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Preface 
 

Proteins are indispensable players in virtually all biological events. The functions of 
proteins are coordinated through intricate regulatory networks of transient protein-
protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques 
have been developed over the last several decades. Many in vitro and in vivo assays 
have been implemented to explore the mechanism of these ubiquitous interactions. 
However, despite significant advances in these experimental approaches, many 
limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal 
structures of proteins, challenges in the detection of transient PPI, among others. To 
overcome these limitations, many computational approaches have been developed 
which are becoming increasingly widely used to facilitate the investigation of PPIs. To 
provide a centralized resource for scientists who are either new to or working in the 
area of PPIs, we have organized this book. An international ensemble of experts in the 
field were invited to contribute a total of 22 chapters, which have been broadly 
categorized into Computational Approaches, Experimental Approaches, and Others.  

The section of “Computational Approaches” contains 14 chapters. In the first chapter, 
Dr. Porollo and Dr. Meller gave an excellent review of the computational methods for 
the prediction of protein interaction sites, which were mainly focused on structure-
based approaches. Next, an international team of experts from France, United 
Kingdom, and USA summarized the recent advances that are related to interactive 
molecular simulation approaches. Simulation design, software architectures, and 
applications in protein-protein docking were all discussed in exquisite detail. The 
following chapter, written by Jung et al. from the Republic of Korea, reviewed the PPI 
data available through public databases. Both non-network-based and network-based 
approaches were discussed, along with computational prediction methods of protein 
subcellular localization by exploiting the PPI data. Dr. Lubovac-Pilav from Sweden 
focused on defining the similarity between protein interactions based on an integrated 
score. The SWEMODE (Semantic WEights for MODule Elucidation) algorithm was 
discussed in detail in this chapter.  

Next, Dr. Wang from Hong Kong, China introduced the use of quasi-bicliques for 
finding interacting protein group pairs and proposed approximation and heuristic 
algorithms for finding large quasi-bicliques in PPI networks. In the following chapter, 
Fujiki et al. from Japan focused on the interactions among three proteins. The 
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XIV Preface

combinatorial effect level, which emerges only when those three proteins gather, was 
derived and estimated in a fully statistical manner. Dr. Hirose provided an excellent 
review on PPI prediction by computational techniques. The concepts and applications 
of several methods for inferring PPIs were covered, along with the databases and 
prediction methods that deal with protein flexibility, as well as the possibility of 
inferring PPIs from protein dynamics.  

Prof. Xing and co-workers presented a unified mathematical formalism describing 
both conformational change and chemical reactions of proteins. The implications of 
slow conformational changes in protein allostery and network dynamics were also 
discussed in this chapter. Next, Prof. Huang and colleagues reviewed the methods for 
prediction of PPI sites using mimotope analysis. The current status, as well as the 
challenges and future directions of the field, were summarized. Prof. Oliva from Spain 
covered the strategies for modeling the interaction between two proteins from 
sequence data and reviewed the existing techniques to model large cellular protein 
complexes. In the next chapter, Dr. Chang focused on the concept of co-occurrence 
pattern and implementation details of methods in PPI prediction based on this 
concept.  

Sakhteman et al. from Iran gave an overview on the biochemistry details of G-Protein 
coupled receptors (GPCRs) and provided information on homology modeling and 
molecular dynamic simulation methods for studying interactions involving GRPRs. 
Next, Dr. Iacucci and Dr. Moreau from Belgium evaluated the application of least 
square support vector machines (LS-SVM) to receptor-ligand interaction prediction 
and discussed various other methods to study PPIs, most of which relying on the 
phylogenetic profile analysis of candidate interactors. In the last chapter of this section, 
Ravaee et al. from Iran introduced the fuzzy learning vector quantization (FLVQ) as a 
high tolerant method for clustering PPI network to find protein complexes, which is 
less vulnerable to false-negative and false-positive interactions in PPI data than other 
techniques.  

Although computational simulation is a powerful tool for studying PPIs, novel 
experimental approaches for investigating PPIs that can overcome the limitations of 
existing techniques are continuously been developed. Such techniques represent a 
vibrant area of research on PPIs. In the section of “Experimental Approaches”, the 
current state-of-the-art experimental strategies to study PPIs are presented in four 
chapters.  

Molecular imaging, an extremely powerful tool to study molecular events in living 
subjects, can provide invaluable information and insight in elucidating the process of 
various PPIs. In the first chapter of this section, we summarized the current status of in 
vivo imaging of PPIs with various techniques, including fluorescence, 
bioluminescence, and positron emission tomography imaging. Next, Dr. Mohan 
illustrated the theoretical aspects of non-linear behavior of amide proton chemical 
shifts. In this chapter, he demonstrated the residue level nuclear magnetic resonance 

Preface XI 

(NMR) description of the low energy excited states representing locally different 
alternative conformations in different complex protein systems. Mendoza-Espinosa et 
al. described the physics and chemistry behind the disorder-to-order transitions in
proteins and introduced different experimental measures to study the structure and
function of multiple types of apolipoproteins. The last chapter of this section,
contributed by Dr. Zhang, focused on the specific modulation of electrostatic 
interactions between proteins by salt.

The third section of this book contains four chapters that do not readily fall into either
of the abovementioned categories. In the first chapter of this section, Prof. Fernandez-
Fuentes and colleagues presented the theoretical basis of computational tools designed 
to predict PPIs, and then focused on the computational methods developed to predict 
protein interfaces. Dr. Hase and Dr. Niimura summarized the current knowledge of 
the statistical properties of PPI networks. They also reviewed the studies related to 
drug discovery and the possibilities of medical studies as an integration of network
and evolutionary biology. The next chapter written by Dr. Jancura and Dr. Marchiori 
gave a general overview of the relevant literature and advances in the analysis and 
application of evolution in PPI networks. Lastly, Otasek et al. described pathway-
centric analysis and the analysis of networks generated from protein-target 
interactions, which can elucidate the role of these proteins. 

The research field of PPIs is highly dynamic and constantly evolving. We are truly
grateful to the exceptional team of authors for their tremendous effort, all of whom 
have many responsibilities and yet they spent countless hours in these 22 chapters to
make this book possible. With such whole-hearted support and participation from
international experts/leaders of the field, we are confident that this endeavor will serve
as a comprehensive reference book and help moving the field forward. 

Weibo Cai, PhD 
Assistant Professor

Departments of Radiology and Medical Physics 
University of Wisconsin - Madison

USA

Hao Hong, PhD 
Research Associate

Department of Radiology 
University of Wisconsin - Madison

USA
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Computational Methods for Prediction of 
Protein-Protein Interaction Sites 

Aleksey Porollo and Jaroslaw Meller 
University of Cincinnati 

USA 

1. Introduction 
Studies of protein-protein interactions play a central role in understanding protein function 
in biological systems, closing the gap between large-scale sequencing efforts and medically 
relevant outcomes. Increasingly, protein interaction interfaces that mediate communication 
between proteins are becoming targets for therapeutics, offering a possibility to disrupt 
critical interactions and specifically attenuate function (Fletcher and Hamilton, 2007; Fry, 
2006). 

Efforts to catalog, characterize, and link protein interactions with disease states and other 
phenotypes are ongoing, building on improvements in experimental techniques, such as 
high throughput two-hybrid assays or chip-based proteomics. Significant progress has 
also been achieved in structural genomics, providing detailed information for a growing 
number of macromolecular complexes and interaction interfaces by means of X-ray 
crystallography, NMR spectroscopy and other methods.(Aloy et al., 2005; Slabinski et al., 
2007)  

Despite impressive progress, existing experimental methods for mapping protein 
interactions suffer from many limitations. High throughput methods, such as two-hybrid or 
chip-based essays, are characterized by high rates of false positives and false negatives 
(Bader and Chant, 2006; Han et al., 2005), requiring further validation and detailed 
characterization of individual interactions. Obtaining detailed high-resolution information 
about protein interaction interfaces can also be challenging in many instances.  

For example, some complexes may not crystallize, or crystallize in a different than 
biologically relevant conformation. X-ray crystallography may also fail when multiple and 
incompletely mapped interactions or membrane domains are involved.(Lacapere et al., 
2007) This is exacerbated by the fact that each protein has been estimated to have around 9 
distinct interacting partners (and some are estimated to have hundreds interactants), with 
majority of the implied complexes unlikely to be resolved experimentally in the foreseeable 
future.(Aloy and Russell, 2004; Ritchie, 2008) 

Limitations of experimental techniques and attempts to circumvent the problem by 
focusing directly on protein interactions create an opportunity for computational 
approaches to complement and facilitate experimental efforts in that regard. In particular, 
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biologically relevant conformation. X-ray crystallography may also fail when multiple and 
incompletely mapped interactions or membrane domains are involved.(Lacapere et al., 
2007) This is exacerbated by the fact that each protein has been estimated to have around 9 
distinct interacting partners (and some are estimated to have hundreds interactants), with 
majority of the implied complexes unlikely to be resolved experimentally in the foreseeable 
future.(Aloy and Russell, 2004; Ritchie, 2008) 

Limitations of experimental techniques and attempts to circumvent the problem by 
focusing directly on protein interactions create an opportunity for computational 
approaches to complement and facilitate experimental efforts in that regard. In particular, 
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statistical and machine learning-based approaches are being increasingly used to facilitate 
identification of protein interfaces. There are a growing number of methods for protein 
interaction sites prediction that vary in terms of principles of the recognition of interaction 
interfaces, descriptors used to identify interacting sites (feature space) and learning 
algorithms used.  

From the point of view of a representation used to capture characteristics of interaction 
interfaces, one may distinguish two main groups of methods. The first group attempts to 
predict interaction sites using sequence information only.(Gallet et al., 2000; Ofran and Rost, 
2007) The second group of methods, takes available structural information into account 
(Fariselli et al., 2002; Lichtarge et al., 1996), typically involving the identification of sites on 
the surface of a monomeric structure that are either evolutionarily conserved (as for 
example in the pioneering evolutionary trace method by Lichtarge and colleagues (Lichtarge 
et al., 1996)), or have a propensity for interaction interfaces (see, e.g., (Jones and Thornton, 
1997)). 

Although evolutionary trace methods are relatively insensitive to structural detail and can 
identify conserved “hot spots”, their overall accuracy is limited.(Caffrey et al., 2004; Porollo 
and Meller, 2007) On the other hand, detailed structural information can be used to 
characterize patches on the surface of a protein in terms of their geometric and other 
properties (see, e.g., (Bordner and Abagyan, 2005; Koike and Takagi, 2004; Neuvirth et al., 
2004)). Structural conservation can also be taken into account when multiple structures 
within families are available.(Chung et al., 2006; Ma et al., 2003) 

While structural information improves prediction accuracies (with the risk of increasing the 
sensitivity to the choice of a specific structure), challenges remain and new insights are 
required to improve state-of-the-art in the field.(de Vries and Bonvin, 2008; Zhou and Qin, 
2007) Further progress also requires continued systematic evaluation of new methods. In 
this regard, the lack of standard definitions and consistent evaluation criteria adds to the 
challenge and often makes direct comparison of existing methods impossible.  

One problem that contributes to the difficulty of fair evaluation and objective comparison of 
different methods is related to the uncertainty concerning the definition of the negative 
class. The assignment to the “non-interacting” class is at best tentative, given the 
incompleteness of information regarding all possible interactions and interacting partners. 
Despite the growing number of resolved structures of protein-protein complexes, another 
challenge is the relative paucity of carefully curated and properly stratified (to represent 
different types of complexes) benchmarks.  

This chapter reviews computational methods for the prediction of protein interaction sites, 
with a primary focus on structure-based approaches. The goal is to help the reader better 
understand the underlying concepts and limitations pertaining to current methods in the 
field. A number of methodological issues related to the training and validation of such 
methods are discussed as well. The benchmarks and assessment included in this chapter 
should also help making an informed decision as to when computational predictions can be 
regarded as sufficiently confident for a particular system of interest to warrant further 
experimental validation.  
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2. Definition of protein-protein interaction site 
The recognition of protein-protein interaction sites can be cast as a classification problem, 
i.e., each amino acid residue is assigned to one of the two classes: interacting or non-
interacting residues. Consequently, the problem may be solved using statistical and machine 
learning techniques, such as neural networks (Ofran and Rost, 2003b; Zhou and Shan, 2001) 
or Support Vector Machines (Bock and Gough, 2001; Yan et al., 2004).  

A clear definition of interacting residues is obviously required in order to predict whether a 
given amino acid residue is involved in protein-protein interactions. However, many 
alternative definitions are being used in the field. As the definition of an interaction site 
varies from one prediction method to another, it becomes difficult to directly compare their 
performance.  

2.1 Commonly used definitions 

If available, high resolution structural data readily provides a basis for atom or residue 
based definition of interaction sites. In fact, prediction methods discussed in this chapter 
primarily use information from resolved protein complexes to define the positive 
(“interacting”) and negative (“non-interacting”) classes. Protein quaternary structures are 
typically resolved by X-ray crystallography, and less frequently by NMR-spectroscopy or 
other techniques (Protein Data Bank, PDB – http://www.pdb.org/). While providing a high 
resolution structure, crystallographic data often remains inconclusive regarding the nature 
of the observed intermolecular contacts between protein chains. In particular, some of the 
observed contacts (and the resulting putative interaction interfaces) may be the result of 
crystal packing, rather than representing biologically relevant interactions. 

A number of methods have been introduced to facilitate the process of filtering out crystal 
packing artefacts. Here, we used the approach adopted by the PISA server 
(http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html). PISA discriminates crystal packing 
contacts from the functional protein–protein interaction using the size of solvent exposed 
area buried during association, as well as the number of residues constituting the interface, 
the number of salt and disulphide bridges at the interface, and the difference in approximate 
solvation energy upon complex formation.(Henrick and Thornton, 1998; Krissinel and 
Henrick, 2007) 

Two different approaches are commonly used to define an interaction site based on 3D 
structural data: (i) interatomic distance and (ii) change in accessible surface area (ASA) upon 
complex formation. Following the first approach, interaction sites can be defined based on 
the distance between non-hydrogen atoms of different protein chains. For example, distance 
cutoffs of 4Å (Bordner and Abagyan, 2005); 4.5Å (Hamer et al., 2010); 5Å (Chen and Zhou, 
2005); or 6Å (Ofran and Rost, 2003b) are used. This way of defining interaction sites is likely 
to miss some interchain contacts when water molecules are involved. A polar solvent, such 
as water, may bridge the interaction between two charged groups of amino acids that are 
too far apart to form a direct hydrogen bond.(Janin, 1999) In this regard, Neuvirth et al. 
introduced the Connolly interface index (CII) that is computed for circles of radius 10 Å 
around anchoring dots on the surface of monomeric structures. Atoms with CII above 
certain threshold are assigned to be interaction sites.(Neuvirth et al., 2004) 
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The second approach defines an interaction interface by using the concept of solvent 
accessibility or ASA. Specifically, ASA or the solvent accessibility of an amino acid residue 
in an unbound protein chain is contrasted with the corresponding ASA value for the same 
residue in a complex. Residues with a significant difference in ASA between the isolated 
chain and complex structures are then classified as “interacting”. The following cutoffs for 
ASA were used: the loss of > 99% ASA for a given atom (Bradford and Westhead, 2005); a 
residue loses > 1Å2 ASA in the complex (Chen and Jeong, 2009; Jones and Thornton, 1995; 
Liang et al., 2006); a residue ASA change by more than 20Å2 (Kufareva et al., 2007); relative 
solvent accessibility (RSA) of a given residue decreased by more than 4% and its ASA 
decreased greater than 5Å2 (Porollo and Meller, 2007). The latter definition uses relative 
ASA to address the considerable difference in size of amino acids, e.g. between glycine and 
tryptophan. 

Both approaches require high resolution structural data. However, the interatomic distance 
based approach seems to be more sensitive to problems with missing atoms or atoms with 
multiple occupancies. Table 1 illustrates the difference in the protein interface recognition 
resulting from alternative definitions. As can be seen from the table, the same protein 
quaternary structure may yield different subsets of residues deemed to be interaction sites, 
therefore leading to different prediction models and their reported performances.  

In what follows, we will refer to protein interfaces derived using our own ASA-based 
definition, dRSA > 4% and dASA > 5Å2 (Porollo and Meller, 2007), unless stated otherwise. 
This definition takes into account both relative and absolute change in ASA, and it attempts 
to filter out noise related to variation in RSA observed in structures resolved under different 
conditions, or for closely related homologs. 
 

Definition Chain Residues at the interface Interface 
ASA, Å2 

dASA > 1Å2 
I 

Y35 T41 C42 H57 C58 D60 R61 N95 T96 D97 D98 
V99 A99A L143 L151 W172 T175 C191 Q192 G193 
S195 T213 S214 F215 V216 S217 R217A L218 K224 

830 

E I18 I19 L20 I21 R22 C23 A24 M25 L26 N27 P29 R31 
E46 G47 S48 C49 A52 C53 F54 994 

dRSA > 4% 
and 
dASA > 5Å2 

I 
Y35 T41 H57 D60 R61 T96 D97 V99 A99A L143 
L151 W172 T175 C191 Q192 G193 S195 S214 F215 
V216 S217 R217A L218 

810 
 

E I18 I19 L20 I21 R22 C23 A24 M25 L26 N27 P29 R31 
E46 G47 S48 C49 A52 F54 989 

dASA > 20Å2 
I Y35 H57 R61 T96 D97 V99 W172 Q192 S195 F215 

V216 R217A L218  
692 
 

E I19 L20 I21 R22 C23 A24 M25 L26 N27 P29 R31 E46 
S48 C49 938 

Table 1. The effects of using alternative definitions of protein interaction interfaces for a 
specific hetero-dimeric complex (PDB ID 1fle); dASA is the total loss of ASA for a given 
protein chain upon complex formation. 
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It should be noted that information on protein interaction sites may be also derived from the 
alanine scanning mutagenesis (ASM). Systematic replacement of the residues at the protein 
interface with alanine enables the evaluation of individual contribution of each interaction 
site to the binding energy. In this regard, the Alanine Scanning Energetics database (ASEdb, 
http://www.asedb.org/) provides ASM data on a number of protein-protein, as well as on 
some protein-DNA and protein-ligand interactions (Thorn and Bogan, 2001)  

However, ASM approach is very costly and laborious, thus considerably limiting the 
number of comprehensively studied proteins. A protein interface needs to be approximately 
defined beforehand to limit the number of alanine mutants to evaluate. Results of ASM may 
not necessarily indicate the contribution to the binding energy, as some alanine mutants 
may cause an adverse protein conformational change and therefore indirectly decrease the 
efficacy of the protein-protein binding. Moreover, some protein-protein interactions are 
allosterically regulated, and ASM may not reflect the actual driving forces for a given 
protein complex. Nevertheless, such data is of great value and may be used as an additional 
validation of prediction methods. For example, it was used to evaluate ability of the 
methods ISIS (Ofran and Rost, 2007) and APIS (Xia et al., 2010) to identify hot spots. 

