 



 Visual Servoing 

 

56 

all adapted for the micromanipulation system? Therefore, we must consider this status. 
Now, we will discuss all the above problems. 

4. Multi-objects identifying and recognizing   
In order to assemble the multi micro objects under microscope, it is necessary that identifies 
firstly these objects. In pattern recognition field, the moment feature is one of the shape 
feature that be used in extensive application. Invariant moments are the statistical properties 
of the image, meeting that the translation, reduction and rotation are invariance. Hu (Hu, 
1962)has presented firstly invariant moments to be used for regional shape recognition. For 
closed structure and not closed structure, because the moment feature can not be calculated 
directly, it needs to construct firstly regional structure. Besides, because the moment 
involves in the calculation of all the pixels of intra-regional and border, it means that it can 
be more time-consuming. Therefore, we apply the edge extraction algorithm to process 
image firstly, and then calculate the edge image’s invariant moments to obtain the feature 
attribute, which solves the problem discussed above. 
After feature attribute extraction, the classification algorithm should be provided during the 
final target identification. The main classifier used at present can be divided into three 
categories: one is the statistics-based method and its representatives are such as the bayes 
method, KNN method like centre vector and SVM (Emanuela B et al., 2003), (Jose L R et al., 
2004), (Yi X C & James Z W, 2003), (Jing P et al., 2003), (Andrew H S & Srinivas M, 2003), 
(Kaibo D et al., 2002) ; One is the rule-based method and its representatives are decision tree 
and rough sets; the last one is the ANN-based method. Being SVM algorithm is a convex 
optimization problem, its local optimal solution must be global optimal solution, which is 
better than the other learning algorithms. Therefore, we employ SVM classification 
algorithm to classify the targets. However, the classic SVM algorithm is established on the 
basis of the quadratic planning. That is, it can not distinguish the attribute’s importance 
from training sample set. In addition, it is high time to solve the large volume data 
classification and time series prediction, which must improve its real-time data processing 
and shorten the training time and reduce the occupied space of the training sample set. 
For the problem discussed above, we present an improved support vector machine 
classification, which applies edge extraction’s invariant moments to obtain object’s feature 
attribute. In order to enhance operation effectiveness and improve classification 
performance, a feature attribute reduction algorithm based on rough set (Richard Jensen & 
Qiang Shen, 2007), (Yu chang rui et al., 2006) has been developed, with the good result to 
distinguish training data set’s importance. 

Invariant moments theory 

Image ( )+p q  order moments: we presume that ( , )f i j represents the two-dimensional 
continuous function. Then, it’s ( )+p q  order moments can be written as (1). 

 ( )( , ) , 1,2,...= =∫ ∫ p q
pqM i j f i j didj p q   (1) 

In terms of image computation, we use generally the sum formula of ( )+p q  order moments 
shown as (2). 
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Where p and q can choose all of the non-negative integer value, they create infinite sets of 
the moment. According to Papulisi’s theorem, the infinite sets can determine completely a 
two-dimensional image ( , )f i j . 
In order to ensure location invariance of the shape feature, we must compute the image 
( )+p q  order center moment. That is, calculates the invariant moments using the center of 
object as the origin of the image. The center of object ' '( , )i j can be obtained from zero-order 
moment and first-order moment. The centre-moment formula can be shown as (3). 
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At present, most studies about the two-dimensional invariant moments focus on extracting 
the moment from the full image. This should increase the computation amount and can 
impact on the real-time of system. Therefore, we propose the invariant moments method 
based on edge extraction, which gets firstly the edge image and then achieves the invariant 
moments feature attribute. Obviously, it keeps the region feature of moment using the 
proposed method. In addition, being the role of edge detection, the data that participate 
calculation have made a sharp decline, reducing greatly the computation amount.The 
invariant moments are the functions of the seven moments, meeting the invariance of the 
translation, rotation and scale.   
Improved support vector machine and target identify 
1) Support Vector Machine: The basic idea of SVM is that applies a nonlinear mapping Φ  to 
map the data of input space into a higher dimensional feature space, and then does the 
linear classification in this high-dimensional space. 
Presumes that the sample set ( , )i ix y , ( 1,..., )=i n , ∈ dx R  can be separated linearly, where x is 
d dimensional feature vector and { 1,1}∈ −y is the class label. The general form of judgement 
function in its linear space is ( ) = +if x w x b , Then, the classification hyperplane equation can 
be shown as (4).   
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If class m and n can be separated linearly in the set, there exists (w, b) to meet formula as (5). 
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Where w is weight vector and b is the classification threshold. According to (4), if w and b are 
zoomed in or out at the same time, the classification hyperplane in (4) will keep invariant . 
We presume that the all sample data meet ( ) 1≥f x , and the samples that is closest 
classification hyperplane meet ( ) 1=f x , then, this classification gap is equivalent to 2 / w . 
So the classification gap is biggest when w  is minimum. 
Although the support vector machine with a better classification performance, but it can 
only classify two types of samples, and the practical applications often require multiple 
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categories of classification. As a result, SVM need to be extended to more categories of 
classification issues, For the identification of a number of small parts in micromanipulation, 
we applied the Taiwan scholar Liu presented method based on the "one-to-many" method of 
fuzzy support vector machine for multi-target classification.  
2) Improved Support Vector Machine: For the completion of the sample training, it is a usual 
method that all the feature attribute values after normalization have been used for 
modeling, which will increase inevitably the computation amount and may lead to misjudge 
the classification system being some unnecessary feature attributes. Therefore, bringing a 
judgement method to distinguish the attribute importance may be necessary for us.  So we 
employ rough set theory to complete the judgement for samples attribute’s importance. 
Then, we carry out SVM forecast classification based on the reduction attributes. 
Now, we introduce rough set theory. The decision-making system is ( , , , )=S U A V f , where 
U is the domain with a non-null limited set and = ∪A C D . C, D represents conditions and 
decision-making attributes set respectively. V is the range set of attributes (

∈

=∪ a
a A

V V ),  aV  is 

the range of attribute a. f is information function ( : →f UXA V ). If exists ( , ) ∈ af x a V under 
∀ ∈x U ∈a A  and ∀ ⊆B A  is a subset of the conditions attributes set, we call that ( )Ind B  is 
S’s un-distinguish relationship. Formula ( ) {( , ) | , ( , ) ( , )}= ∈ ∀ ∈ =Ind B x y UXU a B f x a f y a  
represents that x and y is indivisible under subset B.  Given ⊆X U , ( )iB x  is the equivalent 
category including ix in term of the equivalent relationship ( )Ind B . We can define the next 

approximate set ( )B X  and the last approximate set ( )B X  of subset X as follows: 

( ) { | ( ) }= ∈ ⊆i iB X x U B x X  

( ) { | ( ) }φ= ∈ ≠∩i iB X x U B x X  

If there is ( )B X - ( )B X = φ , the set X is able to define set based on B. Otherwise, call X is the 

rough set based on B.  The positive domain of X based on B are the objects set that can be 
determined to belong to X based knowledge B. Namely, ( ) ( )=BPOS X B X .  The dependence 

of decision-making attributes D and conditions attributes C can be defined as follows. 

( , ) ( ( )) / ( )γ = CC D card POS D card U  

Where ( )card X  is the base number of the set X. 
The attributes reduction of rough set is that the redundant attributes have been deleted but 
there is not loss information. The formula { , ( , ) ( , )}γ γ= ⊆ =R R R C R D C D  is the reduction 
attributes set. Therefore, we can use equation attributes dependence as conditions for 
terminating iterative computing. 
In order to complete the attribute reduction, we present a heuristic attribute reduction 
algorithm based-on rough set’s discernibility matrix, which applies the frequency that 
attributes occurs in matrix as the heuristic rules and then obtains the minimum attributes’s 
relative reduction. 
The discernibility matrix was introduced by Skowron and has been defined as (6): 

The Uncalibrated Microscope Visual Servoing for Micromanipulation Robotic System  

 

59 

 
: ( ) ( ) ( ) ( )

( ) ( ) ( )

1 , ( ) ( ) ( ) ( )

⎧ ∈ ≠ ≠
⎪

= ∅ =⎨
⎪− ∀ ∃ = ≠⎩

i j i j

ij i j

i j i j

a A r x r x D x D x
c D x D x

r r x r x D x D x

  (6) 

According to formula (6), The value of elements is the different attributes combination when 
the attributes for the decision-making are different and the attributes for the conditions are 
different. The values of elements are null when the attributes for the decision-making are 
the same. The values of elements are -1 when the attributes for the decision-making are the 
same and the attributes for the conditions are different. 
If p (a) is the attribute importance formula of attribute a, we can propose the formula as (7) 
according to the frequency that attribute occurs: 
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Where γ is the general parameter and cij are the elements of the discernibility matrix. 
Obviously, the greater the frequency that attribute occurs, the greater its importance is. 
Therefore, we can compute the importance of attributes and eliminate the attributes that its 
importance is the smallest using the heuristic rules in formula (7). And then, we can obtain 
the relative reduction attributes.  
Now, we give the heuristics attribute reduction algorithm based-on rough set’s 
discernibility matrix. 
Input: the decision-making table (U, A∪ D, V, f)   
Output: the relative attribute reduction 
Algorithm steps: 
Step I computes the identification discernibility matrix M. 
Step II determines the core attributes and find the attributes combination that the core 

attributes is not included. 
Step III obtains conjunctive normal form P=∧(∨ cij:(i = 1, 2, 3…s; j = 1, 2, 3…m)) of the 

attributes combination by step II, where cij are elements of each attribute 
combination.  And then converts the conjunctive normal form to disjunctive normal 
form. 

Step IV determines the importance of attribute according to formula (7). 
Step V computes the smallest importance of attributes by steps IV and then eliminate the 

less importance attribute to obtain the attributes reduction. 
After reducing the attribute, the samples feature attributes will be sent to SVM for 
establishing model.  Support vector machines uses Gaussian kernel function, and Gaussian 
kernel function shows a good performance in practical applications of learning. Finally, we 
can finish the classification of the final prediction data. 
Feature extraction and data pretreat 
The main task of classification is to identify and classify the manipulator (microgripper, 
vacuum suction) and operation targets (cylindrical metal part, glass ball), which can provide 
convenience for follow-up visual servo task. Fig.2 shows the original image of operation 
targets and manipulator in microscopic environment.Fig.3 is the image after edge extraction 
of operation targets and manipulator in microscopic environment. 
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categories of classification. As a result, SVM need to be extended to more categories of 
classification issues, For the identification of a number of small parts in micromanipulation, 
we applied the Taiwan scholar Liu presented method based on the "one-to-many" method of 
fuzzy support vector machine for multi-target classification.  
2) Improved Support Vector Machine: For the completion of the sample training, it is a usual 
method that all the feature attribute values after normalization have been used for 
modeling, which will increase inevitably the computation amount and may lead to misjudge 
the classification system being some unnecessary feature attributes. Therefore, bringing a 
judgement method to distinguish the attribute importance may be necessary for us.  So we 
employ rough set theory to complete the judgement for samples attribute’s importance. 
Then, we carry out SVM forecast classification based on the reduction attributes. 
Now, we introduce rough set theory. The decision-making system is ( , , , )=S U A V f , where 
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determined to belong to X based knowledge B. Namely, ( ) ( )=BPOS X B X .  The dependence 

of decision-making attributes D and conditions attributes C can be defined as follows. 

( , ) ( ( )) / ( )γ = CC D card POS D card U  

Where ( )card X  is the base number of the set X. 
The attributes reduction of rough set is that the redundant attributes have been deleted but 
there is not loss information. The formula { , ( , ) ( , )}γ γ= ⊆ =R R R C R D C D  is the reduction 
attributes set. Therefore, we can use equation attributes dependence as conditions for 
terminating iterative computing. 
In order to complete the attribute reduction, we present a heuristic attribute reduction 
algorithm based-on rough set’s discernibility matrix, which applies the frequency that 
attributes occurs in matrix as the heuristic rules and then obtains the minimum attributes’s 
relative reduction. 
The discernibility matrix was introduced by Skowron and has been defined as (6): 
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Where γ is the general parameter and cij are the elements of the discernibility matrix. 
Obviously, the greater the frequency that attribute occurs, the greater its importance is. 
Therefore, we can compute the importance of attributes and eliminate the attributes that its 
importance is the smallest using the heuristic rules in formula (7). And then, we can obtain 
the relative reduction attributes.  
Now, we give the heuristics attribute reduction algorithm based-on rough set’s 
discernibility matrix. 
Input: the decision-making table (U, A∪ D, V, f)   
Output: the relative attribute reduction 
Algorithm steps: 
Step I computes the identification discernibility matrix M. 
Step II determines the core attributes and find the attributes combination that the core 

attributes is not included. 
Step III obtains conjunctive normal form P=∧(∨ cij:(i = 1, 2, 3…s; j = 1, 2, 3…m)) of the 

attributes combination by step II, where cij are elements of each attribute 
combination.  And then converts the conjunctive normal form to disjunctive normal 
form. 

Step IV determines the importance of attribute according to formula (7). 
Step V computes the smallest importance of attributes by steps IV and then eliminate the 

less importance attribute to obtain the attributes reduction. 
After reducing the attribute, the samples feature attributes will be sent to SVM for 
establishing model.  Support vector machines uses Gaussian kernel function, and Gaussian 
kernel function shows a good performance in practical applications of learning. Finally, we 
can finish the classification of the final prediction data. 
Feature extraction and data pretreat 
The main task of classification is to identify and classify the manipulator (microgripper, 
vacuum suction) and operation targets (cylindrical metal part, glass ball), which can provide 
convenience for follow-up visual servo task. Fig.2 shows the original image of operation 
targets and manipulator in microscopic environment.Fig.3 is the image after edge extraction 
of operation targets and manipulator in microscopic environment. 
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(a) Microscopic images in vertical view field  (b) Microscopic images in horizontal view field 

Fig. 2. The original microscopic image of object and the endeffector in vertical (a) and 
horizontal (b) view fields 

  
(a) Microscopic images in vertical view field  (b) Microscopic images in horizontal view field 

Fig. 3. The object centre image and the end centre of the endeffector after processing in 
vertical (a) and horizontal (b) view fields 

Table 1 gives the feature attribute’s normalization value of four different objectives using 
invariant moments algorithm. We compute the feature attribute of objects in all directions 
and only list one of the feature attribute. 
 

Category                         F1            F 2            F 3            F4            F5            F6            F7 

Cyl. metal part           1.0000    -0.9910       0.9935     -0.1600     0.1076     1.0000     -0.5762             

Glass Small Ball         1.0000     0.9900      -0.9946      0.1822      0.1178     0.9952     -0.5486            

Micro Gripper           -0.9897   -0.7610      -1.0000     -1.0000    -0.9999     0.9554     -1.0000            

Vacuum Suction        0.1673     0.9993       0.3131       0.9915     0.9857    -0.9577      0.9861 

Table 1. The  feature  attribute’s  normalization  value  of  different  objects  using  invariant  
moments  algorithm 
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Result of identification and analysis 
We compare firstly the data classification effectiveness on a number of micro objects using 
the traditional support vector machines algorithm and rough set + SVM, and the results are 
shown in table 2. 
 

 
      SVM                                     SVM +Rough set 

 Correction      Classification         Correction      Classification 
                              rate                  time (ms)                rate               time (ms) 

Micro Object            93.45%               2108.24                  95.89%             357.65 
 

Table 2. The comparison results of using two classification methods 

According to table 2, the correction rate of classification based on the proposed SVM 
classification algorithm has been over 95 pre cent, being higher than the single SVM 
algorithm’s correction rate. So, we can draw the conclusion that the attribute reduction 
improves the classification ability. Besides, compared with the single SVM algorithm’s 
calculation time,it can be seen clearly from Table 2 that the calculation time of the proposed 
algorithm is less than about five times, meaning that the system becomes more effective.  
Then, Table 3 provides the comparison results of classification accuracy using SVM 
classification and SVM+rough set classification with joining the other 25 feature attributes 
(gray, area, perimeter, texture, etc.). In table 3, The first column is the times of data sets; 
second column is the number of conditions attributes after attribute reduction; third column 
is the classification accuracy using the SVM; fourth column is the classification accuracy 
using SVM and rough set algorithm. The number of conditions attributes of the final 
classification for entering to SVM is 14.25, less than 25 features attribute. Thus it simplifies 
the follow-up SVM forecast classification process. 
 

 
   Times                   Property                                 classification accurateness 
                                                                                SVM           SVM + rough set 

       1                            10                                      90.00 %               95.10 % 

       2                            15                                      90.25 %               96.00 % 

       3                              9                                      89.00 %               92.87 % 

       4                            21                                      92.15 %               97.08 % 

       5                            15                                      90.80 %               92.33 % 

       6                            12                                      90.00 %               93.50 % 

       7                            12                                      94.00 %               95.22 % 

       8                            20                                      92.16 %               97.40 % 
 

Table 3. The comparison results of classification accurateness  using SVM and SVM + Rough 
set classification 
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5. The uncalibrated microscope visual servoing 
As a result of the particularity of micro-manipulation and micro-assembly environment, we 
can not calibrate the parameter of micromanipulation robotic as the industrial robots 
calibration. So, we employ the uncalibrated visual servoing method. The uncalibrated visual 
servoing is a hot issue in the field of robot vision research over the past decade, which 
estimates the image jacobian matrix elements on-line, increasing the system's adaptability 
for environmental change. 
Many scholars in this area have done a lot of researches. Piepmeier developed a dynamic 
quasi-Newton method. Using the least square method, Lu developed an algorithm for on-
line calculating the exterior orientation. Chen proposed a homography based adaptive 
tracking controller by estimating the unknown depth and object parameters. Yoshimi and 
Allen proposed an estimator of the image Jacobian for a peg-in-hole alignment task. Hosoda 
and Asada employed the Broyden updating formula to estimate the image Jacobian. Ruf 
presented an on-line calibration algorithm for position-based visual servoing. 
Papanikolopoulos developed an algorithm for on-line estimating the relative distance of the 
target with respect to the camera. 
Visual-servo architecture of the micro manipulator 
The dynamic image-based look-and-move system is the most suitable visual servoing 
architecture for the micromanipulation operation, and some commercial software is available. 
In the micro-vision system based optic-microscope, a camera can only be mounted on the 
microscope. This control system has both the end-effector feedback and its joint level feedback.  
A classical proportional control scheme is given by: 

λ
∧
+= −V L e  

Where Le is defined by 

=
i

ee L V  

In order to finish three-dimensional small object positioning task, in the actual operation, 
micro-manipulation tasks will be divided into horizontal direction (XY plane) movement 
and the vertical direction (YZ plane) movement. The manipulator in the XY plane moves 
first, positioning small parts in the above, then does so in the YZ plane movement, 
positioning small parts at the centre. Therefore, we apply two image jacobian matrixs, 
including horizontial view field of image jacobian matrix and vertical view field of image 
jacobian matrix, which can complete the positioning and tracking three-dimensional objects. 
The change of robot movement [ ], Tdx dy and the change of image characteristics [ ], Tdu dv can 
be wirte as (8): 

 
.⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

dx du
J

dy dv
  (8)  

According to the online estimtion image Jacobian matrix J , set the position of the error 
= −d ce f f , which df  is the expectations of position of objects (small cylindrical parts, 600 um 

diameter) and cf  is the centre of endeffector. Then, the control law of PD controller u (k) is: 

The Uncalibrated Microscope Visual Servoing for Micromanipulation Robotic System  

 

63 

 1 1 ( )( ) ( ) ( ) ( )− − Δ= +T T T T
p d

S

e ku k K J J J e k K J J J
T

  (9)                          

Where Ts is the time interval, and Kp is proportional gain and Kd is differential gain. Its 
control structure is shown in Fig.4. 
 

 
Fig. 4. Micromanipulator servo control structure 

In the next section, the pseudo-inverse of image Jacobian will be addressed. In order to meet 
the request of the high precise micro-manipulation task, robotic must employ the visual 
servoing method. The methods of visual servoing need calibrate precisely intrinsic 
parameter of camera. However, the system calibration is the complicated and difficult 
problem, especially for micro-manipulation based on microscope vision. So, we present the 
uncalibrated method to estimate image jacobian matrix online. 

Image jacobian 
The image jacobian defines the relationship between the velocity of a robot end-effector and 
the change of an image feature. Considering q = [q1, q2…qm]R represents the coordinates of 
robot end-effector in the task space. An n-dimensional vector: f = [f1, f2…fn]T is 
corresponding position in image feature. Then, the image jacobian matrix Jq is defined as 
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Broyden’s method for image jacobian matrix estimation 
The image jacobian matrix can be calculated by calibrating the inner and outer parameter of 
robotic system & sensor system. However, it is impossible to obtain precise system 
parameter under a dynamic or uncertainty environment. Considering those, we employ 
broyden’s method to estimate the image jacobian matrix. 
According to equation (10), Provided that two image feature error function *( ) = −fe q f f , 
the Taylor series expansion of fe is shown as 

                ( )( ) ( ) ( ) ... ( )∂= + − + +
∂

m
f f m m n

e qe q e q q q R x
q

  (12) 

Where ( )nR x  is Lagrange remaining. We define ( )
∗

q nJ q  as the Nth image jacobian to be 
estimated, then 

 ( )( )
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∂
n

q
e qJ q

q
  (13) 

Ignoring the high order term and Lagrange remaining ( )nR x , Equation (14) can be obtained 
from (12) and (13), which is shown as 

 ( ) ( ) ( )( )
∗

= + −qf f m n me q e q J q q q   (14) 

The broyden algorithm is described as 
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Therefore, we can obtain image jacobian estimation 1( )
∗

+q kJ q  as shown in (16) 
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In (16), We will apply the cost function to minimize 1( ) ( )
∗ ∗

+ −q qk kJ q J q . 

Chebyshev polynomial approximation algorithm  
Provided that  

 ( ) ( ) ( )( )
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= + −qK f k kN q e q J q q q   (17) 

If ( ) [ 1,1]∈ −kN q c , for Chebyshev polynomial serial{ , 0,1,...}=nT n with weight 
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= −x x , 
it's optimization square approximation polynomial can be shown as 
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where 
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if we use part sum s*n as N(q)’s approximation, under some conditions, there is a fast speed 
for an→0. 
Theoretically, Compared with RLS algorithm, Chebyshev polynomial approximation 
algorithm is independent of the prior knowledge of system, and it has fast approximate 
speed than that of other methods. Experiments will prove its correctness. Surely, The 
unsatisfied thing of chebyshev polynomial approximation algorithm, we encountered, lies 
in that it require N(q)’s good smoothness . It is a difficulty for us to meet this need for most 
conditions. 
Chebyshev polynomial approximation algorithm implementation 

Let’s consider firstly the chebyshev polynomial approximation algorithm implementation. 
Usually, ( ) ( ) ( )( )

∗
= + −qK f k kN q e q J q q q  is a function whose variable interval lies in [a, b], it 

means that we need to convert variable interval of [a, b] into [-1, 1]. Thus, as shown in 
equation (21), it can finish this conversion 

 
2 2
− += +b a b at x   (21) 

Following task is that how to obtain parameter ai (i = 0, 1, 2…) from formula (11). It 
presumes that we apply the zero point of 1( )+nT x  as discrete point set, namely, 

2 1cos
2( 1)

π−=
+i

ix
n

 (i=1, 2…n+1), so ai can be calculated as follows 
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Comparison chebyshev polynomial approximation with RLS 
Some papers [4][5] provide RLS algorithm to approximate best value for minimum cost 
function.  The cost function using RLS is shown as equation (23). 
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Where λ  is a rate of dependency for prior data. As shown in equation (23),  In order to 
obtain some performance, the cost function using RLS algorithm depends on the data of the 
several past steps, it mean that the prior knowledge must be obtained  for finishing the task. 
Similarly, the cost function using chebyshev polynomial is shown as equation (24). 
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Clearly, the cost function using chebyshev polynomial is independent of the prior data. 
Jacobian estimator with improved broyden’s method 
As discussed in the above two sections, an improved broyden with chebyshev polynomial 
approximate algorithm estimator of image jacobian is developed. A graphical representation 
of the estimate process is shown in Fig.5. Firstly, the broyden estimator starts with initial 
endeffector position q0 and precision ε . Then, Camera captures an image of endeffector for 
extracting corresponding image coordinate feature kf , Which provides the possibility for 

calculating 
*
( )kJ q  by formula 

*
' 1( ) [ ( )]−=k kJ q f q . Secondly, Camera captures an image of 

target to obtain expectative image coordinate feature 1+kf .   With the obtained 
*
( )kJ q ,  the 

servoing control law can be deduced in equation (25). Finally, Program judges whether 
precision ε  satisfies system requirement or not. If precision ε  arrives the requirement, 
system will be ended, otherwise system will be executed repeat processing.   

 
*

1( ) ( )( )
+

+= Δ = −k ku k K q K J k f f   (25) 

Where K is proportion gain. 
 

 
Fig. 5. A broyden with chebyshev polynomial approximation estimator of image jacobian 

6. Experiments and simulations 
Micro manipulation system 
Microscopic visual servoing is the sensor-based control strategy in microassembly. The 
microscopic vision feedback has been identified as one of the more promising approaches to 
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improve the precision and efficiency of micromanipulation tasks. A robotic microassembly 
system has been developed in our lab. Fig.6 is three hands coordination micro-manipulation 
system.  
 

 
Fig. 6. Three hands coordination micro-manipulation system 
Image jacobian estimation results 
As the micromanipulator performs a continuous 4D movement with translation step of 
10um and rotation step of 0.20, the broyden’s method with chebyshev polynomial 
approximation algorithm executes an online estimation of the jacobian matrix elements. The 
manipulator kinematic parameters and microscopic vision parameters are not known in the 
estimation. The image size adopted in image processing is 400 X 300 pixels.  
We test firstly the endeffector moving trajectory according to the online estimation method 
of the jacobian matrix. Fig.7 shows the endeffector moving trajectory in the vertical direction 
camera (left) and in horizontal direction camera (right). 
 

       
Fig. 7. The endeffector moving trajectory in vertical and horizontal direction camera 
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Clearly, the cost function using chebyshev polynomial is independent of the prior data. 
Jacobian estimator with improved broyden’s method 
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Where K is proportion gain. 
 

 
Fig. 5. A broyden with chebyshev polynomial approximation estimator of image jacobian 
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Next, we demonstrate the microscopic visual servoing experiment based on the improved 
broyden’s method of image jacobian for a moving target. The initial position of micro 
gripper is (0.0, 0.0) and the moving target initial position is (x, y) = (0.8, -0.3) with the 
velocity of about 4mm/s. The task is done at the time of 10s with the tracking error between 
the target and the micro-gripper about 25 pixels. Fig.8 gives the trajectory of target and 
gripper of in vertical direction camera (left) and in horizontal direction camera (right). 
 

 
 

Fig. 8. Trajectory of target and gripper in vertical direction camera in horizontal direction 
camera 

As shown in Fig.8, we can find that micro-gripper and the target have a large tracking error 
at initial stages. The reason for the large error is that there are a lot of noises and a small 
control output to step motor. With the progression of time, the error decreases to 25 pixels, it 
satisfies the tracking task requirement. 
 

 
 

Fig. 9. Convergence speed of chebyshev algorithm (left) and Convergence speed of RLS 
(right) 
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Then, we have finished the experiment using chebyshev polynomial and RLS as cost 
function to estimate image jacobian matrix. The comparisons of convergence speed of two 
cost functions are shown in Fig.9. Clearly, compared with the RLS algorithm, it achieves a 
good performance in speed and stability when we apply chebyshev polynomial as a cost 
function. 

Automatic position test 
To accomplish micromanipulator positioning and girpping small parts, we must firstly 
obtain the centre of object and the centre of the end of endeffector. The centre of object and 
the end of endeffector can be accessed by a series of image processing (gray, de-noising, 
filter, canny operator, edge extraction, fuzzy c-means clustering). Fig.10 shows the original 
microscopic image of object and the endeffector in vertical and horizontal view fields. Fig.11 
shows the object centre image and the end centre of the endeffector after processing in 
vertical and horizontal view fields. In Fig.11, the XY image plane coordinates of the center of 
the object is (147,99) and the centre of  the end of the endeffector is (343,77).  
 

      
                                                   (a)                                                                  (b) 

(a) Microscopic images in vertical view field  (b) Microscopic images in horizontal view field 

Fig. 10. The original microscopic image of object and the endeffector in vertical (a) and 
horizontal (b) view fields 

Assuming that the initial parameters of PD controller Kp is 10 and  Kd is 0, that is, only 
joined proportional control, control effect is shown in Fig.12. we can see the implementation 
of automatic positioning objects to the target center, a greater oscillation and overshoot. 
When Kp is 10 and Kd is 1.5, which incorporates proportional and differential control, 
control result is shown in Fig.13. Differential joined inhibits apparently the system 
overshoot, and the system meets the rapid and smooth. Finally, the implementation of 
micro-manipulator positioning and automatic gripping operations is given, it can be 
obtained the satisfied implementation with the results to the system application 
requirements. 
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(a) Microscopic images in vertical view field (b) Microscopic images in horizontal view field 

Fig. 11. The object centre image and the end centre of the endeffector after processing in 
vertical (a) and horizontal (b) view fields 
 

 
 

Fig. 12. The trajectories of micromanipulator approaching goal objects with only 
proportional control (XY plane) 

Finally, In order to verify the effective of uncalibrated visual servoing method, we test the 
experiments of single microgripper hand to position automatic and grip micro objects. The 
flow chart of single microgripper hand to position automatic and grip micro objects is 
shown in Fig.14. 
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Fig. 13. The trajectories of micromanipulator approaching goal objects with proportional 
and differential control (XY plane) 

 

 
 

Fig. 14. The flow chart of single microgripper hand to position automatic and grip micro 
objects under microscope visual information  

Fig.15 shows the process of the piezoelectric microgripper automatically locating and 
gripping the micro-target in the vertical view field. The time-consuming of process is about 
one minute: 
(a) to (c) is the process of piezoelectric microgripper close to the target micro-target;  
(d) is the process of the end of piezoelectric microgripper positioning the center of the micro    
target; 
(e) is the process of the piezoelectric microgripper gripping the micro target; 
(f) is the process of the piezoelectric microgripper lifting the designated height for follow-up 
of the micro-target assembly. 
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                                           (a)                                                                       (b) 

   
                                           (c)                                                                        (d) 

   
                                          (e)                                                                       (f) 

Fig. 15. The process of the piezoelectric microgripper automatically locateing and gripping 
the micro-target in the vertical view field 

Fig.16 shows the process of the piezoelectric microgripper automatically locating and 
gripping the micro-target in the horizontal view field. The time-consuming of process is 
about one minute: 
(a) to (c) is the process of piezoelectric microgripper close to the target micro-target;  
(d) is the process of the end of piezoelectric microgripper positioning the center of the micro 
target; 
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(e) is the process of the piezoelectric microgripper gripping the micro target; 
(f) is the process of the piezoelectric microgripper lifting the designated height for follow-up 
of the micro-target assembly. 
 

   
                                           (a)                                                                       (b) 

   
                                      (c)                                                                        (d) 

   
                                          (e)                                                                       (f) 

Fig. 16. The process of the piezoelectric microgripper automatically locateing and gripping 
the micro-target in the horizontal view field 
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of the micro-target assembly. 
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Fig. 16. The process of the piezoelectric microgripper automatically locateing and gripping 
the micro-target in the horizontal view field 
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7. Conclusion  
For the completion of three-dimensional micro-sized components assembly, an improved 
support vector machine algorithm is presented, which is employed to identify multi micro 
objects. Then apply an improved broyden's method to estimate the image jacobian matrix on 
line. Classical RLS algorithm can provide an optimal estimate to a well-prior knowleage in 
image jacobian model for uncalibrated visual servoing. However the method has a strict 
requirement on the prior knowledge and shows a poor adaptability on convergence speed 
and stability to unknown dynamic applications. A novel improved broyden’s method using 
chebyshev polynomial approximation algorithm for jacobian matrix estimation has been 
presented. Finally, design a PD controller to control micro-robot. In the microscopic visual 
environment, the visual servo task of micromanipulator positioning and automatic gripping 
micro-parts are completed. The experiment results show that the proposed method can meet 
the requirements of micro-assembly tasks. 

8. Future work 
Micro-objects and end-effectors can not be shown and controlled at the same time with a 
single zoom threshold or focus ratio because of the non-uniform light intensity. Therefore, 
the study of multi-scale’s multi-objects classification algorithm is important and effective for 
improving the accuracy of micro-assembly tasks. Besides, Research on the micro-assembly 
control strategy based on multi-sensor data fusion is an important technique to improve the 
micro-robot system performance. 
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1. Introduction    
There are many tools that carry cameras. Their working domain is usually surveillance, 
surface inspection, and broadcasting. Devices like rovers, gantries, and aircrafts often 
possess video cameras. The task is usually to maneuver the vehicle and position the camera 
to obtain the desired fields-of-view. A platform widely used in the broadcasting industry 
can be seen in Figure 1. The specific parts are usually the tripod, the boom, and the 
motorized pan-tilt unit (PTU). 
 

 
Fig. 1. The operator can move the boom horizontally and vertically to position the camera. 
The pan-tilt (lower right inset) head provides additional DOFs. 

Manual operation of such a tool requires two skilled operators. Typically, one person will 
handle the boom while the second operator will coordinate the PTU camera to track the 
subjects using two joysticks. Tracking the moving objects is difficult because there are many 
degrees-of-freedom (DOFs) to be coordinated simultaneously. Increasing the target's speed 
increases the tracking difficulty. Using computer vision and control techniques ensures the 
automatic camera tracking and reduces the number of DOFs the operator has to coordinate. 
This way the platform can be operated by one person concentrating only on the booming. 
The use of such techniques enables the tracking of faster moving objects.  
Searching through the literature on this subject reveals that there is a wealth of existing 
research in the visual servoing domain. An excellent starting point in the literature search is 
(Hutchinson et all., 1996). Extensive research is described in (Corke & Good, 1996); (Hill & 
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Park, 1973); (Oh & Allen, 2001); (Oh, 2002); (Sanderson & Weiss, 1980); (Stanciu & Oh, 2002); 
(Stanciu & Oh, 2003); (Papanikolopoulos et all., 1993). It is to be noted that in these 
publications, researchers have dealt completely with automated hardware (where no 
operator is involved). The system described in this paper is operated by humans. Some of 
the seminal man-machine interface work is represented by (Sheridan & Ferell, 1963); 
(Ferrier, 1998); (Fitts, 1954).  
The system utilized for experimentation is shown in Figure 2. The platform is composed of a 
four-wheeled dolly, boom, motorized PTU, and camera. The dolly can be pushed and 
steered. The 1.2-m-long boom is linked to the dolly via a cylindrical pivot that allows the 
boom to sweep horizontally (pan) and vertically (tilt). Mounted on one end of the boom is a 
two-DOF motorized PTU and a video camera weighing 9.5 kg. The motors allow an 
operator to both pan and tilt the camera 360º at approximately 90º/sec. The PTU and the 
camera are counterbalanced by a 29.5-kg dumbbell mounted on the boom’s opposite end. 
 

 
Fig. 2. The operator can boom the arm horizontally and vertically to position the camera. 
The pan-tilt head (lower left inset) provides additional DOFs. 

Use of this boom-camera system normally entails one or more skilled personnel performing 
three different operations.  
1. With a joystick, the operator servos the PTU to point the camera. A PC-104 small board 

computer and an ISA bus motion control card allow for accurate and relatively fast 
camera rotations.  

2. The operator physically pushes on the counterweighted end to boom the camera 
horizontally and vertically. This allows one to deliver a diverse range of camera views 
(e.g. shots looking down at the subject), overcomes PTU joint limitations, and captures 
occlusion-free views.  

3. The operator can push and steer the dolly in case the boom and PTU are not enough to 
keep the target image in the camera’s desired field-of-view. 

Tracking a moving object using such a tool is a particularly challenging task. Tracking 
performance is thus limited to how quickly the operator manipulates and coordinates 
multiple DOFs. Our particular interest in computer vision involves improving  the camera 
operator's ability to track fast-moving targets. By possessing a mechanical structure, 
actuators, encoders, and electronic driver, this boom is a mechatronic system. Visual-servoing 
is used to control some DOFs so that the operator has fewer joints to manipulate. 
This paper describes the implementation of several controllers in this human-in-the-loop 
system and discusses quantitatively the performance of each. The CONDENSATION 
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algorithm is used for the image processing. As this algorithm is described in some 
publications (Isard & Blake, 1998), this paper will not focus on the image processing. Section 
2 describes the experimental setups used. The controllers are described in Section 3. 
Development and validation of a boom-camera model is also presented. Section 4 describes 
a comparison between a well skilled operator versus a novice, both with and without the 
visual servoing. Section 5 presents the conclusions. 

2. Experimental setups 
The „artistic“ side of a film shooting scenario is often very important. Because they involve 
humans, these scenarios are (strictly speaking) not repeatable. Therefore, to compare the 
behavior of different controllers, an experimental framework is needed. As such, the 
experiments were designed to offer the best possible answers for both scientific and artistic 
community.  
The first experiment was people-tracking. A person was asked to walk in the laboratory. The 
camera attempted tracking while an operator boomed. Figure 3 (a) shows such an 
experiment.  
 

   
Fig. 3. (a) Typical people-tracking set-up. A subject walks around and the camera attempts 
tracking while booming. (b) Wooden block target was mounted on the end-effector of a 
Mitsubishi robot arm (background).  The boom-camera system  (foreground) attempts to keep 
the target's image centered in the camera's field-of-view. (c) Novice and a well-skilled 
operator will manipulate the boom appropriately to move the camera along the shown path, 
with and without the help of the visual servoing. In addition to booming, under manual 
control, the operator will also have to coordinate camera's two DOFs using a joystick. Visual 
servoing tracking error is recorded for comparison. 

Each new designed controller attempted to increase tracking performance. The second 
experiment was developed in an attempt to design a metric for performance. A Mitsubishi 
robotic arm was instructed to sinusoidally move the target back and forth [Figure 3 (b)]. 
While the operator boomed, the camera tracked the target. Target motion data, error, and 
booming data were recorded during the experiments and plotted for comparison with 
previous results.  
At this point, it was interesting to determine whether the vision system was usable in sport 
broadcasting. An experiment in which the camera tried to track a ball moving between two 
people was set up. The experiment showed successful tracking but highlighted some 
challenges. This setup is described in Section 3.8.  
Once the camera was considered to ensure a satisfactory tracking performance, it was 
interesting to determine how it can help the operator. To answer this question, another 
experiment was designed. Again, the Mitsubishi robotic arm was used. This time, the robot 
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moved the target on a trajectory corresponding to the number “8“. A novice and an 
experienced operator boomed along a predefined path and attempted tracking the robot 
end-effector with and without vision. Figure 3(c)  shows the way the operator should boom. 
The visual servoing tracking error was recorded and plotted. This experiment is described 
in Section 4. 

3. Controllers description 
This section presents the hypotheses, describes the controllers in detail, and discusses the 
experiments and results during this research. 