2.2 Mapping interaction sites 

Methods that do not require information about the interacting partner(s) are the primary 
focus of this chapter. These methods aim at the recognition of either individual residues, 
surface patches, or whole interaction interfaces using only sequence, structure and other 
information about an individual target protein, assuming that it is involved in some 
sufficiently stable interactions.  

In light of the above, an important part of defining the residues as interaction sites is to 
retrieve as much information as possible on physical interactions for a given protein. 
Published studies on methods for the prediction of protein-protein interaction quite often 
ignore the fact that most proteins have multiple interaction partners that are mediated by 
alternative or overlapping interfaces. Therefore, using just one particular complex to 
identify the interaction interface and to derive the corresponding definition of the positive 
class, while ignoring all other complexes and interactions involving the same target protein 
chain (or its close homolog), may result in highly biased estimates of both false positive and 
false negative rates. 

With the significant growth of structural data, the problem can be addressed by taking into 
account interaction sites from alternative complexes that contain the same protein chain or 
its close homologs. Interaction sites identified in such homologs can be mapped to a 
representative sequence in order to enable more sensitive prediction and perform its fair 
accuracy evaluation. Figure 1 illustrates this issue for two proteins resolved in complexes 
with different partners.  

The protein shown in the left panel, caspase-9, utilizes overlapping interfaces for homo-
oligomerization (PDB ID 1jxq), and for its interaction with ecotin (PDB ID 1nw9). However, 
the former protein-protein interaction involves many more residues than the latter 
interaction (affected ASA 1954Å2 and 1019Å2, respectively). If the definition of the positive 
(“interacting”) class in caspase-9 were to be derived from the complex with ecotin (1nw9), 



 
Protein-Protein Interactions – Computational and Experimental Tools 6 

The second approach defines an interaction interface by using the concept of solvent 
accessibility or ASA. Specifically, ASA or the solvent accessibility of an amino acid residue 
in an unbound protein chain is contrasted with the corresponding ASA value for the same 
residue in a complex. Residues with a significant difference in ASA between the isolated 
chain and complex structures are then classified as “interacting”. The following cutoffs for 
ASA were used: the loss of > 99% ASA for a given atom (Bradford and Westhead, 2005); a 
residue loses > 1Å2 ASA in the complex (Chen and Jeong, 2009; Jones and Thornton, 1995; 
Liang et al., 2006); a residue ASA change by more than 20Å2 (Kufareva et al., 2007); relative 
solvent accessibility (RSA) of a given residue decreased by more than 4% and its ASA 
decreased greater than 5Å2 (Porollo and Meller, 2007). The latter definition uses relative 
ASA to address the considerable difference in size of amino acids, e.g. between glycine and 
tryptophan. 

Both approaches require high resolution structural data. However, the interatomic distance 
based approach seems to be more sensitive to problems with missing atoms or atoms with 
multiple occupancies. Table 1 illustrates the difference in the protein interface recognition 
resulting from alternative definitions. As can be seen from the table, the same protein 
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S195 T213 S214 F215 V216 S217 R217A L218 K224 

830 
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dRSA > 4% 
and 
dASA > 5Å2 

I 
Y35 T41 H57 D60 R61 T96 D97 V99 A99A L143 
L151 W172 T175 C191 Q192 G193 S195 S214 F215 
V216 S217 R217A L218 

810 
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Table 1. The effects of using alternative definitions of protein interaction interfaces for a 
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the accuracy of any method predicting correctly also the more extensive interface would 
have been wrongly underestimated. This problem can be addressed by mapping the 
interface from the homooligomer into the target structure, leading to the union of homo-
dimerization and caspase-9/ecotin interfaces to be taken as the true positive class. 

The second example on the right illustrates the mapping of the known interfaces into the 
beta subunit of E. coli DNA polymerase III. In addition to homodimerization interface (PDB 
ID 2pol), physical interactions with the delta subunit of the gamma complex (PDB IDs 1jqj, 
1jql) and DNA polymerase Pol IV (PDB ID 1unn) are mapped. Again, without this 
additional mapping step, prediction of these alternative interfaces would be considered as 
false positives during the evaluation process. 
 

 
A 

 
B 

Fig. 1. Mapping interfaces from alternative protein complexes: A. Interaction interfaces in 
caspase-9, derived from the complex with ecotin (PDB ID 1nw9, chains B-A, shown in red) 
and caspase-9 homooligomer (PDB ID 1jxq, chains A-B), which includes both red and blue 
patches; B. Interaction interfaces mapped into DNA Pol III from the homodimer of the beta 
subunit of DNA Pol III (PDB ID 2pol, blue), delta subunit (PDB IDs 1jqj and 1jql, red), and 
DNA Pol IV (PDB ID 1unn, yellow), with the overlap of the latter two shown in magenta. 
Interfaces identified by using the SPPIDER server (http://sppider.cchmc.org/) and mapped 
into the target structure by using POLYVIEW-3D 
(http://polyview.cchmc.org/polyview3d.html). 

The mapping, though, needs to be performed carefully, keeping in mind some important 
caveats. Sequence homology-based approach assumes that similar protein sequences adopt 
the same 3D fold and carry the same function, which is not always true. For example, 
paralogs may evolve to have distinct interaction partners and therefore perform different 
functions while having high sequence homology. Mapping interaction sites from such 
homologs might then result in incorrect expansion of the positive class to include patches 
utilized by other proteins with sequence similarity but distinct functions. In this context, one 
should comment that many methods for the prediction of interaction sites incorporate 
information about evolutionary profiles of protein families (e.g., obtained using PSI-BLAST 
to generate PSSM (Altschul et al., 1997)). Therefore, at least in some cases such methods 
arguably identify sites with a propensity to interact within the whole family, rather than just 
for the target protein.  
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Interactions specific to only some (or even only one) family members may require the 
identification of distinct interaction patches, rather than considering the problem of predicting 
the union of alternative interaction interfaces. Thus, mapping interaction interfaces might not 
be appropriate for evaluation of methods that attempt to predict such individual interaction 
patches. On the other hand, if ANY interaction patch that corresponds to a stable protein 
complex is to be found, then the union of all known interfaces constitutes the best 
approximation of the positive class and should be used for evaluation of the overall accuracy. 
As indicated above, this issue is often ignored altogether, even though it highlights the 
difficulty with a proper definition of a classification problem that best captures biologically 
relevant information while providing sufficiently “accurate” predictions. 

Conversely, some protein domains with conserved 3D structure and specific function may be 
very divergent in terms of amino acid sequence, and only structure alignment might be able to 
detect such distant similarity. For example, PB1 domain displays low sequence homology 
between proteins, but it has a highly conserved secondary structure pattern and the overall 3D 
fold.(Lamark et al., 2003) While having just a few conserved residues playing a role of hot 
spots, this domain is widely utilized in various biological systems for interactions between the 
PB1-containing proteins to conduct cell signaling.(Moscat et al., 2006) 

A PDB-wide structure alignment remains a computationally challenging task when it comes 
to a large protein set compiled for training or benchmarking a method for protein-protein 
interaction prediction. However, some current efforts, including for example the Dali 
database (http://ekhidna.biocenter.helsinki.fi/dali/start) (Holm et al., 2008), provide 
valuable resources in this regard. There have been also a number of studies published on the 
structure-based mapping of interaction sites, utilizing different schemes of hit weighting 
and homology recognition.(Albou et al., 2011; Oldfield, 2002; Park et al., 2001; Xu and 
Dunbrack, 2011)  

However, it remains to be seen how structure-based mapping methods can deal with 
situations when a protein undergoes a significant conformational change upon complex 
formation (e.g., in case of calmodulin), and a structure alignment is likely to fail to identify 
similarity between apo- and holo-forms. Most likely, the future methods will utilize a 
balanced combination of sequence- and structure-based homology in order to more 
accurately map interaction sites from the known physical interactions. In this work, in order 
to test the effects of mapping interaction sites from multiple resolved complexes, we used a 
sequence homology-based mapping with conservative thresholds for homology hits: 70 or 
90% of sequence identity. The interaction sites mapping process was automated through the 
SCORPPION web-server (http://scorppion.cchmc.org/). 

3. Types of protein complexes 
Biological diversity is very well represented at molecular level, in particular showing broad 
versatility in protein-protein interactions. Protein complexes can be classified into a number 
of broad categories, for example as homo- and hetero-oligomers; transient and obligatory 
(permanent), rigid and flexible complexes. Homo-oligomers are complexes consisting of two 
or more protein chains with identical amino acid sequence. Accordingly, assemblies of 
chains with different sequences are hetero-oligomeres. The number of chains participating 
in the assembly dictates the distinction on dimers, trimers, tetramers, and so forth.  



 
Protein-Protein Interactions – Computational and Experimental Tools 8 

the accuracy of any method predicting correctly also the more extensive interface would 
have been wrongly underestimated. This problem can be addressed by mapping the 
interface from the homooligomer into the target structure, leading to the union of homo-
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A 

 
B 

Fig. 1. Mapping interfaces from alternative protein complexes: A. Interaction interfaces in 
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and caspase-9 homooligomer (PDB ID 1jxq, chains A-B), which includes both red and blue 
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Interfaces identified by using the SPPIDER server (http://sppider.cchmc.org/) and mapped 
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Obligatory complexes (sometimes called obligomers) are considered to be protein 
assemblies that perform function only in the coupled state, whereas transient complexes are 
formed by proteins that were found to exists as monomers and to function separately as 
well. Rigid complexes may be considered as products of interaction between stable rigid-
body domains. Flexible complexes, on the other hand, are formed when one or more 
constituting proteins undergo significant conformational changes.  

Systematic analysis of the known protein complexes by several studies resulted in a number of 
observations that have significantly influenced the field of protein-protein interaction sites 
prediction. Ofran and Rost suggested that there are at least 6 types of contacts in proteins that 
display distinct amino acids compositions and contact preferences.(Ofran and Rost, 2003a) 
Thus, methods utilizing statistical contact propensities in their prediction models have to take 
into account different types of interactions. Another study found that even within a single 
interface the composition of amino acids varies depending on where the interacting amino 
acids are located, in the core of the interface or at its rim.(Chakrabarti and Janin, 2002)  

A closer look at transient complexes was presented in (Nooren and Thornton, 2003). The 
study distinguished “weak” and “strong” homodimers, and it found that weak transient 
homodimers demonstrate smaller, more planar and polar interfaces compared to permanent 
homodimers, whereas strong transient homodimers undergo large conformational changes 
upon complex formation, and demonstrate larger, less planar, and more hydrophobic 
interfaces. Interestingly, only weak transient homodimers were found to have residues at 
interfaces more conserved than other surface residues, whereas other proteins with different 
oligomeric states showed no pronounced amino acid conservation.  

These findings were further supported by the study on a larger set of protein 
complexes.(Caffrey et al., 2004) Comparing the conservation scores derived from multiple 
sequence alignments to orthologs vs. paralogs, the study demonstrated that residues at the 
interfaces are rarely more conserved than other residues on the protein surface. This 
observation implies that prediction models solely based on evolutionary profiles are likely 
to have limited overall accuracy. 

Another large scale study has recently reported the results of PDB-wide analysis of protein-
protein interactions. Both sequence and structure based characteristics of protein interfaces 
were characterized, with special focus on proteins with multiple interaction partners.(Kim et 
al., 2006) This analysis showed that, while there are ancient interfaces conserved across 
archea, bacteria, and eukaryotes (attributed primarily to symmetric homodimers), by and 
large interfaces are not conserved and vary in shape and amino acid composition due to 
broad diversity of interactions and interaction partners. The suggested classification 
introduced as many as 6000 different types of interfaces that are available for search and 
matching from the SCOPPI database (http://www.scoppi.org/). 

4. Benchmarks of protein complexes 
Benchmarks specifically designed for the training and evaluation of methods for the 
recognition of protein-protein interaction sites are critical for further progress in the field. 
Such benchmarks should allow an unbiased and fair evaluation of prediction methods. 
Consequently, benchmark sets used for comparison of different methods should comprise a 
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diverse representative set of protein-protein interactions and contain no redundancy to the 
training sets used by individual methods.  

The uncertainty of the negative class assignment further complicates the choice of 
appropriate benchmarks. Designing a dataset that includes only carefully curated and well-
studied proteins, or their domains, with all known physical interactions mapped, may result 
in a very limited number of data points for training and validation. As a more feasible 
alternative one could consider assembling several diverse and non-redundant training and 
validation data sets that include complexes of different type and are characterized by some 
level of completeness of information regarding interactions and interaction sites.  

As a result of these difficulties, there is no established gold standard in the field. Most of the 
published methods refer to their own compilation of protein complexes derived from PDB. 
Here, we consider three protein sets used in the literature. The first compilation of protein 
complexes is a benchmark set for protein-protein docking, current version 3.(Hwang et al., 
2008) For this set, proteins in bound and unbound state were retrieved from PDB in a semi-
automated manner. Current version contains the total of 124 test cases; among those 88 are 
rigid-body cases, 19 of medium difficulty, and 17 difficult cases, which are classified by the 
degree of conformational change at the interface upon complex formation.  

While the primary purpose of Hwang et al. benchmark was to evaluate the protein docking 
methods, many protein interface prediction methods used it for their own and comparative 
evaluation.(de Vries and Bonvin, 2011; de Vries et al., 2006; Fiorucci and Zacharias, 2010; 
Guharoy and Chakrabarti, 2010; Li et al., 2008; Liu and Zhou, 2009; Qin and Zhou, 2007; Zhou 
and Qin, 2007) However, a thorough analysis of this benchmark set led us to conclusion that it 
is not suitable for evaluation of the methods predicting protein-protein interaction sites. For 
example, it contains 25 antibody-antigen cases (PDB IDs: 1fc2, 1ahw, 1bvk, 1dqj, 1e6j, 1jps, 
1mlc, 1vfb, 1wej, 2fd6, 2i25, 2vis, 1bj1, 1fsk, 1i9r, 1iqd, 1k4c, 1kxq, 1nca, 1nsn, 1qfw, 2jel, 1bgx, 
1e4k, 2hmi), which are asymmetrical functional protein-protein interactions, i.e. while one 
partner (in general: antibody, protease, or major histocompatibility complex) is evolved to 
bind its substrate, the second partner is not (except for the protease inhibitors).  

Therefore, all antibody-antigen complexes were removed from the set. In addition, protein 
chains no longer available in PDB (PDBID_ChainID: 1cd8_B, 1ml0_B, 2pab_C, 2pab_D, 
2viu_C, 2viu_E, 1aly_B, 1aly_C, 1jb1_B, 1jb1_C), difficult to interpret in terms of protein 
chains (1hia_A, 1hia_B, 1n8o_B, 1n8o_C) or too short (1n8o_A, 1k74_B, 1mzn_B, 1zgy_B) 
were removed. Finally, before using this benchmark set for evaluation of protein interface 
prediction methods, redundant chains were also removed. 

The second benchmark set represents 85 cases of proteins found in PDB both in bound and 
unbound state.(Albou et al., 2009) No complexes with asymmetrical function are included, 
such as antibody-antigen cases and others listed above. This set represents diverse protein-
protein interactions and allows the evaluators to estimate the role of conformational change 
on the accuracy of the methods, when predictions using bound structures versus unbound 
are compared. However, the set contains two cases, when only α-carbon coordinates are 
available (PDBID_ChainID: 3dpa_A and 2tld_I). These cases may be challenging to 
prediction methods that rely on high resolution data with all atoms resolved. 

The last benchmark set to be used in this work is the control set of the SPPIDER 
method.(Porollo and Meller, 2007) It was compiled based on the protein complexes 
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in a very limited number of data points for training and validation. As a more feasible 
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deposited in PDB after the compilation of the training set for the same prediction method. 
This manually curated and non-redundant (to the training set and within itself) set includes 
149 protein chains, deemed to be sufficiently diverse and representative enough to be used 
for cross-validation studies. The only update to the set involved replacing the chain 1r72_A 
by 1xcb_A, as the PDB entry 1xcb now supersedes 1r72. In what follows, this set is referred 
to as SPPIDER149. 

Table 2 and Figure 2 summarize the three datasets described above, after removing 
problematic cases from the first set, and redundant proteins from the first two sets. 
Redundancy was defined in terms of sequence homology: BLAST e-value < 0.001 when the 
alignment covers at least 70% of the query sequence (derived from the ATOM section of a 
PDB file). 150 chains derived from complexes in the first set and 78 chains in the second set 
were found non-redundant, and these (sub-) sets will be referred to as Hwang150B and 
Albou78B, respectively. The corresponding sets of chains that were retrieved from their 
unbound structures will be referred to as Hwang150U and Albou78U, respectively.  
 

Dataset Total chains Families Domains 
Hwang150B 150 42 107 

Albou78B 78 16 44 
SPPIDER149 149 76 75 

Table 2. Protein families and domains represented in non-redundant chains of the three 
benchmark sets used in this work. Families and domains defined according to the Pfam 
database (http://pfam.sanger.ac.uk/) (Finn et al., 2008) and mapped using sequence based 
search as implemented in SCORPPION (http://scorppion.cchmc.org/). 

 
Fig. 2. Overlap between protein families (left) and domains (right) identified within the 
three benchmark sets used here. 

Low to no overlap between the datasets discussed here is observed in terms of protein 
families and domains, suggesting a broad coverage of protein-protein interactions. This 
bodes well for estimates of the performance on different types of protein interfaces. On the 
other hand, the training sets for tested methods might partially overlap with the benchmark 
sets used here, leading to potentially overestimated accuracy. 