3.1 Proportional controller 
To establish a base level, the first of our hypotheses was launched. It states that by using a 
very simple controller (proportional) and a very simple image processing technique (color tracking), 
the camera is able to track a moving target when booming. 
The proportional controller was implemented. The current target position in the image 
plane is compared with the desired position and an error signal is generated. This error 
signal will determine the speed of the camera in its attempt to bring the target in focus. The 
controller gain Kx was set to 100. People-tracking experiment was attempted using this 
controller [Figure 3(a)]. A person wearing a red coat was asked to walk in the laboratory. 
The color-tracker board was trained for red. The task was to keep the red coat in the 
camera's field of view while an operator boomed. In this experiment, the camera-target 
distance was about 5 m.  
To assess the controller performance quantitatively a toy-truck  was to be tracked. An 
artificial white background was used to help the vision system to detect the target. In this 
experiment, the camera-target distance was 3 m. The toy moved back and forth while the 
camera attempted tracking. Camera motion data, booming data, and tracking error were 
recorded. The plots can be seen in Figure 4. Figure 4(a) shows the pan motor encoder 
indication, (b) shows the error (in pixels), and (c) shows the booming angle (in degrees). It 
can be seen that as the operator is booming and the target is moving, the controller performs 
a visually servoed counterrotation. The system was able to track the moving target even 
when using a very simple controller. Still, as one expects, there were two challenges: system 
stability and tracking performance.  
 

 
Fig. 4. Kx = 100 (a) PTU motor encoder. (b) Pixel error. (c) Boom-arm encoder. 

The experiments have demonstrated that the key design parameter, when visually servoing 
redundant DOF systems, is stability, especially when the target and the boom move 180º out 
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of phase. If boom motion data is not included, camera pose cannot be determined explicitly 
because there are redundant DOFs. As a result, the system could track a slow-moving target 
rather well, but would be unstable when the target or boom moves quickly.  
The second issue was the tracking performance. With the proportional controller, the 
operator boomed very slowly (less than 1º/sec). The target also moved slowly (about 10 
cm/s). Any attempt to increase the booming or target speed resulted in the tracking failure. 
Both the experiments proved the first hypothesis. It is important to underline that the vision 
had no information about booming. Introducing booming information could improve 
tracking performance as well as stability. 
 

 
Fig. 5. Schematic of camera scene 

 
Fig. 6. Feedforward controller with a feedback compensation. 

3.2 Feedforward controller 
The second hypothesis was that by using a feedforward control technique, we can improve both 
the performance and the stability. A feedforward controller was designed to validate the 
second hypothesis. This controller provides the target motion estimation (Corke & Good, 
1996). Figure 6 depicts a block diagram with a transfer function 
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where ( )iX z  is the position of the target in the image, ( )tX z  is the target position, ( )V z  and 
( )pG z  are the transfer functions for the vision system and PTU, respectively. The previous 

and actual positions of the target in the image plane are used to predict its position and 
velocity one step ahead. Based on this, the feedforward controller will compute the camera 
velocity for the next step. ( ) ( ) ( )F FD z G z G z= represents the transfer function of the filter 
combined with the feedforward controller. ( )D z  is the transfer function for the feedback 
controller. If 1( ) ( )F pD z G z−= , the tracking error will be zero, but this requires knowledge of 
the target position that is not directly measurable. Consequently, the target position and 
velocity are estimated. For a horizontally translating target, its centroid in the image plane is 
given by the relative angle between the camera and the target 

 ( ) ( ( ) ( ))i
lens t rX z K X z X z= −   (2) 

where ( )iX z  and ( )tX z  are the target position in the image plane and world frame,  
respectively. ( )rX z  is the position of the point that is in the camera's focus (due to the booming 
and camera rotation) and lensK is the lens zoom value. The target position prediction can be 
obtained from the boom and the PTU, as seen in Figure 5. Rearranging this equation yields 
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where ˆ
tX  is the predicted target position. 

3.3 The α β γ− −  filter 
Predicting the target velocity requires a tracking filter. Oftentimes, a Kalman filter is used, 
but is computationally expensive. Since Kalman gains often converge to constants, a simpler 
α β γ− −  tracking filter can be employed that tracks both position and velocity without 
steady-state errors (Kalata & Murphy, 1997); (Tenne & Singh, 2000). Tracking involves a two 
step process.  The first step is to predict the target position and velocity 

 2( 1) ( ) ( ) ( ) /2p s s sx k x k Tv k T a k+ = + +   (4) 

 ( 1) ( ) ( )p s sv k v k Ta k+ = +   (5) 

where T  is the sample time and ( 1)px k +  and  ( 1)pv k +  are the predictions for the position 
and velocity at iteration 1k + , respectively. The variables ( )sx k , ( )sv k , and ( )sa k  are the 
corrected (smoothed) values of iteration k for position, velocity, and acceleration, 
respectively. The second step is to make corrections 
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where ( )ox k  is the observed (sampled) position at iteration k. The appropriate selection of 
gains α , β , and γ  will determine the performance and stability of the filter (Tenne & 
Singh 2000). The α β γ− −  filter was implemented to predict the target  velocity in the 
image plane with gains set at 0.75α = , 0.8β = , and 0.25γ = . This velocity was, then, used 
in the feedforward algorithm, as shown in Figure 7. Image processing in the camera system 
can be modeled as a 1 / z  unit delay that affects the camera position rx  and estimates of the 
target position. In Figure 7, the block ( )FG z  represents the transfer function of the α β γ− −   
 

 
Fig. 7. Feedforward controller with a feedback compensation as it was implemented  
 

   

   

   
Fig. 8. Three sequential images from videotaping the feedforward controller experiment. 
Camera field-of-view shows target is tracked top row. Boom manually controlled middle row. 
Working program bottom row. 
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Fig. 8. Three sequential images from videotaping the feedforward controller experiment. 
Camera field-of-view shows target is tracked top row. Boom manually controlled middle row. 
Working program bottom row. 
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filter, with the observed position as the input and the predicted velocity as the output. 
( )dX z  represents the target's desired position in the image plane and its value is 320 pixels. 
( )oX z  represents the position error in the image plane (in pixels). 

The constant Klens converts pixels in the image plane to meters. Klens was assigned a constant 
value, and it assumes a pinhole camera model that maps the image plane and world 
coordinates. This constant was experimentally determined by comparing the known lengths 
in world coordinates to their projections in the camera's image plane. With the system 
equipped with the feedforward controller, a couple of experiments were performed. Again, 
the first was the people-tracking experiment. A subject was asked to walk back and forth in 
the laboratory environment. The operator boomed while the camera tracked the subject. 
Sequential images from the experiment can be seen in Figure 8. The first row shows the 
boom camera view. It can be seen that the system is not in danger of losing the target. The 
second row shows the operator booming while the third row shows the program working. It 
can be seen that the target is well detected. 
To quantitatively assess the performance, the Mitsubishi robotic arm was instructed to move 
the target sinusoidally. The camera was instructed to track this target using the proportional 
as well as the feedforward controller. An operator panned the boom at the same time. Data 
regarding Mitsubishi motion, booming motion, and tracking error were recorded. The 
performance is assessed by comparing the tracking error. The setup can be seen in Figure 
3(b). 
 

 
Fig. 9. Tracking errors comparing feedforward and proportional control in human-in-the-loop 
visual servoing.(top row) Target sinusoidal motion and booming. It can be seen that the 
operator moved the boom real slow (about 1º/sec). (bottom row) Tracking error using a 
proportional control (left-hand side) and a feedforward  control (right-hand side). The image 
dimensions are 480640× pixels. 
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The experiment was set up in the laboratory. The camera-target distance was 3.15 m. The 
target dimensions were 8.9 × 8.25 cm2. The robotic arm moved the target sinusoidally with a 
frequency of about 0.08 Hz and a magnitude of 0.5 m. CONDENSATION algorithm was 
employed for the target detection. As this algorithm is noisy, the target image should be 
kept small. The target dimensions in the image plane were 34×32pixels. While both the 
controllers attempted to track, the boom was manually moved from -15º  to +25º. The plots 
can be seen in Figure 9. In the top row, the target motion and the booming plot (both versus 
time) can be seen. The operator moved the boom really slow (approximately 1º/sec). This 
booming rate was used because of the proportional controller. The tracking errors are 
shown in the bottom row. The bottom left image shows the error when using the 
proportional controller for tracking. The bottom right image shows the error when using the 

feedforward controller. The peak-to-peak error was about 100 pixels with the feedforward 
controller, while the proportional controller yielded an error of more then 300 pixels. By 
comparing the error in the same conditions, the conclusion was that the feedforward 
controller is „much better“ then the proportional controller. Still, considering that the focal 
length was about 1200 pixels and given the camera-target distance of 3.15 m, 100 pixels 
represented about 35 cm of error. This value was considered to be too big. 

3.4 Symbolic model formulation and validation 
At this point, a model was desired for the boom-camera system. Simulation of new 
controllers would be much easier once the model was available. With satisfactory simulation 
results, a suitable controller can be implemented for experiments. 
Both the nonlinear mathematical and simulation models of the boom were developed using 
Mathematica and  Tsi ProPac (Kwatny & Blankenship, 1995); (Kwatny & Blankenship, 2000). 
The former is in Poincaré equations enabling one to evaluate the properties of the boom and 
to design either a linear or a nonlinear controller. The latter is in the form of a C-code that 
can be compiled as an S-function in SIMULINK. Together, these models of the highly 
involved boom dynamics facilitate the design and testing of the controller before its actual 
implementation. The boom, shown in Figure 10, comprises of seven bodies and eight joints. 
 

 
Fig. 10. Number assigned to every link and joint. Circled numbers represent joints while 
numbers in rectangles represent links. 
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Joint # RB JB x y xR  
yR  

zR  

1  1 x y    

2 1 2     bψ  

3 2 3    1btθ   

4 2 4    1bbθ   

5 3 5    2btθ   

6 4 5    2bbθ   

7 5 6     cψ  

8 6 7    cθ   

Table 1. Types of motion for links. 

Object Mass [ ]kg  Moment of inertia [ ]2mkg⋅  

Dolly (link 1) 25 48.2=xxI 97.0=yyI 465.3=zzI  

Link 2 0.6254 000907.0=xxI 000907.0=yyI 00181.0=zzI  

Boom (link 3) 29.5 0=xxI 904.16=yyI 904.16=zzI  

Link 4 0.879 0=xxI 02379.0=yyI 02379.0=zzI  

Link 5 3.624 08204.0=xxI 00119.0=yyI 00701.0=zzI  

PTU (link 6) 12.684 276.0=xxI 234.0=yyI 0690.0=zzI  

Camera (link 7) 0.185 0=xxI 51033.1 −⋅=yyI 51033.1 −⋅=zzI  

Table 2. Boom links, masses, and moments of inertia. 
The bodies and joints are denoted by boxes and circles, respectively. The DOFs of various 
joints are detailed in Table 1, while the physical data are given in Table 2. They give the 
position or Euler angles of the joint body (JB) with respect to the reference body (RB). At the 
origin, which corresponds to a stable equilibrium, the boom and the camera are perfectly 
aligned. One characteristic of the boom is that it always keeps the camera's base parallel to 
the floor. This is because bodies 3 and 4 are part of a four-bar linkage. There are two 
constraints for the system which can be seen in equation 9 

 1 1

1 2

0
0

bb bt

bt bt

θ θ
θ θ

− =
+ =   (9) 

The inputs acting on the system are the torques Q1 (about y) and Q2 (about z) exerted by the 
operator, and the torques Q3 and Q4 applied by the pan and tilt motors of the camera, that is, 
u={ Q1, Q2, Q3, Q4}. The dumbbell at the end of body 3 is pushed to facilitate the target 
tracking with the camera. In this analysis, it is assumed that the operator does not move the 
cart, although it is straightforward to incorporate that as well. The pan and tilt motors 
correspond to the rotations cψ  and cθ , respectively.  

Human-in-the-Loop Control for a Broadcast Camera System  

 

87 

The model can be obtained in the form of Poincaré equations [see (Kwatny & Blankenship, 
1995) and (Kwatny & Blankenship, 2000) for details]. 

 
( )

( ) ( ) ( , , ) 0

q V q p

M q p C q p Q p q u

•

•

=

+ + =
  (10) 

The generalized coordinate vector q (see Table 1 for notation) is given by 

 1 2 1 2[ , , , , , , , , ]T
b bt bt bb bb c cq x y ψ θ θ θ θ ψ θ=   (11) 

Vector p is the 7×1 vector of quasi-velocities given by 

 2 2, , , , , ,
T

yc zc bb bt zb y xp v v⎡ ⎤= Ω Ω Ω Ω Ω⎣ ⎦   (12) 

They are the quasi-velocities associated with joints 8, 7, 6, 5, 2, and a double-joint 1, 
respectively. The first set of equations are the kinematics and the second are the dynamics of 
the system. 

3.5 Model validation 
The simulation model is generated as a C-file that can be compiled using any standard C-
compiler. The MATLAB function mex is used to compile it as a dll file, which defines an S-
function in SIMULINK. To ascertain the fidelity of the model, the experimental results in 
(Stanciu & Oh, 2004) were simulated in SIMULINK. The experimental setup is depicted in 
Figure 3(b). The booming angles, the target motion, and the errors are shown in Figures 11 
and 12, respectively. In spite of the fact that the dynamics of the wheels and the friction in 
the joints are neglected, the experimental and simulated results show fairly good agreement. 
 

 
Fig. 11. Booming. Experiments (left) and simulation (right). 

   
Fig. 12. Target motion (left). Simulation and experimental errors in pixels (central and right). 
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Fig. 13. Output tracking regulation controller as it was implemented. 

3.6 Output Tracking Regulation Controller (OTR) 
The target position in the image plane is a time-dependent function. By applying the Fourier 
theory, such a function can be expressed as a sum of sinusoids with decaying magnitudes 
and increasing frequencies. If the controller can be fine-tuned to ensure lower frequency 
sinusoids tracking, then the tracking error will be acceptable. The last of our hypotheses was 
that adding such a controller to our system will improve the performance by reducing the error to 
±50 pixels (50%) in case of the Mitsubishi Robot experiment. 
This paper investigated the effectiveness and advantages of the controller implemented as a 
regulator with disturbance rejection properties. This approach guarantees regulation of the 
desired variables, while simultaneously stabilizing the system and rejecting the exogenous 
disturbances. As a first step, a linear controller was designed to regulate only the pan 
motion. Its structure can be seen in Figure 13. The linearized equations are recast as 

 

x Ax Pw Bu

w Sx
e Cx Qw

•

•

= + +

=
= +

  (13) 

 

The regulator problem is solvable if and only if Π  and Γ  satisfy the linear matrix equations 
14 [(Kwatny & Kalnitsky, 1978); (Isidori 1995)]: 

 0
S A P B

C Q
Π = Π + + Γ

= Π +   (14) 

 

A regulating control can, then, be constructed as 

 ( )u w K x w= Γ + − Π   (15) 
 

where K is chosen so that the matrix A BK+  has the desired eigenvalues. These eigenvalues 
determine the quality of the response. The PTU motor model has the transfer function 

 2

( ) 0.01175
( ) 1.3 32a

s
V s s s
θ =

+   (16) 

 

where the output is the camera angle. In this case, the state space description of the system 
is given by matrices A, B, and C 
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24.61 0
1 0

0.0088
0

0 1

A

B

C

−⎡ ⎤
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⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

= ⎡ ⎤⎣ ⎦

  (17) 

From equations (14) 

 

1 0
0 1

113.6 2796.6

⎡ ⎤
Π = ⎢ ⎥

⎣ ⎦
Γ = −⎡ ⎤⎣ ⎦

  (18) 

The matrix K was 

  [ ]38010000 −−=K   (19) 

3.7 Simulation and experiments using output tracking regulation controller  
Prior to the implementation experiment, a new controller was simulated using MATLAB 
SIMULINK. Sinusoidal reference signals corresponding to 1, 5, and 10 rad/sec were applied 
to the controller (in simulation). Both the reference and the output of the system were 
plotted on the same axes frame. The plots corresponding to the 5 rad/sec input can be seen 
in Figure 14. After the implementation, several experiments were performed using this 
controller. First, the controller was tested with the Mitsubishi robotic arm for a comparison 
of the performance of the feedforward and proportional controllers. In the second 
experiment, the system attempted to track a ball kicked by two players.  
 

 

 
Fig. 14. Reference (5 rad/sec) as well as the output of the PTU using the new controller (the 
horizontal axis represents time in seconds). 
In the first experiment, the robotic arm was instructed to sinusoidally move the target with 
the same frequency and magnitude as in the case of the feedforward controller. The camera 
tracked the target while the operator boomed. The booming data and the tracking error 
were recorded. The plots can be seen in Figure 15. In this figure, the top left plot represents 
the target motion while the top right plot shows the operator booming. It can be seen that 
the booming takes place with a frequency of about 3º/sec (when comparing the 
proportional and the feedforward controllers, the booming speed was about 1º/sec). The 
bottom left plot is the horizontal error when using the OTR controller (provided for 
comparison). It can be seen that when the OTR controller is used, the error becomes ±50 
pixels (half of the value obtained using only the feedforward controller). 
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Fig. 15. Mitsubishi experiment using the OTR controller. The first figure shows the moving 
target. The second figure shows the boom motion. The third figure shows the tracking error 
in case of the output tracking controller. The fourth figure shows the error using the 
feedforward controller. It can be seen that by using the OTR controller, the error is less then 
±50 pixels. This value reflects a gain in performance of  50%. 

3.8 Ball-tracking experiment 
Since the tracking error reduced when the robotic arm was used, it was interesting to see its 
behavior in a more natural environment. This time the task was to track a ball moving 
between two players. The experiment was set up in the laboratory and videotaped using 
three cameras. Sequential pictures can be seen in Figure 16. The top row shows the operator 
booming as the camera tracks the ball. The bottom row shows the boom camera point of 
view. It can be seen that the target is precisely detected and tracked. Despite its „not so 
scientific nature“ (no data was recorded), this experiment highlighted one challenge. If the 
ball is kicked softly, the image processing algorithm will successfully detect it and the 
camera is able to track it. If the ball is kicked harder, the camera fails to track it. This means 
that at a frequency of 3-4 Hz (the total time to process a frame and compute the controller 
outputs was around 340 ms), the target acceleration is limited to small values. This 
particular challenge was not revealed by experiments involving the robotic arm. 

4. Human versus human-vision control: a comparison 
It was interesting to determine if and how this system is able to help the operator. To assess 
the increase in performance due to the vision system, an experiment was set up. Again, the 
Mitsubishi robot was used. Its end-effector moved the target on a trajectory corresponding 
to a figure „8“ for 60 sec. An experienced operator and a beginner were asked to handle the 
boom with and without the help of vision. When vision was not used, the operator 
manually controlled the camera using a joystick. 
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Fig. 16. Ball-tracking experiment. Operator booming and camera point of view (top row). 
Program working (bottom row). 
A booming path was set up in an attempt to increase the experiment repeatability [shown in 
Figure 3(c)]. Each operator boomed two times: first, when using the vision system, and 
second, when manually manipulating the camera using a joystick. The objective was to keep 
the target in the camera's field-of-view while both the target and boom move. Several 
positions of interest were marked along the booming path using numbers [see Figure 3(c)]. 
Tracking error was recorded when using vision. Under the manual manipulation 
experiment, both the operators lost the target. When the target was outside the image plane, 
the image processing algorithm focused on other objects in the image. Because of this, the 
tracking error had no relevance during manual manipulation. 
Sequential images from the experiment can be seen in Figures 17-20. The images are taken 
when the camera was in one of the positions marked in Figure 3(c).  
 

 

 
Fig. 17. Unexperienced operator with the vision system. 

In the case of using the vision system, the target was never lost (Figures 17 and 19). 
Moreover, the output regulation controller (which is implemented for the pan motion) 
maintains the target very close to the image center.  
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booming as the camera tracks the ball. The bottom row shows the boom camera point of 
view. It can be seen that the target is precisely detected and tracked. Despite its „not so 
scientific nature“ (no data was recorded), this experiment highlighted one challenge. If the 
ball is kicked softly, the image processing algorithm will successfully detect it and the 
camera is able to track it. If the ball is kicked harder, the camera fails to track it. This means 
that at a frequency of 3-4 Hz (the total time to process a frame and compute the controller 
outputs was around 340 ms), the target acceleration is limited to small values. This 
particular challenge was not revealed by experiments involving the robotic arm. 

4. Human versus human-vision control: a comparison 
It was interesting to determine if and how this system is able to help the operator. To assess 
the increase in performance due to the vision system, an experiment was set up. Again, the 
Mitsubishi robot was used. Its end-effector moved the target on a trajectory corresponding 
to a figure „8“ for 60 sec. An experienced operator and a beginner were asked to handle the 
boom with and without the help of vision. When vision was not used, the operator 
manually controlled the camera using a joystick. 
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Fig. 16. Ball-tracking experiment. Operator booming and camera point of view (top row). 
Program working (bottom row). 
A booming path was set up in an attempt to increase the experiment repeatability [shown in 
Figure 3(c)]. Each operator boomed two times: first, when using the vision system, and 
second, when manually manipulating the camera using a joystick. The objective was to keep 
the target in the camera's field-of-view while both the target and boom move. Several 
positions of interest were marked along the booming path using numbers [see Figure 3(c)]. 
Tracking error was recorded when using vision. Under the manual manipulation 
experiment, both the operators lost the target. When the target was outside the image plane, 
the image processing algorithm focused on other objects in the image. Because of this, the 
tracking error had no relevance during manual manipulation. 
Sequential images from the experiment can be seen in Figures 17-20. The images are taken 
when the camera was in one of the positions marked in Figure 3(c).  
 

 

 
Fig. 17. Unexperienced operator with the vision system. 

In the case of using the vision system, the target was never lost (Figures 17 and 19). 
Moreover, the output regulation controller (which is implemented for the pan motion) 
maintains the target very close to the image center.  
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In the case of manual tracking (Figures 18 and 20), the operator has to manipulate the boom 
as well as the camera. It can be seen that both the operators have moments when the target 
is lost. In case of an unexperienced operator without vision, the booming took longer than 
the motion of the robotic arm simply because there are more DOFs to be controlled 
simultaneously. The unexperienced operator lost the target eight times. The experienced 
operator was able to finish booming within 60 sec, but he lost the target five times. Because 
the program focuses on something else in the absence of the target, the data regarding the 
tracking error is not relevant when the target was lost. The target was never lost when using 
vision. The absolute value of the error in both the cases is shown in Figure 21. One can see 
that the  values are in the same range. This means that visual servoing helps the novice 
operator to obtain performance similar to that of the expert. 
 

 
Fig. 18. Unexperienced operator without the vision system. The target was lost eight times. 
The pictures were taken when the camera was in positions of interest shown in Fig. 3(c) and 
the top row of Fig 17. Because the target was lost, the tracking error curve has no relevance. 
 

 
Fig. 19. Experienced operator with the vision system. Again, target is never lost. The 
pictures were taken when the camera was in positions of interest shown in Fig. 3(c) and the 
top row of Fig. 17. 
 

 
Fig. 20. Experienced operator without the vision system. The target was lost five times. 
Because the target was lost, the tracking error curve has no relevance. The pictures were 
taken when the camera was in positions of interest shown in Fig. 3(c) and the top row of Fig. 
17. 

5. Conclusion and future work 
This paper integrates visual-servoing for augmenting the tracking performance of camera 
teleoperators. By reducing the number of DOFs that need to be manually manipulated, the 
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operator can concentrate on coarse camera motion. Using a broadcast boom system as an 
experimental platform, the dynamics of the boom PTU were derived and validated 
experimentally. A new controller was added to the feedforward scheme and tested 
experimentally. The performance of the new control law was assessed by comparing the use 
of the vision system versus manual tracking for both an experienced and an unexperienced 
operator. The addition of the OTR controller to the feedforward scheme yielded lower 
errors. The use of the vision system helps the operator (the target was precisely detected and 
tracked). This suggests that by using the vision system, even an unexperienced operator can  
achieve a performance similar to that of a skilled operator. Also, there are situations when  
vision is helpful for a skilled operator. Still, there are situations when the target detection 
and tracking fail. A mechanism to detect such situations and alert the operator is desirable. 
When such situations occur, the camera can be programmed to automatically move to a 
particular position. The ball-tracking experiment proves to be successful if the ball is hit 
softly. When the ball is hit harder, the image processing fails to detect it, and tracking fails. 
However, there is no proof that controllers would be able to track a harder-hit ball if image 
processing did not fail. 
 
 

 
 

Fig. 21. Tracking error. Experienced operator with vision (left-hand side). Unexperienced 
operator using vision (right-hand side). Booming path was restricted. It can be seen that there 
are no significant diffrences between these two plots. 
Another case that is not investigated in this paper is occlusion. Such experiments were not 
performed. They should be studied in future work. Because the focus of this research was 
the control part, the case of appearance of similar targets in the image plane was not 
studied. The effect of the image noise, when the camera moves quickly was also not studied. 
Future work will also have to focus on increasing tracking performance. If this tracking 
system is to be used in sports broadcasting, it will have to be able to track objects moving 
with higher acceleration. The sampling time (which now corresponds to 3-4 Hz) will have to 
decrease (perhaps one way to achieve this is to use a faster computer). When tracking sports 
events (football, soccer, etc.), when the target moves with high accelerations and its  
dimensions vary in the image, a target estimation mechanism will be desirable. Such a 
mechanism would record ball positions and estimate its trajectory. Once the estimation is 
done, this mechanism would command the camera to move to the estimated „landing“ 
position and try to re-acquire the ball. Combining this mechanism with zooming in and out 
would allow tracking of faster objects. 
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Fig. 18. Unexperienced operator without the vision system. The target was lost eight times. 
The pictures were taken when the camera was in positions of interest shown in Fig. 3(c) and 
the top row of Fig 17. Because the target was lost, the tracking error curve has no relevance. 
 

 
Fig. 19. Experienced operator with the vision system. Again, target is never lost. The 
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Fig. 20. Experienced operator without the vision system. The target was lost five times. 
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1. Introduction 
The mechatronic system is employed widely in the industry, transportation, aviation and 
military. The system consists of an electrical actuator and a mechanism, and commonly is 
effective in industry territory. The toggle mechanism has many applications where 
overcome a large resistance with a small driving force is necessary; for examples, clutches, 
rock crushers, truck tailgates, vacuum circuit breakers, pneumatic riveters, punching 
machines, forging machines and injection modeling machines, etc. The motion controls of 
the motor-toggle mechanism have been studied (Lin et al., 1997; Fung & Yang, 2001; Fung et 
al., 2001). (Lin et al.1997) proposed a fuzzy logic controller, which was based on the concept 
of hitting condition without using the complex mathematical model for a motor-mechanism 
system. The fuzzy neural network controller (Wai et al., 2001; Wai, 2003) was applied to 
control a motor-toggle servomechanism. The numerical results via the inverse dynamics 
control and variable structure control (VSC) were compared for an electrohydraulic actuated 
toggle mechanism (Fung & Yang, 2001). The VSC (Fung et al., 2001) was employed to a 
toggle mechanism, which was driven by a linear synchronous motor and the joint coulomb 
friction was considered. In the previous studies, the motion controller for the toggle 
mechanism had been performed extensively. But the controllers are still difficult to realize if 
the linear scales can not be installed in the toggle mechanism for real feedbacks of positions 
and speeds.  
In the adaptive control territory, (Li et al. 2004) proposed a hybrid control scheme for the 
flexible structures to obtain both dynamic and static characteristics. A nonlinear strategy is 
proposed by (Beji & Bestaoui, 2005) to ensure the vehicle control, in which the proof of main 
results is based on the Lyapunov concept. In these studies, the linear scale or encoder was 
employed as the sensor to feedback the positions and speeds. If the sensor is difficult to 
install, the non-contact measure vision-based is necessary and effective to apply in the 
mechatronic system.     
In such motor-mechanism coupled systems, the non-contact machine vision exhibits its 
merits to measure the output responses of the machine. In previous references (Petrovic & 
Brezak, 2002; Yong et al., 2001), the machine vision was implemented with the PI and PD 
controllers, but didn’t concern about the robustness of the vision system associated with 
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1. Introduction 
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military. The system consists of an electrical actuator and a mechanism, and commonly is 
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overcome a large resistance with a small driving force is necessary; for examples, clutches, 
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machines, forging machines and injection modeling machines, etc. The motion controls of 
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of hitting condition without using the complex mathematical model for a motor-mechanism 
system. The fuzzy neural network controller (Wai et al., 2001; Wai, 2003) was applied to 
control a motor-toggle servomechanism. The numerical results via the inverse dynamics 
control and variable structure control (VSC) were compared for an electrohydraulic actuated 
toggle mechanism (Fung & Yang, 2001). The VSC (Fung et al., 2001) was employed to a 
toggle mechanism, which was driven by a linear synchronous motor and the joint coulomb 
friction was considered. In the previous studies, the motion controller for the toggle 
mechanism had been performed extensively. But the controllers are still difficult to realize if 
the linear scales can not be installed in the toggle mechanism for real feedbacks of positions 
and speeds.  
In the adaptive control territory, (Li et al. 2004) proposed a hybrid control scheme for the 
flexible structures to obtain both dynamic and static characteristics. A nonlinear strategy is 
proposed by (Beji & Bestaoui, 2005) to ensure the vehicle control, in which the proof of main 
results is based on the Lyapunov concept. In these studies, the linear scale or encoder was 
employed as the sensor to feedback the positions and speeds. If the sensor is difficult to 
install, the non-contact measure vision-based is necessary and effective to apply in the 
mechatronic system.     
In such motor-mechanism coupled systems, the non-contact machine vision exhibits its 
merits to measure the output responses of the machine. In previous references (Petrovic & 
Brezak, 2002; Yong et al., 2001), the machine vision was implemented with the PI and PD 
controllers, but didn’t concern about the robustness of the vision system associated with 
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controllers. (Park & Lee, 2002) presented the visual servo control for a ball on a plate and 
tracked its desired trajectory by the SMC. But there was no comparison with any other 
controller, and the mathematical equations of motion must be exactly obtained first, then the 
SMC can be implemented. (Petrovic & Brezak, 2002) applied the vision systems to motion 
control, in which the hard real-time constrains was put on image processing and was 
suitable for real-time angle measurement. In the autonomous vehicle (Yong et al., 2001), the 
reference lane was continually detected by machine vision system in order to cope with the 
steering delay and the side-slip of vehicle, and the PI controller was employed for the yaw 
rate feedback. (Nasisi & Carelli, 2003) designed the adaptive controllers for the robot’s 
positioning and tracking by use of direct visual feedback with camera-in-hand 
configurations. In these previous studies, they did not either discuss about the robustness of 
the vision system associated with the controllers or investigate robustness performances of 
the controllers for robot systems in experimental realization.  
The control techniques are essential to provide a stable and robust performance for a wide 
range of applications, e.g. robot control, process control, etc., and most of the applications 
are inherently nonlinear. Moreover, there exist relatively little general theories for the 
adaptive controls (Astrom & Wittenmark, 1995; Slotine & Li, 1991) of nonlinear systems. As 
the application of a motor-toggle mechanism has similar control problems to the robotic 
systems, the adaptive control technique developed by (Slotine and Li, 1988, 1989), which 
exploited the conservation of energy formulation to design control laws for the fixed 
position control problem, is adopted to control the motor-toggle mechanism in this chapter. 
The techniques made use of matrix properties of a skew-symmetric system so that the 
measurements of acceleration signals and the computations of inverse of the inertia matrix 
are not necessary. Moreover, an inertia-related Lyapunov function containing a quadratic 
form of a linear combination of speed- and position-error states will be formulated. 
Furthermore, the SMC, PD-type FLC (Rahbari & Silva, 2000) and PI-type FLC (Aracil & 
Gordillo, 2004) are proposed to positioning controls, and their performances by machine 
vision are compared between numerical simulations and experimental experiments. 
In this chapter, the machine vision system is used as the sensor to measure the output state 
of the motor-toggle mechanism in real operational conditions. The shape-pattern and color-
pattern (Hashimoto & Tomiie, 1999) on the link and slider are applied as the output objects 
to measure by the machine vision system. The main advantage of a vision-based measuring 
system is its non-contact measurement principle, which is important in cases when the 
contact measurements are difficult to implement.  
In the theoretical analysis, Hamilton’s principle, Lagrange multiplier, geometric constraints 
and partitioning method are employed to derive the dynamic equations. In order to control 
the motor-mechanism system with robust characteristics, the SMC is designed to control the 
slider position. However, the general problem encountered in the design of a SMC system is 
that the bound of uncertainties and the exact mathematical mode of the motor-mechanism 
system are difficult to obtain in practical applications. In order to overcome the difficulties, 
the PI-type FLC, which is based on the concept of hitting conditions and without using the 
complex mathematical model of the motor-mechanism system, is successfully proposed by 
machine vision numerically and experimentally. 
This chapter is organized as follows. After an introduction in Section 1, a mathematical 
modeling is in Section 2. Section 3 shows the design of the vision-based controller. Section 4 
is the numerical simulations. The machine-vision experiments are in Section 5. Finally, 
experimental results and conclusions are shown in Section 6 and 7, respectively. 
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2. Mathematical modeling of the mechatronic system 
In this chapter, the motor-toggle mechanism is a representative mechatronic system and 
consists of a servo motor and a toggle mechanism. The electric power is transferred to 
mechanical power by the motor. This is the basic goal of the mechatronic system.      

2.1 Mathematical model of the motor-toggle mechanism 
The toggle mechanism driven by a PMSM is shown in Fig. 1(a) and its experimental 
equipment is shown in Fig. 1(b). The screw is a media that makes the small torque τ  to 
convert into the large force CF  acting on the slider C. The conversion relationship is  

 ,C dF l
2 n

τ
π

=   (1) 

where ld is the lead of screw, n is the gear ratio number. (Huang et al., 2008) have shown the 
holomonic constraint equation for the toggle mechanism as follows: 
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Fig. 1. The toggle mechanism driven by a PMSM. (a) The physical model. (b) The 
experimental equipment.  
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controllers. (Park & Lee, 2002) presented the visual servo control for a ball on a plate and 
tracked its desired trajectory by the SMC. But there was no comparison with any other 
controller, and the mathematical equations of motion must be exactly obtained first, then the 
SMC can be implemented. (Petrovic & Brezak, 2002) applied the vision systems to motion 
control, in which the hard real-time constrains was put on image processing and was 
suitable for real-time angle measurement. In the autonomous vehicle (Yong et al., 2001), the 
reference lane was continually detected by machine vision system in order to cope with the 
steering delay and the side-slip of vehicle, and the PI controller was employed for the yaw 
rate feedback. (Nasisi & Carelli, 2003) designed the adaptive controllers for the robot’s 
positioning and tracking by use of direct visual feedback with camera-in-hand 
configurations. In these previous studies, they did not either discuss about the robustness of 
the vision system associated with the controllers or investigate robustness performances of 
the controllers for robot systems in experimental realization.  
The control techniques are essential to provide a stable and robust performance for a wide 
range of applications, e.g. robot control, process control, etc., and most of the applications 
are inherently nonlinear. Moreover, there exist relatively little general theories for the 
adaptive controls (Astrom & Wittenmark, 1995; Slotine & Li, 1991) of nonlinear systems. As 
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modeling is in Section 2. Section 3 shows the design of the vision-based controller. Section 4 
is the numerical simulations. The machine-vision experiments are in Section 5. Finally, 
experimental results and conclusions are shown in Section 6 and 7, respectively. 
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2. Mathematical modeling of the mechatronic system 
In this chapter, the motor-toggle mechanism is a representative mechatronic system and 
consists of a servo motor and a toggle mechanism. The electric power is transferred to 
mechanical power by the motor. This is the basic goal of the mechatronic system.      

2.1 Mathematical model of the motor-toggle mechanism 
The toggle mechanism driven by a PMSM is shown in Fig. 1(a) and its experimental 
equipment is shown in Fig. 1(b). The screw is a media that makes the small torque τ  to 
convert into the large force CF  acting on the slider C. The conversion relationship is  

 ,C dF l
2 n

τ
π

=   (1) 

where ld is the lead of screw, n is the gear ratio number. (Huang et al., 2008) have shown the 
holomonic constraint equation for the toggle mechanism as follows: 
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Fig. 1. The toggle mechanism driven by a PMSM. (a) The physical model. (b) The 
experimental equipment.  
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where 5 2 1  θ θ θ= ⎡ ⎤⎣ ⎦
Tθ  is the vector of generalized coordinates. Similar to the previous study 

(Chuang et al. 2008) one obtains Euler-Lagrange equation of motion, accounting for both the 
applied and constraint forces, as 

 ( ) ( )+ U + 0,λ− − =T
θM θ θ N θ,θ B D Φ   (3) 

and the details of , , UM N, B  and D  can also be found in (Chuang et al. 2008) . Taking 
the first and second derivatives of the constraint position Equation (2), we obtain  
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By using these equations and Euler-Lagrange Eq. (3), we obtain the equation in the matrix 
form as 
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This is a system of differential-algebraic equations.  

2.2 Reduce formulation of the differential equations  
The motion equations of the toggle mechanism are summarized in the matrix form of Eq. (6) 
and the constraint equation (2). The following implicit method is employed to reduce the 
system equations.  
Equations (2) and (6) may be reordered and partitioned according to the decomposition of 

5 2 1  
TT T Tvθ θ θ ⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎣ ⎦θ u . Thus, equation (6) can be written in the matrix form as: 

 ( ) ( ) ˆˆ ˆ ˆ .M v v N v,v QU D+ = +   (7) 
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v uD D −= − uΦ Φ D  
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The elements of the vectors u, v and matrices uΦ , vΦ , uuM , uvM , vu M , vvM ,   uN and 
vN are detailed in (Huang et al., 2008) . The resultant equation (7) is a differential equation 

with only one independent generalized coordinate v , which is the rotation angle 1θ  of link 
1 in Fig. 1(a). The system becomes an initial value problem and can be integrated by using 
the fourth-order Runge-Kutta method.  

2.3 Field-oriented PMSM  
A machine model (Lee et al., 2005) of a PMSM can be described in a rotating rotor and the 
electric torque equation for the motor dynamics is  

 .e m m r m rB Jτ τ ω ω= + +   (8) 

where mτ  is the load torque, mB  is the damping coefficient, rω  is the rotor speed and mJ  is 
the moment of inertia. 
With the implementation of field-oriented control, the PMSM drive system can be simplified 
to a control system block diagram as shown in Fig. 2, in which 

 * ,e t qK iτ =   (9) 

 3 ,
2t md fdK PL I=   (10) 

 1( ) ,p
m m

H s
J s B

=
+

 (11) 

where *
qi  is the torque current command. By substituting (9) into (8), the applied torque can 

be obtained as follows: 

 ,m t q m r m rK i J Bτ ω ω= − −   (12) 
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Fig. 2. A simplified control block diagram. 

3. Design of the vision-based controllers 

The control strategies are to use the non contact measurement CCD as the feedback sensor 
and design the controller to control the output status of the mechatronic system. Based on 
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2.3 Field-oriented PMSM  
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electric torque equation for the motor dynamics is  
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where mτ  is the load torque, mB  is the damping coefficient, rω  is the rotor speed and mJ  is 
the moment of inertia. 
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Fig. 2. A simplified control block diagram. 

3. Design of the vision-based controllers 

The control strategies are to use the non contact measurement CCD as the feedback sensor 
and design the controller to control the output status of the mechatronic system. Based on 



 Visual Servoing 

 

100 

the CCD vision, we will propose the adaptive controller, slider mode controller and fuzzy 
controller for the mechatronic system. Because the dynamic formulation is obtained, we can 
perform the controllers in the mechanism modeling numerically, and realize the proposed 
controllers experimentally.              

3.1 Design of an adaptive vision-based controller 
The block diagram of the adaptive vision-based control system is shown in Fig. 3, where *

Bx , 
Bx  and 1θ  are the slider command position, slider position and the rotation angle of link 1 

of the motor-mechanism system, respectively. The slider position Bx  is the desired control 
objective and can be manipulated from the rotation angle 1θ  by the relation 1 12 cosBx r θ= , 
where the angle 1θ is the experimental measured state by use of a shape pattern in the 
machine vision system.     
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Fig. 3. Block diagram of an adaptive vision-based control system.  

In order to design an adaptive control, we rewrite equation (7) as the second-order 
nonlinear one:  

 ( ) ( ) ( ) ( )( ) ; ; ,U t f t v t G t d t= + −X X   (13) 

where 

( ) 1ˆ ˆ;f t −=X Q M , ( ) 1ˆ ˆ;G t −=X Q N , ( ) 1ˆ ˆ ,d t −= Q D  

and ( )U t  is the control input current *
qi . It is assumed that the mass of slider B and the 

external force EF  are not exactly known. With these uncertainties, the first step in designing 
an adaptive vision-based controller is to select a Lyapunov function, which is a function of 
tracking error and the parameters’ errors. An inertia-related Lyapunov function (Slotine & 
Li, 1988; Slotine & Li, 1989; Lin et al., 1997) containing a quadratic form of a linear 
combination of speed- and position-error states is chosen as follows:  

 11 1( ; ) ,
2 2

T TV s f X t s ϕ ϕ−= + Γ   (14) 

where  
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*, ,e B Bs e e e x xλ= + = −  1

2

0
,

0
γ

γ
⎡ ⎤

Γ = ⎢ ⎥
⎣ ⎦

 
ˆ

ˆ ˆ, , ,ˆ
BB

E E

mm
F F

ϕ ϕ ϕ ϕ ϕ
⎡ ⎤⎡ ⎤

= − = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

  

and eλ , 1γ  and 2γ  are positive scalar constants. The auxiliary signal s  may be considered as 
a filtered tracking error.      
Differentiating Eq. (14) with respect to time gives  

 1 1 11 1ˆ ˆˆ ˆ( ; ) ,
2 2

T T T TV s f X t s s Q Ms s Q Ms ϕ ϕ− − −= + + + Γ  (15) 

and multiplying the variable s  with Eq. (13), we have 
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 Substituting Eq. (16) into Eq. (15) gives  
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′ ′≡ • + • − + Γ
  (17) 

where ( )Y • , ( )Z • , ( )Y′ •  and ( )Z′ •  can be found in (Chuang et al., 2008). If the control input 
is selected as  

 
1 1

1 ˆ( ( ) ( ) ),
2 sin VU Y Z K s

r
ϕ

θ
′ ′= • + • +   (18)  

where VK  is a positive constant. Eq. (17) becomes  

 1( ( ) )T T T
VV s K s Z sϕ ϕ− ′= − + Γ + • .  (19) 

By selecting the adaptive update rule as  

 ˆ ( )TZ sϕ ϕ ′= − = −Γ • ,  (20) 

and substituting into Eq. (19), it then becomes  

 0.T
VV s K s= − ≤   (21) 

As V  in Eq. (21) is negative semi-definite, then V  in Eq. (14) is upper-bounded.  As V  is 
upper-bounded and ( ; )f tX  is a positive-definite matrix, i, e, s  and ϕ  are bounded.  
Let function ( ) ( )= − = T

VP t V t s K s , and integrate function ( )P t with respect to time 

 
0

( ) (0) ( ).= −∫
t
P t dt V V t   (22) 

Because (0)V is bound, and ( )V t is non-increasing and bounded, then 
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the CCD vision, we will propose the adaptive controller, slider mode controller and fuzzy 
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perform the controllers in the mechanism modeling numerically, and realize the proposed 
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In order to design an adaptive control, we rewrite equation (7) as the second-order 
nonlinear one:  

 ( ) ( ) ( ) ( )( ) ; ; ,U t f t v t G t d t= + −X X   (13) 

where 

( ) 1ˆ ˆ;f t −=X Q M , ( ) 1ˆ ˆ;G t −=X Q N , ( ) 1ˆ ˆ ,d t −= Q D  

and ( )U t  is the control input current *
qi . It is assumed that the mass of slider B and the 

external force EF  are not exactly known. With these uncertainties, the first step in designing 
an adaptive vision-based controller is to select a Lyapunov function, which is a function of 
tracking error and the parameters’ errors. An inertia-related Lyapunov function (Slotine & 
Li, 1988; Slotine & Li, 1989; Lin et al., 1997) containing a quadratic form of a linear 
combination of speed- and position-error states is chosen as follows:  
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and eλ , 1γ  and 2γ  are positive scalar constants. The auxiliary signal s  may be considered as 
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0

lim ( )τ τ
→∞

< ∞∫
t

t
P d .  (23) 

Differentiate ( )P t with respect to time, we have 

 ( ) = +T T
V VP t s K s s K s .  (24) 

Since VK , s , and s are bounded, ( )P t is uniformly continuous. From the above description, 
Barbalat’s Lemma (Narendra & Annaswamy, 1988) can be used to state that  

 lim ( ) 0.
t

P t
→∞

=   (25) 

Therefore, it can be obtained as follows  

 lim 0.
t

s
→∞

=   (26) 

As a result, the system is asymptotically stable. Moreover, the tracking error of the system 
will converge to zero according to ees e += λ . 

3.2 Design of a sliding mode controller 
Rewriting Eq. (7) as a second-order nonlinear, single-input-single-output (SISO) motor-
mechanism coupled system as follows:  

 ( ) ( ) ( ) ( ) ( ); ; v t f t G t U t d t= + +X X   (27) 
where 

( ) 1ˆ ˆ;f t M N−= −X  ( ) 1 ˆˆ;G t M Q−=X   ( ) 1ˆ ˆd t M D−=  

and ( )U t  is the control input *
qv . It is assumed that the function f  is not exactly known, 

but the extent of the imprecision fΔ  is bounded by a known continuous function ( ); F tX . 
Similarly, the control gain ( ); G tX  is not exactly known but having a constant sign and 
known bounds, i.e. 

 ( )min max0 ;  .G G t G< ≤ ≤X   (28) 

Disturbance ( )d t  is unknown, but is bounded by a known continuous function ( ); D tX . 
According to the above descriptions, we have 

 ( )ˆ ; f f F t− ≤ X   (29a) 

 ( )
( )

ˆ ; 1
; 

G t
G t

α
α

≤ ≤
X
X

  (29b) 

 ( );  d D t≤ X   (29c) 

where f̂  and Ĝ  are nominal values of f  and G , respectively, and 
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( )1/2
max min .G Gα =  

The control problem is to find a control law so that the state X  can track the desired 
trajectory dX  in the presence of uncertainties. 
Let the tracking error vector be 

 Te e= − = ⎡ ⎤⎣ ⎦de X X   (30) 

where * * B Bx x⎡ ⎤= ⎣ ⎦
T

dX . Define a sliding surface ( )s t  in the state space 2R  by the scalar 

function ( ); 0s t =X , where  

 ( ),  s t Ce e= +X  0C > .  (31) 

The sliding mode controller is proposed as follows: 

 eq nU U U= +   (32) 

where  

 ( ) 1ˆ ˆ
eqU G U

−
=   (33a) 

 ( ) ( )
1ˆ sgnnU G K s

−
= −   (33b) 

and 

 *ˆˆ ( )dU f v d t Ce= − − + +   (34) 

 ( ) ( ) ˆ1K F D Uα η α≥ + + + − , ( )
1    0

sgn 0    0
1    0

if s
s if s

if s

>⎧
⎪= =⎨
⎪− <⎩

  (35) 

where η  is a positive constant. The detailed derivations of the sliding mode controller are 
similar to the work of (Slotine & Li, 1992). Some discussions about the sliding mode control 
could refer to the References (Gao & Hung, 1993; Hung et al., 1993). 
To alleviate the chattering phenomenon, we adopt the quasi-linear mode controller (Slotine 
& Li, 1992), which replaces the discontinuous control laws of Eq. (33b) by a continuous one 
and insides a boundary layer around the switching surface. That is, nU  is replaced by 

 ( ) 1ˆ
n

sU G Ksat
ε

− ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

,  (36) 

where 0ε >  is the width of boundary, and the function of ssat
ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is defined as 
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  (37) 

This leads to tracking within a guaranteed precision ε  while allowing the alleviation of the 
chattering phenomenon. The block diagram of the SMC by use of a machine vision system is 
shown in Fig. 4, where the tracking error is *

B Be x x= −  and the output displacements of 
slider B are measured by a machine vision system, which includes the CCD, image 
acquisition card and color pattern matching.  
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Fig. 4. Block diagram of the sliding mode control by the machine vision system. 

3.3 Design of a fuzzy logic controller 
In the real situations, the general problem encountered in designing a controller is that the 
bounds of the uncertainties and exact mathematical models of the motor-toggle mechanism 
system are difficult to obtain for practical applications. Moreover, the parameters can not be 
obtained directly and the output responses of slider B must be able to measure. In this 
chapter, the PD-type FLC (Rahbari & Silva, 2000) and PI-type FLC (Aracil & Gordillo, 2004), 
which are without using complex mathematical model, are proposed to overcome the 
difficulties of uncertainties and un-modeling. 

3.3.1 The PD-type fuzzy logic controller 
The control problem is to find the PD-type FLC law such that the output displacement xB 
can track the desired trajectories *

Bx  in the presence of uncertainties. Let the tracking error be  

 *
B Be x x= −  (38)                          

As shown in Fig. 5, the signals of e and e  are selected as the inputs for the proposed PD- 
type FLC. 
The control output of the PD-type FLC is u, which denotes the change of controller outputs. 
The signals of e and e  could be respectively transferred to their corresponding universes of 
discourse by multiplying scaling factors 1k  and 2k , namely, 
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Fig. 5. Block diagram of a PD-type FLC for the motor-toggle mechanism. 

 1eE e k= ∗ ,   2eE e k= ∗   (39) 

Since the output u of the FLC is in its corresponding universe of discourse, the u could be 
transferred, by multiplying a scaling factor uG , to an actual input of the plant, namely,  

 uU u G= ∗   (40) 

Because the data manipulation in the PD-type FLC is based on the fuzzy set theory, the 
associated fuzzy sets involved in the linguistic control rules are defined as follows: 
N:  Negative           Z:  Zero                           P:  Positive 
NB:  Negative Big      NM:  Negative Medium      NS:  Negative Small 
ZE:  Zero                       PS:  Positive Small        PM: Positive Medium     PB: Positive Big 
and their universe of discourse are all assigned to be [-10, 10] for a real experimental motor. 
The membership functions for these fuzzy sets corresponding to eE , eE  and u  are defined 
in Fig. 6. 
In the following, the rule bases of the proposed PD-type FLC are systematically constructed 
on the basis of a Lyapnuov function fL :  

 21 0
2fL e= ≥  and fL ee=   (41) 

 According to Lyapnuov stable theory (Cheng & Tzou, 2004), if the system is stable, the 

conditions 21 0
2fL e= ≥  and  ee <0 are necessary. Therefore, according to Eq. (41), if e<0, 

increasing u will result in decreasing ee ; if e>0, decreasing u will result in decreasing ee . 
Hence, the control input u can be designed in an attempt to satisfy the condition ee <0. The 
resulting fuzzy control rules are shown in the following: 
 Rule 1:  If Ee is P and eE  is P  Then u is NB 

 Rule 2:  If Ee is P and eE  is Z  Then u is NM 

 Rule 3:  If Ee is P and eE  is N  Then u is NM 

 Rule 4:  If Ee is Z and eE  is P  Then u is NS 

 Rule 5:  If Ee is Z and eE  is Z   Then u is ZE 



 Visual Servoing 

 

104 

 

  1   

  

1   

if s
s ssat if s

if s

ε

ε ε
ε ε

ε

>⎧
⎪⎛ ⎞ ⎪= − ≤ ≤⎨⎜ ⎟

⎝ ⎠ ⎪
− < −⎪⎩

  (37) 

This leads to tracking within a guaranteed precision ε  while allowing the alleviation of the 
chattering phenomenon. The block diagram of the SMC by use of a machine vision system is 
shown in Fig. 4, where the tracking error is *

B Be x x= −  and the output displacements of 
slider B are measured by a machine vision system, which includes the CCD, image 
acquisition card and color pattern matching.  
 

Toggle
Mechanism

PM Servo
Motor

Servo-amp
MR-J2S-40A

PM synchronous motor drive system

Sliding Mode
Controller

( )*
qvU rθ Bx

Image Acquisition
Card

CCDColor Pattern
Matching

Machine Vision System

e*
Bx

Bx

+
_

 
Fig. 4. Block diagram of the sliding mode control by the machine vision system. 

3.3 Design of a fuzzy logic controller 
In the real situations, the general problem encountered in designing a controller is that the 
bounds of the uncertainties and exact mathematical models of the motor-toggle mechanism 
system are difficult to obtain for practical applications. Moreover, the parameters can not be 
obtained directly and the output responses of slider B must be able to measure. In this 
chapter, the PD-type FLC (Rahbari & Silva, 2000) and PI-type FLC (Aracil & Gordillo, 2004), 
which are without using complex mathematical model, are proposed to overcome the 
difficulties of uncertainties and un-modeling. 

3.3.1 The PD-type fuzzy logic controller 
The control problem is to find the PD-type FLC law such that the output displacement xB 
can track the desired trajectories *

Bx  in the presence of uncertainties. Let the tracking error be  

 *
B Be x x= −  (38)                          

As shown in Fig. 5, the signals of e and e  are selected as the inputs for the proposed PD- 
type FLC. 
The control output of the PD-type FLC is u, which denotes the change of controller outputs. 
The signals of e and e  could be respectively transferred to their corresponding universes of 
discourse by multiplying scaling factors 1k  and 2k , namely, 

Vision-Based Control of the Mechatronic System  

 

105 

 

Toggle
Mechanism

PM Servo
Motor

Servo-amp
MR-J2S-40A

PM synchronous motor drive system

( )*
qvU rθ Bx

Image Acquisition
Card

CCDColor Pattern
Matching

Machine Vision System

*
Bx

Bx

+
_

1k

2k
Fuzzy Logic
Controller

e

e

eE

eEdt
d

 
Fig. 5. Block diagram of a PD-type FLC for the motor-toggle mechanism. 

 1eE e k= ∗ ,   2eE e k= ∗   (39) 

Since the output u of the FLC is in its corresponding universe of discourse, the u could be 
transferred, by multiplying a scaling factor uG , to an actual input of the plant, namely,  

 uU u G= ∗   (40) 

Because the data manipulation in the PD-type FLC is based on the fuzzy set theory, the 
associated fuzzy sets involved in the linguistic control rules are defined as follows: 
N:  Negative           Z:  Zero                           P:  Positive 
NB:  Negative Big      NM:  Negative Medium      NS:  Negative Small 
ZE:  Zero                       PS:  Positive Small        PM: Positive Medium     PB: Positive Big 
and their universe of discourse are all assigned to be [-10, 10] for a real experimental motor. 
The membership functions for these fuzzy sets corresponding to eE , eE  and u  are defined 
in Fig. 6. 
In the following, the rule bases of the proposed PD-type FLC are systematically constructed 
on the basis of a Lyapnuov function fL :  

 21 0
2fL e= ≥  and fL ee=   (41) 

 According to Lyapnuov stable theory (Cheng & Tzou, 2004), if the system is stable, the 

conditions 21 0
2fL e= ≥  and  ee <0 are necessary. Therefore, according to Eq. (41), if e<0, 
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Hence, the control input u can be designed in an attempt to satisfy the condition ee <0. The 
resulting fuzzy control rules are shown in the following: 
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 Rule 6:  If Ee is Z and eE  is N  Then u is PS 

 Rule 7:  If Ee is N and eE  is P  Then u is PM 

 Rule 8:  If Ee is N and eE  is Z  Then u is PM 

 Rule 9:  If Ee is N and eE  is N  Then u is PB. 
By using the centre-of-area (COA) method, the output can be obtained as 

              
( ( ))( ( ))

(( ( ))( ( )))
i j

i j

k A B

A B

u u e u e
u

u e u e

⎡ ⎤
⎢ ⎥⎣ ⎦=

∑
∑

.  (42) 
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3.3.2 The PI-type fuzzy logic controller 
In this section, the proposed PI-type FLC is designed based on the concept of hitting switch 
conditions. As shown in Fig. 7, the switching functions are selected as the inputs. In practical 
implementation, it can be approximated by 

 ( ) ( ( 1) ) /s kT s k T T= − ,  (43) 

where k is the number of iteration and T is the sampling period.  
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Fig. 7. Block diagram of a PI-type FLC for the motor-toggle mechanism. 
The control input of the PI-type FLC is u which denotes the change of the controller outputs. 
The s and s signals could be transferred to their corresponding universes of discourse by 
multiplying scaling factors Gs and GΔs  respectively, namely, 

 , .s sS s G S s GΔ= ⋅ = ⋅   (44) 

Since the output u of the PI-type FLC is in its corresponding universe of discourse, the u 
could be transferred, by multiplying a scaling factor GΔu, to an actual input of the plant, 
namely, 

 .uU u GΔΔ = ⋅  (45) 

Because the data manipulation in a PI-type FLC is based on fuzzy set theory, the associated 
fuzzy sets involved in the linguistic control rules are defined as the same as the previous 
section and their universe of discourse are all assigned the same as the previous section. The 
membership functions for these fuzzy sets corresponding to , and .S S u  are also defined 
in Fig. 6. 
In the following, the rule base of the proposed PI-type FLC are systematically constructed 
on the basis of hitting switching conditions of the SMC. Multiplying of Eq. (43) by s then we 
have 

 .ss fs GUs ds vs Ces= + + − +   (46) 

It is similar to the PD-type FLC, Lyapunov function for the PI-type FLC is assigned as 
21 0

2fL s= ≥ . The controller is designed to satisfy the condition ss <0, and the whole 

control system is stable. According to Eq. (44), if s < 0, increasing u will result in decreasing; 
if s > 0, decreasing u will result in decreasing ss . Hence, the control input u can be designed 
in an attempt to satisfy the hitting condition ss <0.  
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on the basis of hitting switching conditions of the SMC. Multiplying of Eq. (43) by s then we 
have 

 .ss fs GUs ds vs Ces= + + − +   (46) 

It is similar to the PD-type FLC, Lyapunov function for the PI-type FLC is assigned as 
21 0

2fL s= ≥ . The controller is designed to satisfy the condition ss <0, and the whole 

control system is stable. According to Eq. (44), if s < 0, increasing u will result in decreasing; 
if s > 0, decreasing u will result in decreasing ss . Hence, the control input u can be designed 
in an attempt to satisfy the hitting condition ss <0.  
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The resulting PI-type FLC rules are shown as follows: 
 Rule 1:  If S is P and S  is P  Then u is NB 
 Rule 2:  If S is P and S  is Z  Then u is NM 
 Rule 3:  If S is P and S  is N  Then u is NM 
 Rule 4:  If S is Z and S  is P  Then u is NS 
 Rule 5:  If S is Z and S  is Z   Then u is ZE 
 Rule 6:  If S is Z and S  is N  Then u is PS 
 Rule 7:  If S is N and S  is P  Then u is PM 
 Rule 8:  If S is N and S  is Z  Then u is PM 
 Rule 9:  If S is N and S  is N  Then u is PB. 
By using the centre-of-area (COA) method, the output can be obtained as 
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In this chapter, the mean of maximum (MOM) of defuzzifier is adopted in both the PD-type 
and PI-type FLCs. 

4. Numerical simulations 
For numerical simulations, the parameters of the mechatronic system of the motor-toggle 
mechanism are chosen as follows: 

4.12 K ,Bm g=  5.58 K ,Cm g= 2 1.82 K ,m g=  3 1.61 K ,m g=  5 0.95 K ,m g=  0.17,μ =  

1 0.06 ,r m=  2 0.032 ,r m=  3 0.06 ,r m=  4 0.068 ,r m=  5 0.03 ,r m=  0.068 ,h m=  

0.4899 ,radφ =  0.5652 / ,tK Nm A= 5 26.7 10 ,mJ Nms−= × and 21.12 10 / .mB Nms rad−= ×   
The above known parameters are to substitute into Eq. (7), and the system becomes an 
initial value problem and can be integrated by using the fourth-order Runge-Kutta method 
with time step 0.001 sectΔ = and tolerance error 10-9. The control objective is to control the 
position of slider B to move from the left side to the right side. The initial position is 0.06 m, 
the desired position is 0.1 m, and the controlled stroke of the slider B is equal to 

0.04Bx mΔ = . 

4.1 Numerical simulations of adaptive controller 
For numerical simulations, the external disturbance force EF  will be added to test the 
robustness of the adaptive controller. The gains of the adaptive control law (18) are given as 
follows: 1 210, 194, 248 173.e VK andλ γ γ= = = =  They are chosen to achieve the best 
transient performance in the limitation of control effort and the requirement of stability. In 
the real system, the angles of 1θ , 2θ , and 5θ  are limited in the following ranges: 

123 63θ° °< < , 2325 350θ° °< < , and 5145 170θ° °< < . Therefore, the invertible property of 
1ˆ −Q  can be guaranteed and the system function 1ˆ ˆ( ; ) 0f t −= >X Q M can be proved.  
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The dynamic responses of slider B and the control efforts *
qi  with and without external 

disturbance force are compared in Figs. 8(a) and 8(b), respectively. The dotted lines are the 
desired positions, the dash lines are the transient responses of numerical simulations with 
external disturbance force FE = 0 Nt and the solid lines are for FE = -100 Nt. The negative sign 
in the external disturbance force indicates the action direction is opposite to the X-direction 
in Fig. 1(a). In Fig. 8(a), the transient responses are almost the same and are stable after 0.5 
sec and the steady-state error is about 1×10-5 m. Since the transient responses are almost the 
same in the presence of uncertainties, it shows the proposed adaptive control is robust. In 
Fig. 8(b), the maximum control effort * 0.218qi A=  for 0EF Nt=  is smaller than that 

* 0.710qi A=  for FE = -100 Nt. 

 

 
 
                                             (a)                                                                           (b) 
 

Fig. 8. The numerical simulations of a motor-toggle mechanism by an adaptive controller 
with and without external disturbance forces. (a) The dynamic responses of the slider B.  
(b) The control efforts *

qi . 

4.2 Numerical simulations of sliding mode controller 
The nominal case is the system without external disturbance force, i.e., 0EF Nt= and the 
gains of the SMC are given as C=5 and 0.3ε = . The dynamic responses of slider B for the 
nominal case are shown in Fig. 9 (a), and it is seen that the response is stable after 1 sec, and 
the numerical error is about 0.01mm. The trajectories in the phase plane (e, e)  are shown in 
Fig. 9 (b), where the representative point lies on the designed sliding surface after it hits the 
switching hyperplane.  
Another case with external disturbance force FE = 100 Nt is also considered and the 
simulation results are shown in Figs. 10(a) and 10(b) for its dynamic responses and 
trajectories, respectively. It is found that the smooth step-command tracking responses are 
also obtained well and the SMC is robust to the presence of uncertainties.             
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 Rule 4:  If S is Z and S  is P  Then u is NS 
 Rule 5:  If S is Z and S  is Z   Then u is ZE 
 Rule 6:  If S is Z and S  is N  Then u is PS 
 Rule 7:  If S is N and S  is P  Then u is PM 
 Rule 8:  If S is N and S  is Z  Then u is PM 
 Rule 9:  If S is N and S  is N  Then u is PB. 
By using the centre-of-area (COA) method, the output can be obtained as 
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In this chapter, the mean of maximum (MOM) of defuzzifier is adopted in both the PD-type 
and PI-type FLCs. 

4. Numerical simulations 
For numerical simulations, the parameters of the mechatronic system of the motor-toggle 
mechanism are chosen as follows: 

4.12 K ,Bm g=  5.58 K ,Cm g= 2 1.82 K ,m g=  3 1.61 K ,m g=  5 0.95 K ,m g=  0.17,μ =  

1 0.06 ,r m=  2 0.032 ,r m=  3 0.06 ,r m=  4 0.068 ,r m=  5 0.03 ,r m=  0.068 ,h m=  

0.4899 ,radφ =  0.5652 / ,tK Nm A= 5 26.7 10 ,mJ Nms−= × and 21.12 10 / .mB Nms rad−= ×   
The above known parameters are to substitute into Eq. (7), and the system becomes an 
initial value problem and can be integrated by using the fourth-order Runge-Kutta method 
with time step 0.001 sectΔ = and tolerance error 10-9. The control objective is to control the 
position of slider B to move from the left side to the right side. The initial position is 0.06 m, 
the desired position is 0.1 m, and the controlled stroke of the slider B is equal to 

0.04Bx mΔ = . 

4.1 Numerical simulations of adaptive controller 
For numerical simulations, the external disturbance force EF  will be added to test the 
robustness of the adaptive controller. The gains of the adaptive control law (18) are given as 
follows: 1 210, 194, 248 173.e VK andλ γ γ= = = =  They are chosen to achieve the best 
transient performance in the limitation of control effort and the requirement of stability. In 
the real system, the angles of 1θ , 2θ , and 5θ  are limited in the following ranges: 

123 63θ° °< < , 2325 350θ° °< < , and 5145 170θ° °< < . Therefore, the invertible property of 
1ˆ −Q  can be guaranteed and the system function 1ˆ ˆ( ; ) 0f t −= >X Q M can be proved.  
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The dynamic responses of slider B and the control efforts *
qi  with and without external 

disturbance force are compared in Figs. 8(a) and 8(b), respectively. The dotted lines are the 
desired positions, the dash lines are the transient responses of numerical simulations with 
external disturbance force FE = 0 Nt and the solid lines are for FE = -100 Nt. The negative sign 
in the external disturbance force indicates the action direction is opposite to the X-direction 
in Fig. 1(a). In Fig. 8(a), the transient responses are almost the same and are stable after 0.5 
sec and the steady-state error is about 1×10-5 m. Since the transient responses are almost the 
same in the presence of uncertainties, it shows the proposed adaptive control is robust. In 
Fig. 8(b), the maximum control effort * 0.218qi A=  for 0EF Nt=  is smaller than that 

* 0.710qi A=  for FE = -100 Nt. 

 

 
 
                                             (a)                                                                           (b) 
 

Fig. 8. The numerical simulations of a motor-toggle mechanism by an adaptive controller 
with and without external disturbance forces. (a) The dynamic responses of the slider B.  
(b) The control efforts *

qi . 

4.2 Numerical simulations of sliding mode controller 
The nominal case is the system without external disturbance force, i.e., 0EF Nt= and the 
gains of the SMC are given as C=5 and 0.3ε = . The dynamic responses of slider B for the 
nominal case are shown in Fig. 9 (a), and it is seen that the response is stable after 1 sec, and 
the numerical error is about 0.01mm. The trajectories in the phase plane (e, e)  are shown in 
Fig. 9 (b), where the representative point lies on the designed sliding surface after it hits the 
switching hyperplane.  
Another case with external disturbance force FE = 100 Nt is also considered and the 
simulation results are shown in Figs. 10(a) and 10(b) for its dynamic responses and 
trajectories, respectively. It is found that the smooth step-command tracking responses are 
also obtained well and the SMC is robust to the presence of uncertainties.             
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Fig. 9. (a) The dynamic responses of slider B by the SMC with 0EF Nt= ;  
(b) The trajectories in the phase plane by the SMC with 0EF Nt= . 
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Fig. 10. (a) The dynamic responses of slider B by the SMC with 100EF Nt= ;  
(b)The trajectories in the phase plane by the SMC with 100EF Nt= . 

4.3 Numerical simulations of the PD-type fuzzy logic controller 
Here, the PD-type FLC is applied to control the motor-toggle mechanism system 
numerically. In order to minimize the hitting time and track stable, the scaling factors are 
determined by observing numerical simulations and are selected as 1 1082k = , 2 849k =  and 

0.5uG = . Simulation results of the nominal case without external disturbance force are 
shown in Fig. 11(a), where the dynamic responses are stable after 1.25 sec, and the error 
between the desired position and numerical response of slider B is about 0.3 mm. Figure 
11(b) illustrates the dynamic responses of the case with external disturbance force FE = 100 
Nt. It is seen that the responses are stable after 1.25 sec and the error is about 0.5 mm. 
In conclusion, the responses of the PD-type FLC for a motor-toggle mechanism exhibit 
overshoot phenomenon, and the affection of external disturbance forces to the system is 
influenced. Therefore, the performance of the proposed PD-type FLC is not robust. 
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Fig. 11. The dynamic responses of slider B by the PD-type FLC: (a) 0EF Nt= ;  
(b) 100EF Nt= .                                                                       

4.4 Numerical simulations of the PI-type fuzzy logic controller  
In this section, the PI-type FLC is applied to control the system numerically and compares 
with the PD-type FLC. The scaling factors are also determined by observing the numerical 
simulations, and are selected as: 
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First, the simulation results of the nominal case without external disturbance force are given 
in Fig. 12(a), where the responses of slider B are stable after 1 sec and the error between the 
desired position and numerical response is about 0.3 mm. It is noted that the control input is 
adjusted by the fuzzy inference mechanism, which is based on the concept of hitting 
conditions regardless of the exact mathematical model. Figure 12(b) illustrates the 
trajectories in the phase plane. It is seen that the representative point lies on the designed 
sliding surface 0s =  after it hits the switching hyperplane, and the smooth step-command 
tracking responses are obtained for xB. Figures 13 (a) and (b) respectively show the 
trajectories in the phase plane for the system without and with external disturbance force 

100EF Nt= .  
In conclusion, the dynamic responses utilizing the PI-type FLC to a motor-toggle 
mechanism system has no overshoot phenomenon and are stable fast with external force. 
Furthermore, the PI-type fuzzy controlled motor-toggle mechanism system is robust with 
respect to the external disturbance forces. 
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4.4 Numerical simulations of the PI-type fuzzy logic controller  
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First, the simulation results of the nominal case without external disturbance force are given 
in Fig. 12(a), where the responses of slider B are stable after 1 sec and the error between the 
desired position and numerical response is about 0.3 mm. It is noted that the control input is 
adjusted by the fuzzy inference mechanism, which is based on the concept of hitting 
conditions regardless of the exact mathematical model. Figure 12(b) illustrates the 
trajectories in the phase plane. It is seen that the representative point lies on the designed 
sliding surface 0s =  after it hits the switching hyperplane, and the smooth step-command 
tracking responses are obtained for xB. Figures 13 (a) and (b) respectively show the 
trajectories in the phase plane for the system without and with external disturbance force 

100EF Nt= .  
In conclusion, the dynamic responses utilizing the PI-type FLC to a motor-toggle 
mechanism system has no overshoot phenomenon and are stable fast with external force. 
Furthermore, the PI-type fuzzy controlled motor-toggle mechanism system is robust with 
respect to the external disturbance forces. 



 Visual Servoing 

 

112 

(sec)time

)
(m

x B

0.0 0.5 1.0 1.5 2.0
0.06

0.07

0.08

0.09

0.10

0.11

0.12
 

 (sec)time

)
(m

x B

0.0 0.5 1.0 1.5 2.0
0.06

0.07

0.08

0.09

0.10

0.11

0.12

  

 
 

                                             (a)                                                                           (b) 

Fig. 12. The dynamic responses of slider B by the PI-type FLC: (a) 0EF Nt= ; 
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                                               (a)                                                                            (b) 
Fig. 13. The trajectories in the phase plane by the PI-type FLC: (a) 0EF Nt= ;  
(b) 100EF Nt=  

5. Experiments 
In the real operations of an experimental system, the main merit of this study is that the 
machine vision system of a digital CCD camera is employed as an unconstrained feedback 
sensor. In Fig. 14(a), the slider position can be measured by non-contacted equipments and a 
color pattern is pasted to measure and vision-based control. In Fig. 14(b), the state angle θ1 
of the motor-toggle mechanism system is difficult to be measured by an installed encoder 
and will be experimentally measured by a shape pattern of the machine vision system, 
which is needed only to paste a pattern on where want to be measured and can be 
controlled to the desired position by a digital CCD camera.  

5.1 Visual control system 
The machine vision servoing system takes a color-pattern and a shape-pattern is pasted up 
on the link and is shown in Fig. 14. It has the advantage in distinguishing the link from its 
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                         (a) The color pattern                                             (b) The shape pattern  

Fig. 14. The control image frame with (a) the color pattern and (b) the shape pattern.  
near monotonic surrounding fast. The directional shape pattern is easy identified with 
measuring the angle θ1 of the motor-mechanism system. In this vision system, one full-frame 
of image consists of 752×582 pixels. Searching the whole video data of a full-frame for the 
shape pattern usually takes quite long time, and degrades the performance of the visual 
servoing system. Thus, based on the range of the angle θ1, the image frame is adjusted by a 
CCD camera to contain the controlled degree of the angle θ1. Before using the machine 
vision system, it is very important to do a calibration between one pixel and a real-word 
unit such as millimeter (mm). Therefore, a standard calibration grid is shown in Fig.15. The 
real distance in the standard calibration grid of one block point center to another one point 
center is measured 7 mm in both the X- and Y-directions. The result of calibration is that one 
pixel is 0.2 mm in the real world. According to this the color pattern image coordinate can 
be transformed into a real-world unit in designing a control algorithm.  

7 mm

7 mm

 
Fig. 15. The standard calibration grid. 



 Visual Servoing 

 

112 

(sec)time

)
(m

x B

0.0 0.5 1.0 1.5 2.0
0.06

0.07

0.08

0.09

0.10

0.11

0.12

 

 (sec)time

)
(m

x B

0.0 0.5 1.0 1.5 2.0
0.06

0.07

0.08

0.09

0.10

0.11

0.12

  

 
 

                                             (a)                                                                           (b) 

Fig. 12. The dynamic responses of slider B by the PI-type FLC: (a) 0EF Nt= ; 
(b) 100EF Nt=  

)(me

)
/

(
s

m
e

-0.04 -0.03 -0.02 -0.01 0.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

  

 )(me

)
/

(
s

m
e

-0.04 -0.03 -0.02 -0.01 0.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

  

 
 

                                               (a)                                                                            (b) 
Fig. 13. The trajectories in the phase plane by the PI-type FLC: (a) 0EF Nt= ;  
(b) 100EF Nt=  

5. Experiments 
In the real operations of an experimental system, the main merit of this study is that the 
machine vision system of a digital CCD camera is employed as an unconstrained feedback 
sensor. In Fig. 14(a), the slider position can be measured by non-contacted equipments and a 
color pattern is pasted to measure and vision-based control. In Fig. 14(b), the state angle θ1 
of the motor-toggle mechanism system is difficult to be measured by an installed encoder 
and will be experimentally measured by a shape pattern of the machine vision system, 
which is needed only to paste a pattern on where want to be measured and can be 
controlled to the desired position by a digital CCD camera.  

5.1 Visual control system 
The machine vision servoing system takes a color-pattern and a shape-pattern is pasted up 
on the link and is shown in Fig. 14. It has the advantage in distinguishing the link from its 
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near monotonic surrounding fast. The directional shape pattern is easy identified with 
measuring the angle θ1 of the motor-mechanism system. In this vision system, one full-frame 
of image consists of 752×582 pixels. Searching the whole video data of a full-frame for the 
shape pattern usually takes quite long time, and degrades the performance of the visual 
servoing system. Thus, based on the range of the angle θ1, the image frame is adjusted by a 
CCD camera to contain the controlled degree of the angle θ1. Before using the machine 
vision system, it is very important to do a calibration between one pixel and a real-word 
unit such as millimeter (mm). Therefore, a standard calibration grid is shown in Fig.15. The 
real distance in the standard calibration grid of one block point center to another one point 
center is measured 7 mm in both the X- and Y-directions. The result of calibration is that one 
pixel is 0.2 mm in the real world. According to this the color pattern image coordinate can 
be transformed into a real-world unit in designing a control algorithm.  
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Fig. 15. The standard calibration grid. 
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After the experimental calibration, pattern matching is the first step for implementing the 
machine vision system. The servoing control algorithm is implemented by LabVIEW and 
the image acquisition card is implemented by PCI 1405. In the controlled image frame, the 
shape pattern is selected as the region of interest (ROI) to save in a disk for searching. 
Finally, the shape pattern and color pattern matching algorithm is realized by LabVIEW and 
the position of slider B is controlled by the visual controller. In this study, the image 
processing time is 0.2 sec by using the CCD camera to feedback the slider position. 
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Fig. 16. The visual control system. (a) The computer control block diagram.  
(b) The experimental equipments. 
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5.2 Experimental setup  
The visual control block diagram of the motor-toggle mechanism is shown in Fig. 16(a) and 
its experimental equipments are shown in Fig. 16(b). The control algorithm is implemented 
by using a Pentium computer and the control software is LabVIEW. The PMSM is 
implemented by the MITSUBISHI HC-KFS43 series. The specifications are described as 
follows: rated output 400 (W), rated torque 1.3 (Nm), rated rotation speed 3000 (rpm) and 
rated current 2.3 (A). The servo is implemented by the MITSUBISHI MR-J2S-40A1. The 
control system is a sine-wave PWM control, which is a current control system. The digital 
CCD camera is implemented by the SONY SSC-DC393 series. The specifications are imaging 
device 1/3-type interline transfer, picture elements 752(horizontal) ×582(vertical), and Lent 
CS-mount. 