Mapping of known interaction interfaces from alternative complexes was performed for 
each set using different approaches discussed in Section 2.2. Table 3 shows the number and 
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fraction of interacting residues for each protein set. Interaction sites were derived from (i) 
asymmetric units defined in the original PDB files, (ii) biological units (BUs) as defined by 
Protein Quaternary Structure (PQS) database, and (iii) BUs as defined by the PISA database. 
In addition, interaction sites were mapped from the PISA-based BUs of their close homologs 
using sequence identity 90 and 70% as a cutoff (Table 4). The estimates of accuracy for 
methods compared here were overall quite similar, and only the results for the latter 
threshold are reported in the following sections of the chapter. 

PDB also provides its own definition of biological units that differs from PISA.(Xu and 
Dunbrack, 2011) PDB defines biological units as separate models in the same PDB file. In 
addition, both PISA and PDB may rename chain labels starting from ‘A’ within each BU. 
This all makes it difficult sometimes to trace back the chains from the asymmetrical unit in 
automated manner. To be consistent, we will map interaction sites from BUs as defined by 
PISA. However, when no information can be mapped for a given chain, due to technical 
difficulties or inconsistency in BU definition, we will use a PDB-based asymmetric unit for 
the mapping of interaction sites. 
 

Dataset Total residues / 
On the surface PDB-based, % PQS-based, % PISA-based, % 

Hwang150B 31208 / 24687 19 21 19 
Albou78B 17412 / 13375 16 16 15 

SPPIDER149 25883 / 20885 29 28 28 

Table 3. Summary of the benchmarks used in this work with regards to the total number of 
residues, residues on the surface, and percentage of the surface residues found to be at 
protein interfaces derived from the asymmetric unit (PDB-based), and biological units (PQS-
based and PISA-based), respectively. 
 

Dataset Total / Surface residues SI70 SI90 
Hwang150B 31208 / 24687 10011 9674 
Hwang150U 32471 / 24595 10201 9661 

Albou78B 17412 / 13375 5819 5506 
Albou78U 16838 / 12342 5572 5294 

SPPIDER149 25883 / 20885 7863 7668 

Table 4. Summary of the benchmarks used in this work with regards to the total number of 
residues, residues on the surface, and interacting residues on the surface mapped to 
representative protein chains using BUs derived from the PISA database and 70 or 90% 
sequence identity cutoffs (SI70 and SI90), respectively. 

5. Prediction methods 
All prediction methods can be broadly classified by the type of data they use as an input. 
Sequence-based methods rely on some combination of the following protein features: amino 
acid hydrophobicity, evolutionary profile (e.g., similarity scores or Shannon entropy), amino 
acid composition or propensity to be at the interface, predicted structural features (e.g., 
secondary structure, solvent accessibility, order/disorder region, etc.), or their derivatives 
like mean or weighted average over a sequence window.  
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The structure-based methods, on the other hand, also utilize features derived from a 3D 
protein structure, such as solvent accessibility and secondary structure states, local topology 
(e.g., protrusions and cavities), hydrophobic and polar surface patches, temperature or B-
factors (for X-ray based structures), etc. In addition, there are a number of methods built 
using a consensus of the individual predictors with reportedly improved accuracy.(de Vries 
and Bonvin, 2011; Huang and Schroeder, 2008; Qin and Zhou, 2007) However, consensus-
based methods are not discussed here in detail, as the goal is to evaluate the discriminating 
power of the underlying principal features for each representative method.  

Described below are selected structure-based methods with at least somewhat orthogonal 
feature spaces that were available as web-servers at the time of data preparation for this 
work. Methods are listed in the order of the publication year of the original work. 

Evolutionary trace (ET) method (Lichtarge et al., 1996) identifies evolutionary conserved 
residues and maps them onto a protein 3D structure. Conserved residues in the core of a 
protein are deemed to be structurally important, whereas those on the surface are 
assumed to be functionally important. The method starts from constructing a multiple 
sequence alignments, and partitions the aligned sequences into groups by using their 
mutual sequence similarity. For each group, a consensus sequence is defined highlighting 
the positions with invariant amino acids. Consensus sequences are further aligned to 
identify (i) conserved residues across the entire protein family; (ii) class-specific residues 
that are invariant in some groups; and (iii) neutral residues that are not preserved in any 
single sequence group. Conserved and class-specific residues are then mapped onto 3D 
structure. Clusters of such residues on the surface of a protein structure are predicted to 
be functional. The ET method is available at 
http://mammoth.bcm.tmc.edu/ETserver.html  

ConSurf (Glaser et al., 2003) follows a similar approach by mapping the evolutionary 
conserved residues on 3D protein structure. The difference lies in computing the 
conservation scores that are relative with respect to other residues in a given protein. In 
addition, the outcome of the method is sensitive to the quality of multiple sequence 
alignment and to the overall length of a query sequence. For example, two 3D structures of 
the same protein, but with different sequence length representing its resolved part, may 
result in different location of the most conserved residues. The ConSurf method is available 
at http://consurf.tau.ac.il/, whereas its pre-computed results for the PDB deposited 
proteins are available from the ConSurfDB database (http://consurfdb.tau.ac.il/). 

It should be noted that the two methods described above were not designed to identify 
specifically protein-protein interaction sites, but rather to reveal any functional residues, 
e.g. involved in protein-DNA or protein-ligand interactions. However, since the authors 
of these methods refer to identification of protein interfaces as examples in their original 
publications, we chose these methods to serve as a separate group of predictors that rely 
primarily on evolutionary information, and can be contrasted with structure-based 
methods. 

PROMATE (Neuvirth et al., 2004) considers residues on the surface of a protein structure 
within 10Å circles around a given point. Spatially neighboring residues provide the 
following descriptors: (i) statistically derived chemical composition of binding sites, such as 
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propensity of individual amino acids, atom types, pairs of amino acids, and collective 
chemical properties (positively and negatively charged, polar, hydrophobic, and aromatic 
residues); (ii) evolutionary conservation in terms of diagonal elements of the PSI-BLAST-
derived position specific scoring matrix (PSSM); (iii) distance in the sequence between 
residues in the circle; (iv) secondary structure states, including extent of the loops. 
Additionally, temperature factors (B-factors) and bound waters are incorporated into the 
model whenever available. These descriptors are combined to yield a cumulative score that 
allows the circles to be classified as Interface, Non-interface, or Boundary. The neighboring 
circles are further clustered to define predicted interface patches. PROMATE is available at 
http://bioinfo.weizmann.ac.il/promate/  

Cons-PPISP (Chen and Zhou, 2005) employs a consensus of neural networks trained on (i) 
the position specific similarity scores derived from the PSI-BLAST multiple sequence 
alignment and (ii) observed (in the target structure provided as input) solvent accessibility 
for spatially neighboring residues. In addition to validation on crystal structures, cons-
PPISP was shown to provide accurate prediction of protein interfaces for a set of 8 NMR-
derived complexes, non-redundant to its training set. The web-server is available at 
http://pipe.scs.fsu.edu/ppisp.html  

WHISCY (de Vries et al., 2006) introduces prediction scores that are based on evolutionary 
and structural information. Conservation of residues on the surface is computed as the 
corrected sum of similarity scores between amino acids at a given position by pairwise 
comparison of a query sequence and sequences from a multiple alignment. Similarity scores 
are taken from the Dayhoff mutation matrix. ASA is the only structural information used. 
WHISCY is available at http://nmr.chem.uu.nl/Software/whiscy/index.html  

PIER (Kufareva et al., 2007) combines (i) statistically derived interatomic contact potentials, 
(ii) physical descriptors, such as observed solvent accessibility for separate atomic groups 
within amino acids, and (iii) sequence alignment based features, in particular, three different 
conservation scores (frequency-based, similarity matrix-based, and entropy-based). The 
surface of a protein structure is divided on individual patches. Using the descriptors listed 
above, all patches obtain a set of cumulative scores that further fed to a partial least squares 
(PLS) based regression model to predict protein interfaces. Since the PIER scoring heavily 
relies on atomic resolution, it may have difficulties with incomplete or of low resolution 
crystal structures. The corresponding prediction server is available at 
http://abagyan.ucsd.edu/PIER/  

SPPIDER (Porollo and Meller, 2007) is a neural network-based method that uses the 
difference between predicted from sequence and observed in an unbound structure RSA of 
amino acid residue as a novel and highly informative signal of interaction sites. Solvent 
accessibility prediction methods tend to predict residues at protein interfaces as buried, 
which is consistent with the fact that they are indeed getting buried upon complex 
formation, even though they are exposed in an unbound structure. The SABLE (Adamczak 
et al., 2004) method for RSA prediction was used to generate the input for SPPIDER. 
Additional features include averaged over spatially neighboring residues of (i) RSA 
predicted by SABLE; (ii) evolutionary conservation (in terms of Shannon entropy) of amino 
acid type, charge, hydrophobicity, and side chain size; (iii) amino acid contact numbers and 
hydropathy constants. The server is available at http://sppider.cchmc.org/  
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The structure-based methods, on the other hand, also utilize features derived from a 3D 
protein structure, such as solvent accessibility and secondary structure states, local topology 
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factors (for X-ray based structures), etc. In addition, there are a number of methods built 
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and Bonvin, 2011; Huang and Schroeder, 2008; Qin and Zhou, 2007) However, consensus-
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power of the underlying principal features for each representative method.  

Described below are selected structure-based methods with at least somewhat orthogonal 
feature spaces that were available as web-servers at the time of data preparation for this 
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residues and maps them onto a protein 3D structure. Conserved residues in the core of a 
protein are deemed to be structurally important, whereas those on the surface are 
assumed to be functionally important. The method starts from constructing a multiple 
sequence alignments, and partitions the aligned sequences into groups by using their 
mutual sequence similarity. For each group, a consensus sequence is defined highlighting 
the positions with invariant amino acids. Consensus sequences are further aligned to 
identify (i) conserved residues across the entire protein family; (ii) class-specific residues 
that are invariant in some groups; and (iii) neutral residues that are not preserved in any 
single sequence group. Conserved and class-specific residues are then mapped onto 3D 
structure. Clusters of such residues on the surface of a protein structure are predicted to 
be functional. The ET method is available at 
http://mammoth.bcm.tmc.edu/ETserver.html  

ConSurf (Glaser et al., 2003) follows a similar approach by mapping the evolutionary 
conserved residues on 3D protein structure. The difference lies in computing the 
conservation scores that are relative with respect to other residues in a given protein. In 
addition, the outcome of the method is sensitive to the quality of multiple sequence 
alignment and to the overall length of a query sequence. For example, two 3D structures of 
the same protein, but with different sequence length representing its resolved part, may 
result in different location of the most conserved residues. The ConSurf method is available 
at http://consurf.tau.ac.il/, whereas its pre-computed results for the PDB deposited 
proteins are available from the ConSurfDB database (http://consurfdb.tau.ac.il/). 

It should be noted that the two methods described above were not designed to identify 
specifically protein-protein interaction sites, but rather to reveal any functional residues, 
e.g. involved in protein-DNA or protein-ligand interactions. However, since the authors 
of these methods refer to identification of protein interfaces as examples in their original 
publications, we chose these methods to serve as a separate group of predictors that rely 
primarily on evolutionary information, and can be contrasted with structure-based 
methods. 

PROMATE (Neuvirth et al., 2004) considers residues on the surface of a protein structure 
within 10Å circles around a given point. Spatially neighboring residues provide the 
following descriptors: (i) statistically derived chemical composition of binding sites, such as 
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propensity of individual amino acids, atom types, pairs of amino acids, and collective 
chemical properties (positively and negatively charged, polar, hydrophobic, and aromatic 
residues); (ii) evolutionary conservation in terms of diagonal elements of the PSI-BLAST-
derived position specific scoring matrix (PSSM); (iii) distance in the sequence between 
residues in the circle; (iv) secondary structure states, including extent of the loops. 
Additionally, temperature factors (B-factors) and bound waters are incorporated into the 
model whenever available. These descriptors are combined to yield a cumulative score that 
allows the circles to be classified as Interface, Non-interface, or Boundary. The neighboring 
circles are further clustered to define predicted interface patches. PROMATE is available at 
http://bioinfo.weizmann.ac.il/promate/  

Cons-PPISP (Chen and Zhou, 2005) employs a consensus of neural networks trained on (i) 
the position specific similarity scores derived from the PSI-BLAST multiple sequence 
alignment and (ii) observed (in the target structure provided as input) solvent accessibility 
for spatially neighboring residues. In addition to validation on crystal structures, cons-
PPISP was shown to provide accurate prediction of protein interfaces for a set of 8 NMR-
derived complexes, non-redundant to its training set. The web-server is available at 
http://pipe.scs.fsu.edu/ppisp.html  

WHISCY (de Vries et al., 2006) introduces prediction scores that are based on evolutionary 
and structural information. Conservation of residues on the surface is computed as the 
corrected sum of similarity scores between amino acids at a given position by pairwise 
comparison of a query sequence and sequences from a multiple alignment. Similarity scores 
are taken from the Dayhoff mutation matrix. ASA is the only structural information used. 
WHISCY is available at http://nmr.chem.uu.nl/Software/whiscy/index.html  

PIER (Kufareva et al., 2007) combines (i) statistically derived interatomic contact potentials, 
(ii) physical descriptors, such as observed solvent accessibility for separate atomic groups 
within amino acids, and (iii) sequence alignment based features, in particular, three different 
conservation scores (frequency-based, similarity matrix-based, and entropy-based). The 
surface of a protein structure is divided on individual patches. Using the descriptors listed 
above, all patches obtain a set of cumulative scores that further fed to a partial least squares 
(PLS) based regression model to predict protein interfaces. Since the PIER scoring heavily 
relies on atomic resolution, it may have difficulties with incomplete or of low resolution 
crystal structures. The corresponding prediction server is available at 
http://abagyan.ucsd.edu/PIER/  

SPPIDER (Porollo and Meller, 2007) is a neural network-based method that uses the 
difference between predicted from sequence and observed in an unbound structure RSA of 
amino acid residue as a novel and highly informative signal of interaction sites. Solvent 
accessibility prediction methods tend to predict residues at protein interfaces as buried, 
which is consistent with the fact that they are indeed getting buried upon complex 
formation, even though they are exposed in an unbound structure. The SABLE (Adamczak 
et al., 2004) method for RSA prediction was used to generate the input for SPPIDER. 
Additional features include averaged over spatially neighboring residues of (i) RSA 
predicted by SABLE; (ii) evolutionary conservation (in terms of Shannon entropy) of amino 
acid type, charge, hydrophobicity, and side chain size; (iii) amino acid contact numbers and 
hydropathy constants. The server is available at http://sppider.cchmc.org/  
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6. Evaluation 
6.1 Accuracy measures 

Prediction of protein interaction sites is typically cast as a classification problem. Therefore, 
a number of commonly used measures for two class classification problems can be 
employed to evaluate the accuracy. These measures include the two-class classification 
accuracy (Q2), recall or sensitivity (R), and precision or specificity (P), all expressed as 
percentage. 

 Q2= TP+TN
TP+TN+FP+FN

∙ 100% (1) 

 R= TP
TP+FN

∙ 100% (2) 

 P= TP
TP+FP

∙ 100% , (3) 

where TP are true positives, TN – true negatives, FP – false positives, and FN – false 
negatives.  

However, since the number of interaction sites can be much smaller than the number of non-
interacting residues, the classification problem at hand may be highly unbalanced. As a 
result, the measures listed above may be difficult to interpret and compare for different 
benchmarks. For example, with 90% of data points assigned to the negative class, a baseline 
classifier that predicts all residues as non-interacting achieves numerically high 90% 
classification accuracy. To provide a measure that balances sensitivity and specificity of 
predictions, the Matthews correlation coefficient (MCC) is often used (4) together with other 
measures. MCC ranges from -1, indicating an inverse prediction, through 0, which 
corresponds to a random classifier, to +1 for perfect prediction. 

 MCC= TP·TN���∙��
����������������������������� (4) 

Other measures that can be used to assess and compare classification methods are area 
under the receiver operating characteristic (ROC) curve and F-measure. 

6.2 Performance of selected methods 

The performance of several representative methods discussed in the previous section is 
assessed here in order to compare more systematically individual methods, and to quantify 
the effects of mapping additional interaction interfaces and using truly unbound structures. 
Different aspects of the performance are evaluated using benchmark datasets described in 
section 4 (SPPIDER149, Hwang150B/U, and Albou78B/U).  

For all evaluations, only residues with RSA of at least 5% were considered, thus excluding 
all fully buried residues in a given protein conformation. For methods providing a real 
valued score, multiple thresholds were tested as a basis for projection into two classes. The 
results for the best performing threshold in terms of MCC are reported in Tables 5 through 
9. The following values were found to be optimal for each method: ET with residues being 
ranked 1 (out of top 1, 5, and 10 rankings evaluated), ConSurf with evolutionary rank ≥ 5 (5, 
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7, 9 evaluated), WHISCY with threshold ≥ 0 (0, 0.18 evaluated), PIER with threshold ≥ 15 (0, 
15, 30 evaluated), and SPPIDER with threshold ≥ 0.3 (0.3, 0.5, 0.7 evaluated). 
 

Method SPPIDER149 Hwang150B Albou78B 
ET 0.08 0.04 0.01 
ConSurf 0.12 0.07 0.02 
PROMATE 0.10 0.10 0.09 
Cons-PPISP 0.30 0.22 0.17 
WHISCY 0.19 0.11 0.08 
PIER 0.37 0.27 0.22 
SPPIDER 0.41 0.28 0.20 

Table 5. The performance of representative methods measured using MCC on three 
different sets, with only the original PDB complexes used to define the positive class. 

As can be seen from Table 5, the overall accuracy of the methods evaluated here is rather 
limited. The two best performing methods, i.e., PIER and SPPIDER achieve MCC of about 
0.4 for SPPIDER149 set, 0.3 for Hwang150B, and 0.2 for Albou78B, respectively. Similar 
relative drop in accuracy is also observed for other methods, indicating that Hwang150B 
and Albou78B sets are more difficult to classify. This can be explained in part due to a larger 
imbalance between positive and negative classes in these benchmarks, especially in the 
Albou78B dataset (see Table 3). 
 