6. Experimental results  
6.1 The vision-based adaptive controller  
The adaptive vision-based control for the motor-mechanism system is performed by 
comparing the external disturbance force 0EF Nt=  with 10EF Nt= − . The experimental 
results of the measured angle θ1 via the machine vision system, the transient responses of 
slider B via the manipulating relation 1 12 cosBx r θ=  and the control efforts *

qi  are shown in 
Figs. 17-18, respectively. It is seen that the experimentally measured angle θ1 in Fig. 17 and 
the transient responses of slider B in Fig.18 are almost the same for the system with and 
without EF , and are stable after 0.75 sec. However, the control efforts *

qi  are quite different. 
The maximum control effort * 0.28qi A=  for 0EF Nt=  is much smaller than that * 0.75qi A=  
for 10EF Nt= − . The maximum control efforts are near to those of numerical simulations. 
Moreover, in order to demonstrate the robust control performance of the adaptive vision-
based controller, the experiments are performed by suddenly adding an extra mass 10 kg on 
slider B at 0.6 sec, and suddenly adding 10 Ntof the external force at 0.6 sec. Figure 19(a) 
show the good performance of regulation problems, and Figure 19(b) show the control input 
efforts, where the jumps occurs when the extra mass and external force are suddenly added. 
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Fig. 17. The experimentally measured angle θ1  with and without external disturbance 
forces. 
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forces. 
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Fig. 19. (a)The experimentally dynamic responses of slider B with the time-varying external 
force and mass variation at slider B. (b) Control input efforts with the time-varying external 
force and mass variation at slider B 

6.2 The vision-based sliding mode and fuzzy logic controller  
The experiments are performed by suddenly adding an extra mass 10 kg on slider B at 0.6 
sec, and suddenly adding 10 Nt force of the external force at 0.6 sec. The initial state is 

(0) 0.06  Bx m=   while the desired position is * 0.1 Bx m= . The SMC, PD-type FLC and PI-type 
FLC are performed for the cases with external disturbance forces 0EF Nt= and 10EF Nt= . 
Some experimental results are provided to demonstrate the effectiveness of the proposed 
controllers by the machine vision system. First, the SMC is applied to control the motor-
toggle mechanism system and the experimentally controlled responses of slider B without 
and with external disturbance forces are shown in Fig. 20. It is seen that the experimental 
responses of slider B are all stable after 1 sec and the errors between the desired position and 
experimental one are about 1 mm. The results show that the smooth step-command 
responses are obtained for the slider B due to the robust control characteristics of the SMC.   
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Furthermore, the results via the PD-type and PI-type FLC are compared without and with 
external disturbance force in Figs. 21(a) and 21(b), respectively. It is seen that the PI-type 
FLC performance is always superior to PD-type FLC for the system without and with the 
external disturbance forces. Finally, the control current inputs of the PD-type and PI-type 
FLCs with and without external disturbance forces are respectively shown in Figs 22(a) and 
22(b). 
In conclusions of the experiments, the general problems encountered in designing 
controllers are that the bounds of uncertainties and the exact mathematical models of a 
motor-mechanism system are difficult to obtain in advance for practical applications. 
Moreover, the parameters of the motor-mechanism system can not be obtained directly and 
the output responses must be measured without constraint. From the experimental results, 
the PI-type FLC owns more robust control characteristics for the motor-mechanism system 
by using machine vision. 
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Fig. 20. The experimentally dynamic responses of slider B by the SMC.  
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Fig. 21. The experimentally dynamic responses by the PI-type and PD-type FLCs (a) with 

0EF Nt= ; (b) with 10EF Nt= . 
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Fig. 21. The experimentally dynamic responses by the PI-type and PD-type FLCs (a) with 
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              (b) 

Fig. 22. The control currents of the PD-type and PI-type FLCs with and without external 
disturbance forces: (a) The disturbance forces 0EF Nt= . (b) The disturbance forces 

10EF Nt= .  

7. Conclusions 
In this chapter, we successfully demonstrate the applications of the proposed adaptive, 
sliding mode and fuzzy logic vision-based controller to position control of the motor-toggle 
mechanism system, which is made up by the toggle mechanism driven by a field-oriented 
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PMSM. In order to overcome the general difficulties of non-contact measuring and external-
force uncertainties of the system, the shape pattern and color pattern are designed to 
measure the rotating angle and slider position, respectively. Finally, the numerical 
simulations and experimental results are provided to demonstrate the robust control 
performance of the proposed vision-based controllers.  
The main contributions of this study are summarized as: 
1. We developed a complete mathematical model for the mechatronic system, which is 

made up by the toggle mechanism driven by a PMSM. 
2. We successfully employed the controllers by machine vision to control the slider 

position of a complex motor-mechanism coupled system with a simple rule base instead 
of its complex mathematical model. Moreover, the robust control performance of the 
mechatronic system is presented with external disturbance forces numerically and 
experimentally. 

3. The color-pattern and shape-pattern matching method of the machine vision are 
implemented successfully for the mechatronic system. It is shown that the applications 
of machine vision for industrial equipments are convenient, low cost and multi-useful.   
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1. Introduction 
Catching a fast moving object can be used to describe work across many subfields of 
robotics, sensing, processing, actuation, and systems design. The reaction time allowed to 
the entire robot system: sensors, processor and actuators is very short. The sensor system 
must provide estimates of the object trajectory as early as possible, so that the robot may 
begin moving to approximately the correct place as early as possible. High accuracy must be 
obtained, so that the best possible catching position can be computed and maximum 
reaction time is available. 3D visual tracking and catching of a flying object has been 
achieved successfully by several researchers in recent years (Andersson; 1989)-(Mori et al.; 
2004). There are two basic approaches to visual servo control: Position-Based Visual 
Servoing (PBVS), where computer techniques are used to reconstruct a representation of the 
3D workspace of the robot, and actuator commands are computed with respect to the 3D 
workspace; and, Image-Based Visual Servoing (IBVS), where an error signal measured 
directly in the image is mapped to actuator commands. 
In most of the research done in robotic catching using PBVS, the trajectory of the object is 
predicted with data obtained with a stereo vision system (Andersson; 1989)-(Namiki & 
Ishikawa; 2003), and the catching is achieved using a combination of light weight robots 
(Hove & Slotine; 1991) with fast grasping actuators (Hong & Slotine; 1995; Namiki & 
Ishikawa; 2003). A major difference exists between motion and structure estimation from 
binocular image sequences and that from monocular image sequences. With binocular 
image sequences, once the baseline is calibrated, the 3-D position of the object with reference 
with the cameras can be obtained. 
Using IBVS, catching a ball has been achieved successfully in a hand-eye configuration with 
a 6 DOF robot manipulator and one CCD camera based on GAG strategy (Mori et al.; 2004). 
Estimation of 3D trajectories from a monocular image sequence has been researched by 
(Avidan & Shashua; 2000; Cui et al.; 1994; Chan et al.; 2002; Ribnick et al.; 2009), among 
others, but to the best of our knowledge, no published work has addressed the 3-D catching 
of a fast moving object using monocular images with a PBVS system. 
Our system (see Fig. 1) consists of one high speed stationary camera, a personal computer to 
calculate and predict the trajectory online of the object, and a 6 d.o.f. arm to approach the 
manipulator to the predicted position. 



 Visual Servoing 

 

120 

T. S. Lee, C. H. Lin and F. J. Lin, (2005). An adaptive H∞ controller design for permanent 
magnet synchronous motor drives, Control Engineering Practice 13 425-439.  

F. J. Lin, R. F. Fung and Y. S. Lin, (1997). Adaptive control of slider-crank  mechanism 
motion: simulations and experiments, International Journal of Systems Science 28 
1227-1238.  

F. J. Lin, R. F. Fung and Y. C. Wang. (1997). Sliding mode and fuzzy control of toggle 
mechanism using pm synchronous servomotor drive. IEE Proceedings Control Theory 
and Applications, 144, 393-402.  

F. J. Lin and R. J. Wai. (2002). Hybrid computed torque controlled motor-toggle 
servomechanism using fuzzy neural network uncertainty observer. 
Neurocomputing, 48, 403-422.  

Z. B. Li, Z. L. Wang and J. F. Li. (2004). A hybrid control scheme of adaptive and variable 
structure for flexible spacecraft. Aerospace Science and Technology, 8,  423-430.   

H. T. Moon, H. S. Kim and M. J. Youg (2003). A discrete-time predictive current control for 
PMSM. IEEE Trans. On Power Electronics 18, 464-472. 

K. S. Narendra and A. M. Annaswamy, (1988). Stable Adaptive System, Prentice-Hall,  
Englewood Cliffs, NJ,     

O. Nasisi and R. Carelli. (2003). Adaptive servo visual robot control, Robotics and Autonomous 
Systems, 43, 51-78.  

J. H. Park and Y. J. Lee, (2002). Robust visual servoing for motion control of the ball on a 
plate. Mechatronics 13, 723-738. 

I. Petrovic and M. Brezak (2002). Machine vision based control of the ball and beam. 
Advanced Motion Control IEEE 7th International workshop 3-5, 573-577.  

R. Rahbari and C. W. D. Silva (2000 ). Fuzzy logic control of hydraulic system.  Industrial 
Technology Proceeding of IEEE International Conference 2, 313-318.  

J. J. E. Slotine and W. Li,(1991). Applied nonlinear control, Prentice-Hall,  Englewood Cliffs, NJ. 
J. J. E. Slotine and W. Li, (1988). Adaptive manipulator control a case study, IEEE  

Transactions and Automatic Control 33, 995-1003.  
J. J. E. Slotine and W. Li, (1989) Composite Adaptive control of robot manipulators,  

Automatica 25, 509-519.  
R. J. Wai, C. H. Lin and F. J. Lin. (2001). Adaptive fuzzy neural network control for motor-

toggle servomechanism. Mechatronics, 11, 95-117.  
R. J Wai. (2003). Robust fuzzy neural network control for nonlinear motor-toggle 

servomechanism. Fuzzy sets and systems, 139, 185-208.  
J. Yong, C. S. Kim, J. Bae, S. Hong, M. H. Lee and F. Harashima, (2001). Vision  based lateral 

control by yaw rate feedback. The 27th Annual Conference of the IEEE Industrial 
Electronics Society C, 2135-2138. 

6 

Online 3-D Trajectory Estimation  
of a Flying Object from a Monocular Image 

Sequence for Catching 
Rafael Herrejon Mendoza, Shingo Kagami and Koichi Hashimoto 

Tohoku University 
Japan 

1. Introduction 
Catching a fast moving object can be used to describe work across many subfields of 
robotics, sensing, processing, actuation, and systems design. The reaction time allowed to 
the entire robot system: sensors, processor and actuators is very short. The sensor system 
must provide estimates of the object trajectory as early as possible, so that the robot may 
begin moving to approximately the correct place as early as possible. High accuracy must be 
obtained, so that the best possible catching position can be computed and maximum 
reaction time is available. 3D visual tracking and catching of a flying object has been 
achieved successfully by several researchers in recent years (Andersson; 1989)-(Mori et al.; 
2004). There are two basic approaches to visual servo control: Position-Based Visual 
Servoing (PBVS), where computer techniques are used to reconstruct a representation of the 
3D workspace of the robot, and actuator commands are computed with respect to the 3D 
workspace; and, Image-Based Visual Servoing (IBVS), where an error signal measured 
directly in the image is mapped to actuator commands. 
In most of the research done in robotic catching using PBVS, the trajectory of the object is 
predicted with data obtained with a stereo vision system (Andersson; 1989)-(Namiki & 
Ishikawa; 2003), and the catching is achieved using a combination of light weight robots 
(Hove & Slotine; 1991) with fast grasping actuators (Hong & Slotine; 1995; Namiki & 
Ishikawa; 2003). A major difference exists between motion and structure estimation from 
binocular image sequences and that from monocular image sequences. With binocular 
image sequences, once the baseline is calibrated, the 3-D position of the object with reference 
with the cameras can be obtained. 
Using IBVS, catching a ball has been achieved successfully in a hand-eye configuration with 
a 6 DOF robot manipulator and one CCD camera based on GAG strategy (Mori et al.; 2004). 
Estimation of 3D trajectories from a monocular image sequence has been researched by 
(Avidan & Shashua; 2000; Cui et al.; 1994; Chan et al.; 2002; Ribnick et al.; 2009), among 
others, but to the best of our knowledge, no published work has addressed the 3-D catching 
of a fast moving object using monocular images with a PBVS system. 
Our system (see Fig. 1) consists of one high speed stationary camera, a personal computer to 
calculate and predict the trajectory online of the object, and a 6 d.o.f. arm to approach the 
manipulator to the predicted position. 



 Visual Servoing 

 

122 

 
Fig. 1. System configuration used for catching. 

The low level robot controller must be able to operate the actuator as close as possible to its 
capabilities, unlike conventional controllers. The robot must be able to be made to arrive not 
only at a specific place, but accurately at a specific time. The robot system must act before 
accurate data is available. The initial data is incorrect due to the inherent noise in the image, 
but if the robot waits until accurate data is obtained, there is very few time for motion. 

2. Target trajectory estimation 
Taking 3D points to a 2D plane is the objective of projective geometry. Due to its importance 
in artificial vision, work on this area has been used and developed thoroughly. The 
approach to determine motion consists of two steps: 1) Extract, match and determine the 
location of corresponding features, 2) Determine motion parameters from the feature 
correspondences. In this paper, only the second step is discussed. 

2.1 Camera model 
The standard pinhole model is used throughout this article. The camera coordinate system 
is assigned so as the x and y axis form the basis for the image plane, the z-axis is 
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perpendicular to the image plane and goes through its optical center (cu, cv). Its origin is 
located at a distance f from the image plane. Using a perspective projection model, every 3-
D point P = [X,Y,Z]T on the surface of an object is deflated to a 2D point p = [u,v]T in the 
image plane via a linear transformation known as the projection or intrinsic matrix A. 
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A  (1) 

where fu and fv are conversion factors transforming distance units in the retinal plane into 
horizontal and vertical image pixels. 
The projection of a 3D point on the retinal plane is given by 

 sp = AP  (2) 

where p = [u, v, 1]T  and P = [cx, cy, cz, 1]T are augmented vectors and s is an arbitrary scale 
factor. From this model, it is clear that any point in the line defined by the projected and 
original point produces the same projection on the retinal plane. 

2.2 3D rigid-body motion 
In this coordinate system, the camera is stationary and the scene is moving. For simplicity, 
assume that the camera takes images at regular intervals. As the rigid object move with 
respect to the camera, a sequence of images is obtained. 
The motion of a rigid body in a 3D space has six degree of freedom. These are the three 
translation components of an arbitrary point within the object and the three rotation 
variables about that point. The translation component of the motion of a point at time ti can 
be calculated with 
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2.3 Observation vector 
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Fig. 1. System configuration used for catching. 
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perpendicular to the image plane and goes through its optical center (cu, cv). Its origin is 
located at a distance f from the image plane. Using a perspective projection model, every 3-
D point P = [X,Y,Z]T on the surface of an object is deflated to a 2D point p = [u,v]T in the 
image plane via a linear transformation known as the projection or intrinsic matrix A. 
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If =i i uu u c′ −  and =i i vv v c′ − , (6, 7) can be expressed as 
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Substituting (3, 4, 5) into (8) and (9) to obtain 
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Reordering and multiplying (10) and (11) by a constant d such as dC9 = 1, yields 
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We have the equation describing the state observation as follows 

 = ,i i i i+H a qμ  (14) 

where μi is a vector representing the noise in observation, Hi is the state observation matrix 
given by 
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 ai is the state vector 

 [ ]1 2 3 4 5 6 7 8= T
i dC dC dC dC dC dC dC dCa  (16) 

 and  

 2 2= [ , ]T
i i i i iu t v t− −q  (17) 

is the observation vector. 
Considering one point in the space as the only feature to be tracked (the center of mass of an 
object), the issue of acquiring feature correspondences is dramatically simplified, but it is 
impossible to determine uniquely the solution. If the rigid object was n times farther away 
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from the image plane but translated at n times the speed, the projected image would be 
exactly the same. 
In order to be able to calculate the motion, one constraint in motion has to be added. We 
consider the case of a not-self propelled projectile, in this case, the vector of acceleration is 
gravity. 
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2 2 2
3 6 9 =

4
gC C C+ +  (18) 

 

Equation 19 is a constraint given by the addition of the decomposition of the vector of 
gravity in its different components on each axis for a free falling object. 
Substituting C3,C6 and C9 from (14) and (17) into (19) yields 
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ga a

d d d
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From (20) the constant d can be calculated as 

 
2 2
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2

1= 2 .a ad
g

+ +  (20) 

2.4 Object trajectory estimation method 
Recursive least squares is used to find the best estimate of the state from the previous state. 
The best estimate for time i is computed as 

 1 1ˆ ˆ ˆ= ( ).i i i i i i− −+ −a a K q H a  (21) 
 

where Ki is the gain matrix, qi is the measurement vector for one point, and Hi is the 
projection matrix and given by the camera model and time. 
The equation that describes the computation of the gain matrix is 

 = .T
i i iK PH  (22) 

Pi is the covariance matrix for the estimation of the state i, and can be expressed 
mathematically as 

 1 1
1= ( ) .T

i i i i
− −
− +P P H H  (23) 

The accuracy of the estimation depends of the number of points projected in the camera 
plane. Assuming we can observe enough points, the error from the calculated path and the 
projected path tends to zero. 

2.5 Estimated trajectory accuracy 
We evaluate the error by the sum of the squares of the 3-D euclidean distance between the 
simulated position (cx(t) , cy(t) , cz(t)) and the estimated position ( ˆ( )c x t  , ˆ( )c y t  , ˆ( )c z t ), over 
the flying time interval i.e, 
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 2 2 2

=0

ˆ ˆ ˆ= ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
T

c c c c c c
xyz

t
e x t x t y t y t z t z t− + − + −∑  (24) 

 

and in image coordinates, we evaluate the mean distance between the projected object 
trajectory and the reprojected estimated coordinate ( û , v̂ ), which are functions of the 
estimated position, as follow 

 
N

uv n n n n
n

e N u u v v
N

− + −∑ 2 2

=1

1 ˆ ˆ( ) = ( ) ( ) .  (25) 

3. Catching task 
3.1 Constraints for the catching task 
There are several constraints present for any robotic motion, but for catching there are some 
others that must be considered. Both of the types are included here for completion. 
1. Initial Conditions. The initial arm position, velocity and acceleration are constrained to 

be their values at the time the target is first sighted 
2. Catching Conditions. At the time of the catch, the end effector's position (xr) has to 

match that of the ball. Thus at tcatch, xr is constrained. 
3. System Limits. The end effector's velocity and acceleration must stay below the limits 

physically acceptable to the system. The position, velocity and acceleration of the end 
effector must each be continuous. The end effector cannot leave the workspace 

4. Freedom to change. When new vision information comes in, it should be possible to 
update the trajectory accordingly. 

Two requirements are necessary for a particular trajectory matching solution have relevance 
to catching. One, the algorithm must require no prior knowledge of the trajectory such as 
starting position or velocity, and two, the algorithm can not be too computationally 
intensive. 

3.2 Catching approaches 
The processing of the computer images is time consuming, causing inherent delays in the 
information flow, when the position of a moving object is determined from the images, the 
computed value specifies the location of the object some periods ago. A time delay in the 
calculated position of the moving object is the main cause of difficulties in the visual-based 
implementation of the system. This problem can be avoided by predicting the position of the 
moving object. 
There are two fundamental approaches to catching. One approach is to calculate an 
intercept point, move to it before the object arrives, wait and close at the appropriate time, 
the situation is analogous to a baseball catcher that positions the glove in the path of the ball, 
stopping it almost instantaneously. The other approach is to match the trajectory of the 
object in order to grasp the object with less impact and to allow for more time for grasping, 
like catching a raw egg, matching the movement of the hand with that of the egg. To be able 
to match the trajectory, it is expected that the robot end-effector can travel faster that the 
target within the robot's workspace. 
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3.3 Catch point determination 
Depending on the initial angle and velocity, an object thrown at 1.7 meters from the base of 
the x-axis of the robot takes approximately 0.7-0.8 seconds to cover this distance. When the 
object enters the workspace of the robot, it typically travels at 3-6 m/s and the amount of 
time when the object is within the arm's workspace is about 0.20 seconds. Due to the 
maximum velocity of our arm ( a six d.o.f industrial robot Mitsubishi PA10) being 1 m/s, it 
is physically impossible to match the trajectory of the object. Because of this constraint, we 
used move and wait approach for catching. 
The catch point determination process begins by selection an initial prospective catch time. 
We assume that the closest point along the path of the object to the end-effector is when the 
z value of the object is equal to the robot's one.The time for the closest point is calculated 
solving 5 for t 

 
2

8 8 9 7 0

9

(4 )
= ;

2
r

catch
C C C C Z

t
C

− + − −
 (26) 

where Zr0 is the initial position of the robot's manipulator on camera coordinates, and C7,C8 
and C9 are the best estimated values obtained in 2.4. Note that the parabolic fit is updated 
with every new vision sample, therefore the position and time at which the robot would like 
to catch the changes during the course of the toss. Once tcatch has been obtained, it is just a 
matter of substituting its value in equations 3,4 to calculate the catching point. 

3.4 Convergence criterion 
When the mean square error euv in 26 is smaller than a chosen threshold (image noise + 1 
pixel), and the error has been decreasing for the last 3 frames, we considered that the 
estimated path is close enough to the ground data and therefore the calculated rendez-vous 
point is valid. Prediction planning execution (PPE) strategy is started to move the robots end 
effector to the rendez-vous point. 

3.5 Simulation results 
Simulations for the task of tracking and catching a three dimensional flying target are 
described. At the initial time (t = 0), the initial position of the center of the manipulator end-
effector is at (0.35, 0.33, 0.81) of the world coordinate frame. The speed of the manipulator is 
given by 

 = 1 / .robot robotx y m s+  (27) 

The object motion in world coordinates considered for this simulation (Fig. 2.a) is given by 

 ( ) = 1.465 1.5w x t t−  (28) 

  ( ) = 0.509 0.25w y t t−  (29) 

  21( ) = 0.8 4.318
2

w z t t gt+ +  (30) 

The coordinates of the object with respect to the camera can be calculated by 
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                             (a)                                                                         (b) 

Fig. 2. Path of the object in a) world and b) image coordinates 

 ( ) = ( )c c w c
w wt t +X R X t  (31) 

where cRw is the rotation matrix from world to camera coordinates. First, a rotation about the 
x-axis, then about the y-axis, and finally the z-axis is considered. This sequence of rotations 
can be represented as the matrix product R = Rz(φ)Ry(θ)Rx(ψ). 
The camera pose is given by rotating ψ = 3.1806135, θ = –0.0123876 and φ = .0084783 radians 
in the order previously stated. The translation vector is given by t = [0.889;–0.209;–2.853] 
meters. Substituting these parameters in (32), the object's motion in camera coordinates is 
given by 

 2( ) = 0.599 1.374 0.137c
simx t t t− + +  (32) 

  2( ) = 0.317 0.299 0.030c
simy t t t− +  (33) 

  2( ) = 2.091 4.356 4.898 .c
simz t t t− +  (34) 

The image of the simulated camera is a rectangle with a pixel array of 480 rows and 640 
columns. The number of frames used is 60 at a sampling rate of 69 MHz, which accounts for 
a flying time of 0.87 seconds. The image coordinates (u,v) obtained using focal lengths fu = 
799, fv = 799 and centers of image cu = 267, cv = 205 in (6,7) are shown in Fig. 2.b. 
The object passes the catching point (0.42, 0.065, 0.81) at time t = 0.806. If the center of the 
manipulator end-effector can reach the catching point at the catching time, catching of the 
object is considered successful. Because the start of the actuation of the robot depends on the 
convergence criterion stated in 3.4, the success of the catching task is studied for image noise 
levels of 0, 0.5, 1 and 2 pixels. 
Selection of an optimal convergence criteria to begin the robot motion is a difficult task. In 
Fig. 3, we can see that euv converges approximately 10 frames earlier than exyz, for all the 
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Fig. 3. Errors exyz, euv and trigger for servoing. 

 
Fig. 4. Distance between manipulator and catching point 

noise levels, but because exyz has not converged yet, triggering the start control flag at this 
moment would result in an incorrect catching position and the manipulator most probably 
lose valuable time back-tracking. It could be possible to wait until exyz is closer to 
convergence, but that would shorten the time for moving the manipulator. Our convergence  
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convergence criterion stated in 3.4, the success of the catching task is studied for image noise 
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Selection of an optimal convergence criteria to begin the robot motion is a difficult task. In 
Fig. 3, we can see that euv converges approximately 10 frames earlier than exyz, for all the 
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Fig. 3. Errors exyz, euv and trigger for servoing. 

 
Fig. 4. Distance between manipulator and catching point 

noise levels, but because exyz has not converged yet, triggering the start control flag at this 
moment would result in an incorrect catching position and the manipulator most probably 
lose valuable time back-tracking. It could be possible to wait until exyz is closer to 
convergence, but that would shorten the time for moving the manipulator. Our convergence  
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Fig. 5. Target catchable regions 

criteria shows a reasonable balance within both stated situations. Fig. 4 shows the distance 
from the manipulator to the catching point. Judging from these results, we can see that the 
manipulator reaches the catching point at the catching time, when image noise is smaller 
than 2 pixels. 

3.6 Target catchable region 
In this section, we describe the target catchable region for the manipulator for each of the 
noise levels obtained by simulation. We consider several trajectories, landing grid points at 
time t = 0.806 from different initial positions. In these figures, the catching rate of the object 
is shown by size of the circle in the grid. As expected, the smaller the image noise is, the 
wider is the catching region. It was also found that trajectories that show a relative small 
change from their initial to final y-coordinates tend to converge faster than those with 
higher change rates. 

4. Experimental results 
Implementation of our visual servo trajectory control method was implemented to verify 
our simulation results. For this experiment, 58 images were taken with a Dragonfly Express 
Camera at 70 fps, the center of gravity of the object (a flipping coin) in the image plane (u,v) 
is used to calculate the trajectory. Camera calibration to obtain the intrinsic parameters was 
realized. Because the coin is turning, the calculated center of gravity varies accordingly to 
the image obtained, missing data is due to the observed coin projection in the image does 
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Fig. 6. Error euv and trigger for servoing. 

 
Fig. 7. Distance between manipulator and predicted catching point 

not fulfill a minimum specified area, also, blur in the image causes errors in the calculation 
of the center of the coin. Error euv was found to be 1.4 pixels, we know from simulations the 
approximate catching range for this noise level. Experimental results are shown in Fig. 9 and 
Fig. 10, where it can be seen the movement of the robot to the catching point. Judging from 
these results, the robot performed the object catching task successfully. From Fig. 6 and Fig. 
7, it is visible that the predicted catching point has already converged when control starts. 

5. Conclusions and future work 
This paper presented an implementation of ball catching task using a robot manipulator. We 
demonstrated that the robot can catch an object flying in three-dimensional space using 
recursive least squares (RLS) algorithm to extract and predict the position of the object from 
one feature correspondence from only a monocular vision system. The object trajectory path 
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Fig. 8. Calculated path in each axis 

 
Fig. 9. The center of mass as observed by the camera 

was obtained successfully even under high noise images. The recursive estimation technique 
presented in this paper has numerous advantages over other methods currently in use. First, 
using only one feature point, the issue of feature points correspondence is simplified. 
Another advantage is the recursive nature of the computations makes it suitable for real-
time applications. Results on simulation and real imagery illustrate the performance of the 
estimator, and the feasibility of our estimation method for the catching task. Convergence of 
the path under image noise was studied and a satisfactory criteria was determined 
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Fig. 10. Sequence of images of object catching 

successfully for both simulations and experiments. Current research is directed towards the 
study of different control approaches to increase the catching range of the manipulator 
under noisy images. 
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1. Introduction 
Autonomous control of unmanned helicopters has the advantage that there is no need to 
develop skilled workers and has potential for surveillance tasks in dangerous areas 
including forest-fire reconnaissance and monitoring of volcanic activity. For vehicle 
navigation, the use of computer vision as a sensor is effective in unmapped areas. Visual 
feedback control is also suitable for autonomous takeoffs and landings, since precise 
position control is required at a neighborhood of the launch pad or the landing pad. Such 
applications have generated considerable interest in the vision based control community 
(Altug et al., 2005; Amidi et al., 1999; Ettinger et al., 2002; Mahony & Hamel, 2005; Mejias et 
al., 2006; Proctor et al., 2006; Saripalli et al., 2003; Shakernia et al., 2002; Wu et al., 2005; Yu et 
al., 2006). 
The authors have developed a visual control system for a micro helicopter (Watanabe et al., 
2008). The helicopter does not have any sensors that measure its position or posture. Two 
cameras are placed on the ground. They track four black balls attached to rods connected to 
the bottom of the helicopter. The differences between the current ball positions and given 
reference positions in the camera frames are fed to a set of PID controllers. It is not required 
that sensors for autonomous control are installed on the helicopter body, and we need no 
mechanical or electrical improvements of existing unmanned helicopters that are controlled 
remotely and manually. 
In visual control, tracked objects have to be visible in the camera views, but tracking may 
fail due to occlusions. An occlusion occurs when an object moves across in front of a camera 
or when the background color happens to be similar to the color of a tracked object. 
Multicamera systems are suitable for designing a robust controller under occlusions, since 
even when a tracked object is not visible in a camera view, the other cameras may track it. 
The visual control system with two cameras proposed in (Yoshihata et al., 2007) is robust 
against temporary occlusions. If an occlusion is detected in a camera view then the other 
camera is used to control the helicopter. The positions of the invisible tracked objects in the 
image plane of the occluded camera are estimated by using the positions in the other image 
plane. The control method proposed in (Yoshihata et al., 2007) is called the camera selection 
approach in this paper. 
This paper proposes another switched visual feedback control method that is called the 
image feature selection approach. It is robust against temporary and partial occlusions even 
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when a tracked object is not visible in any of the camera views. We also use two cameras 
and two tracked objects for each camera. This configuration is redundant for helicopter 
control, but it is suitable for making a control system robust against occlusions. This paper 
assumes that at most one tracked object is occluded at each time, as a first step towards a 
unified framework that combines the image feature selection approach presented in this 
paper and the camera selection approach proposed in (Yoshihata et al., 2007). The errors 
between the current positions of the tracked objects and pre-specified references are used to 
compute the control input signals, when all the tracked objects are visible. If one of the 
tracked objects is invisible, then the controller uses the errors given by the other three 
tracked objects. The position of the occluded object is also estimated by using the other three 
tracked objects. 

2. Experimental setup 
The experimental system considered in this paper consists of a small helicopter and two 
stationary cameras as illustrated in Fig. 1. The helicopter does not have any sensors that 
measure the position or posture. It has four small black balls, and they are attached to rods 
connected to the bottom of the helicopter. The black balls are indexed from 1 to 4. The two 
cameras are placed on the ground and they look upward. Snapshots of the helicopter from 
the two cameras can be seen in Fig. 2. The camera configuration and the use of the 
redundant tracked objects enable a robust controller design under temporary and partial 
occlusions as described in Section 6.  
The system takes 8.5 milli-seconds to make the control input signals from capturing images 
of the balls. This follows from the use of fast IEEE 1394 cameras, Dragonfly Express1. 
The small helicopter used in experiments is X. R. B–V2–lama developed by HIROBO (see 
Fig. 3). It has a coaxial rotor configuration. The two rotors share the same axis, and they 
rotate in opposite directions. The tail is a dummy. A stabilizer is installed on the upper rotor 
head. It mechanically keeps the posture horizontal. 
Table 1 summarizes specifications of the system. 
 

Camera 2 Camera 1

Helicopter

 
Fig. 1. System configuration. 
                                                 
1 Dragonfly Express is a trademark of Point Grey Research Inc. 
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Fig. 2. Snapshots of the helicopter. The right one was captured from camera 1 and the left 
one from camera 2. The helicopter was controlled manually. 
 

 
Fig. 3. X.R.B. with four black balls. 
 

Length of the helicopter,  0.40 [m].  
Height of the helicopter,  0.20 [m].  
Rotor length of the helicopter,  0.35 [m].  
Weight of the helicopter,  0.22 [kg].  
Focal length of the lens,  0.0045 [m].  
Camera resolution,  640 × 480 [pixels].  
Pixel size,  7.4 [μm] × 7.4 [μm].  

Table 1. Specifications of the system. 

3. Mathematical preliminaries 
3.1 Coordinate frames 
Let Σw be the world reference frame and a coordinate frame Σb be attached to the helicopter 
body as illustrated in Fig. 4. The zw axis is directed vertically downward. A coordinate frame 
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Fig. 2. Snapshots of the helicopter. The right one was captured from camera 1 and the left 
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Σ j is attached to camera j for j = 1, 2. The z j axis lies along the optical axis of camera j. The 
axes xw, x1 and x2 are parallel. The coordinate frame x jy j corresponds to the image frame of 
camera j, and it is denoted by Σcj. 
 
 

image captured
by camera 1

image captured
by camera 2

ball 1ball 2ball 3 ball 4

 
Fig. 4. Coordinate frames. 
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Side view Front view

 
Fig. 5. The helicopter coordinate frame and input variables. 

The helicopter position relative to the world reference frame Σw is denoted by (x, y, z). The 
roll, pitch and yaw angles are denoted by ψ, θ, φ, respectively. The following four variables 
are individually controlled by signals supplied to the transmitter (see Fig. 5): 
B : Elevator, pitch angle of the lower rotor. 
A : Aileron, roll angle of the lower rotor. 
T : Throttle, resultant force of the two rotor thrusts. 
Q : Rudder, difference of the two torques generated by the two rotors. 
The corresponding input signals are denoted by VB, VA, VT and VQ. Note that x, y, z and φ 
are controlled by applying VB, VA, VT and VQ, respectively. 

3.2 Mathematical preliminaries 
In this paper, we make the following four assumptions: 
1. It is supposed that 

 ( ) = 0, ( ) = 0,  0,t ψ t tθ ∀ ≥  (1) 

where recall that θ denotes the angle about yw axis and ψ the angle about xw axis. 
2. The reference position relative to the world reference frame Σw is always set to 0. When 

the reference position is changed, the world reference frame is replaced and the 
reference position is set to the origin of the new world reference frame. 

3. Camera 1 captures images of balls 1 and 2, and camera 2 takes images of balls 3 and 4. 
4. At most one tracked object is occluded at each time. 
Recall that the helicopter has the horizontal-keeping stabilizer. Both the angles θ and ψ 
converge to zero fast enough even when the body is inclined. Thus, the first assumption is 
not far from the truth in practice. We here define 

 [ ]= .x y z φr T  (2) 

Note that r means the vector of the generalized coordinates. Then, our goal is that r(t)→0 as 
t→∞ from the first and second assumptions. 
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The third and fourth assumptions are made to consider a simple example in which visible 
image features should be selected from redundant features under temporary and partial 
occlusions. The assumptions are suitable for a first step towards a unified framework that 
combines the image feature selection approach presented in this paper and the camera 
selection approach proposed in (Yoshihata et al., 2007). 

4. Image Jacobian 
This section derives the image Jacobian that gives a relationship between the vector of the 
generalized coordinates r and the vector of the image features. 
The position of the center of gravity of ball i in the image frame is denoted by ξi = [ξix, ξiy]T ∈ 
R2 for i = 1, . . . , 4. We define 

 0 1 2 3 4= .⎡ ⎤⎣ ⎦ζ
ΤΤ Τ Τ Τξ ξ ξ ξ  (3) 

In addition, we set 

 
1 2 3

= ,i i i iσ σ σ
⎡ ⎤
⎣ ⎦ζ

Τ
Τ Τ Τξ ξ ξ  (4) 

for i = 1, . . . , 4, where 

 {1,2,3,4} /{ },     = 1,2,3,ik i kσ ∈  (5) 

 1 2 3< < .i i iσ σ σ  (6) 

The vector ζ0 is used as the vector of image features, when all positions of the tracked balls 
can be measured correctly. On the other hand, ζi for i = 1, 2, 3, 4 implies the vector of visible 
image features when ball i is occluded. They enable us to give a switched controller that is 
robust against occlusions, if the fourth assumption holds or equivalently at most one tracked 
object is occluded. Details will be discussed in the next section. 
Let bpi ∈ R3 denote the position of ball i in the frame Σb. The position of ball i in the frame Σj 

is denoted by 

 [ ] 3= ,i i i ix y z ∈Rp Τ  (7) 
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where jHw(r) and wHb(r) are the homogeneous transformation matrices from Σw to Σj and 
from Σb to Σw, respectively (see for example (Spong et al., 2005) for deriving the 
homogeneous transformation matrices). It then holds that 
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and f is the focal length of the lens (see for example (Ma et al., 2004) for the camera model). It 
is straightforward to verify that 
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for i = 1, . . . , 4, where σi1, σi2 and σi3 are defined by (5) and (6). The equations (12) and (13) 
provide transformations from the generalized coordinates r to the image features ζi. 
We define 
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at r = 0. Each Ji (i = 0, . . . , 4) is referred to as the image Jacobian. 

5. Controller design 
This paper proposes a switched visual feedback control system illustrated in Fig. 6, where 

ref
iξ  denotes the image reference of ball i relative to the corresponding image frame Σcj and 
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for i = 1, . . . , 4, where σi1, σi2 and σi3 are defined by (5) and (6). The system is an image-based 
visual servo system, since the proposed controller uses the image Jacobian derived in the 
previous section and the errors between the vector of the image features ζi(t) and the 
corresponding given reference ref

iζ  to obtain the input signals. Image-based visual servo 
control is robust against model uncertainties (Hashimoto, 2003). 
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Fig. 6. Closed loop system. 

The switch in the closed loop depends on which image feature ξi is invisible. The decision of 
switching will be described in Section 5.2. In this paper, the image feature ξi is labeled as 
‘normal’, when the system decides that ξi is measured correctly. Similarly, ξi is labeled as 
‘occluded’, when the system decides that ξi is not measured correctly. 

5.1 Measurement of image features 
An image feature ξi(t) (i = 1, . . . ,4) is given by the following manner. A binary data matrix at 
time t is first obtained from an image captured by camera j, and it is denoted by Ij(xj,y j) for j 
= 1, 2. The matrix Ij(x j,y j) has values of 1 for black and 0 for white. We then make a search 
window Si whose center is defined as follows: 

Normal case: It is set at ξi(t –h), where h denotes the sampling time. 
Occluded case: We estimate ξi(t) by 

 ref ref
0 0 1 2 3 4( ( ) ) =: ,i i it+ ⎡ ⎤− + ⎣ ⎦J J ζ ζ ζ

ΤΤ Τ Τ Τξ ξ ξ ξ  (18) 

where i
+J  denotes the Moore-Penrose inverse of i

+J . The center is set at iξ . 
The size of the window Si is given by a constant. We define an image data matrix by 

( , ),  ( , ) ,
( , ) =

0, ,

j j j j
j j j i

ji
x y for x y

x y
otherwise

⎧ ∈⎪
⎨
⎪⎩

SII  

where j = 1 for i = 1, 2 and j = 2 for i = 3, 4. The image feature ξi(t) is the center of mass of 
( , )j j

ji x yI . 

5.2 Selection of image features 
Let three constants δ, mmin and mmax be given. Let mi(t) denote the area, or equivalently the 
zero-th order moment, of the image data ( , )j j

ji x yI . An occlusion is detected or cancelled for 
each image feature ξi(t) in the following manner. 
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Normal case: If mmin ≤ mi(t) ≤ mmax holds, then ξi(t) is labeled as ‘normal’ again. Otherwise, it 
is labeled as ‘occluded’. 
Occluded case: If it holds that mmin ≤ mi(t) ≤ mmax and 

 ref ref
0 0 0( ( ) ) ( ( ) ) < ,i i it t δ+ +− − −J ζ ζ J ζ ζ  (19) 

then ξi(t) is labeled as ‘normal’. Otherwise, it is labeled as ‘occluded’ again. 
If ξi(t) is occluded for i, then ζi(t) is used at the next step. Otherwise, or equivalently if every 
image feature ξi(t) is normal, then ζ0 is used at the next step. 

5.3 Control input voltages 
We compute 

( ) = ( ) ( ) ( ) ( )t x t y t z t tφ⎡ ⎤⎣ ⎦r
Τ

 

 ref:= ( ( ) ),i i it+ −J ζ ζ  (20) 

for ζi selected in the previous subsection. The input signals are given by a set of PID 
controllers of the form 

 1 1 1 10
( ) = d ,

t

BV t b P x I x t D x− − −∫  (21) 

 2 2 2 20
( ) = d ,

t

AV t b P y I y t D y− − −∫  (22) 

 3 3 3 30
( ) = d ,

t

TV t b P z I z t D z− − −∫  (23) 

 4 4 4 40
( ) = d ,

t

QV t b P I t Dφ φ φ− − −∫  (24) 

where bi, Pi, Ii and Di are constants for i = 1, . . . , 4. 

6. Experiment and result 

The world reference frame Σw and the camera frames Σ1 and Σ2 are located as shown in Fig. 
7. The controller gains are tuned to the values in Table 2. The positions of the four black 
balls in the frame Σb are given by 

 [ ]b
1 = 0.1 0.1 0.04 ,p Τ  (25) 

 [ ]b
2 = 0.1 0.1 0.04 ,−p Τ  (26) 

 [ ]b
3 = 0.1 0.1 0.04 ,−p Τ  (27) 

 [ ]b
4 = 0.1 0.1 0.04 .− −p Τ  (28) 
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Ground
 

Fig. 7. Locations of the world reference frame Σw and the camera frames Σ1 and Σ2. The angle 
a is set to a = 11π/36. 
 

            bi Pi Ii Di 
VB 3.47 3.30 0.05 2.60 
VA 3.38 3.30 0.05 2.60 
VT 2.70 1.90 0.05 0.80 
VQ 1.92 3.00 0.05 0.08 

Table 2. PID gains. 
 

 
Fig. 8. A snapshot of helicopter flight under an occlusion. This was captured by a camera 
placed next to camera 2. Ball 3 was not captured correctly at this moment. 

The image reference r
0
efζ  is set to  

 [ ]r
0 = 84.6 10.5 21.1 16.1 65.6 41.9 43.4 40.9 ,  (pixels).ef − −ζ Τ  (29) 
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This was obtained by an actual measurement. 
Ball 1 or 3 was occluded temporarily and intentionally. Long time occlusions for around 10 
seconds were presented twice for each ball. Short time occlusions were done four times for 
each ball, and they were successively done from ball 3 to 1. A snapshot of helicopter flight 
under an occlusion can be seen at Fig. 8. 
Fig. 9 shows the x positions of balls 1 and 3 in the corresponding image planes. When an 
occlusion is detected, the value is set at –150 in the figure to make the plot easy to read. For 
example, ξ3 was labeled ‘occluded’ from 15 to 25 seconds. It is seen that the number of 
occlusion detection is equivalent to the number of intentional occlusions. 
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Fig. 9. Experimental result. Solid lines: Time profiles of the positions of image features. 
When an occlusion is detected, the value is set to –150. Dotted lines: Given references. 
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Fig. 10. Experimental result: Time profiles of the positions of image features. This is a 
closeup of Fig. 9 between 49.6 and 50.2 seconds. 
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Fig. 10 illustrates a closeup of Fig. 9 between 49.60 and 50.20 seconds. An occlusion is 
detected for ball 3 from 49.72 to 49.88 seconds. After 50 milli-seconds, an occlusion is 
detected for ball 1. Our system deals with such rapid change, since high-speed cameras are 
used. 
Fig. 11 shows the generalized coordinates r  defined by (20). It is seen that the helicopter 
hovered in a neighborhood of the reference position. In particular, the z position is within 7 
[cm] for all time. 
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Fig. 11. Experimental result: Time profile of the generalized coordinates r . 

Several movies can be seen at http://www.ic.is.tohoku.ac.jp/E/research/ helicopter/. They 
show stability, convergence and robustness of the system in an easy-to-understand way, 
while the properties may not be seen easily from the figures shown here. 
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7. Conclusion 
This paper has presented a visual control system that enables a small helicopter to hover 
under temporary and partial occlusions. Two stationary and upward-looking cameras track 
four black balls attached to rods connected to the bottom of the helicopter. The differences 
between the current tracked object positions and pre-specified reference positions are fed to 
a set of PID controllers, when all the tracked objects are visible. If an occlusion is detected 
for a tracked object, the controller uses the errors given by the other three tracked objects. 
The system can keep the helicopter in a stable hover, and the proposed method is robust to 
temporary and partial occlusions even when a tracked object is not visible in any of the 
camera views. 
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Fig. 10 illustrates a closeup of Fig. 9 between 49.60 and 50.20 seconds. An occlusion is 
detected for ball 3 from 49.72 to 49.88 seconds. After 50 milli-seconds, an occlusion is 
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Fig. 11 shows the generalized coordinates r  defined by (20). It is seen that the helicopter 
hovered in a neighborhood of the reference position. In particular, the z position is within 7 
[cm] for all time. 
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Fig. 11. Experimental result: Time profile of the generalized coordinates r . 

Several movies can be seen at http://www.ic.is.tohoku.ac.jp/E/research/ helicopter/. They 
show stability, convergence and robustness of the system in an easy-to-understand way, 
while the properties may not be seen easily from the figures shown here. 
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7. Conclusion 
This paper has presented a visual control system that enables a small helicopter to hover 
under temporary and partial occlusions. Two stationary and upward-looking cameras track 
four black balls attached to rods connected to the bottom of the helicopter. The differences 
between the current tracked object positions and pre-specified reference positions are fed to 
a set of PID controllers, when all the tracked objects are visible. If an occlusion is detected 
for a tracked object, the controller uses the errors given by the other three tracked objects. 
The system can keep the helicopter in a stable hover, and the proposed method is robust to 
temporary and partial occlusions even when a tracked object is not visible in any of the 
camera views. 
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1. Introduction 
In the automation domain programs are written by engineers. Available programming 
languages are normally standard IEC 61131-3 or vendor specific visual language. 
Programming requires domain knowledge and programming skills. Reusing programs is 
often simple copy / clone a working solution. There are different kinds of solutions done 
to effective produce programs. In Metso Automation application programs are first 
modeled and second systematically reused. The principles are applicable to be used in 
other context. 

2. Function block language 
2.1 Introduction 
The visual notation of FBL consists of symbols and lines connecting them. In FBL, symbols 
represent advanced functions. The core elements of FBL, function blocks, are sub-routines 
running specific functions to control a process. As an example, measuring the water level in 
a water tank could be implemented as a function block.  
In addition to function blocks, FBL programs may contain port symbols (also called 
Publishers) for other programs to access function blocks and their values. The function block 
values are stored in parameters. As an analogy, the role of a function block in FBL is 
comparable to the role of an object in an object-oriented language. The parameters, which 
can be internal (private) or public, can, in turn, be compared to member variables. An 
internal parameter has its own local name that is not visible outside the program module. A 
public parameter can be an interface port with a local name or a direct access port with a 
globally unique name.  
In addition to function blocks and ports, FBL programs may contain external data point 
symbols for subscribing data published by ports, external module symbols to represent 
external program modules, and I/O module symbols to represent physical input and output 
connections.  An external data point is a reference to data that is located somewhere else. In 
distributed control systems, calculations are distributed to multiple processors. Therefore, if 
a parameter value is needed from another module, the engineer has to add an external data 
point symbol to the program. By using this symbol, data is actually transferred (if needed) 
from another processor to local memory.  
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From the FBL elements, the engineer can, for instance, build visual programs that control 
some equipment in a factory that is running the process. These processes are continuous and 
controlled in real-time.  
Visual languages have been extensively studied in the literature (Mohamed, 2000, Burnett 
1995, Shu 1988, Pressman 1997). As mentioned earlier, computer programs are usually 
written using textual languages, but in more sophisticated or domain-specific environments, 
programming can be done in a visual way, as in LabVIEW (Rahman, 1995). LabVIEW is 
originated in 1986, while the roots of FBL go back to 1988 (Karaila, 1989). FBL is not a 
standardized language as IEC 61131-6 language. 

2.2 Background 
In the late 1980´s the first implementation was done for FBL. The first target was to replace 
a textual programming language because graphical documentation was already at that time 
one of the customer's requirements. FBL was successfully taken into use and there were only 
a few programs that were written in textual format.  
One of the most important design goals was to design both the programming environment 
and FBL for extensibility. This means that developers could easily extend the visual 
language by adding new graphical symbols to it. Such new symbols, for example, may 
represent new types in this strongly typed language. In fact, in FBL, users can add new 
symbols to the language even without adding any new code in the programming 
environment. The reuse of visual code in an integrated programming environment is 
powerful and efficient. The same kinds of notifications are done (Debbie, 1995). Developers 
have implemented an engineering environment that allows extensions and integration of 
third party tools. Further, new symbol classes or categories can also be added to FBL. This, 
however, requires modifications to the programming environment. Usability is important to 
engineering efficiency. For cost effectiveness, using a commercial solution was a good way 
to share code maintenance costs. As a drawing editor Metso has used commercial CAD 
program, which can be AutoCAD® Copyright 2009 Autodesk or BricsCAD Copyright 2001-
2009 Menhirs NV.  Both can be used for that purpose. In this way, developers were able to 
focus our own work on the application domain instead of graphical editor issues.  

2.3 Main design goals and principles 
Developers had the following goals in the development of FBL and the programming 
environment: 
• Basic product configuration and a tool for customer projects. 
• Both FBL and the programming environment must be flexible and possible to extend 

because it was known from the beginning that new features are coming/needed every 
year. 

• Maintaining the language should be feasible, and adding new types and functions 
should be easy. 

• Easy to use, because typical users have minimal programming skills. 
• Easy to reuse written applications, because customer projects are very similar. 
• Third party tools and products should be easy to be integrated with the programming 

environment. 
FBL can be used to program basic automation and advanced quality controls. Metso's 
engineers can implement different kind of applications with FBL. As the amount of different 
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sub domains are integrated into FBL, the use of FBL is growing. Our customers will 
maintain and modify those FBL programs. Customer's people are typically automation 
engineers. They will come to the FBL training. They are responsible for maintenance and 
process design. They usually do not have any programming experience. Most of the time 
goes into environment training and main principles of the automation system. The FBL 
language itself is not so much used, only a few programs are made during the training that 
is typically one week long. This is one way to evaluate the learning curve of FBL. There are 
other studies about advances in data flow programming languages (Johnston, 2004). These 
indicate the same findings as developers have experienced such as, 'The data flow semantics 
of visual programming languages are intuitive for non-programmers to understand and 
thus improve communication between the customer and the developer'. 
Design principles of the language are briefly summarized next. 
• In the visual drawing, symbols used should represent both data and functionality. 

There will be an artifact in the system that can be mapped into a symbol. So each 
symbol will have some meaningful concrete function or element in the system. There 
will be very direct mapping from the eq. IO card symbol to a program physical IO card 
that will run a real electrical connection. 

• Symbols are for creating communication to transfer signal data. One symbol that 
contains an output and can be connected by line to another symbol input to represent 
data-flow.  Data-flow will be in this way explicit. 

• Layout should be organized so that inputs will be on the left and outputs on the right. 
There will be immediate visual feedback during testing program values can be visualized. 

•  All of the above will create a combination that merges algorithm and user interface to 
one functional entity. 

These four strategies: concreteness, directness, explicitness and immediate visual feedback 
are listed in (Burnett, 1999). 

2.4 Basic symbols 
Function block language contains thousands of symbols. The following is a categorized list 
of basic symbols: 
• Administration part symbol for defining purpose of the diagram, 
• Function part symbol for defining CPU and execution parameters, 
• External reference symbol for transferring data outside module, 
• Local data symbol for allocating memory for temporary signal data, 
• Port symbol for defining access name for external reference, and 
• Function block symbol for making signal operation / handling / calculation. 
Basic symbols are just for data (memory location) and function block symbols with numbers 
are functions that are executing algorithms. Language is not making a memory location or 
register references, instead that is actually done in the program loading phase into 
execution. Binding is done as late as possible. 
Administration symbols contain metadata about the program like process area, short 
description of the program and customer logo. The program itself is drawn inside the frame 
of the administration symbol defines. There are different sizes available and the program 
can be extended to multiple pages. Signal connections between the pages can be created by 
reference symbols.  
Functional administration symbol defines execution interval and logical location in the 
system. This symbol is used to define a new module.  
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A port can be either an interface or a direct access port. Interface port name is a suffix for the 
name of the module. Direct access port name is a global name that must be unique in one 
system (factory level). Port is an access point to a memory location with the name. 
External reference is in our terminology an external data point. It contains a name and 
communication parameters. In the principle name is a reference to the port, which is a 
named memory location. According to the communication parameters, data is transferred 
from the port and updated to an external data point. In this way communication takes care 
of values. 
Local data point is inside the module and is needed only to store values between function 
blocks. It can be needed for storing a value between calculation function blocks. 
Function blocks in Figure 1 encapsulate actual subprograms. Encapsulation protects 
memory allocation and safe execution. Function block always uses the same amount of 
memory. Execution is controlled by execution order (number between 1--9999) that is given 
for each function block symbol. All function blocks are sorted and executed in given order. 
Function block contains inputs, outputs and parameters. Inputs are read before the 
execution and parameters are used for the calculation and after execution outputs are set. In 
this way, users can only use these building blocks to define their own program. 

 
Fig. 1. Two function block symbols with the am symbol's parameter dialog. 
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Common function blocks are pid for controlling, logical and/or functions for boolean 
algorithm and calculations. Basic system function blocks are copy (ccox), select (disx), 
analog measurement (am, am2), binary measurement (bm) and device specific blocks like 
motor (mtr, mtre, mtr2) and valve (mgv, mgve, mgv2). More application specialized 
function blocks are for enthalpy calculation went and steam flow calculation (stfl). 
 

 
Fig. 2. FBL control loop program. 

Figure 2 shows an example FBL program. Symbols A and D are standard input/output 
(I/O) symbols. Symbols C 1-3 contain texts and other operability and alarming parameter 
definitions (as priority and alarm group) for the control room functions. Operators in the 
control room look after the process status from the monitors. The process is constantly 
measured and run by the programs but people are still making decisions and performing 
actions (pushing buttons) to control the process. Symbol C3 is for alarm functions. Finally, F 
is the area for the actual control program. All other symbols representing function blocks 
and connections are in the same program as the other symbols are building their own 
individual programs. A function block is a basic subroutine running a specific function to 
control the process.  
The graphical layout is to be read from left to right: inputs are on the left and outputs are on 
the right. Figure 2 represents a typical automation program in size and functionality. It gives 
a good overview for the user of one functional entity. The symbols inside one diagram are 
connected by lines, while connections outside one diagram are constructed using symbols 
that contain reference names, as shown in Figure 1 symbol B. 
Figure 2 shows one Function Block Diagram that can be used to generate multiple textual 
files. Those files are from a one-page program to several pages long; each file is an 
individual program. In addition, variables that are connected by lines in a FBL program are 
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stored in each file. Program modules are distributed in different places in the system. The 
Process Control Server (PCS) runs I/Os and control programs. Operator Server (OPS) and 
Alarm Processor (ALP), in turn, run other configuration functions. For example, in the 
control room OPS is for Human-Machine-Interface (HMI); the operator can change displays 
and look at different parts of the process and manipulate control parameters from the 
monitor windows). 

2.5 Module symbols 
FBL module symbols are application programs that can be distributed in the system. As an 
example, the I/O- symbol generates a small application program that can be loaded to the 
field bus controller. It will load needed parameters into the I/O- card and transfer data from 
the I/O- card to the field bus controller that will communicate with the actual controlling 
CPU unit that runs function blocks. In the same way the gateway symbol that connects an 
external device to the system using communication protocol is loaded into the CPU unit that 
has a serial or an Ethernet connection. 
Symbols for creating a connection can be divided into two major groups: 
• I/O-symbol to connect a physical field device. I/O card makes analog/digital 

transformation to an electrical signal. 
• Gateway-symbol to connect a software component to another system using 

communication protocol. 
Different kind of I/O-symbols are available, they represent I/O-card. It contains parameters 
like I/O-address, filtering and other signal processing parameters. Gateway-symbol 
contains address for accessing data through software protocol. The physical connection can 
be Ethernet, RS-485 or RS-232. The address depends on used protocol. In MODBUS 
(MODBUS) protocol addressing is register-based (address format examples 'reg 1001' or 'dw 
10'). Signal data-flow is coming in principle the same way as with I/O-connection. The 
interface module is executed by the driver and the actual data is connected with the external 
data point to transfer the data from the driver to the application program. 
The wiring from I/O-card connections to the field device connects signal flow electrically. 
From the I/O-card the signal is processed digitally and field bus transfers data between the 
I/O-card and CPU unit. This is physical distribution and the signal route is illustrated in 
Figure 3. 
Module symbols are usually for defining parameters for user interface and alarm handling, 
like texts, alarm priority and alarm area. These are loaded to all operator stations and alarm 
servers. 
These module symbols are used for defining 
• Text data for user interface, 
• User interface panels, 
• Alarm handling parameters, 
• Long time history data collection parameters, and 
• Feedback simulation (action response in virtual environment). 
These application programs listed above are not connected by lines as function blocks are 
connected. The connections are fixed and the user can give one connection name that creates 
all other needed connections as external data points. This reduces the amount of lines in the 
diagram. They are usually located near the corresponding function block symbol they are 
referring. Reference is done by using the same names in the symbols. 
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Measurement on the field

Connection to IO

CPU running controls

4-20mA electric signal

 
Fig. 3. I/O-signal data flow from the measuring device to the controlling CPU. 

2.6 Connections and networks 
The connection networks can be very simple point-to-point connections or very complex 
networks. The network structure solver will take all network connections together and find 
out the target connection. The target connection is the connection target for the rest of the 
network participants. In other words, the connection target is the named memory location 
that others will use.  
Some examples of connection networks are shown in Figure 4:  
• Point-to-point connection, where output is connected to input. 
• Multiple connections, where lines can be connected together with a connection dot that 

will join underlying lines and creates a connection junction point. 
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stored in each file. Program modules are distributed in different places in the system. The 
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Symbols for creating a connection can be divided into two major groups: 
• I/O-symbol to connect a physical field device. I/O card makes analog/digital 
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connected. The connections are fixed and the user can give one connection name that creates 
all other needed connections as external data points. This reduces the amount of lines in the 
diagram. They are usually located near the corresponding function block symbol they are 
referring. Reference is done by using the same names in the symbols. 
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• Connection references, where lines can be connected with symbols that contains 
reference name from other pages to the same logical connection network. 

 
Fig. 4. Connection network examples. 

Connection resolving must first always create the whole network from the sub-networks. 
After that it can run through the connection algorithm that finds the connection target. This 
is a very simplified explanation for the whole underlying system that contains a lot of 
specific rules for connection solving. 

2.7 Strong typing 
The system is strongly typed and simple basic types are represented by fixed colors. Only 
the basic and most common types are with color. Having too many colors would make it 
difficult for the user or programmer to distinguish the different types based on color 
(Whitley, 2001). Further, the benefits of using colors are diminished when printing the 
programs using a black and white printer; only some grey scales are available in that case or 
in some cases different line styles are used to indicate signal types (like dashed, dotted etc.). 
Colors are used in connection points and connection lines. Color defines the type of signal 
data. Basic types are with color in the following way: 
• Green (ana): indicates two values, value (float) and fault bits (uns16) 
• Black (bin): indicates a true/false bit (bit 0) and fault bits (bits 1-15) 
• Brown (binev): indicates bin and time stamp 
• Blue (intl): indicates long integer and fault bits 
• Cyan (ints): indicates short integer and fault bits 
• Magenta (bo): indicates bin and pulse time (time) 
• Red (fails): indicates fault bits (uns16, bit 1-15) 
• Yellow (float): indicates plain real number (float) 
• Gray (any): all other types (less used misc. types) 
Note that the above are scalar types / array \& other multi--dimensional types are drawn 
by a thicker line but with the same color as the element type of the vector / table. 
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The user can draw the connection line freely by routing the line and then the program 
creates the arrow-head automatically at the end of the line to represent data flow direction. 
Connection lines can cross and if they are connected there is a connection dot in crossing 
that will connect signals together. In addition, there are special data types for the 
communication. The function blocks are also based on types that are composed as 
structures. 
At Metso we have developed our own meta-language for defining all the needed structures. 
Types and also more complex structures such as function blocks are defined with this 
metalanguage. This metainformation is available from the type database. This can be used to 
build function block symbols with default layout. Default layout is to place inputs on the left 
side of symbol, parameters in the middle and outputs on the right. 

3. Template mechanism of Function Block Language 
3.1 Introduction 
Domain specific modeling is used in different levels in FBL. All the function blocks are small 
models that reflect real physical devices or some needed functionality. A motor, for instance, 
is modeled as a function block named mtr. The same model can be used for all basic motors 
and pumps. Similar way valve model is a function block named mgv (magnetic valve). In 
this way, function blocks are created to solve basic problems in the domain; the name of the 
block is the name of the focused object. Function Block can be parameterized and connected 
to other FBL elements. It will read inputs, run itself according to the parameters and write 
output values. FBL also contains elements that are for user interface and alarm handling. 
Modeling hides many complex operations. 

3.2 Meta template mechanism 
Our solution is to use visual templates for efficient programming (Karaila & Systä, 2007). A 
visual template can e.g. be used to implement motor control. The motor template will 
contain a set of parameters that are used to create an application program instance.  
The engineering tools and database separate data and presentation, Application has a 
presentation role and actual parameter data is in the database. Transformation attaches 
template and the result is the implementation. This mechanism works in the same way as in 
the web applications. The Excel integration gives an effective way to modify existing data in 
the database. For version upgrades it is possible to export data into one's own XML file. 
These facts are behind the optimal combination of FBL and framework to maximize effective 
programming. 
Templates are used for example in C++ programming language and in web applications. 
C++ templates are considered 'type-safe'. The FBL template engine differs from traditional 
template engines because the FBL template is evaluated immediately in design time. C++ 
templates are expanded at compile-time. FBL templates can be parameterized using 
database interface and this kind of principle is also used in web applications. Many 
languages that are used in web programming like Java or Python have own template 
engine. These kinds of web servers use primary data from the database and produce 
interface as shown in Figure 5. This makes effective separation between the business data 
and presentation. Data can be easily maintained and presentation can be modified. In this 
way they are loosely coupled.  
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In the same way FBL templates have parameters in the database and the FBL template 
contains transformation information. In traditional C++ programming, people use a 
Standard Template Library (STL). Web based templating testing needs to a run generator to 
check the end result. In the same way in using STL, compiling is needed to validate the 
template. In the FBL, template functions are evaluated immediately and transformation is 
made. 
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Fig. 5. Principle of web template engine. 

Static metaprogramming (template metaprogramming) techniques in general are used to 
enable the customization of programs at compilation time. For instance, compilation of a 
program for different platforms can be made easier with such techniques like using 
generative programming (Czarnecki & Eisenecker, 2000). Static metaprogramming may, 
however, also be rather challenging. E.g. debugging is typically difficult due to the lack of 
proper tools. This, in turn, challenges the testing of static meta-programs. Processing and 
evaluation of template codes at compile-time causes an overhead, which, however, could 
and desirably does make the executable code more efficient. This overhead might have some 
significance in larger projects but is typically insignificant in smaller ones. In addition to 
efficiency, template meta-programming techniques support genericity and facilitate code 
minimization and maintenance. This is because the programmers can focus on designing 
and implementing general, perhaps architecture-level structures. FBL templates are used to 
define a common program structure for a family of application program instances. The 
templates are further used to create these instances which are called control loops in the 
terminology of the domain. One template can be used to create several program instances, 
up to 100 in practice. Each instance has its own identifier and parameter set. The program 
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structure which is derived from the template is the same in each program instance. In 
essence, FBL templates are programs that contain data structures and encapsulated 
functions. Templates are built by first defining parameters that can later be used as an 
interface to create an instance from the template. Templates further contain formulas, in 
which the parameters are used. Evaluation of the formulas is automatic. In some cases, the 
evaluation may modify the program structure, as in conditional compiling, as a result. 
Formulas are used in FBL templates for evaluating mathematical expressions and for 
concluding logical truth-values. Each formula is a mini-language statement. The mini-
language used is a simple language without real programming capabilities. For practical 
reasons, e.g. for easy editing and understanding, the mini-language formulas and 
expressions are compact and fit in one line. FBL language is generative and each template is 
actually meta-programmed using the mini-language.  
Larger models are for modeling more complex functions that need more connections and 
generic parameters. These connections are to other modules and ports in the system. 
Parameters are model specific and can be used in multiple elements. 
Our engineering tools and FBL editor are main elements in a DSM environment. FBL editor 
is used for model building and testing. Engineering tools are for managing templates and 
instances. 

3.3 Working with templates 
A template is a key component for effective software production. As an example, a basic 
measurement is needed in every project. But the measurement can be a temperature, a 
pressure or a level measurement. There is some variation between the measurements like 
the measurement range is different as the unit depends on physical measurement. The 
program has input with an address and a range with a unit. The alarm limits of the 
measurement can be set in programming phase to some initial values. The basic analog 
measurement template is the model that solves this problem. A template contains the model 
that can be parameterized and the instance is varied by these parameters. One measurement 
template can be used in all these different measurements if there are no other requirements. 
In practice, a visual template is built with an FBL editor. It contains commands for creating a 
template. The next step is to make first a program that will contain all other needed parts. 
After that, templating can start by the following steps: 
• Create design members, these are parameters for a visual template, 
• Define needed formulas, these use parameters defined above, 
• Save a template, and 
• Create an instance and test it (modify parameter values). 
First, the user defines all the parameters needed. This can be done using a specific dialog 
shown in Figure 6.  
Parameters work like a placeholder and follow the same syntax rules as Python variables 
except that they are preceded by $ enclosed in {}. Parameter example: ${var}. Parameter 
identifiers are case sensitive. 
After this, the user can define the formula like in Excel to a separated field that will store the 
formula as shown in Figure 7. In the evaluation phase the formula is evaluated and the 
result is placed in the actual value field. The engineer can already see the current value that 
is calculated from the design parameter value. Formula evaluation is automatic and it helps 
the engineer to always see evaluated values. 
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is calculated from the design parameter value. Formula evaluation is automatic and it helps 
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Fig. 6. Step 1: User defines first design parameters. 

A complete parameter use example:  
• Parameter identifier: \$(MYPARAMETER) 
• Parameter value: Example text 
• Usage: External datapoint, comment attribute 
• Formula field: Test \$(MYPARAMETER) 
• Comment field: Test Example text 
After step three, template saving, the engineer can create a new FBL program instance from 
the template shown in Figure 8. Usually new instances are created by using Excel as a 
parameter entry interface. Template testing always needs multiple instances because 
otherwise there can be some non-formulated value or wrong formula that will create a non-
unique identifier or overlapping address definition. 
The FBL visual templating is implemented by mini-language that needs minimal 
programming. It can be extended when needed but the current functionality has been 
enough. Using these functions enables the user to meta-program FBL. 
Template directives / functions are listed below. Some of them are domain specific. 
• eval formula 
• mathematical formulas 
• strings and parameter value 
• function-formula (conditional part, works like snippet) 
• value reference (syntax for parameter, reference to outside) 
• select formula  
• prefix formula (special string handling with prefix) 
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Fig. 7.  Step 2: Formulas are defined in each needed location. 

Eval is used in formulas to mark parts that will need mathematical evaluation. Otherwise all 
variables are evaluated as strings. 
Mathematical formulas are evaluated according to standard evaluation order. Most of the 
basic calculations are implemented into the library. 
Strings in the evaluation phase are replaced and formula evaluation result is in the value 
field. Value field is usually a symbol's attribute value but it can also be a comment text. 
Function formula works like a snippet. Ordinarily, these are formally-defined operative 
units to incorporate into larger programming modules. In a visual template, function 
formula is always included into the template. The "code" amount is fixed but the 
connections and all parameters are evaluated inside elements belonging to the function 
formula. It can be turned on or off by a conditional statement. If the result is true, part of the 
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Fig. 8. Step 3: Testing template with new values. Modified design parameter values are 
evaluated and new values are visible in the diagram. 

code is included, otherwise not. Function formula does not minimize the use of repeated 
code it is for selecting features. In FBL editor function formulas are usually marked with 
dashed blue boxes. 
The following Figure 9 shows function-formula definition for selected elements and Figure 
10 demonstrates action that hides a snippet. 
Select formula can be used as 'switch...case' or 'if...then... else...' statement for selecting 
another value by given value. This is a kind of enumeration based transformation. 
Prefix formula is used to minimize entering the full reference name. In automation domain, 
devices are named and in the programming phase it is easy to use a pure name without any 
prefix or suffix. This abstraction removes / hides programming details from the user. 
In step one, shown in Figure 6, the user must first define design parameters that can be used 
as variables in formulas. Mandatory parameters are: 
• TAG (instance identifier), 
• PACKAGE (logical name for download target) and 
• TEMPLATE (template identifier). 
Usual parameters are MIN, MAX, UNIT, HH (high high alarm limit), H (high alarm limit), L 
(low limit), LL (lower low limit) and so on. 
In step two, the user can look at properties of the symbol and add their own formula to 
calculate a new value. 
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Fig. 9. Symbols are selected & active. Function formula defined for selected elements (lower 
function block and connections into it. 

 
Fig. 10.  Function formula 'hides' interlocking elements with the value 0. Elements can be 
activated with value 1 back to the diagram. 



Visual Servoing 162 

 
Fig. 8. Step 3: Testing template with new values. Modified design parameter values are 
evaluated and new values are visible in the diagram. 

code is included, otherwise not. Function formula does not minimize the use of repeated 
code it is for selecting features. In FBL editor function formulas are usually marked with 
dashed blue boxes. 
The following Figure 9 shows function-formula definition for selected elements and Figure 
10 demonstrates action that hides a snippet. 
Select formula can be used as 'switch...case' or 'if...then... else...' statement for selecting 
another value by given value. This is a kind of enumeration based transformation. 
Prefix formula is used to minimize entering the full reference name. In automation domain, 
devices are named and in the programming phase it is easy to use a pure name without any 
prefix or suffix. This abstraction removes / hides programming details from the user. 
In step one, shown in Figure 6, the user must first define design parameters that can be used 
as variables in formulas. Mandatory parameters are: 
• TAG (instance identifier), 
• PACKAGE (logical name for download target) and 
• TEMPLATE (template identifier). 
Usual parameters are MIN, MAX, UNIT, HH (high high alarm limit), H (high alarm limit), L 
(low limit), LL (lower low limit) and so on. 
In step two, the user can look at properties of the symbol and add their own formula to 
calculate a new value. 

Model Based Software Production Utilized by Visual Templates 163 

 
Fig. 9. Symbols are selected & active. Function formula defined for selected elements (lower 
function block and connections into it. 

 
Fig. 10.  Function formula 'hides' interlocking elements with the value 0. Elements can be 
activated with value 1 back to the diagram. 



Visual Servoing 164 

In the template creation process, the user has to save a diagram as a template into template 
storage. 
In the last step, it is good to test the template so that it works correctly and all needed 
parameters are defined. The user has to create at least two instances to check that there are 
no overlapping identifiers (global names like module name or direct access name).  
Testing is possible in a virtual environment. There are symbols for each actuator to create 
action feedback. The user can have a motor that will start from the start command and 
feedback will generate motor running status. In the same way a valve or a controller will get 
action feedback. 
In this way, a higher level of abstraction is done to model larger functionality.  
For this purpose Metso has implemented a visual template.  

3.4 Experiences 
Before Metso had visual templates, Metso’s engineers were using typical for modeling FBL 
solutions. This first generation model is static and is based on more copying existing FBL 
diagram. The main principle was to replace tokens in the typical with real instance 
parameters. 
When comparing visual template to other solutions, visual template is interactive and 
immediately evaluated. For instance, it is faster to modify and test. Before the final testing, 
the following actions are needed: specialized instance, compiling and loading into runtime 
environment. 
Like in other 'Little Languages' (Deursen, 1998) visual templates contain small language, but 
gives an effective way to use metaprogramming. 
The earlier way to create specialized instances was taking more time. An older template was 
named typical. A typical contained replacement tokens. Each parameterized value field 
actually contained a token. The user had to run replacement generation to get the 
specialized instance. This was always needed to test the typical. The replacement token was 
lost and it was possible to modify any value. The replacement did not support any 
transformation or calculation. Thus, it was limited to direct replacements. 
A visual template can be parameterized and it will evaluate FBL immediately. It is more 
dynamic and faster to use than typical that is static and needs separate regeneration for 
updating FBL. One important difference to other template techniques is that the FBL 
instance contains all template functions and due to this fact it is still possible to parameterize 
again and again even though the FBL is edited to differ from the original template. Typical 
did not offer all the functionality that is implemented now with the domain specific 
formulas. 
Mass production of FBL programs is the key productivity for templating. The new visual 
templating improves productivity by saving time and improving quality with standard 
project templates.  
Productivity is measured in many places: 
• Project department measurements (annual measurements existing, over 10 years). 
• Value Added Reseller (VAR) partners, specific process area: 100 templates enough. 
• In general, over 90 percent of programs made from a template (project library makes 

automatic calculation from each project). 
• Excel or sheet as main parameter input method (data and implementation can be 

separated; engineering tools can separate data from implementation). 
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Applicability to domain and product family principles is very good. Existing loop can be 
turned into a template by a few steps. Template programming adds variables and additional 
function into existing FBL diagram. Template programming is interactive and the user can 
immediately test functionality. 
In other template based languages, a template is separated and needs rendering / 
generation that will create an instance from a template. This requires extra maintenance. In 
our domain, instances contain all template formulas. This is a benefit for us even it can be in 
some other domains a disadvantage. The framework allows template changes / updates so 
that it keeps all matching parameter values untouched. This flexibility gives the freedom to 
change an original template and update it afterwards for all needed instances. 
The instance of the template can inherit values from another instance by a reference formula.  
This reduces the amount of parameters that the user must enter. Referenced template 
parameters are read--only values. A value change in parent instance is propagated into all 
children. The purpose of the feature is to reduce parameter amount and automate parameter 
value propagation. As an example, one design parameter contains text that is used in the 
primary loop, but the same text is also used in its own history collection definition loop. In 
this case it is easy to make reference from a history loop to a primary loop. An engineer can 
change text in the primary loop and it is automatically propagated into the history loop. 
And in the history loop, an engineer does not have to enter text anymore. An additional 
positive effect comes to maintenance. It is better to split functionality into its own features 
and bind needed parameters together by referencing. For us, our FBL and its 
metaprogramming support makes visual templating a practical reuse technology. 
End customers are becoming more demanding.  
• Easy and fast to create from specification to template and implementation. 

Specifications are coming later and later. Or in some cases the customer or process 
expert defines automation functionality at the factory in the start--up phase. 

• Easy to make modifications and take those into use just by changing or updating the 
template. 

Even through the template functionality has been in existence now for some years there is 
still work to do with usability and metaprogramming. There is the need to teach this 
technique. The conversion tool will need some tuning even it can transform an old typical to 
a template. 
Time will show the life cycle of the templates. There have already been cases that the project 
is first done with templates and delivered without the formulas. This kind of downgrading 
is sometimes needed to support old installed systems. 

4. Reuse mechanisms 
4.1 Introduction 
Support for software reuse can be hard to utilize. Systematic reuse will require process, 
analysis, feedback for continuous improvement and knowledge management. 
Traditional software reuse can be implemented by components and libraries. In the similar 
way FBL contains build-in functions that are Function Blocks. These are documented in 
system manuals and are used to implement application programs.   
For effective application programming, the solution is to reuse application programs. It is 
harder because they do not usually contain extra documentation or they are not categorized 
into any hierarchical structure like build-in Function Blocks are in the libraries. The system 
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level reuse also actually exists in product level because the automation system is based on a 
software product line (Ommering, 2005).  
Another need to reuse already made projects is to estimate the effort needed to implement 
the same kind of project. A project can be a part of an earlier project like just one or two 
process areas are similar in a new project. ‘Similar’ means that the process area like “Fresh 
water treatment” is implemented with the same process equipments and can be used in the 
new project as a starting point. This kind of search and pre-study is needed and used in our 
sales. If there is existing the same kind of implementation, project engineers can start 
redesign using the existing implementation (Karaila & Leppäniemi, 2004). 
In FBL, three types of reuse occur, in three abstraction levels: 
• Level 1 Function Block (system level), 
• level 2 Template (model reuse), parameter reuse between the template instances, and 
• Level 3 Function Group (model group reuse, higher abstraction level). 
The modeling is more demanding than the system level reuse. The user has to first select the 
template which is not always as clear as selecting a function block. The basic level function 
blocks are documented and always available. Templates are currently documented only in 
intranet level and loaded separately as their own library. 
In a search for finding a possible template, there are parameters that can be used to narrow 
search results. This needs domain knowledge. The reuse library offers all parameters and 
allows the user to use those in search criteria. 
Another reuse level is to reuse just parameter values. This can be done in the template level. 
The parent - child parameter referencing helps to maintain consistency between the same 
problem entities that is implemented with multiple instances. The main instance, core loop 
contains all common parameters like name and alarm area. Each child is referenced into 
those common parameters. In this way, a change in common parameter is propagated into 
each child instance.  
Function Group level utilizes the next level in abstraction hierarchy. Function Group can 
handle a set of instances that are template based in one Function Group diagram. Function 
Group diagram visualizes connections between the application programs.  

4.2 Reuse in practice 
Project library application search dialog in Figure 11 is the starting point for reuse. The 
search interface allows users to search application solutions according to saved metadata 
and performed analysis. The search can be focused on certain process areas and projects. 
More detailed search criteria can include e.g. the main function of the program (function 
block like pid-controller or motor controller), the IO card type used and the application 
creator. 
Application data is shown in Figure 12. The general part contains metainformation about 
the project and program itself. The entity count, primary function block, template generated 
information and user question count are created in the analysis phase. The IO data is also 
extracted in analysis. In the file information fields, data is needed to access file and template. 
The template match is in this case 100\%. When no structural changes between the template 
and instance exist the match value equals 100. That is, only different parameter values may 
exist. Each structural chance diminishes match value by a certain amount. For example by 
deleting and adding one symbol the match value is decreased by two to 98.  
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Fig. 12. Reuse library shows application data. 



Visual Servoing 166 

level reuse also actually exists in product level because the automation system is based on a 
software product line (Ommering, 2005).  
Another need to reuse already made projects is to estimate the effort needed to implement 
the same kind of project. A project can be a part of an earlier project like just one or two 
process areas are similar in a new project. ‘Similar’ means that the process area like “Fresh 
water treatment” is implemented with the same process equipments and can be used in the 
new project as a starting point. This kind of search and pre-study is needed and used in our 
sales. If there is existing the same kind of implementation, project engineers can start 
redesign using the existing implementation (Karaila & Leppäniemi, 2004). 
In FBL, three types of reuse occur, in three abstraction levels: 
• Level 1 Function Block (system level), 
• level 2 Template (model reuse), parameter reuse between the template instances, and 
• Level 3 Function Group (model group reuse, higher abstraction level). 
The modeling is more demanding than the system level reuse. The user has to first select the 
template which is not always as clear as selecting a function block. The basic level function 
blocks are documented and always available. Templates are currently documented only in 
intranet level and loaded separately as their own library. 
In a search for finding a possible template, there are parameters that can be used to narrow 
search results. This needs domain knowledge. The reuse library offers all parameters and 
allows the user to use those in search criteria. 
Another reuse level is to reuse just parameter values. This can be done in the template level. 
The parent - child parameter referencing helps to maintain consistency between the same 
problem entities that is implemented with multiple instances. The main instance, core loop 
contains all common parameters like name and alarm area. Each child is referenced into 
those common parameters. In this way, a change in common parameter is propagated into 
each child instance.  
Function Group level utilizes the next level in abstraction hierarchy. Function Group can 
handle a set of instances that are template based in one Function Group diagram. Function 
Group diagram visualizes connections between the application programs.  