Method SPPIDER149 Hwang150B Albou78B 
R, % P, % R, % P, % R, % P, % 

ET 7.03 
6.39 

43.92 
51.73 

3.99 
3.44 

28.18 
48.89 

2.84 
3.57 

17.55 
60.60 

ConSurf 65.27 
63.00 

32.87 
40.97 

61.42 
55.91 

22.18 
41.07 

55.17 
53.19 

16.40 
41.66 

PROMATE 3.91 
3.22 

60.71 
64.29 

4.06 
2.56 

48.98 
63.78 

3.69 
1.85 

43.43 
58.29 

Cons-PPISP 33.40 
29.39 

60.59 
69.12 

26.25 
19.35 

42.42 
67.62 

22.46 
15.33 

34.80 
64.40 

WHISCY 29.38 
26.66 

45.42 
54.32 

21.15 
17.21 

29.77 
51.71 

20.49 
16.53 

21.83 
48.38 

PIER 61.10 
54.38 

52.62 
60.31 

49.66 
38.64 

37.46 
60.86 

45.43 
31.20 

30.61 
56.99 

SPPIDER 80.36 
73.14 

48.47 
56.81 

63.15 
53.04 

34.11 
59.82 

56.22 
43.48 

26.49 
55.52 

Table 6. The effect of mapping interaction sites from homologous protein complexes on 
recall (R) and precision (P): the first line in each row shows R and P using original PDB 
complexes, whereas the second line indicates accuracy derived after mapping interaction 
sites using PISA BUs and homologous chains with 70% sequence identity. 

It should be noted that due to a sufficiently large number of data points (surface residues, 
see Table 3) included in each benchmarks, each of the correlation coefficients reported above 
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a number of commonly used measures for two class classification problems can be 
employed to evaluate the accuracy. These measures include the two-class classification 
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However, since the number of interaction sites can be much smaller than the number of non-
interacting residues, the classification problem at hand may be highly unbalanced. As a 
result, the measures listed above may be difficult to interpret and compare for different 
benchmarks. For example, with 90% of data points assigned to the negative class, a baseline 
classifier that predicts all residues as non-interacting achieves numerically high 90% 
classification accuracy. To provide a measure that balances sensitivity and specificity of 
predictions, the Matthews correlation coefficient (MCC) is often used (4) together with other 
measures. MCC ranges from -1, indicating an inverse prediction, through 0, which 
corresponds to a random classifier, to +1 for perfect prediction. 
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Other measures that can be used to assess and compare classification methods are area 
under the receiver operating characteristic (ROC) curve and F-measure. 

6.2 Performance of selected methods 

The performance of several representative methods discussed in the previous section is 
assessed here in order to compare more systematically individual methods, and to quantify 
the effects of mapping additional interaction interfaces and using truly unbound structures. 
Different aspects of the performance are evaluated using benchmark datasets described in 
section 4 (SPPIDER149, Hwang150B/U, and Albou78B/U).  

For all evaluations, only residues with RSA of at least 5% were considered, thus excluding 
all fully buried residues in a given protein conformation. For methods providing a real 
valued score, multiple thresholds were tested as a basis for projection into two classes. The 
results for the best performing threshold in terms of MCC are reported in Tables 5 through 
9. The following values were found to be optimal for each method: ET with residues being 
ranked 1 (out of top 1, 5, and 10 rankings evaluated), ConSurf with evolutionary rank ≥ 5 (5, 
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7, 9 evaluated), WHISCY with threshold ≥ 0 (0, 0.18 evaluated), PIER with threshold ≥ 15 (0, 
15, 30 evaluated), and SPPIDER with threshold ≥ 0.3 (0.3, 0.5, 0.7 evaluated). 
 

Method SPPIDER149 Hwang150B Albou78B 
ET 0.08 0.04 0.01 
ConSurf 0.12 0.07 0.02 
PROMATE 0.10 0.10 0.09 
Cons-PPISP 0.30 0.22 0.17 
WHISCY 0.19 0.11 0.08 
PIER 0.37 0.27 0.22 
SPPIDER 0.41 0.28 0.20 

Table 5. The performance of representative methods measured using MCC on three 
different sets, with only the original PDB complexes used to define the positive class. 

As can be seen from Table 5, the overall accuracy of the methods evaluated here is rather 
limited. The two best performing methods, i.e., PIER and SPPIDER achieve MCC of about 
0.4 for SPPIDER149 set, 0.3 for Hwang150B, and 0.2 for Albou78B, respectively. Similar 
relative drop in accuracy is also observed for other methods, indicating that Hwang150B 
and Albou78B sets are more difficult to classify. This can be explained in part due to a larger 
imbalance between positive and negative classes in these benchmarks, especially in the 
Albou78B dataset (see Table 3). 
 

Method SPPIDER149 Hwang150B Albou78B 
R, % P, % R, % P, % R, % P, % 

ET 7.03 
6.39 

43.92 
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3.99 
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ConSurf 65.27 
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PROMATE 3.91 
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60.71 
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48.98 
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3.69 
1.85 
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58.29 

Cons-PPISP 33.40 
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26.25 
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22.46 
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WHISCY 29.38 
26.66 

45.42 
54.32 

21.15 
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29.77 
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20.49 
16.53 

21.83 
48.38 

PIER 61.10 
54.38 

52.62 
60.31 

49.66 
38.64 

37.46 
60.86 

45.43 
31.20 

30.61 
56.99 

SPPIDER 80.36 
73.14 

48.47 
56.81 

63.15 
53.04 

34.11 
59.82 

56.22 
43.48 

26.49 
55.52 

Table 6. The effect of mapping interaction sites from homologous protein complexes on 
recall (R) and precision (P): the first line in each row shows R and P using original PDB 
complexes, whereas the second line indicates accuracy derived after mapping interaction 
sites using PISA BUs and homologous chains with 70% sequence identity. 

It should be noted that due to a sufficiently large number of data points (surface residues, 
see Table 3) included in each benchmarks, each of the correlation coefficients reported above 
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is statistically significantly different from 0 with a p-value < 0.05. Nevertheless, practical 
applicability of methods that achieve correlations of 0.2 and lower has to be judged using 
also other criteria and specific examples. In particular, evolutionary methods achieve very 
limited accuracy in this test, even though they may provide biologically valuable insights, as 
discussed later. 

The effects of mapping interaction residues from alternative complexes are illustrated in 
Table 6 using measures of sensitivity and specificity. The accuracy using the assignment of 
the positive class (interaction sites) derived from the original complexes is compared to the 
accuracy obtained re-labeling the “non-interacting” residues in mapped interfaces as 
“interacting” sites. Due to largely canceling effects of decreased rates of false positives and 
increased rates of false negatives, the mapping of interaction sites from PISA biological units 
does not affect significantly the performance of the prediction methods in terms of MCC, 
although a systematic small drop in accuracy is observed in most cases (data not shown).  

However, as can be seen from Table 6, all methods show a drop in recall while precision 
improves when mapping is applied. These results also allow one to trace how the trade-off 
between sensitivity and specificity was optimized for different methods. One striking 
example is ConSurf vs. ET comparison. On the other hand, most structure-based methods 
provide fairly well balanced predictions. In particular, precision improves considerably, 
with only a relatively limited drop in recall for the best performing SPPIDER method, 
followed by PIER and Cons-PPISP. The observed ranking could reflect the fact that 
SPPIDER was trained (although on a different set without homology to SPPIDER149 set) 
using mapping from alternative complexes to reduce the noise in learning from data and to 
provide a more balanced classification problem. 
 

Method Hwang150B 
SI70 

Hwang150U 
SI70 

Albou78B 
SI70 

Albou78U 
SI70 

ET 0.03 0.00 0.06 0.08 
ConSurf 0.03 0.05 0.00 0.00 
PROMATE 0.06 0.05 0.04 0.01 
Cons-PPISP 0.20 0.18 0.14 0.13 
WHISCY 0.09 0.16 0.06 0.08 
PIER 0.24 0.23 0.15 0.11 
SPPIDER 0.29 0.29 0.17 0.14 

Table 7. The effect of the bound versus unbound state of the protein structures used as an 
input in terms of MCC. In all cases, interacting residues were mapped using homology to 
PISA BUs with 70% sequence identity.  

The impact of conformational change and the use of structures in bound as opposed to 
unbound state as an input is assessed in Table 7. For that purpose, the overall accuracy in 
terms of MCC is compared using two pairs of sets of bound (taken from a complex by 
simply ignoring other chains) and truly unbound structures: Hwang150B vs. Hwang150U 
and Albou78B vs. Albou78U, respectively. Slight decrease in performance is observed for all 
but one structure-based method, the exception being WHISCY. The latter method starts 
from a low level, though. In addition, the WHISCY server did not generate results for a 
number of more difficult cases, suggesting that this trend might not hold on other data sets. 
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While the drop in accuracy is limited for other methods tested, it should be emphasized that 
benchmarks included here sample relatively small conformational changes due to induced 
fit. Therefore, further systematic studies will be required to better delineate the range of 
applicability of structure-based method for the recognition of protein interaction sites.  

Table 8 demonstrates how the performance estimates can be inflated when accuracy 
measures are computed based on all residues as opposed to computing the accuracy for 
each protein and then averaging over all proteins. Per protein averages, together with 
measures of variance (here we report standard deviations), allow one to assess better the 
range of expected accuracies for individual proteins. As can be seen from Table 8, the 
observed large standard deviations suggest large protein to protein variation and indicate 
that all tested methods fail dramatically for at least some proteins. It should be also noted 
that using per protein measures PIER is the top performing method, followed by SPPIDER 
and Cons-PPISP. 
 

Method MCC Q2, % R, % P, % 

ET 0.06±0.12 
0.08 

65.64±17.83 
71.21 

9.60±16.07 
7.03 

29.35±35.01 
43.92 

ConSurf 0.12±0.15 
0.12 

54.44±8.16 
52.80 

64.54±14.06 
65.27 

39.61±22.69 
32.87 

PROMATE 0.07±0.13 
0.10 

64.01±19.63 
71.16 

5.72±8.93 
3.91 

28.30±39.31 
60.71 

Cons-PPISP 0.23±0.23 
0.30 

69.52±13.23 
74.15 

37.50±22.11 
33.40 

58.99±29.71 
60.59 

WHISCY 0.14±0.20 
0.19 

67.39±13.14 
71.03 

26.58±19.79 
29.38 

42.64±28.00 
45.42 

PIER 0.30±0.23 
0.37 

71.18±11.47 
72.54 

58.73±24.80 
61.10 

55.22±27.09 
52.62 

SPPIDER 0.29±0.20 
0.41 

66.94±13.82 
69.39 

79.16±24.79 
80.36 

49.19±21.69 
48.47 

Table 8. Comparison of the accuracy measures calculated per residue by merging data from 
all chains (the bottom line in each row) and per protein averages and standard deviations 
(the top line in each row), using the SPPIDER149 set (similar effect is observed on other 
benchmarks). 

Not all web-based implementations of the methods are reliable. While requesting and 
retrieving predictions from the evaluated servers, we faced multiple failures. Table 9 
illustrates the reliability of the corresponding servers from the user`s point of view by 
presenting the numbers of proteins failed to be processes within each benchmark set. The 
most reliable web-servers appear to be PIER and SPPIDER, whereas ET, ConSurf, and 
WHISCY are quite unreliable, which makes it more difficult to evaluate servers on a large 
scale. 

Prediction methods that seemingly perform poorly according to some evaluation criteria can 
still greatly facilitate further experimental and computational studies on protein 
interactions. One might argue that predicting possible interaction interfaces should be 
directed at the recognition of the sites that contribute most to the binding energy. Such hot 
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is statistically significantly different from 0 with a p-value < 0.05. Nevertheless, practical 
applicability of methods that achieve correlations of 0.2 and lower has to be judged using 
also other criteria and specific examples. In particular, evolutionary methods achieve very 
limited accuracy in this test, even though they may provide biologically valuable insights, as 
discussed later. 

The effects of mapping interaction residues from alternative complexes are illustrated in 
Table 6 using measures of sensitivity and specificity. The accuracy using the assignment of 
the positive class (interaction sites) derived from the original complexes is compared to the 
accuracy obtained re-labeling the “non-interacting” residues in mapped interfaces as 
“interacting” sites. Due to largely canceling effects of decreased rates of false positives and 
increased rates of false negatives, the mapping of interaction sites from PISA biological units 
does not affect significantly the performance of the prediction methods in terms of MCC, 
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using mapping from alternative complexes to reduce the noise in learning from data and to 
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Method Hwang150B 
SI70 

Hwang150U 
SI70 

Albou78B 
SI70 

Albou78U 
SI70 
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ConSurf 0.03 0.05 0.00 0.00 
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Table 7. The effect of the bound versus unbound state of the protein structures used as an 
input in terms of MCC. In all cases, interacting residues were mapped using homology to 
PISA BUs with 70% sequence identity.  

The impact of conformational change and the use of structures in bound as opposed to 
unbound state as an input is assessed in Table 7. For that purpose, the overall accuracy in 
terms of MCC is compared using two pairs of sets of bound (taken from a complex by 
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While the drop in accuracy is limited for other methods tested, it should be emphasized that 
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applicability of structure-based method for the recognition of protein interaction sites.  

Table 8 demonstrates how the performance estimates can be inflated when accuracy 
measures are computed based on all residues as opposed to computing the accuracy for 
each protein and then averaging over all proteins. Per protein averages, together with 
measures of variance (here we report standard deviations), allow one to assess better the 
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Table 8. Comparison of the accuracy measures calculated per residue by merging data from 
all chains (the bottom line in each row) and per protein averages and standard deviations 
(the top line in each row), using the SPPIDER149 set (similar effect is observed on other 
benchmarks). 

Not all web-based implementations of the methods are reliable. While requesting and 
retrieving predictions from the evaluated servers, we faced multiple failures. Table 9 
illustrates the reliability of the corresponding servers from the user`s point of view by 
presenting the numbers of proteins failed to be processes within each benchmark set. The 
most reliable web-servers appear to be PIER and SPPIDER, whereas ET, ConSurf, and 
WHISCY are quite unreliable, which makes it more difficult to evaluate servers on a large 
scale. 

Prediction methods that seemingly perform poorly according to some evaluation criteria can 
still greatly facilitate further experimental and computational studies on protein 
interactions. One might argue that predicting possible interaction interfaces should be 
directed at the recognition of the sites that contribute most to the binding energy. Such hot 
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spots also represent the most natural target for further validation, e.g., using mutagenesis, 
or as targets for therapeutics.  
 

Method SPPIDER149 Hwang150B Hwang150U Albou78B Albou78U 
ET 14 14 28 8 8 
ConSurf 21 12 13 4 4 
PROMATE 1 3 8 3 12 
Cons-PPISP 7 3 1 0 4 
WHISCY 34 15 17 8 9 
PIER 0 0 0 0 0 
SPPIDER 0 0 0 0 0 

Table 9. The number of proteins not included in each benchmark due to problems with the 
retrieval of the results as an indicator of the reliability of web-servers tested.  
 

 
A

 
B

Fig. 3. Examples of protein interaction sites predicted by ConSurf: A. A successful 
identification of the protein interface for the homodimer of phosphoglucose isomerase (PDB 
ID 1qxr, chain A); B. A multi-interface protein (CSL transcription factor) illustrates possible 
confusion with DNA binding sites that are the most slowly evolving residues at the surface 
of the protein in this case (PDB ID 2fo1, chain A). Residues in magenta are the most 
conserved, whereas variable sites are colored using cyan (see the ConSurf documentation). 

In this context, a special note needs to be made on the performance of evolutionary 
methods, such as ET and ConSurf. As we mentioned before, these methods were not 
designed specifically to predict protein-protein interaction sites, but rather to identify 
evolutionary conserved residues. Therefore, these methods may not able to discriminate 
between protein-protein, protein-ligand (e.g., co-factor or substrate), and protein-
DNA/RNA binding sites. An example of such a case is shown in Figure 3.  

On the other hand, highly conserved residues that are exposed on the surface of a protein 
are very likely functionally relevant, irrespective of the actual involvement in interaction. 
Despite all the limitations, evolutionary methods for the prediction of interaction sites have 
significantly contributed to the mapping of protein interactions and other functional 
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annotations, see e.g., (Kniazeff et al., 2002; Shenoy et al., 2006) and (He et al., 2003; Lietha et 
al., 2007), for ET and ConSurf, respectively. 

7. Discussion and conclusions 
Protein-protein interactions are essential for enzymatic functions, signal transduction, cell 
cycle regulation and other fundamental biological processes. In addition to addressing the 
fundamental questions of molecular biology, identification of residues involved in protein-
protein interactions has important medical relevance. Combined with recent advances in 
genome sequencing it facilitates delineating natural functional variants from pathological 
mutants, and conducting ‘molecular diagnostics’ as part of personalized medicine.(Su et al., 
2011) Detailed structural information on thousands of protein complexes also stimulates 
growth in the field of rational drug design by providing a new class of targets that include 
known protein interaction interfaces.(White et al., 2008) 

However, experimental identification and validation of a protein interface remains a 
challenging task, both in terms of labor and cost. Therefore, efforts to map and characterize 
protein interactions can considerably benefit from computational biology and structural 
bioinformatics. In particular, methods that integrate sequence and structure information 
achieved accuracies that are useful in selecting and prioritizing targets for mutagenesis and 
other experimental studies. 

In this chapter, we reviewed state-of-the-art in the field of computational prediction of 
protein-protein interaction sites. We evaluated some representative methods using several 
published benchmarks of protein complexes. The overall accuracy of existing methods, in 
accord with other recent evaluations, was found to be limited (the Matthews correlation 
coefficient between the predicted and true class assignment of up to 0.4). Therefore, further 
concerted efforts will be required to improve state-of-the-art in the field. To that end, we 
discussed the need for standard definition of protein interaction sites, developing more 
comprehensive benchmark protein sets, and appropriate ways of measuring/reporting the 
accuracy of predictions. 