4.2 Reuse in practice 
Project library application search dialog in Figure 11 is the starting point for reuse. The 
search interface allows users to search application solutions according to saved metadata 
and performed analysis. The search can be focused on certain process areas and projects. 
More detailed search criteria can include e.g. the main function of the program (function 
block like pid-controller or motor controller), the IO card type used and the application 
creator. 
Application data is shown in Figure 12. The general part contains metainformation about 
the project and program itself. The entity count, primary function block, template generated 
information and user question count are created in the analysis phase. The IO data is also 
extracted in analysis. In the file information fields, data is needed to access file and template. 
The template match is in this case 100\%. When no structural changes between the template 
and instance exist the match value equals 100. That is, only different parameter values may 
exist. Each structural chance diminishes match value by a certain amount. For example by 
deleting and adding one symbol the match value is decreased by two to 98.  

Model Based Software Production Utilized by Visual Templates 167 

 
Fig. 11. Reuse library search dialog. 

 
Fig. 12. Reuse library shows application data. 



Visual Servoing 168 

The search can be also focused on project, process area or template. The project data is 
shown in Figure 13. It contains major data from the delivery and for the practical reuse 
project team, main process and process supplier are needed. 
 

 
Fig. 13. Reuse library shows customer project specific data. 

The user can search and navigate from the application to the template or to the related 
loops.  User interface supports downloading multiple files together in one zip file. 

4.3 Analysis 
In reuse library, saving application will run FBL analyze that first creates a fingerprint from 
each application program. Fingerprint is a calculated value from the diagram entities. It is 
used to find similar diagrams faster. If the instance is template based, analysis will create a 
link to the template. In this way user can get the template easily. The project analyze will 
calculate summary information from the project. This information is used in estimating the 
project efficiency. Later the same information can be used to sell a new project. This makes 
better accuracy for estimating the cost of the new project. 
The project library is for archiving projects, but it is actually a huge reuse library. It also 
contains the template library and its own special Quality Control library. This special library 
contains mainly handmade solutions that are needed for integrating some older actuator 
device into our system. The project library is integrated to the project delivery process. Each 
delivered project is archived into the project library for reuse.  

4.4 Discussion 
Traditional programming reuse analysis tries to find reusable patterns. Strategies for 
component analysis are well introduced in (Rothenberger et al., 2003). These practices are 
categorized to project similarity, reuse planning, measurement, process improvement, 
formalized process, management support, education, object technology and commonality of 
architecture.  
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Our project library and reuse model covers project similarity very well because it is one 
starting point in finding reusabable FBL programs. The reuse process is planned. The 
analysis measures template usage and the feedback system with template library targets for 
improved templates. Because every project is archived into the project library in the same 
way, the process is formal and repeatable. The analysis also gives good numbers for the 
management. Knowledge management is not so visible in our process but the reuse and 
template based design are part of the project delivery process. The knowledge needed to 
successfully use the templates takes some time. The automation domain is based on product 
family and the basic architecture has remained solid. The technology is based on different 
solutions and the object technology is used in various places. 
Evolution during last four years has not affected reuse. There are new IO cards and new 
function blocks. Domain specific language reuse in dynamic domain is discussed in 
(Korhonen, 2002). This focuses more on code generation and language principles than 
reusing actual applications. The project library internally uses XML in many places and it 
has worked as a good transformation base. This was originated partly from the first agent-
based implementation. This solution offered easier maintenance for the whole reuse library 
because it allowed transformations and extensions. 
The publication implemented agent-based software is currently a simpler java application. It 
no longer uses agents anymore. The search engine user interface was enhanced in 2008 and 
new features were added by user requests. One important feature is to search special 
applications, only 1-2 applications per project. These applications contain rare I/O-cards 
and can be found using the card type in the search criteria. In the same way, some special 
Function Blocks can be searched.  
The project library for reuse is in active use. The current search request amount is still 
almost one thousand searches monthly. The main page contains the amount of searches. It 
shows the current value 54932 (end of 2008). This makes the last four years of use an average 
of 1000 searches per month. In the initial phase in 2004, the amount of metadata was less 
than 2 Gb. The current (measured in the end of 2008) amount of metadata in the library is 
over 3.5 Gb and there are millions of application programs stored in the file system. 
The actual metadata in the reuse database is growing and there has now been added more 
data about process such as machinery supplier and project people. If the salesman compares 
similar kinds of processes they have to check the supplier to validate reuse possibility. For 
tacit information and other not formalized information about the project, people are listed in 
the database. This makes it possible that people can be contacted and a short discussion can 
solve other unclear things. 
The metadata makes searches more exact and implements actually feature based reuse 
library as is discussed in (Park & Palmer, 1995). The key factor is to select features as adding 
primary function block and IO card type among other metainformation. But instead of 
reusing components as stated in the article, Metso reuses application programs and 
templates. This kind of reuse affects to both productivity and quality much better.  

5. Maintenance and round-trip engineering 
5.1 Introduction 
The biggest parts of software life-cycle costs are shown to be due to maintenance activities 
(Sneed, 1996), (Jones, 1998) (Erlikh, 2000). The systems that have long life cycles and require 
high maintainability, a key for lower maintenance costs is quality. Maintenance can be 
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supported by various reverse engineering techniques like comprehension and visualization. 
Software visualization techniques applied to software written in traditional, textual 
programming languages can be problematic to be linked with reengineering activities 
afterwards, especially if standard notations, such as UML (UML, 2009), are not used: if the 
reverse engineering tool uses a different notation than the one used in software design, 
mappings between the different notations are needed. Since the models and views 
constructed from the existing program are presented with the same language used for 
development, the reverse engineering activities can be conveniently mapped with re-
engineering activities, therefore enabling full round-trip support. 
FBL application programs are located at the customer's own factories. Those programs are 
modified when there are some changes needed. These are frequent changes that must be 
done quickly. Even though FBL evolves and a version is upgraded, old programs can be 
used without any major work. This is part of the maintenance work that requires 
compatibility. 
The following goals have been set for FBL maintenance: 
• application level implementation remains the same even when symbols are updated, 
• better performance: faster open and save, switch to testing faster, 
• better usability and 
• modern outlook: style is according to operating system and CAD platform. 

5.2 Reverse and forward engineering 
Reverse engineering activities aim at constructing representations and models of the subject 
software systems in another form or at a higher level of abstraction (Chikofsky & Cross, 
1990). New representations are constructed after identifying the system's components and 
their interrelations.  
Clustering in traditional reverse engineering methods can be constructed, for instance, by 
taking advantage of the syntax of the programming language used, by using software 
product metrics to identify highly cohesive clusters, or by using existing software 
architecture models and mapping them with the lower level details. In Java, for instance, 
package hierarchies can be used to structure classes and interfaces of the system. These 
hierarchies can be extracted by automated means. However, there are no guarantees that the 
packages contain sets of classes that conceptually form subsystems or components. Software 
product metrics used for identifying subsystems typically measure inter couplings and intra 
cohesion of the sets of software elements. These methods can only give educated guesses for 
clustering. Architectural models used in top-down reverse engineering approaches provide 
a good way to form a clustering. However, such high-level models do rarely exist and the 
construction of mappings with lower level software elements is typically difficult. In 
Metso’s case, program uses the syntax of the language to construct high-level models for the 
FBL programs (Karaila & Systä, 2005). 
In FBL, abstraction can be done by creating a new symbol from the existing application 
program.  In Figure 14, a low-level FBL program is shown. For generating an abstract view 
to this program, the details of the program are filtered out and only the input and output 
symbols are preserved. An abstracted view is shown in the lower part of the same Figure 14 
as one symbol. The abstracted program is called Function Group, indicating that one symbol 
contains several functions (function blocks and IOs). The symbol has two input points on 
the left: HLIM1 and LLIM1. These inputs limit values to form interlock interfaces H, H1 and 
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L. On the right there are five outputs HH, LL, H, L and H1. The outputs, in turn, are for 
interlocking and for different limit thresholds. If the measurement is over H value then the 
function group generates a high interlocking. If the value is even bigger and goes over HH 
value, then the function block generates a higher high limit. Correspondingly, the function 
group will generate low and lower low limits as signal value goes below a given limit. 
Parameters are captured inside the symbol. Program visualization creates new symbols on 
the fly for each abstracted component. 
 

 
Fig. 14. Function Group example: parameters, implementation and symbol. 

When compared to traditional reverse engineering techniques, a function group can be 
considered to correspond to a subsystem. Unlike in traditional approaches where various 
heuristics or metrics are used to help clustering program elements to subsystems, FBL 
syntax and information stored in the database are used to extract high-level views. This 
difference is significant: when reverse engineering FBL programs, the abstractions are 
always "correct", not educated guesses: the abstractions can be used for forward engineering 
activities as such. The differences between high-level views can only be due to different 
information filtering actions, not caused by different clustering. This makes reverse 
engineering of FBL programs significantly easier than reverse engineering programs written 
in traditional programming languages. On the other hand, this also means that the reverse 
engineering activities can be conveniently integrated with forward engineering activities, 
providing full round-trip support.  



Visual Servoing 170 

supported by various reverse engineering techniques like comprehension and visualization. 
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construction of mappings with lower level software elements is typically difficult. In 
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L. On the right there are five outputs HH, LL, H, L and H1. The outputs, in turn, are for 
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Parameters are captured inside the symbol. Program visualization creates new symbols on 
the fly for each abstracted component. 
 

 
Fig. 14. Function Group example: parameters, implementation and symbol. 
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After constructing the higher-level function groups, they can be connected to each other. In 
FBL, internal communication connections are drawn inside modules by lines, while for 
external connections the engineer has to give a name. These external connections are stored 
in the database. To visualize external connections, database information is used to connect 
symbols as shown in Figure 15.  
 

 
Fig. 15. Function group abstraction from FBL refiner programs. 

To limit the size of the group of function group symbols, the engineer can select only a part 
of information stored in the whole database. This selection can be based on the metadata 
stored as well. In the domain FBL has been used, reasonable many of a large group of 
modules are from the same process area. In Figure 15, for instance, 10 symbols depicted are 
from the Refiner process area. Each function group symbol has a function that will need a 
user interface. Each device motor or valve has its own instance in both. Controller and 
selection logic are represented but the only one that is pure software is the interlocking 
logic. It is instantiated in the function group, but not in the normal user interface. The 
interlocking is in own display that the operator can open on demand. 
In the Refiners process wood is mechanically cut / bladed to fibers. This mixture of paper 
fibers and water is pulp. Paper machines make paper from the pulp. The Refiner process is 
controlled by human operators from the display like the one shown in Figure 16. 
Reverse engineering and data analysis techniques are used to get an overview of FBL 
programs. The environment can be used to generate high-level visual programs 
automatically. 
A typical problem in this step is the layout. As indicated in studies, e.g. by (Storey et 
al.1997), the quality of layouts may have a significant impact on program understanding. 
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Fig. 16 Refiner user interface, operator display for controlling process. 

According to our experiences, this also applies to visual programs. A commonly used 
solution for placing symbols is to use some automatic spatial spacing and auto-routing 
methods.  The layouts of FBL programs have some fixed properties. The FBL programs are 
always read from left to right: inputs are on the left and outputs are on the right. The layout 
problem thus mainly concerns the rest of the FBL program. The solution selected for lay 
outing FBL programs is semiautomatic. The engineer needs to show a place for each symbol 
which is created automatically on the fly. Even though this approach requires manual 
intervention, it also has its advantages.  The same tool environment is used for viewing and 
reverse engineering on the one hand and for programming on the other. Namely, the 
processes of forward and reverse engineering are not separated. In fact, the engineer is 
typically programming at the same time as analyzing a reusable (reverse engineered) 
solution. To be able to reuse the existing program, one has to learn the program structure 
first. After inserting all symbols needed, the engineer can activate a function that completes 
drawing with auto-routed connection lines. This feature is really powerful because in a 
normal case the engineer has to write each external data point / port connection manually 
in each FBL program. Now he can modify symbols and connections and in this way re-
design the solution, e.g., to be more common and easier to understand. 

5.3 Template maintenance 
Trends in our template variation will focus on isolating IO from basic templates. This will 
reduce maintenance work that is needed. If a template contains some additional features 
like IO (standard IO, ACN IO, and LIS IO) and a new connection is implemented like FF IO, 
then all templates should be updated in case the IO is included inside the template. This is 
one fact that suggests separating IO from the core template. An example of separation is 
shown in Figure 17 that contains core templates in the middle and IO templates in the lower 
part. Other auxiliary features are placed in the upper part in own templates, like start and 
restart. 
Figure 18 explains IO template in more detail. The tag application contains IO template and 
CORE. Communication is in its own part. This allows changes in application both in design 
time and in runtime easier. The flexibility is better because the new IO templates can be 
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used without changes in the CORE templates. This will help in the future as new IO cards 
are designed and taken into use with IO templates. 
 

 
Fig. 17. Template separation levels: IO, core, auxiliary. 

 
Fig. 18. Template modularization aims for managed variation and easier maintenance. 

5.4 Discussion 
According to the experiences on FBL and its programming environment at Metso 
Automation, in a combined reverse and forward engineering environment for visual 
programming, the role of layouts becomes quite important. Since the program analysis 
activities are often followed by forward engineering activities, the layouts constructed when 
analyzing programs should be "correct" and usable from the point of view of forward 
engineering activities. Also, since the engineer needs to understand the programs before 
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being able to re-engineer or reuse them, semi-automated approaches for constructing 
layouts have shown to be quite feasible. 
Re-engineering existing program instances means that they can be changed by extending or 
modifying them. For instance, new function blocks can be added, parameter values of 
existing programs can be changed, or connections between function groups can be changed.  
The engineer can thus create new programs that were first extracted from the database 
using reverse engineering techniques: he first creates a group of modules which are then 
visualized with the aid of reverse engineering techniques and finally re-engineered and/or 
reused. 
For increasing the degree of reuse and thus decreasing the development times, reusing 
existing function groups instead of modifying individual programs is preferred. This 
assumes that the existing function groups are general enough to be usable in various 
programs. In many cases, the structure of the program itself is reusable but the differences 
occur in parameter values. For enabling reuse in such cases, a concept of a template has been 
introduced to FBL. The function group can use a template as a symbol to instantiate it. In 
this way, function groups are built from specialized templates.  
The architecture layering and template mechanism gives us good tools for managing 
maintenance. At the template level, the model gives new maintenance needs as variation 
points but it needs more metainformation from the context (Cuccuru et al., 2007). There are 
sub-domain specific features in the templates such as power plant automation needs more 
accurate time stamps and chemical process automation requires more statistical data. The 
measurement template needs its own variation to fit from paper machine temperature 
measurement to oil refining temperature measurement. The oil refining measurement is 
more demanding and needs parallel measurements and statistical validation to insure 
reliability and robustness. This kind of knowledge management is needed in the future. 
The long history can be used to reflect and analyze different maintenance activities. Normal 
maintenance activities focus on updating existing symbols and templates. From time to time 
people find bugs, which also call for maintenance. Sometimes cosmetic changes are also 
needed, like new better looking symbols or new layout that will make a program easier to 
read. 
One practical issue is to support application maintenance. In the system level framework, 
tools can help a lot in this work. But designers have also had some bad experiences like 
making a modification in existing function block structure will make a big maintenance 
effort. After this designers have kept old function block structures untouched. It is better to 
create a new function block. A new function block can replace an old symbol if the 
connection points are matching. The framework can run a script that will automate the 
work. In exactly the same way, templates are versioned. A base template will be left 
untouched and a new template will be extended. An instantiated template can be easily 
upgraded to the new version. This is the normal method in customer projects. The project 
engineer can make a better template and changes / updates will keep all existing 
parameters. This is an efficient working method that improves quality. 

6. Summary 
FBL is a visual domain specific language that heavily relies on the usage of templates and 
meta-programming. FBL has been developed for writing automation control programs. Based 
on several years of practical use, it has proved to be easy to learn and adapted by its users.  
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6. Summary 
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Despite their undeniable benefits, template meta-programming techniques also have some 
drawbacks. Many compilers historically have quite poor support for templates. The use of 
templates can, in fact, make code somewhat less portable. Further, when errors are detected 
in template codes, most of the compilers produce confusing, unhelpful error messages. This 
can make templates difficult to develop. Debuggers also often have difficulties in working 
with templates. 
A large group of methods and tool support for visual domain-specific programming is 
available. For example, (TRACE MODE, 2009), supports several IEC 6-1131/3 standard 
languages that can also be used to program control systems and business applications. One 
of the languages, namely Function Block Diagram (FBD), resembles FBL. Another toolkit is 
the Generic Modeling Environment (GME, 2009) that supports creating domain-specific 
modeling and program synthesis environments. In (Fröhlich et al., 2002), propose a meta-
modeling based approach to provide and enforce modeling rules relevant for specific types 
of conceptual models used in automation domain, e.g. industrial plants or control systems.  
MetaEdit+ (Luoma et al., 2005 & MetaCase, 2006), in turn, supports meta-modeling for 
defining new domain-specific modeling languages and provides CASE-tool support for 
their use. While these approaches are partly related to ours, in this paper we have discussed 
yet new ideas, aspects, and working methods that are novel in using visual domain-specific 
languages. 
In reference (Czarnecki, 2000), points out the following goals of generative programming: (i) 
decreasing the conceptual gap between program code and domain concepts, (ii) high 
reusability and adaptability, (iii) simplified managements of many variations of a 
component, and (iv) increased efficiency. In our case, where a visual domain-specific 
language FBL is used, all these generative programming goals can be achieved.  
First, FBL as a visual language is intuitive. Moreover, custom symbols and icons can be used 
when programming certain types of applications. This provides a nice and customer-
friendly way to map domain concepts with program elements.  Second, templates have a 
significant role in FBL programs. A typical programming scenario includes selection of an 
appropriate template and its customization to a real program. A specific template library 
has been constructed and is constantly updated to better support programmers. In practice, 
the degree of reuse is very high. In new projects that are utilizing templates to a full extent, 
almost 100% of application programs are implemented by using templates. On the other 
hand, there are still projects that do not use any templates. New templates can, however, be 
easily constructed by comparing similarities of existing programs. i.e., new families of 
programs can be identified. This also supports the management of the programs belonging 
to this family. Finally, having ready-made templates can increase efficiency.  
Reuse library developed has enabled an efficient way for users to archive and share 
implemented solutions and knowledge. The current java-based application solution filing 
process together with search tool has proven to be an efficient and practical solution. 
The current content management database size exceeded 3.5 Giga bytes (2008). Database 
contains over hundreds of projects and links together over 62 Giga bytes of compressed files 
(1.2 million files). The usage of search tool has become a part of application engineers 
working manners. Approximately 1000 searches are performed monthly. 
The analyses and template-matching processes implemented have allowed Metso to study 
more the real problem of finding a higher abstraction level for mass customization. Reuse 
helps sales and pre-design is started usually from the reuse library. 
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The software quality and usability has been improved based on internal measurements 
carried out at Metso and based on feedback from satisfied customers. In the programming 
environment, there has been a steady evolution and a desire to improve it. User group 
feedback has been collected to make further improvements, in a similar way to works 
presented in (Costagliola et al., 2002, Cox et al., 1997, Smedley & Cox, 1997). 
The same environment that is used for development is also used for reverse engineering and 
maintaining FBL programs, thus providing a full round-trip support. The implemented 
environment together with the information on existing FBL programs gives engineers better 
understanding on the large existing group of FBL modules and their connections. The same 
kind of presentation of control diagrams and applications  for interlocking are actually 
presented in German energy sector. This association of power and heat generating utilities is 
named VGB (German appreviation from Vereinigung der Großkraftwerksbetreiber; VGB, 
2009). The documentation of the whole factory and its processes (water system or power 
generation) are normally written according to association guidance that is quite close to 
Metso’s function group. Similar standard is System Control Diagram that is specified in 
Norway (SCD, 2009). The symbols and principles are almost the same as in programming 
with Function Groups. 
To a great extent, the future design of controls could be carried out using function groups. 
Engineers who design advanced controls are seldom interested in details, but would rather 
like to program at higher level of abstraction, namely using function groups. The 
engineering environment indeed allows that. The actual experiences of the environment are 
still under study. Function groups are constructed for different processes to compare control 
structures and patterns that are used. From these existing solutions we will find out most 
common building blocks by statistical analysis using metadata stored in a reuse library. 
During last five years more entities and diagrams have been used in projects than before. 
The complexity of the programs has been almost at the same level. The conclusion of this 
five years trend is that the automation level is increasing steadily. Therefore, there is more 
implementation work in each project. The experiences gained so far indicate that similar 
physical processes with the same kind of machinery are easier to understand and reuse as  
high-level models, namely as packages with function groups in our case. Similar experiences 
have been presented (Wilkening et al., 1995). This also supports understanding on how to 
combine hardware and software as complete products (Holz, 2003). The experiences gained 
have shown that FBL and the engineering environment used is a flexible, practical, and well 
suited for the domain it is designed for, namely automation industry. We further believe 
that many of the features and advantages of the proposed FBL environment can be useful in 
traditional reverse engineering environments. In fact, features and benefits of an 
engineering framework corresponding to one discussed have been presented (Tilley, 1998). 
One of the most valuable parts of the proposed work is a possibility to reuse and re-engineer 
existing solutions. Unlike what is often used in traditional reverse engineering 
environments, semi-automated methods for constructing layouts have shown to be quite 
useful and feasible in the FBL environment. The semi-automated layout encourages the 
engineer to gradually learn the program, which is in any case required before he is able to 
re-engineer or reuse it. In addition, the usage of metadata has shown to be quite useful for 
querying the program database and to support program comprehension and analysis, 
especially concerning the evolution of the programs. Similar advantages could also be 
gained in traditional reverse engineering and program analysis tool support. We believe that 
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like to program at higher level of abstraction, namely using function groups. The 
engineering environment indeed allows that. The actual experiences of the environment are 
still under study. Function groups are constructed for different processes to compare control 
structures and patterns that are used. From these existing solutions we will find out most 
common building blocks by statistical analysis using metadata stored in a reuse library. 
During last five years more entities and diagrams have been used in projects than before. 
The complexity of the programs has been almost at the same level. The conclusion of this 
five years trend is that the automation level is increasing steadily. Therefore, there is more 
implementation work in each project. The experiences gained so far indicate that similar 
physical processes with the same kind of machinery are easier to understand and reuse as  
high-level models, namely as packages with function groups in our case. Similar experiences 
have been presented (Wilkening et al., 1995). This also supports understanding on how to 
combine hardware and software as complete products (Holz, 2003). The experiences gained 
have shown that FBL and the engineering environment used is a flexible, practical, and well 
suited for the domain it is designed for, namely automation industry. We further believe 
that many of the features and advantages of the proposed FBL environment can be useful in 
traditional reverse engineering environments. In fact, features and benefits of an 
engineering framework corresponding to one discussed have been presented (Tilley, 1998). 
One of the most valuable parts of the proposed work is a possibility to reuse and re-engineer 
existing solutions. Unlike what is often used in traditional reverse engineering 
environments, semi-automated methods for constructing layouts have shown to be quite 
useful and feasible in the FBL environment. The semi-automated layout encourages the 
engineer to gradually learn the program, which is in any case required before he is able to 
re-engineer or reuse it. In addition, the usage of metadata has shown to be quite useful for 
querying the program database and to support program comprehension and analysis, 
especially concerning the evolution of the programs. Similar advantages could also be 
gained in traditional reverse engineering and program analysis tool support. We believe that 
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traditional reverse engineering environments could provide more advanced support for 
using metadata than what is currently available. 
To summarize, the development of the template meta-programming support for FBL 
proceeded as follows. After the first release, fast feedback from the users had to be utilized 
in order to increase usability. Metso development team focused development on mini-
language functionality in order to match our domain requirements. After that, the tools 
were modified to support different kinds of maintenance activities. The most important 
factor was always efficiency. Development team has learnt that getting feedback 
continuously from the users is crucial for successful maintenance and further development 
of FBL and its programming environment. These maintenance and development activities 
should and will continue as long as FBL is in use. 
Future research and development will focus on further enhancing support for template 
meta-programming, e.g. by extending the template mini-language and by providing the 
additional means to raise the abstraction level of programming. Modern techniques and 
programming principles can be applied to the automation domain. Visual programming 
requires own specialized support that can be tuned to fit into the language and domain. 
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1. Introduction 
Vision is in fact the richest source of information for ourself and also for outdoors Robotics, 
and can be considered the most complex and challenging problem in signal processing for 
pattern recognition. The first results using Vision in the control loop have been obtained in 
indoors and structured environments, in which a line or known patterns are detected and 
followed by a robot (Feddema & Mitchell (1989), Masutani et al. (1994)). Successful works 
have demonstrated that visual information can be used in tasks such as servoing and 
guiding, in robot manipulators and mobile robots (Conticelli et al. (1999), Mariottini et al. 
(2007), Kragic & Christensen (2002).) 
Visual Servoing is an open issue with a long way for researching and for obtaining 
increasingly better and more relevant results in Robotics. It combines image processing and 
control techniques, in such a way that the visual information is used within the control loop. 
The bottleneck of Visual Servoing can be considered the fact of obtaining robust and on-line 
visual interpretation of the environment, which can be usefully treated by control structures 
and algorithms. The solutions provided in Visual Servoing are typically divided into Image 
Based Control Techniques and Pose Based Control Techniques, depending on the kind of 
information provided by the vision system that determine the kind of references that have to 
be sent to the control structure (Hutchinson et al. (1996), Chaumette & Hutchinson (2006) 
and Siciliano & Khatib (2008)). Another classical division of the Visual Servoing algorithms 
considers the physical disposition of the visual system, yielding to eye-in-hand systems and 
eye-to-hand systems, that in the case of Unmanned Aerial Vehicles (UAV) can be translated 
as on-board visual systems (Mejias (2006)) and ground visual systems (Martínez et al. 
(2009)). 
The challenge of Visual Servoing is to be useful in outdoors and non-structured 
environments. For this purpose the image processing algorithms have to provide visual 
information that has to be robust and works in real time. UAV can therefore be considered 
as a challenging testbed for visual servoing, that combines the difficulties of abrupt changes 
in the image sequence (i.e. vibrations), outdoors operation (non-structured environments) 
and 3D information changes (Mejias et al. (2006)). In this chapter we give special relevance 
to the fact of obtaining robust visual information for the visual servoing task. In section 
(2).we overview the main algorithms used for visual tracking and we discuss their 
robustness when they are applied to image sequences taken from the UAV. In sections (3). 
and (4). we analyze how vision systems can perform 3D pose estimation that can be used for 
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controlling whether the camera platform or the UAV itself. In this context, section (3). 
analyzes visual pose estimation using multi-camera ground systems, while section (4). 
analyzes visual pose estimation obtained from onboard cameras. On the other hand, section 
(5)., shows two position based control applications for UAVs. Finally section (6). explodes 
the advantages of fuzzy control techniques for visual servoing in UAVs. 

2. Image processing for visual servoing 
Image processing is used to find characteristics in the image that can be used to recognize an 
object or points of interest. This relevant information extracted from the image (called 
features) ranges from simple structures, such as points or edges, to more complex structures, 
such as objects. Such features will be used as reference for any visual servoing task and 
control system. 
On image regions, the spatial intensity also can be considered as a useful characteristic for 
patch tracking. In this context, the region intensities are considered as a unique feature that 
can be compared using correlation metrics on image intensity patterns. 
Most of the features used as reference are interest points, which are points in an image that 
have a well-defined position, can be robustly detected, and are usually found in any kind of 
images. Some of these points are corners formed by the intersection of two edges, and others 
are points in the image that have rich information based on the intensity of the pixels. A 
detector used for this purpose is the Harris corner detector (Harris & Stephens (1988)). It 
extracts corners very quickly based on the magnitude of the eigenvalues of the 
autocorrelation matrix. Where the local autocorrelation function measures the local changes 
of a point with patches shifted by a small amount in different directions. However, taking 
into account that the features are going to be tracked along the image sequence, it is not 
enough to use only this measure to guarantee the robustness of the corner. This means that 
good features to track (Shi & Tomasi (1994)) have to be selected in order to ensure the 
stability of the tracking process. The robustness of a corner extracted with the Harris 
detector can be measured by changing the size of the detection window, which is increased 
to test the stability of the position of the extracted corners. A measure of this variation is 
then calculated based on a maximum difference criteria. Besides, the magnitude of the 
eigenvalues is used to only keep features with eigenvalues higher than a minimum value. 
Combination of such criteria leads to the selection of the good features to track. Figure 1(a) 
shows and example of good features to track on a image obtained on a UAV. 
The use of other kind of features, such as edges, is another technique that can be applied on 
semi-structured environments. Since human constructions and objects are based on basic 
geometrical figures, the Hough transform (Duda & Hart (1972)) becomes a powerful 
technique to find them in the image. The simplest case of the algorithm is to find straight 
lines in an image that can be described with the equation y = mx + b. The main idea of the 
Hough transform is to consider the characteristics of the straight line not as image points x 
or y, but in terms of its parameters m and b, representing the same line as 

 in the parameter space, that is based on the angle of the vector from 

the origin to this closest point on the line (θ ) and distance between the line and the origin 
(r). If a set of points form a straight line, they will produce sinusoids that cross at the 
parameters of that line. Thus, the problem of detecting collinear points can be converted to 
the problem of finding concurrent curves. To apply this concept just to points that might be 
on a line, some pre-processing algorithms are used to find edge features, such as the Canny 
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edge detector (Canny (1986)) or the ones based on derivatives of the images obtained by a 
convolution of image intensities and a mask (Sobel I. (1968)). These methods have been used 
in order to find power lines and isolators in an UAV inspection application (Mejías et al. 
(2007)). 
The problem of tracking features can be solved with different approaches. The most popular 
algorithm to track features and image regions, is the Lucas-Kanade algorithm (Lucas & 
Kanade (1981)) which have demonstrated a good performance for real time with a good 
stability for small changes. Recently, feature descriptors have been successfully applied on 
visual tracking, showing a good robustness for image scaling, rotations, translations and 
illumination changes, eventhough they are time expensive to calculate. The generalized 
Lucas Kanade algorithm is overviewed on subsection 2.1, where it is applied for patch 
tracking and also for optical flow calculation, using the sparse L-K (subsection 2.1.1) and 
pyramidal L-K (subsection 2.1.2) variations. On subsection 2.2, features descriptors are 
introduced and used for robust matching, as explained on subsection 2.3 

2.1 Appearance tracking 
Appearance-based tracking techniques does not use features. They use the intensity values 
of a ‘patch’ of pixels that correspond to the object to be tracked. The method to track this 
patch of pixels is the generalized L-K algorithm, that works under three premises: first, the 
intensity constancy: the vicinity of each pixel considered as a feature does not change as it is 
tracked from frame to frame; second, the change in the position of the features between two 
consecutive frames must be minimum, so that the features are close enough to each other; 
and third, the neighboring points move in a solidarity form and have spatial coherence. 
The patch is related to the next frame by a warping function that can be the optical flow or 
another model of motion. Taking into account the previously mentioned L-K premisses, the 
problem can be formulated in this way: lets define X as the set of points that form the patch 
window or template image T, where x = (x,y)T is a column vector with the coordinates in the 
image plane of a given pixel and T(x) = T(x,y) is the grayscale value of the images a the 
locations x. The goal of the algorithm is to align the template T with the input image I 
(where I(x) = I(x,y) is the grayscale value of the images a the locations x). Because T 
transformed must match with a sub-image of I, the algorithm will find the set of parameters 
μ = (μ1,μ2, ...μn) for a motion model function ( e.g., Optical Flow, Affine, Homography) 
W(x;μ), also called the warping function. The objective function of the algorithm to be 
minimized in order to align the template and the actual image is equation 1: 

 
(1) 

where w(x) is a function to assign different weights to the comparison window. In general 
w(x) = 1. Alternatively, w could be a Gaussian function to emphasize the central area of the 
window. This equation can also be reformulated to make it possible to solve for track sparse 
feature as is explained on section 2.1.1. 
The Lucas Kanade problem is formulated to be solved in relation to all features in the form 
of a least squares’ problem, having a closed form solution as follows. 
Defining w(x) = 1, the objective function (equation 1) is minimized with respect to μ and the 
sum is performed over all of the pixels x on the template image. Since the minimization 
process has to be made with respect to μ, and there is no lineal relation between the pixel 



 Visual Servoing 

 

182 

controlling whether the camera platform or the UAV itself. In this context, section (3). 
analyzes visual pose estimation using multi-camera ground systems, while section (4). 
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(5)., shows two position based control applications for UAVs. Finally section (6). explodes 
the advantages of fuzzy control techniques for visual servoing in UAVs. 

2. Image processing for visual servoing 
Image processing is used to find characteristics in the image that can be used to recognize an 
object or points of interest. This relevant information extracted from the image (called 
features) ranges from simple structures, such as points or edges, to more complex structures, 
such as objects. Such features will be used as reference for any visual servoing task and 
control system. 
On image regions, the spatial intensity also can be considered as a useful characteristic for 
patch tracking. In this context, the region intensities are considered as a unique feature that 
can be compared using correlation metrics on image intensity patterns. 
Most of the features used as reference are interest points, which are points in an image that 
have a well-defined position, can be robustly detected, and are usually found in any kind of 
images. Some of these points are corners formed by the intersection of two edges, and others 
are points in the image that have rich information based on the intensity of the pixels. A 
detector used for this purpose is the Harris corner detector (Harris & Stephens (1988)). It 
extracts corners very quickly based on the magnitude of the eigenvalues of the 
autocorrelation matrix. Where the local autocorrelation function measures the local changes 
of a point with patches shifted by a small amount in different directions. However, taking 
into account that the features are going to be tracked along the image sequence, it is not 
enough to use only this measure to guarantee the robustness of the corner. This means that 
good features to track (Shi & Tomasi (1994)) have to be selected in order to ensure the 
stability of the tracking process. The robustness of a corner extracted with the Harris 
detector can be measured by changing the size of the detection window, which is increased 
to test the stability of the position of the extracted corners. A measure of this variation is 
then calculated based on a maximum difference criteria. Besides, the magnitude of the 
eigenvalues is used to only keep features with eigenvalues higher than a minimum value. 
Combination of such criteria leads to the selection of the good features to track. Figure 1(a) 
shows and example of good features to track on a image obtained on a UAV. 
The use of other kind of features, such as edges, is another technique that can be applied on 
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lines in an image that can be described with the equation y = mx + b. The main idea of the 
Hough transform is to consider the characteristics of the straight line not as image points x 
or y, but in terms of its parameters m and b, representing the same line as 

 in the parameter space, that is based on the angle of the vector from 

the origin to this closest point on the line (θ ) and distance between the line and the origin 
(r). If a set of points form a straight line, they will produce sinusoids that cross at the 
parameters of that line. Thus, the problem of detecting collinear points can be converted to 
the problem of finding concurrent curves. To apply this concept just to points that might be 
on a line, some pre-processing algorithms are used to find edge features, such as the Canny 
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edge detector (Canny (1986)) or the ones based on derivatives of the images obtained by a 
convolution of image intensities and a mask (Sobel I. (1968)). These methods have been used 
in order to find power lines and isolators in an UAV inspection application (Mejías et al. 
(2007)). 
The problem of tracking features can be solved with different approaches. The most popular 
algorithm to track features and image regions, is the Lucas-Kanade algorithm (Lucas & 
Kanade (1981)) which have demonstrated a good performance for real time with a good 
stability for small changes. Recently, feature descriptors have been successfully applied on 
visual tracking, showing a good robustness for image scaling, rotations, translations and 
illumination changes, eventhough they are time expensive to calculate. The generalized 
Lucas Kanade algorithm is overviewed on subsection 2.1, where it is applied for patch 
tracking and also for optical flow calculation, using the sparse L-K (subsection 2.1.1) and 
pyramidal L-K (subsection 2.1.2) variations. On subsection 2.2, features descriptors are 
introduced and used for robust matching, as explained on subsection 2.3 

2.1 Appearance tracking 
Appearance-based tracking techniques does not use features. They use the intensity values 
of a ‘patch’ of pixels that correspond to the object to be tracked. The method to track this 
patch of pixels is the generalized L-K algorithm, that works under three premises: first, the 
intensity constancy: the vicinity of each pixel considered as a feature does not change as it is 
tracked from frame to frame; second, the change in the position of the features between two 
consecutive frames must be minimum, so that the features are close enough to each other; 
and third, the neighboring points move in a solidarity form and have spatial coherence. 
The patch is related to the next frame by a warping function that can be the optical flow or 
another model of motion. Taking into account the previously mentioned L-K premisses, the 
problem can be formulated in this way: lets define X as the set of points that form the patch 
window or template image T, where x = (x,y)T is a column vector with the coordinates in the 
image plane of a given pixel and T(x) = T(x,y) is the grayscale value of the images a the 
locations x. The goal of the algorithm is to align the template T with the input image I 
(where I(x) = I(x,y) is the grayscale value of the images a the locations x). Because T 
transformed must match with a sub-image of I, the algorithm will find the set of parameters 
μ = (μ1,μ2, ...μn) for a motion model function ( e.g., Optical Flow, Affine, Homography) 
W(x;μ), also called the warping function. The objective function of the algorithm to be 
minimized in order to align the template and the actual image is equation 1: 

 
(1) 

where w(x) is a function to assign different weights to the comparison window. In general 
w(x) = 1. Alternatively, w could be a Gaussian function to emphasize the central area of the 
window. This equation can also be reformulated to make it possible to solve for track sparse 
feature as is explained on section 2.1.1. 
The Lucas Kanade problem is formulated to be solved in relation to all features in the form 
of a least squares’ problem, having a closed form solution as follows. 
Defining w(x) = 1, the objective function (equation 1) is minimized with respect to μ and the 
sum is performed over all of the pixels x on the template image. Since the minimization 
process has to be made with respect to μ, and there is no lineal relation between the pixel 
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position and its intensity value, the Lucas-Kanade algorithm assumes a known initial value 
for the parameters μ and finds increments of the parameters δμ. Hence, the expression to be 
minimized is: 

 
(2) 

and the parameter actualization in every iteration is μ = μ+δμ. In order to solve equation 2 
efficiently, the objective function is linearized using a Taylor Series expansion employing 
only the first order terms. The parameter to be minimized is δμ. Afterwards, the function to 
be minimized looks like equation 3 and can be solved like a ”least squares problem” with 
equation 4. 

 
(3) 

 
(4) 

where H is the Hessian Matrix approximation, 

 
(5) 

More details about this formulation can be found in (Buenaposada et al. (2003) and Baker 
and Matthews (2002)), where some modifications are introduced in order to make the 
minimization process more efficient, by inverting the roles of the template and changing the 
parameter update rule from an additive form to a compositional function. This is the so 
called ICIA (Inverse Compositional Image Alignment) algorithm, first proposed in (Baker 
and Matthews (2002)). These modifications where introduced to avoid the cost of computing 
the gradient of the images, the Jacobian of the Warping function in every step and the 
inversion of the Hessian Matrix that assumes the most computational cost of the algorithm. 

2.1.1 Sparse Lucas Kanade 
The Lucas Kanade algorithm can be applied on small windows around distinctive points as 
a sparse technique. In this case, the template is a small window (i.e., size of 3, 5, 7 or 9 pixels) 
and the warping function is defined by only a pure translational vector. In this context, the 
first assumption of the Lucas-Kanade method can be expressed as given a point xi = (x, y) at 
time t which intensity is I(x, y, t) will have moved by vx, vy and Δt between the two image 
frames, the following equation can be formulated: 

 (6) 

If the general movement can be consider small and using the Taylor series, equation 6 can be 
developed as: 

 
(7) 
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Because the higher order terms H.O.T. can being ignored, from equation we found that: 

 
(8) 

where vx,vy are the x and y components of the velocity or optical flow of I(x,y, t) and  
 are the derivatives of the image at point p = (x,y, t) 

 (9) 

Equation 9 is known as the Aperture Problem of the optical flow. It arises when you have a 
small aperture or window in which to measure motion. If motion is detected in this small 
aperture, it is often that it will be seeing as a edge and not as a corner, causing that the 
movement direction can not be determined. To find the optical flow another set of equations 
is needed, given by some additional constraint. 
The Lucas-Kanade algorithm forms the additional set of equation assuming that there is a 
local small window of size m × m centered at point p = (x,y) in which all pixels moves 
coherently. If the windows pixel are numerates as 1...n, with n = m2, a set of equations can be 
found: 

 

(10)

Equation 10 have more than two equations for the two unknowns and thus the system is 
over-determined. A systems of the form Ax = b can be former as equation 12 shows. 

 

(11)

The least squares method can be used to solve the over determined system of equation 12, 
finding that the optical flow can be defined as: 

 

(12)
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Because the higher order terms H.O.T. can being ignored, from equation we found that: 
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2.1.2 Pyramidal L-K 
On images with high motion, good matched features can be obtained using the Pyramidal 
Lucas-Kanade algorithm modification (Bouguet Jean Yves (1999)). It is used to solve the 
problem that arise when large and non-coherent motion are presented between consecutive 
frames, by firsts tracking features over large spatial scales on the pyramid image, obtaining 
an initial motion estimation, and then refine it by down sampling the levels of the images in 
the pyramid until it arrives to the original scale. 
The overall pyramidal tracking algorithm proceeds as follows: first, a pyramidal 
representation of an image I of size widthpixels × heightpixels is generated. The zeroth level is 
composed by the original image and defined as I0, then pyramids levels are recursively 
computed by dawnsampling the last available level (compute I1 form I0, then I2 from I1 and 
so on until ILm form IL–1)). Typical maximum pyramids Levels Lm are 2, 3 and 4. Then, the 
optical flow is computed at the deepest pyramid level Lm. Then, the result of that 
computation is propagated to the upper level Lm – 1 in a form of an initial guess for the pixel 
displacement (at level Lm – 1). Given that initial guess, the refined optical flow is computed 
at level Lm – 1, and the result is propagated to level Lm – 2 and so on up to the level 0 (the 
original image). 

2.2 Feature descriptors and tracking 
Feature description is a process to obtain interest points in the image which are defined by a 
series of characteristics that make it suitable for being matched on image sequences. This 
characteristics can include a clear mathematical definition, a well-defined position in image 
space and a local image structure around the interest point. This structure has to be rich in 
terms of local information contents that has to be robust under local and global 
perturbations in the image domain. These robustness includes those deformations arising 
from perspective transformations (i.e, scale changes, rotations and translations) as well as 
illumination/brightness variations, such that the interest points can be reliably computed 
with high degree of reproducibility. 
There are many feature descriptors suitable for visual matching and tracking, from which 
Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature algorithm (SURF) 
have been the more widely use on the literature and are overview in sections 2.2.1 and 2.2.2. 

2.2.1 SIFT features 
The SIFT (Scale Invariant Feature Transform) detector (Lowe (2004)) is one of the most widely 
used algorithms for interest point detection (called keypoints in the SIFT framework) and 
matching. This detector was developed with the intention to be used for object recognition. 
Because of this, it extracts keypoints invariant to scale and rotation using the gaussian 
difference of the images in different scales to ensure invariance to scale. To achieve invariance 
to rotation, one or more orientations based on local image gradient directions are assigned to 
each keypoint. The result of all this process is a descriptor associated to the keypoint, which 
provides an efficient tool to represent an interest point, allowing an easy matching against a 
database of keypoints. The calculation of these features has a considerable computational cost, 
which can be assumed because of the robustness of the keypoint and the accuracy obtained 
when matching these features. However, the use of these features depends on the nature of the 
task: whether it needs to be done fast or accurate. Figure 1(b) shows and example of SIFT 
keypoints on an aerial image taken with an UAV. 
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SIFT features can be used to track objects, using the rich information given by the keypoints 
descriptors. The object is matched along the image sequence comparing the model template 
(the image from which the database of features is created) and the SIFT descriptor of the 
current image, using the nearest neighbor method. Given the high dimensionality of the 
keypoint descriptor (128), its matching performance is improved using the Kd-tree search 
algorithm with the Best Bin First search modification proposed by Lowe (Beis and Lowe 
(1997)). The advantage of this method lies in the robustness of the matching using the 
descriptor, and in the fact that this match does not depend on the relative position of the 
template and the current image. Once the matching is performed, a perspective 
transformation is calculated using the matched Keypoints, comparing the original template 
with the current image. 

2.2.2 SURF features 
Speeded Up Robust Feature algorithm (Herbert Bay et al. (2006)) extracts features from an 
image which can be tracked over multiple views. The algorithm also generates a descriptor 
for each feature that can be used to identify it. SURF features descriptor are scale and 
rotation invariant. Scale invariance is attained using different amplitude gaussian filters, in 
such a way that its application results in an image pyramid. The level of the stack from 
which the feature is extracted assigns the feature to a scale. This relation provides scale 
invariance. The next step is to assign a repeatable orientation to the feature. The angle is 
calculated through the horizontal and vertical Haar wavelet responses in a circular domain 
around the feature. The angle calculated in this way provides a repeatable orientation to the 
feature. As with the scale invariance the angle invariance is attained using this relationship. 
Figure 1(c) shows and example of SURF features on an aerial image. 
SURF descriptor is a 64 element vector. This vector is calculated in a domain oriented with 
the assigned angle and sized according to the scale of the feature. Descriptor is estimated 
using horizontal and vertical response histograms calculated in a 4 by 4 grid. There are two 
variants to this descriptor: the first provides a 32 element vector and the other one a 128 
element vector. The algorithm uses integral images to implement the filters. This technique 
makes the algorithm very efficient. 
The procedure to match SURF features is based on the descriptor associated to the extracted 
interest point. An interest point in the current image is compared to an interest point in the 
previous one by calculating the Euclidean distance between their descriptor vectors. 
 

   
                       (a)                                                  (b)                                                   (c) 
Fig. 1. Comparison between features point extractors. Figure 1(a) are features obtained using 
Good Features to Track, figure 1(b) are keypoints obtained using SIFT (the green arrows 
represents the keypoints orientation and scale) and figure 1(c) are descriptors obtained 
using SURF (red circles and line represents the descriptor scale and angle). 
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the pyramid until it arrives to the original scale. 
The overall pyramidal tracking algorithm proceeds as follows: first, a pyramidal 
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composed by the original image and defined as I0, then pyramids levels are recursively 
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used algorithms for interest point detection (called keypoints in the SIFT framework) and 
matching. This detector was developed with the intention to be used for object recognition. 
Because of this, it extracts keypoints invariant to scale and rotation using the gaussian 
difference of the images in different scales to ensure invariance to scale. To achieve invariance 
to rotation, one or more orientations based on local image gradient directions are assigned to 
each keypoint. The result of all this process is a descriptor associated to the keypoint, which 
provides an efficient tool to represent an interest point, allowing an easy matching against a 
database of keypoints. The calculation of these features has a considerable computational cost, 
which can be assumed because of the robustness of the keypoint and the accuracy obtained 
when matching these features. However, the use of these features depends on the nature of the 
task: whether it needs to be done fast or accurate. Figure 1(b) shows and example of SIFT 
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SIFT features can be used to track objects, using the rich information given by the keypoints 
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2.3 Robust matching 
A set of corresponding or matched points between two images are frequently used to 
calculate geometrical transformation models like affine transformations, homographies or 
the fundamental matrix in stereo systems. The matched points can be obtained by a variety 
of methods and the set of matched points obtained often has two error sources. The first one 
is the measurement of the point position, which follows a Gaussian distribution. The second 
one is the outliers to the Gaussian error distribution, which are the mismatched points given 
by the selected algorithm. These outliers can severely disturb the estimated function, and 
consequently alter any measurement or application based on this geometric transformation. 
The goal then, is to determine a way to select a set of inliers from the total set of 
correspondences, so that the desired projection model can be estimated with some standard 
methods, but employing only the set of pairs considered as inliers. This kind of calculation is 
considered as robust estimation, because the estimation is tolerant (robust) to measurements 
following a different or unmodeled error distribution (outliers). 
Thus, the objective is to filter the total set of matched points in order to detect and 
eliminated erroneous matched and estimate the projection model employing only the 
correspondences considered as inliers. There are many algorithms that have demonstrated 
good performance in model fitting, some of them are the Median of Squares (LMeds) 
(Rousseeuw & Leroy (1987)) and Random Sample Consensus (RANSAC) algorithm (Fischer 
& Bolles (1981)). Both are randomized algorithms and are able to cope with a large 
proportion of outliers. 
In order to use a robust estimation method for a projective transformation, we will assume 
that a set of matched points between two projective planes (two images) obtained using 
some of the methods describe in section (2). are available. This set includes some unknown 
proportion of outliers or bad correspondences, giving a series of matched points  
(xi,yi) ↔(x′i ,y′i) for i = 1. . .n, from which a perspective transformation must be calculated, 
once the outliers have been discarded. 
For discard the outliers from the set of matched points, we use the RANSAC algorithm 
(Fischer & Bolles (1981)). It achieves its goal by iteratively selecting a random subset of the 
original data points by testing it to obtain the model and evaluating the model consensus, 
which is the total number of original data points that best fit the model. The model is 
obtained using a close form solution according to the desired projective transformation (an 
example is show on section 2.3.1). This procedure is then repeated a fixed number of times, 
each time producing either a model which is rejected because too few points are classified as 
inliers, or a refined model. When total trials are reached, the algorithm return the projection 
model with the largest number of inliers. The algorithm 1 shows a the general steps to 
obtain a robust transformation. Further description can be found on (Hartley & Zisserman 
(2004), Fischer & Bolles (1981)). 

2.3.1 Robust homography 
As an example of the generic robust method described above, we will show its application 
for a robust homography estimation. It can be viewed as the problem of estimating a 2D 
projective transformation that given a set of points xi  in P2 and a corresponding set of 
points ′xi  in P2, compute the 3x3 matrix H that takes each xi  to ′xi  or ′xi  = H xi . In general 
the points xi  and ′xi  are points in two images or in 2D plane surfaces. 
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Taking into account that the number of degrees of freedom of the projective transformation 
is eight (defined up to scale) and because each point to point correspondences (xi,yi) ↔(x′i ,y′i) 
gives rise to two independent equations in the entries of H, is enough with four 
correspondences to have a exact solution or minimal solution. If more than four points 
correspondences are given, the system is over determined and H is estimated using a 
minimization method. So, in order to use the algorithm 1, we define the minimum set of 
points to be s = 4. 
If matrix H is written in the form of a vector h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]t the 
homogeneous equations ′x = H x  for n points could be formed as Ah = 0, with A a 2n × 9 
matrix defined by equation 13: 

 

(13)

In general, equation 13 can be solved using three different methods (the inhomogeneous 
solution, the homogeneous solution and non-linear geometric solution) as explained in 
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2.3.1 Robust homography 
As an example of the generic robust method described above, we will show its application 
for a robust homography estimation. It can be viewed as the problem of estimating a 2D 
projective transformation that given a set of points xi  in P2 and a corresponding set of 
points ′xi  in P2, compute the 3x3 matrix H that takes each xi  to ′xi  or ′xi  = H xi . In general 
the points xi  and ′xi  are points in two images or in 2D plane surfaces. 
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Taking into account that the number of degrees of freedom of the projective transformation 
is eight (defined up to scale) and because each point to point correspondences (xi,yi) ↔(x′i ,y′i) 
gives rise to two independent equations in the entries of H, is enough with four 
correspondences to have a exact solution or minimal solution. If more than four points 
correspondences are given, the system is over determined and H is estimated using a 
minimization method. So, in order to use the algorithm 1, we define the minimum set of 
points to be s = 4. 
If matrix H is written in the form of a vector h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]t the 
homogeneous equations ′x = H x  for n points could be formed as Ah = 0, with A a 2n × 9 
matrix defined by equation 13: 

 

(13)

In general, equation 13 can be solved using three different methods (the inhomogeneous 
solution, the homogeneous solution and non-linear geometric solution) as explained in 
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Criminisi et al. (1999). The most widely use of these methods is the inhomogeneous solution. 
In this method, one of the nine matrix elements is given a fixed unity value, forming an 
equation of the form A’h’ = b as is shown in equation 14. 

 

(14)

The resulting simultaneous equations for the 8 unknown elements are then solved using a 
Gaussian elimination in the case of a minimal solution or using a pseudo-inverse method in 
case of an over-determined system Hartley and Zisserman (2004). 
Figure 2 shows an example of a car tracking using a UAV, in which SURF algorithm, is used 
to obtain visual features, and the RANSAC algorithm is used for outliers rejection. 
 

 
Fig. 2. Robust Homography Estimation using SURF features on a car tracking from a UAV. 
Up: Reference template. Down: Scene view, in which are present translation, rotation, and 
occlusions. 

3. Ground visual system for pose estimation 
Multi-camera systems are considered attractive because of the huge amount of information 
that can be recovered and the increase of the camera FOV (Field Of View) that can be 
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obtained with these systems. These characteristics can help solving common vision 
problems such as occlusions, and can offer more tools for control, tracking, representation of 
objects, object analysis, panoramic photography, surveillance, navigation of mobile vehicles, 
among other tasks. However, in spite of the advantages offered by these systems, there are 
some applications where the hardware and the computational requirements make a multi-
camera solution inadequate, taking into account that the larger the number of cameras used, 
the greater the complexity of the system is. 
For example, in the case of pose estimation algorithms, when there is more than one camera 
involved, there are different subsystems that must be added to the algorithm: 
• Camera calibration 
• Feature Extraction and tracking in multiple images 
• Feature Matching 
• 3D reconstruction (triangulation) 
Nonetheless, obtaining an adequate solution for each subsystem, it could be possible to 
obtain a multiple view-based 3D position estimation at real-time frame rates. 
This section presents the use of a multi-camera system to detect, track, and estimate the 
position and orientation of a UAV by extracting some onboard landmarks, using the 
triangulation principle to recovered their 3D location, and then using this 3D information to 
estimate the position and orientation of the UAV with respect to a World Coordinate System. 
This information will be use later into a UAV’s control loop to develop positioning and 
landing tasks. 

3.0.2 Coordinate systems 
Different coordinate systems are used to map the extracted visual information from ℜ2 to ℜ3, 
and then to convert this information into commands to the helicopter. This section provides 
a description of the coordinate systems and their corresponding transformations to achieve 
vision-based tasks. 
There are different coordinate systems involved: the Image Coordinate System (Xi), that 
includes the Lateral (Xf ) and Central Coordinate Systems (Xu) in the image plane, the Camera 
Coordinate System (Xc), the Helicopter Coordinate System (Xh), and an additional one: the World 
Coordinate System (Xw), used as the principal reference system to control the vehicle (see 
figure 3). 
• Image and Camera Coordinate Systems 
The relation between the Camera Coordinate System and the Image Coordinate System is taken 
from the “pinhole” camera model. It states that any point referenced in the Camera Coordinate 
System xc is projected onto the image plane in the point xf by intersecting the ray that links 
the 3D point xc with the center of projection and the image plane. This mapping is described 
in equation15, where xc and xf are represented in homogenous coordinates. 

 

(15)

The matrix Kk contains the intrinsic camera parameters of the kth camera, such as the 
coordinates of the center of projection (cx, cy) in pixel units, and the focal length (fx, fy), where  
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Fig. 3. Coordinate systems involved in the pose estimation algorithm. 

fx = fmx and fy = fmy represent the focal length in terms of pixel dimensions, being mx and my 

the number of pixels per unit distance. 
The above-mentioned camera model assumes that the world point, the image point, and the 
optical center are collinear; however, in a real camera lens there are some effects (lens 
distortions) that have to be compensated in order to have a complete model. This 
compensation can be achieved by the calculation of the distortion coefficients through a 
calibration process (Zhang (2000)), in which the intrinsic camera parameters, as well as the 
radial and tangential distortion coefficients, are calculated. 
• Camera and World Coordinate Systems 
Considering that the cameras are fixed, these systems are related by a rigid transformation 
that allows to define the pose of the kth camera in a World Coordinate Frame. As presented in 
equation (16), this transformation is defined by a rotation matrix Rk and a translation vector 
tk that link the two coordinate systems and represent the extrinsic camera parameters. Such 
parameters are calculated through a calibration process of the trinocular system. 

 
(16)

• World and Helicopter Coordinate Systems 
The Helicopter Reference System, as described in figure 3, has its origin at the center of mass of 
the vehicle and its correspondent axes: Xh, aligned with the helicopter’s longitudinal axis; 
Yh, transversal to the helicopter; and Zh, pointing down. Considering that the estimation of 
the helicopter’s pose with respect to the World Coordinate System is based on the distribution 
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of the landmarks around the Helicopter Coordinate System, and that the information extracted 
from the vision system will be used as reference to the flight controller, a relation between 
those coordinate systems has to be found. 
In figure 3, it is possible to observe that this relation depends on a translation vector that 
defines the helicopter’s position (t), and on a rotation matrix R that defines the orientation of 
the helicopter (pitch, roll and yaw angles). Considering that the helicopter is flying at low 
velocities (< 4m/s), pitch and roll angles are considered ≈ 0, and only the yaw angle (θ) is 
taken into account in order to send the adequate commands to the helicopter. 
Therefore, the relation of the World and the Helicopter Coordinate Systems can be expressed as 
follows: 

 

(17)

Where (tx, ty, tz) will represent the position of the helicopter   with respect to 
the World Coordinate System, and θ the helicopter’s orientation. 

3.1 Feature extraction 
The backprojection algorithm proposed by Swain and Ballar in ( Swain & Ballard (1991)) is 
used to extract the different landmarks onboard the UAV. This algorithm finds a Ratio 
histogram k

iRh  for each landmark i in the kth camera as defined in equation 18: 

 
(18)

This ratio k
iRh  represents the relation between the bin j of a model histogram Mhi and the 

bin j of the histogram of the image Ihk which is the image of the kth camera that is being 
analyzed. Once k

iRh  is found, it is then backprojected onto the image. The resulting image is 
a gray-scaled image, whose pixel’s values represent the probability that each pixel belongs 
to the color we are looking for. 
The location of the landmarks in the different frames are found using the previous-
mentioned algorithm and the Continuously Adaptive Mean Shift (CamShift) algorithm (Bradski 
(1998)). The CamShift takes the probability image for each landmark i in each camera k and 
moves a search window (previously initialized) iteratively in order to find the densest 
region (the peak) which will correspond to the object of interest (colored-landmark i). The 
centroid of each landmarks ( k

ix , k
iy ) is determined using the information contained inside 

the search window to calculate the zeroth (
00
k
im ), and first order moments (

10
k
im , 

01
k
im ), 

(equation 19). These centroids found in the different images (as presented in figure. 4) are 
then used as features for the 3D reconstruction stage. 

 
(19)

When working with overlapping FOVs in a 3D reconstruction process, it is necessary to find 
the relation of the information between the different cameras. This process is known as 
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When working with overlapping FOVs in a 3D reconstruction process, it is necessary to find 
the relation of the information between the different cameras. This process is known as 
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Fig. 4. Feature Extraction. Different features must be extracted from images taken by 
different cameras. In this example color-based features have been considered. 

feature matching. This is a critical process, which requires the differentiation of features in 
the same image and also the definition of a metric which tells us if the feature i in image I1 is 
the same feature i in image I2 (image -I- of camera k). 
However, in this case, the feature matching problem has been solved taking into account the 
color information of the different landmarks; so that, for each image Ik there is a matrix ×

k
4 2F  

that will contain the coordinates of the features i found in this image. Then, the features are 
matched by grouping only the characteristics found (the central moments of each landmark) 
with the same color, that will correspond to the information of the cameras that are seing the 
same landmarks. 

3.1.1 3D reconstruction 
Assuming that the intrinsic parameters (Kk) and the extrinsic parameters (Rk and tk) of each 
camera are known (calculated through a calibration process), the 3D position of the matched 
landmarks can be recovered by intersecting in the 3D space the backprojection of the rays 
from the different cameras that represent the same landmark. 
The relation of the found position of each landmark, expressed in the Lateral Coordinate 
System (image plane), with the position expressed in the Camera Coordinate System, is defined 
as: 

 
(20)

where (
i

k
fx , 

i
k
fy ) is the found position of each landmark expressed in the image plane, (

i
k
cx , 

i
k
cy ,

i
k
cz ) represent the coordinates of the landmark expressed in the Camera Coordinate 

System, ( k
xc , k

yc ) the coordinates of the center of projection in pixel units, and ( k
xf , k

yf ) the 
focal length in terms of pixel dimensions. 
If the relation of the 3D position of landmark i with its projection in each Camera Coordinate 
System is defined as: 

 
(21)

Then, integrating equation 21 and equation 20, and reorganizing them, it is possible to 
obtain the following equations: 

Visual Servoing for UAVs  

 

195 

 
(22)

 
(23)

Where 
i

k
ux  and 

i
k
uy  represent the coordinates of landmark i expressed in the Central Camera 

Coordinate System of the kth camera, rk and tk are the components of the rotation matrix Rk and 
the translation vector tk that represent the extrinsic parameters, and 

iwx , 
iwy , 

iwz  are the 
3D coordinates of landmark i. 
From equations 22 and 23 we have a linear system of two equations and three unknowns 
with the following form: 

 

(24)

If there are at least two cameras seeing the same landmark, it is possible to solve the 
overdetermined system using the least squares method whose solution will be equation 25, 
where the obtained vector c represents the 3D position (

iwx , 
iwy , 

iwz ) of the ith landmark: 

 (25)

Once the 3D coordinates of the landmarks onboard the UAV have been calculated, the 
UAV’s position (

uavwx ) and its orientation with respect to World Coordinate System can be 
estimated using the 3D position found and the landmark’s distribution around the Helicopter 
Coordinate System (see figure 5). The helicopter’s orientation is defined only with respect to 
the Zh axis (Yaw angle θ) and it is assumed that the angles, with respect to the other axes, are 
considered to be ≈ 0 (helicopter on hover state or flying at low velocities < 4 m/s). Therefore, 
equation 17 can be formulated for each landmark. 
Reorganizing equation 17, considering that cθ = cos(θ), sθ = sin(θ), 

uavwx = tx, uavwy = ty, 

uavwz = tz, and formulating equation 17 for all the landmarks detected, it is possible to create 
a system of equations of the form Ac = b as in equation 26, with five unknowns: cθ, sθ, 

,
uavwx ,

uavwy .
uavwz  If at least the 3D position of two landmarks is known, this system of 

equations can be solved as in equation 25, and the solution c is a 4 × 1 vector whose 
components define the orientation (yaw angle) and the position of the helicopter expressed 
with respect to a World Coordinate System. 

 

(26)
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Fig. 5. Distribution of landmarks. The distribution of the landmarks in the Helicopter 
coordinate system is a known parameter used to extract the helicopter position and 
orientation with respect to the World coordinate system. 

In figures: 6(a), 6(b), 6(c) and 6(d), it is possible to see an example of the UAV’s position 
estimation using a ground-based multi camera system (see Martínez et al. (2009) for more 
details). In these figures, the vision-based position and orientation estimation (red lines) is 
also compared with the estimation obtained by the onboard sensors of the UAV (green 
lines). 

4. Onboard visual system for pose estimation 
In this section, a 3D pose estimation method based on projection matrix and homographies 
is explained. The method estimates the position of a world plane relative to the camera 
projection center for every image sequence using previous frame-to-frame homographies 
and the projective transformation at first frame, obtaining for each new image, the camera 
rotation matrix R and a translational vector t. This method is based on the propose by Simon 
et. al. (Simon et al. (2000), Simon & Berger (2002)). 

4.1 World plane projection onto the Image plane 
In order to align the planar object on the world space and the camera axis system, we 
consider the general pinhole camera model and the homogeneous camera projection matrix, 
that maps a world point xw in P3 (projective space) to a point xi on ith image in P2, defined by 
equation 27: 

 (27)

where the matrix K is the camera calibration matrix, Ri and ti are the rotation and translation 
that relates the world coordinate system and camera coordinate system, and s is an arbitrary 
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scale factor. Figure 7 shows the relation between a world reference plane and two images 
taken by a moving camera, showing the homography induced by a plane between these two 
frames. 
 

  
                                       (a)                                                                                (b) 

  
                                         (c)                                                                             (d) 

Fig. 6. Vision-based estimation vs. helicopter state estimation. The state values given by the 
helicopter state estimator after a Kalman f ilter (green lines) are compared with a multiple 
view-based estimation of the helicopter’s pose (red lines). 

 
Fig. 7. Projection model on a moving camera and frame-to-frame homography induced by a 
plane. 
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and the projective transformation at first frame, obtaining for each new image, the camera 
rotation matrix R and a translational vector t. This method is based on the propose by Simon 
et. al. (Simon et al. (2000), Simon & Berger (2002)). 

4.1 World plane projection onto the Image plane 
In order to align the planar object on the world space and the camera axis system, we 
consider the general pinhole camera model and the homogeneous camera projection matrix, 
that maps a world point xw in P3 (projective space) to a point xi on ith image in P2, defined by 
equation 27: 

 (27)

where the matrix K is the camera calibration matrix, Ri and ti are the rotation and translation 
that relates the world coordinate system and camera coordinate system, and s is an arbitrary 
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scale factor. Figure 7 shows the relation between a world reference plane and two images 
taken by a moving camera, showing the homography induced by a plane between these two 
frames. 
 

  
                                       (a)                                                                                (b) 

  
                                         (c)                                                                             (d) 

Fig. 6. Vision-based estimation vs. helicopter state estimation. The state values given by the 
helicopter state estimator after a Kalman f ilter (green lines) are compared with a multiple 
view-based estimation of the helicopter’s pose (red lines). 

 
Fig. 7. Projection model on a moving camera and frame-to-frame homography induced by a 
plane. 
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If point xw is restricted to lie on a plane Π , with a coordinate system selected in such a way 
that the plane equation of Π is Z = 0, the camera projection matrix can be written as equation 
28: 

 

(28)

where 〈Pi〉 denotes that this matrix is deprived on its third column or 〈Pi〉 = K[ 1 2r r ti i i ]. The 
deprived camera projection matrix is a 3 × 3 projection matrix, which transforms points on 
the world plane ( now in P2) to the ith image plane (likewise in P2), that is none other that a 
planar homography Hi

w Hiw defined up to scale factor as equation 29 shows. 

 (29)

Equation 29 defines the homography which transforms points on the world plane to the ith 

image plane. Any point on the world plane xΠ = [xΠ,yΠ,1]T is projected on the image plane as 

x = [x,y,1]T. Because the world plane coordinates system is not known for the ith image, Hi
w

 

can not be directly evaluated. However, if the position of the word plane for a reference 
image is known, a homography 0Hw , can be defined. Then, the ith image can be related with 
the reference image to obtain the homography 0Hi . This mapping is obtained using 
sequential frame-to-frame homographies 1−Hi

i , calculated for any pair of frames (i-1,i) and 
used to relate the ith frame to the first imagen 0Hi  using equation 30: 

 (30)

This mapping and the aligning between initial frame to world plane reference is used to 
obtain the projection between the world plane and the ith image Hi

w  = 0Hi 0Hw . In order to 
relate the world plane and the ith image, we must know the homography 0Hw . A simple 
method to obtain it, requires that a user selects four points on the image that correspond to 
corners of rectangle in the scene, forming the matched points (0,0) ↔ (x1,y1), (0,ΠWidth) ↔ 
(x2,y2), (ΠLenght,0) ↔ (x3,y3) and (ΠLenght,ΠWidth) ↔ (x4,y4). This manual selection generates a 
world plane defined in a coordinate frame in which the plane equation of Π is Z = 0. With 
these four correspondences between the world plane and the image plane, the minimal 
solution for homography 0Hw  = [h1

0
w  h2

0
w  h3

0
w ] is obtained using the method described on 

section 2.3.1. 
The rotation matrix and the translation vector are computed from the plane to image 
homography using the method described in (Zhang (2000)). From equation 29 and defining 
the scale factor λ = 1/s, we have that: 

 

(31)
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The scale factor λ can be calculated using equation 32: 

 
(32)

Because the columns of the rotation matrix must be orthonormal, the third vector of the 
rotation matrix r3 could be determined by the cross product of r1 × r2. However, the noise on 
the homography estimation causes that the resulting matrix R = [r1 r2 r3] does not satisfy the 
orthonormality condition and we must find a new rotation matrix R’ that best approximates 
to the given matrix R according to smallest Frobenius norm for matrices (the root of the sum 
of squared matrix coefficients) (Sturm (2000), Zhang (2000)). As demonstrated by (Zhang 
(2000)), this problem can be solved by forming the Rotation Matrix R = [r1 r2 r2] and using 
singular value decomposition (SVD) to form the new optimal rotation matrix R’ as equation 
33 shows: 

 

(33)

Thus, the solution for the camera pose problem is defined by equation 34: 

 (34)

4.2 UAV 3D estimation based on planar landmarks 
This section shows the use of a pose estimation method based on frame to frame object 
tracking using robust homographies. The method, makes a matching between consecutive 
images of a planar reference landmark, using either, homography estimation based on good 
features to track (Shi & Tomasi (1994)), matched using the pyramidal L-K method, or the 
ICIA algorithm (Baker & Matthews (2002)) for an object template appearance tracking using 
a homography warping model. The frame to frame matching is used to estimate a projective 
transformation between the reference object and the image, using it to obtain the 3D pose of 
the object with respect to the camera coordinate system. 
For these tests a Monocromo CCD Firewire camera with a resolution of 640x480 pixels is 
used. The camera is calibrated before each test, so the intrinsic parameters are know. The 
camera is installed in such a way that it is looking downward with relation to the UAV. A 
know rectangular helipad is used as the reference object to which estimate the UAV 3D 
position. It is aligned in such a way that its axes are parallel to the local plane North East 
axes. This helipad was designed in such a way that it produces many distinctive corner for 
the visual tracking. Figure 8(a), shows the helipad used as reference and figure 8(b), shows 
the coordinate systems involved in the pose estimation. 
The algorithm begins, when a user manually selects four points on the image that 
correspond to four points on a rectangle in the scene, forming the matched points (0,0) ↔ 
(x1,y1), (910mm,0) ↔ (x2,y2), (0,1190mm) ↔ (x3,y3) and (910mm,1190mm) ↔ (x4,y4). This 
manual selection generates a world plane defined in a coordinates frame in which the plane 
equation of Π is Z = 0 (figure 7) and also defining the scale for the 3D results. With these 
four correspondences between the world plane and the image plane, the minimal solution 
for homography 0Hw  is obtained. 
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The scale factor λ can be calculated using equation 32: 

 
(32)
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the object with respect to the camera coordinate system. 
For these tests a Monocromo CCD Firewire camera with a resolution of 640x480 pixels is 
used. The camera is calibrated before each test, so the intrinsic parameters are know. The 
camera is installed in such a way that it is looking downward with relation to the UAV. A 
know rectangular helipad is used as the reference object to which estimate the UAV 3D 
position. It is aligned in such a way that its axes are parallel to the local plane North East 
axes. This helipad was designed in such a way that it produces many distinctive corner for 
the visual tracking. Figure 8(a), shows the helipad used as reference and figure 8(b), shows 
the coordinate systems involved in the pose estimation. 
The algorithm begins, when a user manually selects four points on the image that 
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                                      (a)                                                                  (b) 

Fig. 8. 8(a) Helipad used as a plane reference for UAV 3D pose estimation based on 
homographies. 8(b) Helipad, camera and U.A.V coordinate systems. 

Once the alignment between the camera coordinate system and the reference helipad is 
known ( 0Hw ) the homographies between consecutive frames are estimated, using either, the 
Pyramidal L.K. or the ICIA algorithm as is described below: 
Optical Flow and RANSAC: good features to track are extracted on the zone corresponding 

to the projection of the helipad on image I0. Then a new image I1 is captured, and for 
each corner on image I0, the pyramidal implementation of the Lucas Kanade optical 
flow method is applied, obtaining for each one either, the corresponding position 
(velocity vector) on image I1 (if the corresponding point was found on the second 
image), or ”null” if it was not found. With these points that have been matched or its 
optical flow was found on image I1, a Homography 1

0H  is robustly estimated using the 
algorithm described on section ??. Homography 1

0H  is used to estimate the alignment 
between image I1 and the reference helipad using 1Hw  = 1

0H 0Hw , which is used to 
obtain the rotation matrix 1Rw  and the translation vector 1tw  using the method 
described on section 4.1. Then, the original frame formed by points ((x1,y1), (x2,y2), (x3,y3) 
and (x4,y4)) are projected on image I1 using 

1
xi

I = 1
0H

0
xi

I , defining the actual position of 
the helipad on the image I1. For this position, good features to track are once again 
estimated and used to calculate a new set of matched points between images I1 and I2. 
These set of matched points are used to calculate 2

1H , and then 2
0H  and 2Hw  from 

which 2Rw  and 2tw  is estimated. The process is successively repeated until either, the 
helipad is lost or the user finishes the process. 
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Fig. 9. Homography motion model estimated on a partial occluded image using either, the 
Lucas-Kanade Algorithm with RANSAC robust function fitting (left) or with the Inverse 
Compositional Algorithm ICA (right). Superimposed (top left), is the original frame or 
template under tracking. 

ICIA: The zone corresponding to the projection of the helipad on image I0 is defined as the 
template to track T(x) on the image sequence. Then for each new image Ik on the 
sequence, the following equation Σ∀x∈X(T(W(x; δμ) − Ik(W(x;μ))2 is minimized in order to 
get the parameters μ = (μ1,μ2, ...μn) for a Homography motion model (section 2.1), 
obtaining directly the homography 0Hk  that relates the image Ik with the template T(x) 
on image I0. The alignment between frame k and the world plane is obtained using  
Hk

w  = 0Hw 0Hk  from which Rk
w and tk

w  is estimated. 
Figure 9 shows the homography estimation using both, the Pyramidal Lucas Kanade tracker 
and the ICIA algorithm. 
The translational vector obtained using the method described on section 4.1, is already 
scaled based on the dimensions defined for the reference plane during the alignment 
between the helipad and image I0, so in our case the resulting vector ti

w  is in mm. The 
rotation matrix can be decomposed on Tait-Bryan or Cardan Angles. The Tait-Bryan or 
Cardan angles are formed when the three rotation sequences each occur about a different 
axis. This is the preferred sequence in flight and vehicle dynamics. Specifically, these angles 
are formed by the sequence: (1) ψ about z axis (yaw), (2) θ about ya (pitch), and (3) φ about 
the final xb axis (roll), where a and b denote the second and third stage in a three-stage 
sequence or axes. This set of rotation sequences is defined by the rotation matrices as 
equation 35 shows: 

 
(35)

The final coordinate transformation matrix for Tait-Bryan angles is defined by the 
composition of the rotations Rx,φRy,θRz,ψ forming the equation 36. 
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(35)

The final coordinate transformation matrix for Tait-Bryan angles is defined by the 
composition of the rotations Rx,φRy,θRz,ψ forming the equation 36. 
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(36)

The angles ψ, θ and φ can be obtained from the rotation matrix Ri
w  (remember the rotation 

sequence order) using the equation 37. 

 

(37)

Equation 37 is singular when θ = 0 or θ = π. 
Figure 10 shows some examples of the 3D pose estimation, based on a reference helipad. 
This figure shows the original reference image, the current frame, the optical flow between 
last and current frame, the helipad coordinates in the current frame camera coordinate 
system and the Tait-Bryan angles obtained from the rotation matrix. 
The estimated 3D pose is compared with helicopter position estimated by the Kalman Filter 
of the controller on the local plane with reference to the takeoff point (Center of the 
Helipad). Because the local tangent plane to the helicopter is defined in such a way that the 
X axis is the North position, the Y axis is the East position and Z axis is the Down Position 
(negative), the measured X and Y values must be rotated according with the helicopter 
heading or yaw angle, in order to be comparable with the estimated values obtaining from 
the homographies. Figures 11(a), 11(b) and 12(a) shows the landmark position with respect 
to the UAV and figure 12(b), shows the estimated yaw angle. 

5. UAV position control 
The 3D pose estimation techniques on sections 3.and 4.are integrated with the UAV control 
loop using Position Based Visual Servoing architectures in Dynamic Look and Move Systems 
(Hutchinson et al. (1996), Chaumette and Hutchinson (2006), Siciliano and Khatib (2008)). In 
this kind of control, an error between the current and the desired position of the UAV is 
calculated and used by the low level controller (onboard flight controller) to generate the 
control commands to move the UAV to the desired position. Depending on the camera 
configuration in the control system, we will have an eye-in-hand or an eye-to-hand 
configuration. In the case of onboard control, it is considered to be an eye-in-hand, while in 
the case of ground control it is an eye-to-hand configuration as is shown on figure 13. 
When the ground control is used (figure 13(a)), the vision system determines the position of 
the UAV in the World Coordinate System, so that the position 

setPointWx  and the position 

information given by the trinocular system uavWx , both defined in the World Coordinate 
System, will be compared to generate references to the position controller. These references  
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Fig. 10. Two different test for 3D pose estimation based on a helipad tracking using Robust 
Homography estimation. The reference image is on the small rectangle on the upper left 
corner. Left it the current frame and Right the Optical Flow between the actual and last 
frame. Superimposed are the Translation vector and the Tait-Bryan angles. 
 