We quantified the effects of taking into account multiple interaction interfaces and using as 
an input unbound structures that were resolved without interacting partners. Both of these 
issues are often ignored when evaluating the performance of interaction sites prediction 
methods. Yet, they are shown to impact significantly the estimates of performance. These 
two issues also highlight more fundamental difficulties with the definition of the negative 
class and current attempts to cast the problem in a computationally feasible way.  

Casting the prediction of interaction sites in terms of a two-class classification problem 
requires that examples of the negative (“non-interacting”) class be used for the training. 
With data points representing both “interacting” and “non-interacting” residues, a decision 
boundary separating the two classes can be optimized. These negative examples are defined 
in most cases by simply taking the complement of the positive class, i.e., all other (surface 
exposed) residues that are not known to be involved in interactions.  

Consequently, without mapping known interfaces alternative complexes, residues within 
such interfaces are incorrectly regarded as “non-interacting”. This could introduce problems 
in training, as misclassified vectors from the negative class may coincide with the bulk of the 
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evolutionary conserved residues. Therefore, these methods may not able to discriminate 
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are very likely functionally relevant, irrespective of the actual involvement in interaction. 
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annotations, see e.g., (Kniazeff et al., 2002; Shenoy et al., 2006) and (He et al., 2003; Lietha et 
al., 2007), for ET and ConSurf, respectively. 

7. Discussion and conclusions 
Protein-protein interactions are essential for enzymatic functions, signal transduction, cell 
cycle regulation and other fundamental biological processes. In addition to addressing the 
fundamental questions of molecular biology, identification of residues involved in protein-
protein interactions has important medical relevance. Combined with recent advances in 
genome sequencing it facilitates delineating natural functional variants from pathological 
mutants, and conducting ‘molecular diagnostics’ as part of personalized medicine.(Su et al., 
2011) Detailed structural information on thousands of protein complexes also stimulates 
growth in the field of rational drug design by providing a new class of targets that include 
known protein interaction interfaces.(White et al., 2008) 

However, experimental identification and validation of a protein interface remains a 
challenging task, both in terms of labor and cost. Therefore, efforts to map and characterize 
protein interactions can considerably benefit from computational biology and structural 
bioinformatics. In particular, methods that integrate sequence and structure information 
achieved accuracies that are useful in selecting and prioritizing targets for mutagenesis and 
other experimental studies. 

In this chapter, we reviewed state-of-the-art in the field of computational prediction of 
protein-protein interaction sites. We evaluated some representative methods using several 
published benchmarks of protein complexes. The overall accuracy of existing methods, in 
accord with other recent evaluations, was found to be limited (the Matthews correlation 
coefficient between the predicted and true class assignment of up to 0.4). Therefore, further 
concerted efforts will be required to improve state-of-the-art in the field. To that end, we 
discussed the need for standard definition of protein interaction sites, developing more 
comprehensive benchmark protein sets, and appropriate ways of measuring/reporting the 
accuracy of predictions. 

We quantified the effects of taking into account multiple interaction interfaces and using as 
an input unbound structures that were resolved without interacting partners. Both of these 
issues are often ignored when evaluating the performance of interaction sites prediction 
methods. Yet, they are shown to impact significantly the estimates of performance. These 
two issues also highlight more fundamental difficulties with the definition of the negative 
class and current attempts to cast the problem in a computationally feasible way.  

Casting the prediction of interaction sites in terms of a two-class classification problem 
requires that examples of the negative (“non-interacting”) class be used for the training. 
With data points representing both “interacting” and “non-interacting” residues, a decision 
boundary separating the two classes can be optimized. These negative examples are defined 
in most cases by simply taking the complement of the positive class, i.e., all other (surface 
exposed) residues that are not known to be involved in interactions.  

Consequently, without mapping known interfaces alternative complexes, residues within 
such interfaces are incorrectly regarded as “non-interacting”. This could introduce problems 
in training, as misclassified vectors from the negative class may coincide with the bulk of the 
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density for the positive class. One strategy to address this issue is to filter out such difficult 
cases. As an alternative, one could also consider one-class approaches, in which only the 
positive class examples are used to learn a predictor. On the other hand, if residues from 
multiple complexes are systematically mapped, as advocated here, the negative class 
assignment as a source of noise should be gradually reduced with the progress in 
experimental mapping of interaction sites. 

Conformational changes upon complex formation pose another problem for the methods 
considered here. Protein flexibility and the induced fit effects upon complex formation are 
assumed to be limited. Obviously, this assumption does not hold in many instances of 
protein-protein interactions (and sometimes it breaks spectacularly, e.g., when the co-
folding of otherwise disordered interacting domains occurs). Therefore, methods 
presented here are of limited applicability when large conformational changes or flexible 
domains are involved.  

It should be also stressed that even a limited induced fit can pose significant challenges for 
structure-based methods. Simply ignoring all but one chain in a protein complex, and thus 
taking a de facto bound conformation as input, may lead to spurious effects in training and 
overly optimistic estimates of accuracy. For example, low B-factors of surface residues, 
which can be “locked” in a specific conformation by interactions with a co-factor, may not 
be a true signal of interaction sites (in many cases the opposite can actually be observed). 
Features that are capable of identifying interaction sites starting from a truly unbound 
structure should be emphasized.  

Reliable identification of residues that participate in binding to other proteins can help 
direct and streamline mutagenesis and other experimental studies, and to facilitate efforts to 
map entire interactomes. It can also reduce the levels of false positives (by assessing 
compatibility between predicted interfaces), and false negatives (by helping identify novel 
interactions) observed for experimental approaches that are used to map protein 
interactions. Another promising application is protein docking, in which predicted 
interfaces can be used for evaluating and ranking potential complex structures (de Vries and 
Bonvin, 2011), in analogy to docking methods that utilize limited NMR data. (Dominguez et 
al., 2003; Kohlbache et al., 2001) 

Further progress in the field will require new insights to overcome current limitations, as 
well as careful assessment of the accuracy in order to address possible biases in training and 
validation. Constant improvements in experimental techniques and a growing number of 
resolved macromolecular complexes, from which to learn better predictors, bode well for 
future efforts in this regard. 
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1. Introduction

Molecular simulations allow researchers to obtain complementary data with respect to
experimental studies and to overcome some of their limitations. Current experimental
techniques do not allow to observe the full dynamics of a protein at atomic detail. In
return, experiments provide the structures, i.e. the spatial atomic positions, for numerous
biomolecular systems, which are often used as starting point for simulation studies. In order
to predict, to explain and to understand experimental results, researchers have developed a
variety of biomolecular representations and algorithms. They allow to simulate the dynamic
behavior of macromolecules at different scales, ranging from detailed models using quantum
mechanics or classical molecular mechanics to more approximate representations. These
simulations are often controlled a priori by complex and empirical settings. Most researchers
visualise the result of their simulation once the computation is finished. Such post-simulation
analysis often makes use of specific molecular user interfaces, by reading and visualising the
molecular 3D configuration at each step of the simulation. This approach makes it difficult
to interact with a simulation in progress. When a problem occurs, or when the researcher
does not achieve to observe the predicted behavior, the simulation must be restarted with
other settings or constraints. This can result in the waste of an important number of compute
cycles, as some simulations last for a long time: several days to weeks may be required
to reproduce a short timespan, a few nanoseconds, of molecular reality. Moreover, several
biomolecular processes, like folding or large conformational changes of proteins, occur on
even longer timescales that are inaccessible to current simulation techniques. It can thus be
necessary to impose empirical constraints in order to accelerate a simulation and to reproduce
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an experimental result in MD. These constraints have to be defined a priori, rendering it
difficult to explore all possibilities in order to examine various biological hypotheses.

A new approach allowing to address these problems has emerged recently: Interactive
Molecular Simulation (IMS). IMS consists in visualising and interacting with a simulation
in progress, and provides the user with control over simulation settings in interactive time.
With the recent advances in human computer interaction and the impressive increase of
available computing power, the IMS approach allows a user to interact in 3D space in real
time with a molecular simulation in progress. This approach provides quality control features
by visualizing results of a simulation in progress and supplies interactive features, such as
feeling forces involved in the simulation as well as triggering specific events by applying
custom forces during the simulation in progress. These advances led to a new generation of
scientific tools to better understand life science phenomena, which place the human expertise
at the centre of the analysis process, complementarily to automatic computational methods.

The IMS approach emerged from the breakthrough initiated by the Sculpt precursor program
proposed by Surles et al. (1994). Since then, the interactive molecular simulations field has
been developing continuously. Initial interactive experiments using molecular mechanics
techniques gave quickly rise to "guided" dynamics simulations [ Wu & Wang (2002)] or
Steered Molecular Dynamics (SMD) [Isralewitz et al. (2001)] [Leech et al. (1996)]. The interest
for these methods increased with the enhancement of simulation accuracy and thanks to
the exciting new possibilities for dynamic structural exploration of very large and complex
biological systems. In the Interactive Molecular Dynamics (IMD) approach, steering forces are
applied interactively with a chosen amplitude, direction and application point. This enables
the user to explore the simulation system while receiving instant feedback information from
real-time visualisation or haptic devices [Leech et al. (1997)]. Schulten’s group has carried out
several applications of IMS simulations to macromolecular structures [Grayson et al. (n.d.)]
[Stone et al. (2001)]. This effort lead to the design of two efficient software tools facilitating
the process of setting up an IMS : NAMD and VMD [Phillips et al. (2005)] [Nelson et al.
(1995))]. The underlying exchange protocol is also supported by ProtoMol [Matthey et al.
(2004)], LAMMPS [Plimpton (1995)], HOOMD-blue [Anderson et al. (2008)] and any software
using the MDDriver library [Delalande et al. (2009)]. Similar projects proposing an interactive
display for molecular simulations exist, such as the Java3D interface proposed in Knoll &
Mirzaei (2003) and Vormoor (2001), or the Protein Interactive Theater [Prins et al. (1999)].

With fast generalization of new computer hardware devices and increasing accessibility
to powerful computational infrastructures, IMS showes a fast and promising evolution,
even for very large molecular systems (over 100.000 atoms). Such applications are now
in the reach of state-of-art desktop computing. This evolution was possible given the
strong increase in raw computing power leading to faster and bigger processing units
(multi-processors, multi-core architectures). Currently ongoing technological developments
such as GPU computing and the spread of parallelized entertainment devices (PS3, Cell) with
specific graphic and processing capabilities open exciting new opportunities for interactive
calculations. These approaches could provide even more processing power for highly
parallelizable computational problems, for instance by differentiating the parallelisation of
molecular calculations and graphical display functionalities. Given these developments, the
range of accessible computational methods and representations is bound to grow. It may
soon be possible to extend the IMS approach to ab initio or QM/MM calculations. Indeed,
the precision achieved in the description of a system can be improved by switching to a more
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accurate physical model and/or by improving the representation of the molecular context
simulated. Thus, multi-scale simulations [Baaden & Lavery (2007)] would indeed benefit from
an interactive approach leading to important advantages with respect to the study of complex
biological systems. However, the raw increase in computer speed alone is not sufficient to
grant a successful future evolution of the IMS approach. In addition, it is necessary to develop
adapted software solutions, which are generally more efficient [Grayson et al. (n.d.)], as it is
commonly admitted in the numeric simulation field. Finally, the most recent and famous work
illustrating the revolution of this approach is the "Fold It" serious game, which allows a user
to interactively propose a protein folding solution [Cooper et al. (2010)].

We will describe in this chapter the recent advances relating to these IMS approaches
previously described. As IMS implies to efficiently combine simulation and interaction
features, we will explain how we designed specific simulation, visualisation, and interaction
techniques to solve the real time constraint, to study complex biomolecular systems, and
to address a larger simulation timescale. Then we will discuss software architectures to
efficiently put the different building blocks together. Finally, we will explain how we apply
IMS to different fields of research including various topics such as protein-protein docking in
a virtual reality and multimodal context, an ion substitution study using an haptic device, and
a study about the opening and closure of the Guanylate Kinase enzyme.

2. Multiscale and multiphysics protein simulation models

In structural biology, recent advances in experimental techniques allow us to solve larger
and larger protein 3D structures. However, even if structure is known to be strongly linked
to biological function, static states often lack in providing dynamical informations that are
crucial for the understanding of the subtle mechanisms occuring at the molecular level. Thus,
molecular simulations are nowadays used to complete experimental biostructural studies,
especially to better understand the dynamic behaviour and the fundamental mechanisms
involved in a protein complex. In spite of the increasing computational resources, classical
simulation tools are not well adapted to quickly obtain insight into the global biomechanical
properties, because of the limited timescale covered by all-atom or coarse-grained simulations.
For these reasons, it is necessary to develop new modeling approaches at a larger scale,
complementary to all-atom and coarse-grained models, especially designed to interactively
study protein complex formation and biomechanical properties of large biomolecular
structures. We present in this part unconventional approaches that could address these
requirements. The first one, based on a rigid body model of a protein, was especially designed
to study protein-protein interactions for an interactive rigid docking application. The second
one, based on a spring netwok model, takes into account protein flexibility in order to study
biomechanical behavior of large protein structures in interactive time.

2.1 A rigid body simulation model to interactively study protein-protein interactions

At a larger scale, it is sometimes not necessary to model and simulate the flexibility of a
protein, but sufficient to consider the protein as a rigid body. Using a simple but accurate
model at the macroscopic scale allows us to overcome the main constraint to provide
an interactive time biophysical simulation as required for IMS: taking into account the
user interaction during a simulation in progress. To present our rigid body simulation
model dedicated to IMS, especially interactive rigid docking, we have to focus on the main
phenomena that are involved in the protein interactions.
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2.1.1 Geometry and surface

Proteins can be viewed as both the building blocks and the workforce of cells. They are
synthesized based on portions of DNA (Deoxyribonucleic Acid) called coding sequences or
genes. Genes are transcribed in the form of mRNA (Messenger RiboNucleic Acid), which
is then translated by ribosomes in the form of a protein, following a specific coding scheme
(figure 1A). Each triplet of mRNA bases corresponds to one AA (Amino Acid) or residue,
of which there are twenty basic types. The various physicochemical properties of AAs give
rise to interactions at the atomic level, inducing protein folding which contributes in turn
to protein stability (figure 1B). These properties also play a crucial part in protein-protein
interactions.

Fig. 1. (A) - Overall view of protein synthesis: transcription of DNA to messenger RNA
(mRNA) and translation of mRNA to amino acid sequences chosen from 20 possible
varieties, here shown according to their physicochemical properties (using a Venn diagram).
(B) - Based on the chemical nature of component amino acids, resulting interactions cause the
protein to fold to a favorable arrangement in space. This 3D shape can be described
according to four levels: the (a) primary, (b) secondary, (c) tertiary and (d) quaternary
structure.

Proteins, therefore, can be seen as long chains composed of successive amino acids folded
in space, which are the product of the expression of an organism’s genetic makeup. But
in order to execute their functions within cells, proteins must undergo folding and take a
specific 3D form. This form may be characterized following four levels of structure (see figure
1B). The order in which residues are linearly arranged, i.e. their sequence, constitutes the
protein’s primary structure. (see figure 1B-a). Some of the structure’s segments organize
themselves into sequences of specific substructures called secondary structures (see figure
1B-b). These structures, stabilized by hydrogen bonds, can be divided into two groups:
regular secondary structures, called alpha helices and beta sheets, which are linked together
by irregular structures called loops. The arrangement of these secondary structures thus
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constitutes the 3D, or tertiary structure of the protein (see figure 1B-c), which determines
protein function within the cell.

Once folded, proteins carry out various functions within the cell, such as transporting
molecules to and from various components of the organism (e.g. hemoglobin, chaperone
proteins), inter- and intracellular signaling and communications (e.g. hormones,
neurotransmitters, ions), immune defense functions (immunoglobulins, adhesion molecules)
or cellular metabolism (chlorophyll, apoptosis proteins, transcription factors, ATP synthesis).
These cellular functions are closely linked to the protein’s tertiary structure, but also to its
interactions with other proteins.

In short, better understanding of protein-protein interactions is a major stake for biomedical
research. Indeed, designing new drugs increasingly involves targeting specific protein-protein
interactions [Villoutreix et al. (2008)], or alternatively, involves synthesizing recombinant
proteins meant to emulate interactions with the original native protein [Pipe (2008)]. It
becomes more and more necessary, therefore, to identify the 3D structure of protein
complexes. Two main experimental methods are currently used to determine the 3D structure
of a protein complex. These are X-ray crystallography and Nuclear Magnetic Resonance
(NMR) spectroscopy. All known publicly available protein structures are currently housed
on the website of the Protein Data Bank (PDB) [Berman et al. (2000)]. This database contains
now several hundred thousand protein structures for many organisms. However, this number
remains small in comparison to estimates of the number of existing proteins in the natural
world. This is because experimental determination of protein structure is often difficult, and
in some cases impossible. Indeed, solving a problem of this kind involves mass production
and purification of the protein, and in the case of crystallography, production of diffractive
crystals. In determining the structure of a protein complex, difficulties in production and
purification are all the more critical, because partner proteins must be produced at the same
time for complexes to form. Furthermore, the time necessary for crystallization may be
incompatible with the lifespan of some complexes. For all these reasons, many scientists
have attempted to predict the structure of such complexes using computational tools through
methods and algorithms for molecular docking.

Current techniques for the experimental study of the 3D structure of protein complexes
(crystallography, NMR, electron cryomicroscopy, SAXS, etc.) have several limitations (in
terms of size and type of proteins) and are costly in terms of time and money. For that reason,
computer-based (in silico) docking methods have been developed in the past, to deduce
the functional 3D structure of a complex based on single molecules, which turns out to be
considerably easier and cheaper than experimental in vitro methods. Current approaches are
strictly computational and results are evaluated using visualization tools. These approaches
can be divided into 4-5 successive stages (figure 2): (1) choice of the representation mode
for proteins (atomic view, pseudo-atoms, grid, etc.); (2) conformational exploration (taking
into account position, orientation, and shape of the ligand); (3) minimization of the function
used to evaluate binding energy (i.e. score) for conformations derived from the exploration;
(4) grouping by similarity and classification through evaluation or fine-tuning of the scores,
augmented with a manual stage of visualization when the score alone doesn’t allow native
conformations (i.e. the ones present in nature) to be discriminated from other generated
conformations; (5) an optional stage for fine-tuning selected complexes, through energy
minimization or molecular dynamics.
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Fig. 2. The 5 stages of the docking task

A large number of fully automatic computational docking algorithms depend on
an comprehensive approach of conformational exploration, the main problem being
combinatorial explosion of the number of possible solutions. These approaches can be sorted
into three categories: those based on systematic sampling, on molecular dynamics techniques
and on classification interaction modes between proteins. An ideal function would yield, for
a given mode of interaction, the binding energy of two proteins involved in a complex (see
section 2.1.3). Such functions aim to reproduce experimental values of free binding energy,
and through minimization, to reach the overall minimum energy in the set of all possible
protein-protein complexes.