 
                                         (a)                                                                                (b) 

Fig. 11. Comparison between the homography estimation and IMU data. 11(a) X axis 
displacement. 11(b) Y axis displacement 
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                                         (a)                                                                                (b) 

Fig. 11. Comparison between the homography estimation and IMU data. 11(a) X axis 
displacement. 11(b) Y axis displacement 
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                                        (a)                                                                               (b) 

Fig. 12. Comparison between the homography estimation and IMU data. 12(a) Z axis 
displacement. 12(b) Yaw angle 

 

 
                                           (a)                                                                           (b) 

Fig. 13. UAV visual control system following a dynamic look-and-move architecture. 13(a) is an 
eye-to-hand configuration (ground control), while 13(b) is an eye-in-hand configuration 
(onboard control) 

are first transformed into commands to the helicopter 
setPointhx  by taking into account the 

helicopter’s orientation, and then those references are sent to the position controller in order 
to move the helicopter to the desired position (figure 13(a)) 
In case of the Onboard (figure 13(b)) control and depending on the control task, a reference 
point in coordinates relative to the helipad will be defined (e.g. For landing the reference 
point will be (0,0,0)). Because, the estimated position of the helipad (relative to the camera 
coordinate system onboard the UAV) is known by the visual system, the reference point can 
be transformed to coordinates relative to the helicopter coordinate system and will be used 
to generate the references (X,Y,Z) and (Heading) commands, relative to the UAV coordinate 
system, that will be used by the low-level controller to position the helicopter (e.g. in the 
landing case the command will be the translation vector obtained by the visual system) 
(figure 13(b)). 
These control architectures have been tested with the COLIBRI III testbed that is shown in 
figure 14 (COLIBRI (2009), Campoy et al. (2009)). It has a low-level controller based on PID  
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Fig. 14. COLIBRI III Electric helicopter UAV used in a dynamic look-and-move control 
architecture. 
 

 
                                              (a)                                                                           (b) 

Fig. 15. UAV control. Vision-based position commands (figure 15(b) yellow line) are sent to 
the flight controller to develop a vision-based landing task. The vision-based estimation (red 
line) is compared with the position estimation of the onboard sensors during the task. 

control loops to ensure the helicopter’ stability, using the state estimation obtained by a 
Kalman Filter on information given by the GPS, IMU and Magnetometer sensors. In order to 
enable the UAV to perform onboard image processing, it has a dedicated onboard computer 
in which the visual systems runs. 
The system runs in a client-server architecture using TCP/UDP messages working in a 
multi-client wireless network, allowing the integration of vision systems and visual tasks 
with the low level flight control. This architecture allows applications to run both, onboard 
the autonomous helicopter or with an external processes, through a high level switching 
layer. The visual control system sends position references to the flight control through this 
layer using TCP/UDP messages, forming a dynamic look-and-move system architecture that is 
shown in figure 13. 
In figure 15, the client server architecture, and the control architectures presented in figure 
13 have been used to send position-based commands (figure 15(b) yellow line) to the flight 
controller in order to develop a vision-based landing task. Those position commands have 
been generated using the vision-based position estimation (figure 15 red line) obtained with 
the multi-camera system presented in section 3.. In figure 15(a) the 3D reconstruction of the 
vision-based position estimation (red line) during the landing task and the position 
estimation using the onboard sensors (green line) are compared. 
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                                        (a)                                                                               (b) 
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(onboard control) 

are first transformed into commands to the helicopter 
setPointhx  by taking into account the 

helicopter’s orientation, and then those references are sent to the position controller in order 
to move the helicopter to the desired position (figure 13(a)) 
In case of the Onboard (figure 13(b)) control and depending on the control task, a reference 
point in coordinates relative to the helipad will be defined (e.g. For landing the reference 
point will be (0,0,0)). Because, the estimated position of the helipad (relative to the camera 
coordinate system onboard the UAV) is known by the visual system, the reference point can 
be transformed to coordinates relative to the helicopter coordinate system and will be used 
to generate the references (X,Y,Z) and (Heading) commands, relative to the UAV coordinate 
system, that will be used by the low-level controller to position the helicopter (e.g. in the 
landing case the command will be the translation vector obtained by the visual system) 
(figure 13(b)). 
These control architectures have been tested with the COLIBRI III testbed that is shown in 
figure 14 (COLIBRI (2009), Campoy et al. (2009)). It has a low-level controller based on PID  
 

Visual Servoing for UAVs  

 

205 
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6. Fuzzy controllers for visual servoing 
This section shows the implementation of a visual control system using a tracker algorithm 
and three controllers working in parallel. Two of these controllers used to control the 
camera platform onboard the UAV (one for the pitch axis and the other for the yaw axis) 
and the third one is used to control the yaw angle of the helicopter (heading). The 
implementation of the controllers is based on Fuzzy logic, because this controller offers 
faster setpoint recovery with less overshoot than PID control for both setpoint changes and 
load changes. At the same time, it offers immunity to process noise when it is near setpoint 
because the controller develops a nonlinear response analogous to an error-squared PID 
controller. Also, when the error is larger, the control action is larger than for PID; while 
when it is smaller, the control action is smaller. However, the nonlinearity is less severe than 
for an error-squared controller and robustness is not compromised. Also, this controller is 
ideally suited for large time constants (not dead time) where overshoot and slow recovery 
are both undesirable. In fact, this controller generally outperforms PID loops in most 
situations. Another thing in favor is that using Fuzzy controllers it is not necessary to get the 
model of the helicopter in order to fit the controllers. 
The system uses a firewire camera mounted on a pan and tilt platform, that takes images 
with 320x240 pixels resolution. The visual system is used to track an object of interest, using 
its position on the image plane (pixels) as the input for the fuzzy system, getting a yaw error 
(for platform and helicopter) in the range of -160 to 160 pixels, and a range of -120 to 120 
pixels error for the platform pitch error. 
The fuzzification of the inputs and the outputs are defined by using a triangular and 
trapezoidal membership functions. The controllers have two inputs, the error between the 
center of the object and the center of the image (figures 16(a) and 17(a)) and the difference 
between the last and the actual error (figures 16(b) and 17(b)), derivative of the position or 
the velocity of the object to track. The platform controllers output represents how many 
degrees the servo-motor must turn, in the two axis, to gets the center of the object in the 
center of the image. The output of both variables of the axis of the visual platform have the 
same output, as is shown in figure 18(a). 
The heading controller uses the two same inputs of the yaw controller (figures 16(a) and 
16(b)) and the output of the controller represents how many degrees must, the helicopter, 
turn to line up to the object to track (figure 18(b)). 
The process of fuzzification transforms a numerical value to a linguistic value. We defined a 
linguistic value of each set at the inputs and output of each variables, putting the acronyms 
in the images of figure 18. The Meaning of these acronyms are shown in the table 1. 
The three controllers are working in parallel giving a redundant operation to the yaw axis, but 
what we want to do with this action is to reduce the error that we have with the yaw-platform 
controller, where the limitations of the visual algorithm and the movements velocity of the 
servos hinders us to take a quicker response. The controllers are guided by a 49 rules base. The 
platform controllers output are defining in such a way that the sector near to the zero 
response, has more membership functions, as is shown in figure 18(a). This option, give us the 
possibility to define a very sensible controller when the error is so small (the object is very near 
to the center of the image), and a very quick respond controller when the object is so far. For 
the heading controller we defined a trapezoidal part in the middle of the output in order to 
help the platform controller, just when the object to track is with so far to the center of the 
image. With these trapezoidal definition we get a more stable behavior of the helicopter, in the 
situations where the object to track is near to the center, obtaining a 0 value. 
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Error 

VBL 
BL 
LL  
C 

LR 
BR 

VBR 

Very Big to the Left  
Big to the Left  

Little to the Left  
Center  

Little to the Right  
Big to the Right  

Very Big to the Right 

Derivative Error 

VBN 
BN 
LN 
Z  

LP 
BP 

VBP 

Very Big Negative  
Big Negative  

Little Negative  
Zero  

Little Positive  
Big Positive  

Very Big Positive 

Output: Turn 

VBL 
BL  
L  

LL  
C 

LR  
R  

BR 
VBR 

Very Big to the Left  
Big to the Left  

Left  
Little to the Left  

Center  
Little to the Right  

Right  
Big to the Right  

Very Big to the Right 

Table 1. Meaning of the acronym of the linguistic value of the fuzzy variables inputs and the 
output. 
 

DE \ E  VBL  BL  LL  C  LR  BR  VBR  
VBN  VBL  VBL  VBL  BL  L  LL  Z  
BN  VBL  VBL  BL  L  LL  Z  LR  
LN  VBL  BL  L  LL  Z  LR  R  
Z  BL  L  LL  Z  LR  R  BR  
LP  L  LL  Z  LR  R  BR  VBR  
BP  LL  Z  LR  R  BR  VBR  VBR  
VBP  Z  LR  R  BR  VBR  VBR  VBR  

Table 2. Rules base of the Yaw and Pitch controllers. Where DE is the derivative error and E 
the error. 

For the inference process (in the defuzzification) we used a product classic method, and for 
the defuzzification part itself, we used the Height Method (equation 38). 

 
(38)

In tables 2 and 3 the base of fuzzy rules used by the controllers are shown. 
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(38)

In tables 2 and 3 the base of fuzzy rules used by the controllers are shown. 



 Visual Servoing 

 

208 

DE \ E VBL BL LL C LR BR VBR 
VBN BL BL BL BL L LL Z 
BN BL BL BL L LL Z LR 
LN BL BL L LL Z LR R 
Z BL L LL Z LR R BR 

LP L LL Z LR R BR BR 
BP LL Z LR R BR BR BR 

VBP Z LR R BR BR BR BR 

Table 3. Rules base of the Heading controller. Where DE is the derivative error and E the 
error. 

 
(a) Yaw Error. 

 
(b) Derivative of the Yaw error. 

Fig. 16. Inputs Variables of the Yaw and Heading controllers. 
 

 
(a) Pitch Error. 

 
(b) Derivative of the Pitch error Membership functions. 

Fig. 17. Inputs Variables of the Pitch controllers. 
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(a) Output of the Yaw and the Pitch Fuzzy Controllers. 

 
(b) Output of the Heading Fuzzy Controller. 

Fig. 18. Variables of the Fuzzy-MOFS controllers. 

These controllers are implemented using the software MOFS (Miguel Olivares’ Fuzzy 
Software), with a definition in classes shown in figure 19. Details about this software and the 
differences between this and others implementations of Fuzzy Logic software can be 
consulted on Olivares and Madrigal (2007) and Olivares et al. (2008). 
In the following paragraphs some results from real tests onboard the UAV, tracking static 
and moving objects are presented. For these tests, we use the Fuzzy controllers to control the 
pan and tilt camera platform. 
 

 
Fig. 19. Software definition. 
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Fig. 20. 3D flight reconstruction from the GPS and the IMU data from the UAV. Where, the 
’X’ axis represents the NORTH axis of the surface of the tangent of the earth, the ’Y’ axis 
represents the EAST axis of the earth, the ’Z’ is the altitude of the helicopter and the red 
arrows show the pitch angle of the helicopter. 
Tracking Static Objects 
In this test, we tracked a static object during the full flight of the UAV, from takeoff to 
landing. This flight was made by sending set-points from the ground station. Figure 20 
shows a 3D reconstruction of the flight using the GPS and IMU data on three axes: North 
(X), East (Y), and Altitude (Z), the first two of which are the axes forming the surface of the 
local tangent plane. The UAV is positioned over the north axis, looking to the east, where 
the mark to be tracked is located. The frame rate is 15 frames per second, so those 2500 
frames represent a full flight of almost 3 minutes. 
Figure 21 shows the UAV’s yaw and pitch movements. In figure 23, the output of the two 
Fuzzy-MOFS controllers in order to compensate the error caused by the changes of the 
different movements and angle changes of the UAV flight, where we can see the different 
responses of the controllers, depending the sizes and the types of the perturbations. 
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(a) Pitch angle movements. 

 
(b) Yaw angle movements. 

Fig. 21. Different pitch and yaw movements of the UAV. 
 

 
Fig. 22. Error between center of the image and center of the object to track. 
 

 
Fig. 23. Output from the Fuzzy Controller. 
Tracking Moving Objects 
In this part we present the tracking of a van with continuous movements of the helicopter 
increasing the difficulty of the test. In figure 24 we can see the error in pixels of the two axes 
of the image. Also, we can see the moments where we deselected the template and re-
selected it, in order to increase the difficulty to the controller. These intervals show up as the 
error remains fixed in one value for a long time. At the same time the pilot move the 
helicopter in order to increase the difficulty to the controllers, and also, the template was 
deselected and reselected for made the situation more adverse. In figure 24 it is possible to 
see the error in pixels of the x and y axis of the image. 
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Fig. 24. Error between center of the image and center of the dynamic object (a van) to track. 

In figures 25 and 26 we can see the response of the two controllers, showing the large 
movements sent by the controller to the servos when the mark is re-selected. Notice that in 
all the figures that show the controller responses, there are no data registered when the 
mark selection is lost because no motion is tracked. Figure 24 shows the data from the flight 
log, the black box of the helicopter. We can see that the largest response of the controllers 
are almost ±10 degrees for the yaw controller and almost 25 degrees for the pitch controller, 
corresponding to the control correction in a period of fewer than 10 frames. 
 

 
Fig. 25. Response of the Fuzzy control for the Yaw axis of the visual platform tracking a 
dynamic object (a van). 
 

 
Fig. 26. Response of the Fuzzy control for the Pitch axis of the visual platform tracking a 
dynamic object (a van). 
UAV Heading Control 
Finally, we present results of one of the tests where the heading of the helicopter, and the 
camera platform are controlled using the three controllers explained. 
In figure 28 we can see the response of the Fuzzy controller of the visual platform pitch 
angle, responding very quickly and with good behavior. In addition, figure 29 shows the 
controller response of the other axis of the platform. We can see a big and rapid movement 
near 1600 frames, reaching an error of almost 100 pixels. For this change we can see that the 
response of the controller is very fast, only 10 frames. 
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Fig. 27. Error between the static object tracked and the center of the image, running with the 
UAV simulator. 

 

 
Fig. 28. Response of the Fuzzy control for the Pitch axis of the visual platform tracking a 
static object with the simulator of the UAV control. 

 

 
Fig. 29. Response of the Fuzzy control for the Yaw axis of the visual platform tracking a 
static object with the simulator of the UAV control. 

The response of the heading controller is shown in figure 30, where we can see that it only 
responds to big errors in the yaw angle of the image. Also, we can see, in figure 31, how 
these signals affect the helicopter’s heading, changing the yaw angle in order to collaborate 
with the yaw controller of the visual platform. 
 

 
Fig. 30. Response of the Fuzzy control for the heading of the helicopter. 
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Fig. 31. Heading Response. 

7. Conclusion 
In this chapter, we have presented some of the techniques used for real time visual servoing 
on UAVs. These techniques includes visual algorithms for features detection and tracking, 
pose estimation, visual and pose based control systems, and fuzzy controllers, using them to 
increase the capabilities of UAVs in situations like object tracking, low altitude tasks such as: 
positioning and landing. 
The methods explained have been integrated in a UAV control architecture, forming both, 
visual and pose based control systems, that have been tested on real UAV flights, showing 
the advantages of using visual systems on this kind of robots. Additional examples and 
videos of the visual systems and process presented in this chapter are available at the 
Colibri Project web page COLIBRI (2009) 
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1. Introduction     
Together with the rapid growth of Internet service, copyright violation problems, such as 
unauthorized duplication and alteration of digital materials, have increased considerably 
(Langelaar et al., 2001). Therefore copyright protection over the digital materials is a very 
important issue that requires an urgent solution. The watermarking is considered as a viable 
technique to solve this problem. Until now, numerous watermarking algorithms have been 
proposed. Most of them are image watermarking algorithms and relatively few of them are 
related with video sequences. Although image watermarking algorithms can be used to 
protect the video signal, generally they are not efficient for this purpose, because image 
watermarking algorithms does not consider neither temporal redundancy of the video 
signal nor temporal attacks, which are efficient attacks against video watermarking 
(Swanson et al., 1998). 
Generally, in the watermarking schemes for copyright protection, the embedded watermark 
signal must be imperceptible and robust against common attacks, such as lossy 
compression, cropping, noise contamination and filtering (Wolfgang et al., 1999). In 
addition, video watermarking algorithms must satisfy the following requirements: a blind 
detection, high speed process and conservation of video file size.  The blind detection means 
that the watermark detection process does not require original video sequence, and the 
temporal complexity of watermark detection must not affect video decoding time. Also the 
file size of video sequence must be similar, before and after watermarking. Due to the 
redundancy of the video sequence, some attacks such as frame dropping and frame 
averaging can  effectively destroy the embedded watermark, without cause any degradation 
to the video signal. A design of an efficient video watermarking algorithm must consider 
this type of attacks (Wolfgang et al., 1999).  
Basically, video watermarking algorithms can be classified into three categories: 
watermarking in base band (Wolfgang et al., 1999; Hartung & Girod 1998; Swanson et al., 
1998; Kong et al., 2006), watermarking during video coding process (Liu et al., 2004; Zhao et 
al., 2003; Ueno 2004; Noorkami & Mersereau 2006) and watermarking in coded video 
sequence (Wang et al., 2004; Biswas et al., 2005; Langelaar & Lagendijk 2002). In the base 
band technique, the watermarking process is realized in uncompressed video stream, in 
which almost all image watermarking algorithms can be used, however generally 
computational complexity for watermark embedding and detection is considerably high for 
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its practical use. In the algorithm proposed by Wolfgang et al. (1999), Just Noticeable 
Difference (JND) is used, in the Discrete Cosine Transform (DCT) domain, to determine an 
adequate watermark embedding energy. Hartung and Girod (1998) proposed an algorithm, 
in which binary data modulated by pseudo-random sequence is embedded into luminance 
component of each video frame. Swanson et al. (1998) proposed an algorithm based on the 
Discrete Wavelet Transform (DWT) through temporal sequences. Kang et al. applied 
singular value decomposition (SVD) to each frame of video data, and then embedded the 
watermark signal into the singular values. 
The watermarking technique in compressed video data, embed the watermark signal into 
bit sequence compressed by standard coding, such as MPEG-2 and MPEG-4, etc. Generally 
this technique has lower computational cost, compared with other methods; however the 
number of watermark bits must be limited by compression rate. In the algorithm proposed 
by Wang et al. (2004), the watermark signal is embedded only into the I-frames using JND 
concept, while Biswas et al. (2005) directly embedded the watermark signal into MPEG 
compressed video sequence, modifying DCT coefficients. Also in the algorithm proposed by 
Langelaar and Lagendik (2001), the watermark signal is embedded into the I-frames in the 
DCT domain. 
The watermarking algorithms operating during MPEG coding process are inherently robust 
against standard compression attacks, without increase the compression rate of the video 
sequence. Liu et al. (2004) proposed an algorithm, where the watermark signal is embedded 
into the motion vectors, and using the watermarked motion vectors, MPEG bit sequence is 
generated. While Zhao et al. (2003) proposed a fast algorithm to estimate motion vectors 
during the compression process, and also they embed the watermark signal, modifying 
angle and magnitude of the motion vectors. In the algorithm proposed by Ueno (2004), 
motion vectors are used to determine an adequate position in DCT coefficients of I-frames 
for watermark embedding. Noorkami and Mersereau (2006) estimated motion regions, 
computing spatial distribution of motion through several consecutive frames. Large amount 
of watermark bits are embedded into dynamic motion regions, while small amount of 
watermark bits are embedded into statistic regions. In this manner the artifact caused by 
watermark embedding can be avoided (Noorkami & Mersereau 2006). 
In this paper, a video watermarking algorithm is proposed, in which watermark embedding 
is carried out during MPEG2 coding process. The proposed algorithm uses three criteria 
based on deficiency of the Human Visual System (HVS) to embed robust watermark, while 
preserving its imperceptibility. First criterion is based on difference of sensibility of the HVS 
to basic three color channels (red, green and blue), and second one is based on frequency 
masking of the HVS proposed by Tong and Venetsanopoulos (1998). Third criterion is based 
on deficiency of the HVS to trace high speed motion region, which is related directly to the 
motion vector of each macro-block. The third criterion is only applied to P-frames, while 
other two criteria are applied both I-frames and P-frames. In the proposed algorithm, B-
frames are excluded from the watermark embedding and detection process to reduce 
computational complexity. In this manner, watermark embedding and detection processes 
don’t cause any delay in coding and decoding processes. Simulation results show the 
watermark imperceptibility and robustness against common signal processing and some 
intentional video frame attacks, such as frame dropping, frame averaging and frame 
swapping. The watermark imperceptibility is measured using the Peak Signal Noise Ratio 
(PSNR) and a HVS based objective evaluation proposed by Wang and Bovik (2004). 
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Fig. 1. Sensibility of HVS to different wavelength related to three basic colors. 

2. Proposed system 
In this section, a detailed description of the proposed video watermarking algorithms is 
provided. 

2.1 HVS based criteria 
In the proposed algorithm, the three criteria mentioned in introduction are used to embed 
imperceptible and robust watermark into a video sequence. These criteria are based on 
deficiency of sensibility of the HVS to blue channel, regions with details, such as texture 
region and region with high motion speed. 
In the HVS, there are three types of cones that react to the basic three colors: red, green and 
blue. The number of cones reacted to blue is 30 times smaller than the number of cones 
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transformed into RBG color space using the transform matrix given by (1) and (2). 
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The second criterion is based on the difference of the HVS’s sensibility to spatial features, 
such as texture, edge and plain regions. Each I-frame and P-frame is divided into blocks of 
size 8x8, and then 2D-DCT is applied to each block. Classification of each block is carried 
out using algorithm proposed by Tong and Venetsnopoulos (1998), which is described 
briefly as follows: 
 
1. Each DCT block is divided into 4 areas denoted by DC, L, E and H, as shown by figure 2. 
2. The sum of absolute value of coefficients belonging to DC, L, E and H are denoted as 

, ,DC L ES S S  and  HS , respectively. 
3. Using the following conditions, each block of DCT is classified as “edge block”, 

“Texture block” or “plain block”. 
 

 
Fig. 2. Four regions of a DCT block 
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If either of two conditions A or B is satisfied, then the DCT block is classified as “edge 
block”. 
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where the operations ∧  and ∨ mean logical multiplication and logical addition, and six 
parameters used in the conditions are  1 900,μ = 1 1 2 22.3, 1.6, 1.4, 1.1  y  4α β α β γ= = = = = . 

Condition for “texture block” 

If the condition-A is not satisfied and E HS S κ+ > , or if the condition-B is not satisfied then 
the block is classified as “texture block”, where 290.κ =  
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Condition for “plain block” 

If 2E HS S μ+ ≤  is satisfied or the condition-A is not satisfied and E HS S κ+ ≤ , then the block 
is classified as “plain block”, where 2 125μ = . 
 

 
Fig. 3. An example of the block classification using second criterion 

The figure 3 shows an example of block classification using the above algorithm (Tong and 
Venetsanopoulos, 1998). Here black blocks, gray blocks and white blocks indicate “plain 
blocks”, “texture blocks” and “edge blocks”, respectively. 
The last criterion is based on deficiency of the HVS to trace regions with high speed motion. 
Actually the MPEG coding uses this deficiency to reduce temporal redundancy of video 
sequence. The macro-blocks, whose motion vector has large magnitude, can be classified as 
regions with high speed motion. The macro-blocks classified as high motion speed regions 
are adequate to embed a high energy watermark signal without causing any visual 
distortion. The magnitude of the motion vector is computed by (3). 

 2 2 ,    1..i i iMmv mvh mvv i MB= + =  (3) 

where ,i imvh mvv  are horizontal and vertical components of the motion vector of i-th macro-
block, and MB is total number of macro-blocks.  To determine macro-blocks with high speed 
motion, a threshold value Th_mv is introduced, which value is computed by (4) 
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Using this value, macro-block is classified as follows. 
 

If _iMmv Th mv<  then i-th macro-block doesn’t have motion (static region).  
If _iMmv Th mv≥  then i-th macro-block has motion (dynamic region). 
 

The macro-blocks, whose magnitude of motion vector is smaller than the threshold, are 
considered as static blocks and the motion vectors of the static blocks are ignored. The figure 
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4(a) and (b) show two consecutive frames, all motion vectors before classification are 
depicted in fig 4(c) and fig. 4(d) shows only the motion vectors classified as high speed 
motion. 
 

 
                                     (c)                                                                        (d) 
Fig. 4. (a) and (b) are two consecutive frames, (c) all motion vectors got from two 
consecutive frames and (d) motion vectors with high speed motion. 
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Table 1. Watermark embedding energy 

Combining latter two criteria, the spatial feature of 8x8 blocks and the motion feature of 
macro-blocks (16x16), the watermark embedding energy for I-frames and P-frames is 
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determined experimentally using 10 video sequences. The embedding energies of different 
type of blocks are shown by the table 1; in which, B means blocks of size 8x8 of I-frames and 
P-frames, and Mbmotion means macro-blocks with high speed motion. Each macro-block 
contains 4 blocks B, and CI, CP mean I-frames and P-frames, respectively. Figure 5 shows an 
example of block classification together with the watermark embedding energy assigned to 
each block. 

 
Fig. 5. An example of watermark embedding energy assignation  

2.2 Watermark embedding process 
The watermark embedding process of the proposed algorithm consists of two parts: first 
part and second part. In the first part, an adequate watermark embedding energy for each 
block is calculated, and in the second part, the watermark signal is embedded into each 
block using the adequate embedding energy computed in the first part.  The video sequence 
is decomposed by RGB color space, and only the blue channel is used for watermark 
embedding. The blue channel is divided into blocks of 8x8 and then each block is 
transformed by 2D-DCT.  Each block is classified into three categories: plain block, texture 
block and edge block. For P-frames, the macro-blocks are generated by combining four 
neighbor blocks of 8x8, and then each macro-block is classified between static block and 
block with high speed motion. Using table 1, the watermark embedding energy is assigned 
to each block (8x8).  The watermark signal is a pseudo-random sequence generated by the 
secret user’s key. Watermark embedding is performed by (5). 
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where ( , )kDCT i j is (i,j)-th DCT coefficient of k-th block and kα is the embedding energy 
assigned to k-th block. For I-frames, a watermark bit is embedded only into a AC coefficient 
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with lowest frequency, while for P-frames; five watermark bits are embedded into five 
lowest AC coefficients. The figure 6 shows the watermark embedding process. 
 

 
Fig. 6. Watermark embedding process 

2.3 Watermark detection process 
In the watermark detection process, only the blue channel of the watermarked and possibly 
distorted video sequences is used, which is divided into blocks of 8x8 pixels. 2D-DCT is 
applied to each block of I-frames and P-frames. The lowest AC coefficient of each block of I-
frame and the five lowest coefficients of each block of P-frame are extracted. The extracted 
coefficients are concatenated through all blocks of I and P frames to generate an extracted 
watermark sequence Y.  Finally to determine if owner’s watermark is presented in the video 
sequence or not, the cross-correlation between the extracted watermarked coefficients Y and 
the owner’s watermark sequence W, is calculated as shown by (6). 
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where L is watermark length. 
If the cross-correlation value C is bigger than a predetermined threshold value wTh , it is 
considered that the owner’s watermark signal is presented in the video sequence; otherwise 
the video sequence was not watermarked or watermarked by another watermark sequence. 
Here the threshold value plays a very important role and this value is determined 
considering two probabilities: probability of detection error and probability of false alarm 
error. In the proposed algorithm, adaptive threshold value is used, which is given by (7). 
This threshold value guarantees that false alarm error probability is smaller than 10-6. (Piva 
et al., 1997).   
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3. Experimental results 
To evaluate the proposed algorithm, several video sequences with format YUV-CIF are 
used. The figure 7 shows some video sequences used in the evaluation. The proposed 
algorithm is evaluated from embedded watermark imperceptibility and robustness points of 
view. 
 

 
 

Fig. 7. Some video sequences used for evaluation of the proposed algorithm 

3.1 Imperceptibility 
Embedded watermark imperceptibility of the proposed algorithm is evaluated using PSNR 
and the universal quality index (UQI) proposed by Wang et al. (2004).  The UQI is an 
objective quality assessment related with perceptual distortion, which was originally 
developed to assess a visual quality for images as given by (8). In order to assess perceptual 
quality of the video sequence, UQI value of each macro-block is compensated according to 
the motion speed of the macro-block.  
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with lowest frequency, while for P-frames; five watermark bits are embedded into five 
lowest AC coefficients. The figure 6 shows the watermark embedding process. 
 

 
Fig. 6. Watermark embedding process 

2.3 Watermark detection process 
In the watermark detection process, only the blue channel of the watermarked and possibly 
distorted video sequences is used, which is divided into blocks of 8x8 pixels. 2D-DCT is 
applied to each block of I-frames and P-frames. The lowest AC coefficient of each block of I-
frame and the five lowest coefficients of each block of P-frame are extracted. The extracted 
coefficients are concatenated through all blocks of I and P frames to generate an extracted 
watermark sequence Y.  Finally to determine if owner’s watermark is presented in the video 
sequence or not, the cross-correlation between the extracted watermarked coefficients Y and 
the owner’s watermark sequence W, is calculated as shown by (6). 

 
1

1 L

i ï
i

C WY
L =

= ∑  (6) 

where L is watermark length. 
If the cross-correlation value C is bigger than a predetermined threshold value wTh , it is 
considered that the owner’s watermark signal is presented in the video sequence; otherwise 
the video sequence was not watermarked or watermarked by another watermark sequence. 
Here the threshold value plays a very important role and this value is determined 
considering two probabilities: probability of detection error and probability of false alarm 
error. In the proposed algorithm, adaptive threshold value is used, which is given by (7). 
This threshold value guarantees that false alarm error probability is smaller than 10-6. (Piva 
et al., 1997).   

 
1

1
3

L

w i i
i

Th Y
L

α
=

= ∑  (7) 

Video Watermarking Technique using Visual Sensibility and Motion Vector  

 

225 

3. Experimental results 
To evaluate the proposed algorithm, several video sequences with format YUV-CIF are 
used. The figure 7 shows some video sequences used in the evaluation. The proposed 
algorithm is evaluated from embedded watermark imperceptibility and robustness points of 
view. 
 

 
 

Fig. 7. Some video sequences used for evaluation of the proposed algorithm 

3.1 Imperceptibility 
Embedded watermark imperceptibility of the proposed algorithm is evaluated using PSNR 
and the universal quality index (UQI) proposed by Wang et al. (2004).  The UQI is an 
objective quality assessment related with perceptual distortion, which was originally 
developed to assess a visual quality for images as given by (8). In order to assess perceptual 
quality of the video sequence, UQI value of each macro-block is compensated according to 
the motion speed of the macro-block.  

 
( ) ( ) ( )2 22 2

4 xy

x y

x y
UQI

x y

σ

σ σ

⋅
=

⎡ ⎤+ +⎣ ⎦

 (8) 



 Visual Servoing 

 

226 

where ,  x y  are mean values of original image x and processed image y, respectively, 2
xσ  

and 2
yσ  are variances of x and y. respectively, and xyσ  is their covariance. The value range 

of UQI is [0, 1.0], when the video sequence under analysis is identical with the original one, 
the UQI value is equal to 1.0; and as the visual distortion increase, the UQI value decrease.  
The figure 8 shows the original I-frame and P-frame, and their watermarked versions, 
respectively, together with the PSNR values. From this figure, we can considered that the 
embedded watermark is imperceptible, because the PSNR value is bigger than 40dB for I-
frame, and it is approximately 40dB for P-frame, and UQI of the watermarked  video 
sequence is equal to 0.96, which indicates that the embedded watermark is imperceptible by 
the HVS. 
 

 

 
 

Fig. 8. Watermark imperceptibility of I-frame and P-frame  

3.2 Watermark robustness 
To evaluate the watermark robustness of the proposed algorithm, the watermarked video 
sequences are attacked using common signal and image processing tasks, such as coding 
rate change, impulsive and Gaussian noise contamination, frame dropping, frame 
swapping, frame averaging and cropping. The figure 9 shows the watermark robustness 
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against the coding rate change, applying quantized matrix with different quality factor 
during MPEG coding process. Fig 9(a) shows one frame of the watermarked video without 
any attack, fig. 9 (c) shows one frame of the watermarked and compressed video with 
quality factor equal to 30. Figure 9(b) and fig. 9(d) show the detector responses.  From these 
figures, it is concluded that the embedded watermark is robust to high rate compression; 
actually the watermark signal survived after compression with quality factor of 30. If the 
watermarked video sequence is compressed using a lower quality factor than 30, the 
embedded watermark signal can be lost, however in this situation the distortion caused by 
compression is not acceptable and the attacked video sequence no longer has commercial 
value.  In all robustness evaluations, the watermarked videos are analyzed using 1000 
possible watermark signals generated by 1000 different keys; and the embedded watermark 
generated by the owner corresponds to the key equal to 450.  In all figures, the horizontal 
line represents the threshold value calculated by (7). 
 

 
 

Fig. 9. (a) Watermarked frame, (c) watermarked and compressed frame, (b) and (d) detector 
responses for (a) and (c), respectively 

The figure 10 shows the watermark robustness against impulsive noise contamination. The 
fig. 10(a) and fig. 10(c) show the watermarked frames that received impulsive noise 
contamination with a density of 3% and 10%, respectively; here fig. 10(b) and fig 10(d) are 
the detector responses of fig. 10(a) and fig. 10(c). Fig. 11 shows the watermark robustness 
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against Gaussian noise contamination, here fig. 11(a) and fig. 11(c) show a watermarked and 
contaminated frame by Gaussian noise with variance 0.01 and 0.05, respectively; and fig. 
11(b) and fig. 11(d) are detector responses of both cases, respectively. From these figures, we 
can conclude that the embedded watermark is sufficiently robust to impulsive and Gaussian 
noise contamination. 
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Also in the proposed algorithm, the embedded watermark is sufficiently robust against 
cropping attack. The figure 12 shows the watermarked cropped frames and watermark 
detection performance from the cropped video sequence. Here fig. 12(a) and fig. 12(c) show 
a video sequence in which 40% and 75% of all frames of watermarked video sequence are 
cropped, and fig. 12(b) and fig. 12(d) are detector responses of both cases, respectively. 
Frame dropping, frame swapping and frame averaging are intentional attacks for 
watermarked video sequences (Zhyang et al., 2004).  These frame attacks take advantage of 
the temporal redundancy of video sequences and try to destroy efficiently the embedded 
watermark signal, without causing any visual degradation in the video sequence. Frame 
dropping, frame swapping and frame averaging attacks are described by (9), (10) and (11), 
respectively. 
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where  and attacked watermarkedV V  are attacked watermarked sequences by frame dropping and the 
watermarked sequence without attack, respectively, and [ 1, 2,.... ]r r rn  are the numbers of 
frames selected randomly. 

 1 1  k k k kF F F F+ +⇔ ⇔  (10) 

 [ ]1 1
1
3k k k kF F F F− += + +  (11) 

where ,k kF F  are k-th frames of watermarked and attacked videos, respectively. 
Because the proposed algorithm embeds watermark signals through temporal video 
sequences, the embedded watermark signal is inherently robust to frame attacks. Figure 13 
shows the watermark robustness against frame averaging attack. Fig. 13(a) shows a result of 
averaging of one I-frame and two P-frames, and fig. 13(b) shows a result of averaging three 
P-frames; and fig. 13(b) and fig. 13(d) are the detector responses of both cases.  
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Fig. 12. Watermark robustness against cropping. (a) 40% of video data is cropped and (b) 
75% of video data is cropped and (c) and (d) Detector responses of both cases. 

3.3 Computational cost for watermark embedding and detection 
In the video watermarking techniques, time consuming caused by watermark embedding 
and detection processes must be minimized.  In our experiment, to evaluate the consumed 
time for watermarking operation, consider the processing time of MPEG coding 
with/without the proposed watermarking process. As shown by table 2, the processing time 
with the watermarking operation increases approximately 40% for I-frames and 10% for P-
frames, compared with the processing time without watermarking process. Considering that 
the number of P-frames is approximately 4 times larger than that of the I-frames and that the 
B-frames are excluded for watermarking process, the overall time required for 
watermarking operation is smaller than 10% of the total time required by the MPEG 
compression. This result means that the proposed watermarking algorithm is suitable for an 
actual implementation. 
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Fig. 13. (a) Frame averaging with I-frame, P-frames (b) detector response of (a), (c) Frame 
averaging with P-frames and (d) detector response of (c). 

 

Frame Type Coding Time 
without watermarking 

Coding time 
With watermarking 

I 0.83 sec /frame 1.2 sec /frame 

P 0.3 sec / frame 0.33 sec /frame 

Table 2. Computational cost of watermarking process 

3.4 Comparison with other algorithms 
The proposed algorithm is compared with other previously proposed algorithms with 
similar objective. Selected algorithms are as follows: A) Base band algorithm using 3D 
Wavelet Transform (Zhuang et al., 2004), B) The algorithm based on motion vector 
modification during MPEG coding (Zhao et al., 2003) and C) The watermarking algorithm 
based on the DCT domain, which performs during MPEG coding process (Zhang et al., 
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2001). The table 3 shows the watermark robustness comparison, here symbol ‘O’ means that 
the embedded watermark is robust against the indicated attack, while the symbol ‘X’ means 
that the embedded watermark cannot be detected after the attack is applied. As shown in  
 

Attacks A B C Proposed 

MPEG X O O O 

Frame average O O X O 

Frame dropping O O O O 

Frame swapping  O O O O 

Cropping X X O O 

Impulsive noise O X O O 

Gaussian noise O X O O 

Table 3. Comparison among three algorithms reported in literature and the proposed one. 

4. Conclusions 
The proposed algorithm performs watermark embedding and detection during MPEG-2 
coding process, in which firstly an adequate embedding energy is computed using the HVS 
based three criteria: sensibility of different color channels (red, green and blue channel), 
sensibility of spatial region with different features, such as plain, texture and edge regions, 
and finally sensibility of regions with different motion speed.  Due to the lower sensibility of 
the HVS to blue channel, the watermark embedding is carried out only in blue channel. And 
using the latter two criteria, an adequate watermark embedding energy is assigned to each 
block of 8×8 DCT coefficients of I-frames and P-frames. In the proposed algorithm, B-frames 
are not used for watermarking in order to reduce watermark embedding and detection time. 
The proposed algorithm was evaluated from watermark imperceptibility and robustness 
points of view. The watermark imperceptibility was evaluated using the PSNR and 
Universal Quality Index (UQI). Both values show the watermark imperceptibility of the 
proposed algorithm, especially perceptual distortion evaluated using UQI shows that the 
watermark is imperceptible by the HVS. To evaluate the watermark robustness against some 
common attacks including video frame attacks such as: frame dropping, frame swapping 
and frame averaging. The simulation results show the watermark high robustness to above 
mentioned attacks.  Also the proposed algorithm is compared with other algorithms with 
similar objective; the comparison results show that the proposed watermarking algorithm is 
more robust against a wider range of attacks than other watermarking algorithms. 
The additional processing time to the MPEG-2 standard coding caused by watermarking is 
also measured. Since in the proposed algorithm, watermarking is carried out only in the I-
frames and P-frames, the overall additional time is less than 10% of the MPEG-2 standard 
coding. Therefore we can conclude that the proposed watermarking algorithm is suitable for 
a real implementation. 
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