Consequently, in real life cases, automatic docking algorithms, such as ClusPro [Comeau et al.
(2004)] or Hex [Ritchie (2003)], must manage two difficulties in order to reach a relevant result.
The first is to process a space of potential solutions which increases in size along with the
number of degrees of freedom in describing protein position and conformation, thus running
the risk of not beeing processed in an acceptable amount of time. The second problem is that
search algorithms produce local minima, and cannot easily find the global minimum that is
associated to the native form of the complex [Wang et al. (2003)].

To finalize a docking simulation, experts rely upon a manual stage of visualization to analyse
the generated complexes. This task consists in a detailed analysis of residues and atoms
involved in the interface each complex, through the identification of hydrogen bonds, salt
bridges, and especially the presence of hotspots, i.e. amino acids at the interface, known from
experimental studies to be an essential part of this interface. However, it can be difficult
to manipulate two 3D structures at the same time to observe the interface with traditional
interaction tools, since one protein usually hides the other. Therefore docking assisted by user
interaction is a useful alternative to improve the work of experts in this field. Such techniques
might allow a more intuitive interaction with 3D protein structures.

Finally, two approaches are used to “thin the herd” of selected complexes. One consists
in minimizing the rigid bodies and lateral chains of amino acids present at the interface.
This approach is implemented in several applications such as ICM-DISCO [Fernandez-Recio
et al. (2003)], MMTK [Hinsen (2000)], FireDock [Andrusier et al. (2007)], PELE [Borrelli et al.
(2005)], ATTRACT [Zacharias (2005)], etc. The other approach involves studying the dynamic
behavior of the selected complex. The software program Gromacs [Hess et al. (2008)], for
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example, allows evaluation of atomic positions over time based on their physicochemical
properties. This approach allows first to evaluate the complex stability, as well as possible
conformational changes induced by the interaction, e.g. loop deformation. We should add,
however, that this approach remains very costly in terms of processing time, compared to
minimizers which allow users to process a given configuration very quickly.

As the automatic docking software programs previously presented did not respond to the
interactive time constraint, we developed a new simulation tool dedicated to interactive
protein-protein rigid docking. Our protein docking method is essentially based on two sets of
criteria: geometric/topological criteria, and biophysical criteria.

2.1.2 Interactive time evaluation of geometry and surface complementarity

One of the earliest criteria identified in protein-protein interaction is surface topology of
the proteins involved. In most known structures of 3D complexes, partners exhibit good
surface complementarity. Studies have also shown that the surface of the protein-protein
interface generally covers between 1000 and 2500 square Angstroms. This criteria allowed
the development of first-generation docking software, based solely on shape recognition
[Connolly (1983)] (i.e. complementarity of molecular surfaces). This approach is well
adapted to "hard" rigid protein docking. We used these geometric/topological criteria in our
multimodal immersive environment in two ways:

Surface collision. For each protein, a surface mesh is computed using the MSMS software
before interactive docking occurs [Sanner et al. (1996)]. The resolution of this mesh can be
adjusted using parameters. Collision detection during interaction then uses the RAPID library
[Gottschalk et al. (1996)], which allows real-time computation of a list of colliding triangles
among the two protein surface meshes during docking. This set of triangles can be used to
generate feedback based on triangle normals and on the intersection volume of the two protein
surfaces.

Atomic surface complementarity. Atomic surface complementarity is estimated essentially
as a calculation of the variance of the inter-atomic distances on the two protein surfaces. We
use this overall atomic surface complementarity score in audio or visual feedback.

2.1.3 Interactive time computation of physicochemical properties and energies

However, geometric criteria turned out to be insufficient to predict the structure of a complex.
Thus, we had to rely on methods including energy criteria. Protein-protein complexes seem
to follow the rule of thumb that the active configuration is the one whose level of free energy
is lowest [Wang et al. (2003)]. In order to evaluate free energies between two proteins,
we rely on molecular mechanics methods. For this purpose, atoms are viewed as spheres,
and interactions between atoms can be computed using the van der Waals and electrostatic
potentials. The free energy for protein-protein interaction can then be approximated by the
sum of these potentials, which is known as the score. In the context of real-time immersive
docking, the choice of equations and methods to evaluate the energy of a complex and hence
its score is a crucial issue [Wang et al. (2003)].

Van der Waals interactions. Van der Waals interactions are an empirical approximation
of atomic interactions. The van der Waals force, obtained by constructing a gradient of
the potential field, is defined by the Lennard-Jones potential equation (equation 1). In this
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Van der Waals interactions. Van der Waals interactions are an empirical approximation
of atomic interactions. The van der Waals force, obtained by constructing a gradient of
the potential field, is defined by the Lennard-Jones potential equation (equation 1). In this
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equation, rij is the distance between two atoms i and j, σ the interatomic distance for which
the potential becomes zero, and � the depth of the potential well. � and σ are determined
empirically and depend on what pair of atoms is considered. The van der Waals potential
includes an attractive component when atoms are bound, and a repulsive component when
atoms are too close to each other. It prevents two proteins from penetrating into each other
during interactive docking, through calculation of interatomic forces at the protein-protein
interface.
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These forces apply only to very short distances and mostly concern surface atoms. As
computing distances between all pairs of atoms has a quadratic complexity, we apply specific
filtering rules to keep only surface atoms and opposite atoms from each protein (see figure 3).
The resultant translational and rotational components of van der Waals’s forces on each atom
are calculated and applied to the barycenters of the proteins.

Fig. 3. Dynamic and static atom filtering for optimized computing of van der Waals
interactions

Electrostatic interactions Unlike van der Waals interactions, electrostatic interactions even
operate when “long” distances (about 10 Angstrom) separate groups of electrically charged
atoms. Indeed some amino acids or atoms may present a positive or negative electric charge,
which gives rise to electrostatic phenomena allowing formation of a protein-protein complex.
Two approaches have been implemented to compute electrostatic phenomena.

We consider the interaction between two point charges in vacuum, and we use Coulomb’s
law (equation 2) with rij being the distance between the barycenters of charges qi and qj of the
atoms considered, and �0 is the constant of the permittivity of vacuum. This potential can be
translated to a force (Fel) usable for haptic interaction for example. This first approach involves
calculating the forces to apply to each electrically charged particle considering only pairs of
charged particles. This computation has quadratic complexity, because all distances between
atoms must be computed. But it remains relevant in the case of medium-sized proteins, since
the number of charged particles in a protein is limited in several models.

Uel(rij) =
1

4π�0

qiqj

rij
(2)

In the second approach (see figure 4, designed for a more efficient optimised calculation,
the overall field of the electrostatic potential of the target protein (receptor) is computed
beforehand using the APBS software [Baker et al. (2001)]. It allows to generate a 3D
electrostatic potential grid, which can be used as a 3D texture. The gradient of the electrostatic
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potential allows computation of force field vectors for each point of the grid. Atoms from
the ligand protein are then “immersed” in this 3D force field surrounding the receptor. This
method allows us to compute electrostatic forces for each atom in linear time, depending only
on the number of charged atoms in the ligand. In both cases, we are able to obtain overall
electrostatic energy and electrostatic forces on each atom.

Fig. 4. Ligand immersion in the electrostatic potential grid of the receptor

2.1.4 Other criteria

In order to reach a finer description of protein-protein interactions, other criteria, based on
energy, can be taken into account. To geometric/topological and biophysical criteria, one
can add other criteria of utmost importance to protein-protein interactions, such as hydrogen
bonds or the hydrophobic effects.

Hydrogen bonds. Hydrogen bonds (e.g. figure 1 in the bottom left corner) may strongly
contribute to the favorable interactions of the complex binding energy. On average, there are
5-6 hydrogen bonds per protein-protein interface. In our application, when several atoms
(nitrogen and oxygen) on the surface of each protein are close enough, closer than a distance
of 3 Angstroms, and when their chemical environment is adequate, hydrogen bonds are
created between these atoms. We use the same methods as described above for van der Waals
interactions to filter surface atoms in order to decrease the complexity of calculating distances
between atoms.

Hotspots at the interface. The number of "hotspots” at the complex interface refers to the
list of amino acids present within the current interface region and previously identified using
experimental methods as being important actors to stabilize the protein-protein complex.

2.1.5 Conclusion

This simulation model, based on rigid body docking, including optimisation to efficiently
compute geometrical as well as biophysical properties, allows us to present these properties
in real time during the interactive building of a protein complex performed by the user.
Designing real time simulations is a first step of the IMS approach, providing a user with
interactive control on the simulated object in real time.
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interactive control on the simulated object in real time.
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2.2 A multiphysics and multiscale approach based on elastic networks

Simulation models dedicated to IMS must also deal with the intrinsic flexibility of proteins,
and especially take into account local moves as well as large conformational changes. The
representation used for our interactive simulation approach is quite simple, yet innovative,
and has proven efficient on large biomolecular structures. Our method is based on a spring
network simulation, inspired by the success of the Normal Mode Analysis method (NMA),
known to accurately reproduce the elastic behavior [Cui & Bahar (2006)]. Moreover NMA
is not sensitive to the scale of representation used for modeling. Hence this method can
be applied to all-atom, coarsed-grain and residue/CA representations. We augmented this
spring network model with non-bonded interactions and we propose to surround the charged
spring network by an electrostatic field, allowing us to study conformational changes guided
by electrostatic constraints. We called our implementation of this method BioSpring and
describe it in this section. BioSpring allows us to simulate large structures in real time,
fulfulling the most important constraint to provide IMS features.

2.2.1 BioSpring : an enhanced interactive spring network model

The first step of our approach is to build the spring network according to the 3D structure
of the biomolecular system [Berman et al. (2000)]. At this stage, the user needs to choose
a scale, targeting for example an all atom (AA), a coarse-grained (CG), or an alpha-carbon
representation (CA). In this context, individual atoms can be considered as separate particles
(AA model), or can be grouped into a single pseudo-particle, according to rules defined by
the user (e.g. at the CG or CA level). In this way, we can adapt our approach to most
commonly-used modeling approaches in theorical biochemistry.

The second step, is to connect the particles by springs obtained in the previous step. For
this purpose, we define a distance cut-off, and we add a spring between two particles if
the distance between them is less than the cut-off distance. This cut-off will depend on the
scale and the representation mode (all-atom, coarse-grained, alpha-carbon, ...). For example,
a cut-off between 7 and 15 angstrom is classically used for the CA representation [Cui &
Bahar (2006)]. This process can be computationnally very time-consuming, especially on large
structures. For each particle, we need to test if any other particles are closer than the cut-off
distance. This approach has a quadratic complexity according to the number of particles. In
order to deal with large structures and to decrease the complexity of the previous approach,
we use a classical technique based on a regular 3D grid to partition a three dimensional space
into cubes, also named "voxels". The grid covers the entire space occupied by the particles.
The size of each voxel is the cut-off distance. According to its coordinates in space, each
particle is projected into its voxel on the grid. In order to determine for a given particle p, all
particles near p within the cut-off distance, we have to test the particles in the same and in
the direct neighbouring voxels. This method has linear complexity according to the number
of particles, allowing us to address very large structures. We will see in the next part of this
paper how we can use the same grid to efficiently compute non-bonded interactions between
particles.

After building the initial spring network, interactive manipulation of this molecular structure
is provided using a classical newtonian particle-based simulation, taking into account spring
forces (see equation 3) between particles and external forces �Fcontrol(p) (see 5 equation)
provided by the user on a particles p through a specific graphical user interface. In the
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equation 3, ksti f f ness is a global stiffness for all the springs and the force between two particles
p and p� linked by a spring depends on the distance between these particles. If this distance
between p and p� is equal to the equilibrium spring length epp� , which is the distance between
these particles in the initial structure used to compute the network, this force is null by
definition. In the other cases, when the distance dpp� between p and p� changes because of
external forces, the generated spring forces tend to bring the structure back to its equilibrium
conformation at epp� . Damping forces are used to stabilize the system (see equation 4). This
is necessary because the user injects energy into the system by adding external arbitrary
forces. It should be noted that some experimental and theorical studies provide estimates
for ksti f f ness, which allows us to work with magnitudes of forces in the simulation that are
relevant from a biophysical point of view.

�Fspring(p) = ∑
p�∈Springs(p)

ksti f f ness�upp� (dpp� − epp� ) (3)

�Fdamping(p) = −kdamping�V(p) (4)

�F(p) = �Fspring(p) + �Fdamping(p) + �Fcontrol(p) (5)

At each time step of the simulation, to compute new positions and velocities according to
the spring and external forces applied on the particles, we use a velocity verlet integrator
described in equation 6.

�P(t + Δt) = �P(t) + �P(t)Δt + 1
2
�A(t)Δt2

�V(t + Δt) = �V(t) +
�A(t)+�A(t+Δt)

2 Δt
(6)

Finally, the graphical user interface must provide interactive simulation features, allowing a
user to visualise the spring network simulation in progress and to interactively apply external
forces �Fcontrol(p) on particles. Combining these interactive simulation features and our
interactive spring network simulation approach, a user can manipulate some parts of a large
biomolecular system, and interactively observe the effects of this manipulation highlighting
biomechanical properties such as rigid vs. flexible areas or allosteric effects.

However, even if the spring network model embeds an approximation of bonded and
non-bonded interactions at the local scale, this model is not able to deal with long range and
steric interactions during a simulation, because the spring ’particles’ (atom, coarse grain, or
residue-level) are considered as points. For example, domain interpenetration is allowed in
the default spring network model. This is not a problem when the goal is to highlight local
flexibility or rigid areas, but it is a critical issue for our objective of interactive modeling of
large biomolecular systems. Similarly, it is also necessary to take into account electrostatic
interactions during interactive modeling. For these reasons, in addition to spring forces, we
introduce classical non-bonded forces to take into account steric and electrostatic interactions
between particles in our model.

In order to meet the specific needs of the user, BioSpring provides a variety of terms to
represent steric interactions. The most simple term is the linear steric model (see equation
7) which can be used to avoid atom or pseudo-atom collisions and take into account the 3D
shape of the biomolecular model. This avoids domain interpenetration during the interactive
manipulation, without taking into account complex realistic steric energy considerations and
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in particular attractive terms. More classical models such as Lennard-Jones (see equation 8) are
also avalaible, in order to take into account both attractive and repulsive interactions between
atoms or pseudo-atoms, and to compute a more relevant steric energy during an interactive
simulation. Atom radius r, epsilon � and sigma σ parameters can be set up using configuration
files, allowing us to use many of the currently available forcefields. However, this method has
a complexity in O(n2) which is quadratic according to the number n of particles, because
for each particle we need to compute the distance with respect to all other particles in the
simulation. To address larger biomolecular systems, we necessarily have to decrease the
complexity. We can remark that beyond a certain distance, several pairwise interactions
become null or negligible. This is especially the case for linear or Lennard-Jones steric
interactions. In this case, according to this distance cutoff, we can use the same optimisation
techniques as in section 2.2.1, projecting particles into a 3D grid to accelerate the distance
computation between particles at each time step of the simulation, by reducing quadratic
complexity to linear complexity according to the number of particles in the simulation. The
complexity is in D.O(n) which is linear according to the number n of particles and the mean
number D of particles in a voxel, which can be considered as a constant because it is related
to the mean density of particles at a molecular scale.

We also use another way to optimize our simulation method as in many cases some part of the
biomolecular complex can be considered as a rigid component. In this case, we can consider
that these particles are static, i.e. have a constant position in space, because they belong to a
rigid component. Hence it is useless to compute their interactions and to apply a positional
integration on these static particles. We only have to take into account interactions between
the dynamic particles belonging to the flexible part, and the interactions originating from the
static particles and acting on the dynamic ones. This is a simple way to decrease complexity.

The following equations 7 to 9 describe the last two optimisations. Dynamic is the dynamic
particle set, which contains all the particles belonging to the flexible part. The complexity is
in D(|Dynamic|) which is linear according to the number |Dynamic| of particles in the flexible
part.

spp� = (rp + rp� )− dpp�

�Flinearsteric(p ∈ Dynamic) =

⎧⎪⎨
⎪⎩

�0 if spp� ≤ 0

∑p�∈Neighbors(p) −ksteric�upp� spp� else

(7)

�Flennardjonessteric(p ∈ Dynamic) = ∑
p�∈Neighbors(P)

�upp�4�pp�

⎡
⎣
�

σpp�

9dpp�

�9

+

�
σpp�

7dpp�

�7
⎤
⎦ (8)

�Fcoulomb(p ∈ Dynamic) = ∑
p�∈Neighbors(p)

−�upp�
qpqp�

4π�0d2
pp�

(9)

We can highlight another important fact: the previous approach is well-adapted to efficiently
compute steric interactions by defining a distance cut-off. For long range interactions such
as electrostatic ones, we must be extremely careful with this cut-off. It is preferable to
avoid the use of cut-offs to stay biophysically relevant, but in this case, we fall down to
quadratic complexity. We thus propose an efficient alternative to take into account long range
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electrostatic interactions, considering that some parts of a biomolecular complex are rigid.
A charge distribution can be translated into an electrostatic potential map, using the APBS
tools [Baker et al. (2001)] for example. Charged particles belonging to the rigid components
of our complex can be considered as a charge distribution, and are used as an input for
APBS. The results of APBS can be interpreted as a 3D grid, and each voxel Vi,j,k of this grid
contains an electrostatic potential Ei−1,j,k. For a dynamic particle belonging to Vi,j,k, using this
potential, we can compute an electrostatic force �Fmap using the charge of the particle Vp, by
spatial derivation of this electrostatic potential (see equation 10). The potential forces �Fmap act
on the flexible part and originate from the electrostatic potential map. They are defined by
computing of the electrostatic potential gradient using the finite central difference method. In
equation 10, we consider particle p belonging to the voxel Vi,j,k of the electrostatic potential
grid, and Ei,j,k the value of the potential in this voxel. We define the gradient as the mean of
the difference between the Ei,j,k potential and the potentials of the six adjacent voxels, two for
each axis. This method of computing the gradient reduces the bias related to the discretization
of the grid. As regular grids are usually provided by tools such as APBS, Δx, Δy and Δz is the
size of the voxel.

�Fmap(p ∈ Vi,j,k) �

⎡
⎢⎢⎣

Ei+1,j,k−Ei−1,j,k
2Δx

Ei,j+1,k−Ei,j−1,k
2Δy

Ei,j,k+1−Ei,j,k−1
2Δz

⎤
⎥⎥⎦ (10)

To summarize, this last optimization technique is particularly well-adapted to study the
behaviour of flexible biomolecules interacting with a large rigid biomolecular complex.
Flexible parts are immersed into a grid and guided by a potential field induced by the rigid
component, computed before the simulation. We have combined Eulerian (particle-based)
and Lagrangian (grid-based) representations for molecular simulations, inspired by Joe
Stam’s works on Computational Fluid Dynamics [Stam (1999)]. This approach is also called
semi-lagrangian or semi-eulerian method.

During the simulation, forces are computed and applied on the dynamic particle set
(Pdynamic). We explicitly consider potential, van der Waals, Coulomb and external forces.
Finally, these new forces are summed with an external force �Fcontrol(p) provided by the user
through the graphical interface during the simulation.

�F(p) = �Fspring(p) + �Fdamping(p) + �Fmap(p) + �Fsteric(p) + �Fcoulomb(p) + �Fcontrol(p) (11)

2.2.2 Conclusion

BioSpring allows a user to quickly study the biomechanical properties, by interactively
highlighting rigidity, flexibility, and allosteric effects, in order to provide new hypotheses
about a biomolecular system. Moreover, our approach is also designed to help the user in
the complex task of modeling large biomolecular complexes before using more classical (and
more time-consuming) simulation tools.

3. Multimodal interaction models

In order to interact with biomolecular complexes during a particle-based interactive
simulation such as Gromacs [Hess et al. (2008)], NAMD [Phillips et al. (2005)] or BioSpring
(see section 2.2.1 ) in progress, it is common to use a mouse for adding force constraints on
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We can highlight another important fact: the previous approach is well-adapted to efficiently
compute steric interactions by defining a distance cut-off. For long range interactions such
as electrostatic ones, we must be extremely careful with this cut-off. It is preferable to
avoid the use of cut-offs to stay biophysically relevant, but in this case, we fall down to
quadratic complexity. We thus propose an efficient alternative to take into account long range
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electrostatic interactions, considering that some parts of a biomolecular complex are rigid.
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contains an electrostatic potential Ei−1,j,k. For a dynamic particle belonging to Vi,j,k, using this
potential, we can compute an electrostatic force �Fmap using the charge of the particle Vp, by
spatial derivation of this electrostatic potential (see equation 10). The potential forces �Fmap act
on the flexible part and originate from the electrostatic potential map. They are defined by
computing of the electrostatic potential gradient using the finite central difference method. In
equation 10, we consider particle p belonging to the voxel Vi,j,k of the electrostatic potential
grid, and Ei,j,k the value of the potential in this voxel. We define the gradient as the mean of
the difference between the Ei,j,k potential and the potentials of the six adjacent voxels, two for
each axis. This method of computing the gradient reduces the bias related to the discretization
of the grid. As regular grids are usually provided by tools such as APBS, Δx, Δy and Δz is the
size of the voxel.
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To summarize, this last optimization technique is particularly well-adapted to study the
behaviour of flexible biomolecules interacting with a large rigid biomolecular complex.
Flexible parts are immersed into a grid and guided by a potential field induced by the rigid
component, computed before the simulation. We have combined Eulerian (particle-based)
and Lagrangian (grid-based) representations for molecular simulations, inspired by Joe
Stam’s works on Computational Fluid Dynamics [Stam (1999)]. This approach is also called
semi-lagrangian or semi-eulerian method.

During the simulation, forces are computed and applied on the dynamic particle set
(Pdynamic). We explicitly consider potential, van der Waals, Coulomb and external forces.
Finally, these new forces are summed with an external force �Fcontrol(p) provided by the user
through the graphical interface during the simulation.

�F(p) = �Fspring(p) + �Fdamping(p) + �Fmap(p) + �Fsteric(p) + �Fcoulomb(p) + �Fcontrol(p) (11)

2.2.2 Conclusion

BioSpring allows a user to quickly study the biomechanical properties, by interactively
highlighting rigidity, flexibility, and allosteric effects, in order to provide new hypotheses
about a biomolecular system. Moreover, our approach is also designed to help the user in
the complex task of modeling large biomolecular complexes before using more classical (and
more time-consuming) simulation tools.

3. Multimodal interaction models

In order to interact with biomolecular complexes during a particle-based interactive
simulation such as Gromacs [Hess et al. (2008)], NAMD [Phillips et al. (2005)] or BioSpring
(see section 2.2.1 ) in progress, it is common to use a mouse for adding force constraints on
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particles, providing two degrees of freedom (2DoF), e.g. the x- and y-axes, for the interaction.
Using a 3DoF device such as a 3D mouse or a 3D haptic device is even better adapted to
this task, in particular for selecting and moving particles in 3D space. Such a device with
three instead of two degrees of freedom is more intuitive and efficient for interacting with a
complex three-dimensional object, especially when stereoscopic features are used to improve
the spatial perception. Furthermore, the immediate force feedback using a haptic device when
a particle is actually picked significantly improves the user experience and greatly helps to
immerse the user in the molecular scene. If visual feedback is essential especially during
the selection and picking task of a particle, the user often asks for additional explanations
before getting started. With force feedback, this barrier is lifted, as the interactive simulation
becomes more intuitive and is comparable to intuitive dextrous manipulations such as those
carried out in daily life. Hardware requirements are modest. In our experience, this approach
is viable using a small and affordable haptic device, providing 3D positions and handling 3D
directional force feedback. Such an entry-level solution designed for a desktop use is targeted
at a large user community and is very easy to set up.

3.1 Pick and pull particle interaction models

The haptic device is used in order to control the direction of the forces applied to selected
particles and to adjust the amplitude of these forces. This interaction method contains two
stages. The first stage comprises the selection of a single probe particle or a set of particles
that we will name Pselection, using a 3D tool attached to a haptic device and its buttons. In
a second stage, the model described by equation 12 is used in order to compute the forces
Fcontrol applied to the selected particles and sent to the BioSpring simulation as control force
(see section 2.2.1). Fcontrol is proportional to the distance between the geometric centre of
the particle set and the tracker position P(tool). For computing force feedback, the main
idea of this approach is to link the selected atoms and the 3D haptic tool with a spring.
Instead of providing direct haptic rendering of forces computed in the simulation, the force
feedback Ff eedback only depends on the spring length according to equation 13, which in turn
is influenced by the way the simulation reacts to the applied force.

�Fcontrol(p ∈ Selection) = −kcontrol [�P(tool)− 1
|Selection| ∑

p�∈Selection

�P(p�)] (12)

�Ff eedback(tool) = −k f eedback[�P(tool)− 1
|Selection| ∑

p�∈Selection

�P(p�)] (13)

The resulting forces are rendered by haptic feedback if a haptic device is used, and by visual
feedback such as the blue arrows shown in the Molecular User Interface (MUI), top left part of
Figure 5. These forces are simultaneously sent to the interactive simulation. It will take these
forces applied by the user on the selected atoms set into account as a control force as described
in section 2.2.1.

We emphasize that the haptic loop computation frequency must be between at least 300 to
1000 Hz in order to provide a haptic rendering of good quality. A strong point of the approach
described above is that a low physical simulation framerate does not cause instabilities and
does not affect the quality of the haptic feedback. With this decoupled spring model, force
feedback can be computed at a very high frequency required by the haptic device.
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Fig. 5. Dynamic haptic control of a simple polypeptide with (right) or without (left) solvent -
"ball and stick" representation

3.2 Interaction models for manipulating proteins as rigid body

The interaction method is more complicated when we want to provide controls and feedback
during a rigid body based simulation, comparing to pick and pull a particle set as described in
the last section. In order to manipulate both individual proteins and attempt to interactively
study interactions between two proteins, the user may rely on various devices and interaction
paradigms. A first paradigm associates the position and orientation of the protein with a 6DoF
(6 degrees of freedom, 3 for translation, 3 for rotation) devices, such as a 3D mouse or a haptic
device. Commonly used in the Virtual Reality domain, haptic devices are specifically used
for manipulation and assembly tasks. Collision feedback rendered by 6 Degrees of Freedom
(6DoF) haptic devices helps users to assemble 3D objects (see figure 6).

Fig. 6. Different kinds of assembly

3.2.1 Related works dealing with device workspace limitations

All devices have a limited workspace, a limited precision, and limited rotational
movements. In order to overcome these limitations, a basic manipulation control is the
clutching/unclutching interaction technique, which is however time consuming and does not
allow a user to focus on his task. When the user is physically stopped in his movement,
by reaching either a boundary of the device or an uncomfortable wrist position, he can
press the clutching button to find a better position without moving the virtual object. When
releasing, the object is re-attached with the same position and orientation. In this technique,
the position and orientation of the 3D virtual object is an isomophic mapping of the position
and orientation of the device.
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Other solutions avoiding clutching/declutching, such as the Bubble technique, [Dominjon
et al. (2005)] propose, to perceive (via haptic and visual feedback) the hardware limitations
of the device, and provide a rate control based on an isomorphic mapping when the device is
far from its workspace boundaries, and on a non-isomorphic mapping near the boundaries,
also proposed LaViola & Katzourin (2007).

3.2.2 Related works that deal with high precision assembly

Morover protein-protein docking tasks require high precision. Haptic-guidance based
approaches are often used in order to help the user reach a precise and predefined
assembly goal. However, there are a few haptic interaction techniques designed to facilitate
microassembly tasks for which haptic guidance is unsuitable, such as protein docking. The
objective is to find an optimal but precise 3D configuration by interactive exploration.

3.2.3 A haptic interaction paradigm for rigid body based biophysical simulation

We propose an innovative technique to both overcome the physical limitations of the device
and to reach the high accuracy required by micromanipulation tasks without a predefined
goal, as it is the case during interactive docking simulations. This approach is based on a
non-isomorphic mapping around a neutral referential retrieved by an elastic haptic feedback,
in addition to external haptic feedback computed by the biophysical rigid body simulation.

In contrast to the method based on the haptic workspace boundaries, our approach is based
on a neutral referential. Our solution is an implementation of a rate control technique with a
6DoF feedback device, based on a neutral referential, inspired by Bourdot & Touraine (2002).

Our contribution is to use the elastic force feedback to help the user return to the
position/orientation of the neutral referential. First, we define a neutral referential with an
origin corresponding to the most convenient position/orientation for the user holding the
device. For each movement, we calculate a feedback force and torque to bring the user
back to this neutral orientation/position (see figure 7 A). In order to compensate the inherent
imprecisions of the device, we define a "dead zone" near the neutral referential, in which no
movement occurs. The device is then physically restrained inside a comfortable workspace,
while the virtual objects have an infinite motion space.

The rate control is based on the difference between the position/orientation of neutral
referential initially chosen by the user and the position/orientation of the device during
manipulation. The interpolation of movements is obtained by a downscale factor for
translation and by a quaternion interpolation for rotation. The level of interpolation varies
according to the distance of the two objects to be assembled. Concerning translational motion,
the interpolation is done by rescaling the distance vector representing the position of the
device from the origin of the neutral referential. In the following equation, �S is the interpolated
translation, �p the current device’s vector position and i the scaling factor. Concerning rotation,
at any time of the manipulation, the rotational motion of the device controls the angular
velocity of the object. The orientations of the device qd and the object qo are represented by
quaternions. The rotational motion qs of the object is then given by the multiplication of the
two quaternions (see figure 7 B). The SLERP interpolation [Shoemake (1985)] is traditionally
used to calculate intermediate frames between two quaternions (start and end orientions) in
order to produce smooth rotation. Here, we use the SLERP interpolation to calculate a range of
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quaternion orientations, between the current object’s orientation and the one it would adopt
after the motion. Then, an orientation at the time t can be picked according to the desired
level of attenuation. In the following equation, qs is the quaternion representing the rotational
motion applied to the object without interpolation, qd is the quaternion of the device and qo the
quaternion of the object. qa is the softened speed using the SLERP function applied between
qo and qs at the time t of the interpolation. Here, t and i are functions of the distance between
the manipulated object and the area of assembly. The attenuation increases when this distance
decreases.

�S = �p · i (14)

qs = qd · qo (15)

qa = slerp(qo, qs, t) (16)

Fig. 7. Results of a device rotation. A, the device is rotated from the axis of the neutral
referential to the orientation�r, taking into account the deadzone. The retrieval torque �R is
thus equal to −�r. B, the motion of the device is mapped on the object, qo representing the
neutral referential. The final orientation qa is obtained by applying the SLERP interpolation

3.2.4 External feedback

The interaction between the manipulated protein and the other one during the docking task
produces biophysical interactions provided by the rigid body based biophysical simulation.
These forces are not directly applied to the 3D object in the scene, but are rendered by a haptic
force-feedback summed with the elastic feedback used to retrieve the neutral referential.

3.2.5 Conclusion

One of the challenges lies in the protein interaction paradigm simulated by rigid body
biophysical simulation. We developed a new method to provide a fine control of the protein
with a 6DoF force-feedback device, providing simultaneously biophysical feedback coming
from rigid body based simulation. According to the results of an ergonomic study, our
technique provides at least the same precision (RMSD) and performance (task time) as direct
manipulation with clutching/declutching and successfully overcomes the physical limitations
of the device. Moreover subjective results show that users feel more comfortable with our
method which avoids the clutching mechanism. We suspect that these results come from
the fact that the user is more focused on the assembly task, instead of spending time in
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clutching/declutching. Further evaluation must be lead in this way. Participants found
our technique less disturbing than clutching, appreciating the fact that there is no button
to press to manipulate the object. Furthermore, their arm was never in an uncomfortable
posture. They furthermore liked the adaptive interpolation. The slowness of the interaction
when the two objects are very close was judged pertinent in order to accurately assemble the
objects. Another interesting observation is that the most negative comments were not about
the manipulation technique itself, but concerned difficulties with the 3D visual perception
of a complex protein surface (see figure 6 D). Our approach could thus be an alternative to
classical ones and provide at least the same efficiency. We are working on improving the
precision of our approach by dynamically tuning the scaling factor used to control rotational
and translational velocity. This could be done using the minimal distance between the two
objects during the assembly. Finally, we highlight the fact that our approach addresses most
problems of the physical limitations of haptic devices (workspace size, precision, mechanical
constraints), avoids the use of a clutching/declutching mechanism, is well-adpated to both
manipulation and navigation, and could be applied to other 6DoF devices, and does not
require complementary visual feedback.

4. Multimodal rendering models

Given the large quantity of biophysical or geometrical information provided by IMS and
conveyed to the user in real time, it seems relevant to supplement visual feedback with
audio and haptic feedback. Haptic rendering is known to improve the quality of operator
interactivity in an immersive environment, as well as his perception of the objects handled
or data analyzed [Seeger & Chen (1997)]. Likewise, audio renderings may improve
communication of complex information [Barass & Zehner (2000)]. Furthermore, substitutions
and redundancy between these channels of communication may have beneficial results on
user performance, as long as the choice of modalities is relevant to the task at hand. Richard
et al. (2006) and Kitagawa et al. (2005) showed that specific audio and visual renderings
can effectively convey information that is presented using haptic modalities. In this part,
we provide some examples of haptic audio rendering especially dedicated to study protein
interactions using rigid body based biophysical simulation.

4.1 Visual rendering

To represent protein structures, the community of biologists uses standard representations
that any specialist can understand 8. They range from a per-atom representation 8(A, B, C)
to molecular surfaces 8(H). Some high-level metaphors with ribbons and arrows 8(E,F,G) can
describe the secondary structure in a schematic way. Color schemes for atoms respect different
standards to simplify the distinction between the different elements of the molecule.

IMS can act at different scales, from whole proteins to precise atomistic interactions,
sometimes in the same simulation run. The visuals must then follow the user needs.
Three main features have to be fulfilled : interactive frame rate, display of potentially huge
molecules and coherent visual information.

For rigid-body docking, pre-computed triangulated surfaces of the proteins and secondary
structure representations can be used. But if the atoms are allowed to move inside the
structure, computing their surface in real-time is too time consuming in most of the cases.
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Fig. 8. Standard representation of protein structures. A-D : atomistic representation with
spheres and bonds. Colors depend on the atom element. D : Backbone of the protein. E-G :
secondary structure visualisation with high-level metaphor objects. Beta-sheets are in red,
helices in blue and turns in green

So when it comes to more precise interaction and soft docking, spheres and bonds are more
tractable.

Representation of proteins by spheres and bonds using common graphical primitives is
easy to implement but generally not appropriate to reach an interactive frame rate. Each
primitive is composed of many triangles, then displaying spheres or cylinders consumes a lot
of computation time.

Other methods use Graphics Processing Unit (GPU) programming capabilities to draw the
spheres and bonds directly on the GPU with no other information than the size and position
of the particles.

Different textures and effects can be applied to emphasize interesting locations, collisions or
other physical properties.

4.1.1 GPU shaders and HyperBalls

The computer visualization field evolves very quickly due to continuously renewed graphics
hardware capabilities. So, the latest contributions from this domain of research has clearly
helped scientists to display more and more complex systems. The latest graphics techniques
can provide an improved visual perception which could drastically impact the way to
visualize molecular structures [Chavent, Lévy, Krone, Bidmon, Nominé, Ertl & Baaden
(2011)]. For example, using GPU shaders, i.e. code used to directly program the GPU, it is
possible to accelerate and enhance the quality of well known molecular representations such
as Molecular Surfaces (figure 9 A), Ball & Stick (figure 9 B), Van der Waals (figure 9 D and E)
or protein Secondary Structure (figure 9 C). It is also possible to add lighting effects in real
time in order to improve the perception of molecular shape or highlight molecular contours
(figure 9 D and E). Furthermore, one can add effects such as blur to depict protein flexibility
(figure 9 B). All these graphics techniques, available in real time, will be a great help for the
users to interact in a wiser manner with their molecular structures.
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clutching/declutching. Further evaluation must be lead in this way. Participants found
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precision of our approach by dynamically tuning the scaling factor used to control rotational
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Given the large quantity of biophysical or geometrical information provided by IMS and
conveyed to the user in real time, it seems relevant to supplement visual feedback with
audio and haptic feedback. Haptic rendering is known to improve the quality of operator
interactivity in an immersive environment, as well as his perception of the objects handled
or data analyzed [Seeger & Chen (1997)]. Likewise, audio renderings may improve
communication of complex information [Barass & Zehner (2000)]. Furthermore, substitutions
and redundancy between these channels of communication may have beneficial results on
user performance, as long as the choice of modalities is relevant to the task at hand. Richard
et al. (2006) and Kitagawa et al. (2005) showed that specific audio and visual renderings
can effectively convey information that is presented using haptic modalities. In this part,
we provide some examples of haptic audio rendering especially dedicated to study protein
interactions using rigid body based biophysical simulation.

4.1 Visual rendering

To represent protein structures, the community of biologists uses standard representations
that any specialist can understand 8. They range from a per-atom representation 8(A, B, C)
to molecular surfaces 8(H). Some high-level metaphors with ribbons and arrows 8(E,F,G) can
describe the secondary structure in a schematic way. Color schemes for atoms respect different
standards to simplify the distinction between the different elements of the molecule.

IMS can act at different scales, from whole proteins to precise atomistic interactions,
sometimes in the same simulation run. The visuals must then follow the user needs.
Three main features have to be fulfilled : interactive frame rate, display of potentially huge
molecules and coherent visual information.

For rigid-body docking, pre-computed triangulated surfaces of the proteins and secondary
structure representations can be used. But if the atoms are allowed to move inside the
structure, computing their surface in real-time is too time consuming in most of the cases.
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Fig. 8. Standard representation of protein structures. A-D : atomistic representation with
spheres and bonds. Colors depend on the atom element. D : Backbone of the protein. E-G :
secondary structure visualisation with high-level metaphor objects. Beta-sheets are in red,
helices in blue and turns in green

So when it comes to more precise interaction and soft docking, spheres and bonds are more
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visualize molecular structures [Chavent, Lévy, Krone, Bidmon, Nominé, Ertl & Baaden
(2011)]. For example, using GPU shaders, i.e. code used to directly program the GPU, it is
possible to accelerate and enhance the quality of well known molecular representations such
as Molecular Surfaces (figure 9 A), Ball & Stick (figure 9 B), Van der Waals (figure 9 D and E)
or protein Secondary Structure (figure 9 C). It is also possible to add lighting effects in real
time in order to improve the perception of molecular shape or highlight molecular contours
(figure 9 D and E). Furthermore, one can add effects such as blur to depict protein flexibility
(figure 9 B). All these graphics techniques, available in real time, will be a great help for the
users to interact in a wiser manner with their molecular structures.
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Fig. 9. New and revived molecular metaphors. (A-D) several molecular surface
representations: (E) illustrate lighting effect to enhance molecular structure perception.

We have recently developed our implementation of molecular representations on the
GPU [Chavent, Vanel, Tek, Lévy, Robert, Raffin & Baaden (2011)]. In this work,
we introduced a visual molecular model, the HyperBalls representation, that offers a
continuous representation smoothly connecting between classical representations such as
licorice or ball-and-stick (figure 10). This representation takes benefit of a GPU ray-casting
implementation to visualize molecular systems efficiently. The proposed implementation
of the HyperBalls method is efficient for both static and dynamic visualizations of a large
number of molecules and is particularly well adapted to visualize huge molecular systems. At
present, without further optimization, we can smoothly and interactively render systems with
more than 560,000 atoms, reaching some limits for systems comprising a few million spheres.
We can expect that our implementation will benefit from the future GPU architectures,
where performance increases drastically from a generation to another. This HyperBalls
implementation is clearly well suited for an interactive and immersive approach due to the
quality rendering and the display efficiency. Furthermore, it is possible to see in real time
atomic bond evolution that can be beneficial for interactive docking (see figure 10).

Fig. 10. HyperBalls representation to depict hydrogen bond disruption at a protein interface
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4.1.2 Point-sprites

A simple way to represent molecular structure is to depict it as a collection of spheres.
To represent spheres, it is possible to use only one square per sphere, always oriented
perpendicular to the screen plane. Then an image (also called sprite) of a sphere is pasted
on this square (figure 11). This method is usually used to depict visual effects such as flames,
smoke or dust where one needs to display a big amount of animated particles. This method
is really efficient and commonly implemented in 3D graphics libraries. The main drawback is
that sprites are superimposed on each other, so there is no intersection between the individual
spheres and it implies to sort the particles along the depth axis.

Fig. 11. Point-Sprites method to represent atoms of a protein

4.1.3 Benchmarks

These methods, as well as HyperBalls, have been implemented in an Unity3D
(http://unity3d.com/) application and evaluated in terms of frame rate. The HyperBalls GPU
shaders were adapted to fit the constraints of Unity3D but the performance was not as good
as the initial implementation. The benchmarks show that the point-sprites method is far more
efficient than the others. However, the frame rate is not constant when the camera is moving.
In fact, the particles must be sorted to be displayed correctly which takes some time when
there is a huge number of particles. Domain decomposition can be used to reduce this effect
but then some visual glitches at the frontiers of the domains can occur.

The visual result is quite different depending on the methods. Point-sprites can be confusing
as the bonds are missing and the spheres are superimposed (figure 11 D). But from a far point
of view, the general form of big proteins is kept and using a good color scheme helps to
distinguish the interesting areas of the molecules. The traditional primitives can be used
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along with visual effects such as ambient occlusion, shading or texturing that are often
pre-implemented for triangulated objects.

So what we suggest is to combine those methods in an interactive way, according to the size
of the system and the user actions. Triangulated primitives are easy to implement for quick
development and nice visual effects. For big systems and when the proteins are far away from
the camera, particles are particularly suited. When the user zooms into a specific area, a more
precise representation such as HyperBalls is adapted, especially to depict interactions.

4.1.4 Visual effects

To allow an accurate interaction with the particles, the position of each one in space must
be easily discriminated by the user. The best option is to use stereoscopy but 3D display
devices are not common yet. However it is possible to add some visual effects on the objects
to overcome this problem. Shading, depth-cueing and ambient-occlusion are commonly
used to add realistic lighting and depth perception to a 2D image (9 E). Also, texturing and
contouring can help to highlight particular areas and particles and blurring effects can be used
to emphasize some movements (9 B).

4.2 Haptic rendering

Currently, there are very few IMS frameworks that include large-scale haptic feedback
(force/tactile feedback). This is mainly due to the complexity of computing operations of
molecular simulation, which makes it difficult to comply with constraints in terms of refresh
rates for real time haptic feedback (from 200 Hz to 1 kHz). Another difficulty is to render
various kinds of physico-chemical interactions such as steric or electrostatic interaction. In
order to obtain a consistent haptic feedback, only one type of rendering is provided to the user
at a time. However one should note that at the perceptual level, steric interaction rendered
using haptic feedback are similar to surface collision renderings since it prevents molecular
interpenetration.

Most of haptic feedback presented in this section are computed using the rigid body
simulation model described in section 2.1. In all rendering, the haptic-device controlled
protein, which we will call ligand, can be considered as a big probe against the other protein,
which we will call receptor.

4.2.1 Steric and electrostatic interactions

This rendering is used to provide haptic feedback of non-bonded interaction. Haptic
rendering of physicochemical interactions consists in feeding the haptic device with the
resultant forces computed as described in section 2.1. Forces can be computed and rendered
independently or summed up to obtain a total resultant force. Exploration of the receptor
by the ligand thus aims at finding stable areas. When the two proteins are in an unstable
conformation it renders an unsteady feedback, thus leading the user to drag the ligand
towards the surface of the receptor to find a better position and orientation. However the
complexity of the force fields induce very irregular directional forces affecting the precision of
the manipulation. It appears especially with steric interactions because of the non-linearity in
the Lennard-Jones potential used to model these forces.
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4.2.2 Surface collision

Two approaches were explored to render collisions between both proteins considering their
surfaces. The first consists in computing a repulsive force. The direction of this force is the
opposite of the direction provided and the module is proportional to the number of colliding
triangles determined by the RAPID computation as explained in section 2.1. This force can
also be weighed by a distance or a volume of interpenetration. Therefore the feedback is
more relevant, but the complexity of the computation induces lower refresh rates which could
lead to lags in feedback. Rather than repulse the two molecules from each other, the second
approach, also based on distance computation, aims to prevent collisions locally by modeling
contacts points as springs. The method is introduced by Johnson & Willemsen (2003) and
allows fast computation of local minimum distances based on the geometry of the model as
well as resulting force and torque. Interestingly the spring model described can be easily
adapted to model atomic clashes, such as steric ones in our case. Instead of using the complex
Lennard-Jones potential to render the resulting force, interactions are modeled through this
more simple spring model with realistic cutoffs (2.5 Angstroms). As the atomic distance
computation is already optimized to take into account only surface and opposite atoms,
the refresh rate is sufficient and allows a very precise rendering of the contacts, allowing
users to feel holes and bumps at the surface. Hence computation speed and consistent
feedback constraints are observed ensuring a biological relevance. Current research aims to
determine how the size of the proteins affects computing time. It will also be interesting to
compare this atomic clashes-based approach with the geometric one which could provide
faster computation.

4.3 Audio rendering

Sonification is the use of non-speech audio to convey information. Due to the high temporal
resolution and wide bandwidth, the use of auditory stimuli seems highly suitable for
time-varying parameters (very high temporal definition when compared to other modalities
such as video and haptics), concurrent streams (overlapping of multiple audio renderings for
various parameters is possible and easily understandable if these are properly designed), and
spatial information (lower definition if compared to visual stimuli, but perceptible over the
360 degree sphere, therefore allowing true 3D rendering).

A large variety of sonification techniques exist and are used in various applications [Walker
& Lane (1994)]. One sonification technique is referred to as "parameter mapping” [Hermann
& Ritter (1999)], and it is this technique we used to study protein interaction. Parameter
mapping sonification is based on creating a link between the data to be rendered and the
parameters of a synthesizer (or of any other device which generates or plays back sound). In
this particular sonification typology, three elements need to be carefully considered [Walker
& Lane (1994)]:

• The nature of the mapping: which data dimension (i.e. temperature, pressure, velocity...)
is mapped onto, or represented by, each acoustic parameter (i.e. frequency, loudness,
tempo...). As an example, for a sonification task the temperature might be linked with
the frequency of a sound, therefore as the temperature increases, the frequency of the
corresponding sonification increases.

• Mapping polarity: in the event of an increase in the sonified data, the sonification
parameter can decrease or increase. In the case of temperature-frequency mapping, it
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the Lennard-Jones potential used to model these forces.
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various parameters is possible and easily understandable if these are properly designed), and
spatial information (lower definition if compared to visual stimuli, but perceptible over the
360 degree sphere, therefore allowing true 3D rendering).

A large variety of sonification techniques exist and are used in various applications [Walker
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• Mapping polarity: in the event of an increase in the sonified data, the sonification
parameter can decrease or increase. In the case of temperature-frequency mapping, it
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is common to use an increasing-TO-increasing (up-up) polarity. An alternate example
could be the size of an object being mapped to frequency: the polarity would likely be
increasing-TO-decreasing such that large objects are linked to low sounds and vice versa.

• Mapping scale: in response to a specific increase of the data to be sonified, how much
should the sonification parameter increase or decrease. One must take into account the
possible range of the data, and the percentage of the usable audible range which is to be
exploited. Human hearing is more sensitive to small frequency changes at low frequencies,
rather than higher, following an exponential scale. In the case of temperature-frequency
mapping the temperature could be exponentially linked to the frequency.

In our application, sound spatialization is used in two different ways: firstly, for local
parameters the sonification is spatialised in the specific position where the parameter is
calculated, in accordance with visual or haptic rendering, to provide additional information
in the protein coordinate system (i.e. if the task is to sonify the collision between two
different atoms on both proteins, sonification is spatialised at the position of the collision).
Then, multiple concurrent sonifications can be spatially distributed in order to give a better
intelligibility of the sonifications themselves (i.e. stream segregation, selective attention in
auditory perception, cocktail party effect studied by Moore (2003)). In 2007, a set up a test for
the validation of different sonification methods for object manipulation. Within this test, the
subject was asked to change the orientation of a simplified 3D chemical compound in order
to be the same as that of a given reference. To do this, the subject used an orientation tracking
device. Three approaches for data parameter sonification were tested to improve the speed
and accuracy of this manipulation: manipulation speed, angular distance from the reference
configuration, and guidance towards the reference position.

Regarding the protein-protein docking task, the following biophysical information has been
selected for the sonification:

4.3.1 Molecular surface collision and complementarity

Atomic surface complementarity is estimated essentially as a calculation of the variance
of the inter-atomic distances on the two proteins surfaces. This parameter is used to
control the variance of a randomly applied pitch to different grains of a granular synthesis
process. Granular synthesis has been applied using a spoken word as audio sample (for
this particular application, the french word "complementaire” has been recorded and used),
repeated cyclically within the granular engine. In this instance, the word is unintelligible if the
geometrical complementarity parameter is low, becoming more intelligible as the parameter
increases. The rendered audio stream is doubled and associated to each of the two proteins,
in preparation for further processing.

The collision parameter represents the number of collisions computed between the two
surfaces. The employed method for atomic collision sonification uses a modulation of the
phase of a sinusoidal wave whose parameters (carrier and modulator) are controlled by the
global number of collisions. Starting with a continuous 400 Hz sinusoidal wave modulated
by a 1 Hz signal, the frequency of the modulation increases as the global collision score
gets higher, and with it the number of modulating waves, going from 1 to 4, when the two
proteins are completely superposed. A second method developed is based on the individual
association of every collision with a broadband noise processed with subtractive synthesis (the
result is similar to wind noise). The noise is specifically filtered for every collision, adding a
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controlled randomization of the filtering parameters, so that every “noise generator” sounds
different from the others, and spatialised according to its proper position in space. Both of
these sonification methods are based on the principle that the signal produced becomes more
and more annoying as the number of collisions increases, encouraging the user to change
the position and distance of the proteins in order to reduce the number of collisions, and
as such stopping the annoying sound. Regarding the second sonification method, sound
spatialization helps the listener to localize the part of the protein surface where the collision
is taking place, and to guide him/her towards an orientation of the protein for which no
collisions are present.

4.3.2 Electrostatic energy

This electrostatic parameter is computed from electrostatic interaction energies between
charged particles. Electrostatic energy sonification is performed through the alternation of
two sounds, generated using additive synthesis, whose pitch and timbre vary as a function
of the global value of this specific force (scalar value). The electrostatic force value is highly
variable, and there is not a direct linear relationship between this parameter and a quality
judgement of it being good or bad for the docking condition. The link between the parameter
and the quality of its specific value has therefore been traced in a two dimensional Cartesian
diagram, with the value of the parameter on the X axis, and the quality (being good or bad) on
the Y axis. At a given electrostatic force value, the correspondent value on the Y axis has been
sonified with the method previously described. For good values, the frequencies of the two
sounds are coincident, and their spectra are perfectly harmonic, whilst as the value worsens,
the two frequencies become more distant, and the spectra more inharmonic.

4.3.3 Steric energy

This parameter is computed from van der Waals interaction energies between particles. The
sonification of the van der Waals energy is based on the principle of the beatings between
two sounds frequentially close. As with the electrostatic force, for the van der Waals force
value there is not a linear relationship between the parameter and a quality judgement (being
good or bad). A mapping similar to the one described for the previous sonification method
(electrostatic force) has been employed, with the Y axis value being sonified. Two intermittent
sinusoidal pulses are played back simultaneously: if the quality value for the van der Waals
force is good, then the two waves have the same frequency, whilst as it becomes worse, one of
the two pulses reduces in frequency by up to 20 Hz from the other. This processing results in
the creation of beatings between the two frequencies. If there are no beatings, then the score
can be considered to be good. In contrast, if the beatings become more frequent (more rapid
beat frequency indicates greater frequency separation between the two pulses) the score is
becoming worse.

4.3.4 Hotspots at the interface

The number of "hotspots” at the complex interface refers to the list of amino acids present
within the current interface region, previously identified using experimental methods as
being important actors for protein-protein interaction. Finding hotspots at the protein-protein
interface is an important part in judging the quality of solutions. In a second stage, the two
audio streams are processed with a low-pass filter with the cutoff frequency controlled by
the percentage of protein hotspots which are situated on the interface region. If none of the
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controlled randomization of the filtering parameters, so that every “noise generator” sounds
different from the others, and spatialised according to its proper position in space. Both of
these sonification methods are based on the principle that the signal produced becomes more
and more annoying as the number of collisions increases, encouraging the user to change
the position and distance of the proteins in order to reduce the number of collisions, and
as such stopping the annoying sound. Regarding the second sonification method, sound
spatialization helps the listener to localize the part of the protein surface where the collision
is taking place, and to guide him/her towards an orientation of the protein for which no
collisions are present.

4.3.2 Electrostatic energy

This electrostatic parameter is computed from electrostatic interaction energies between
charged particles. Electrostatic energy sonification is performed through the alternation of
two sounds, generated using additive synthesis, whose pitch and timbre vary as a function
of the global value of this specific force (scalar value). The electrostatic force value is highly
variable, and there is not a direct linear relationship between this parameter and a quality
judgement of it being good or bad for the docking condition. The link between the parameter
and the quality of its specific value has therefore been traced in a two dimensional Cartesian
diagram, with the value of the parameter on the X axis, and the quality (being good or bad) on
the Y axis. At a given electrostatic force value, the correspondent value on the Y axis has been
sonified with the method previously described. For good values, the frequencies of the two
sounds are coincident, and their spectra are perfectly harmonic, whilst as the value worsens,
the two frequencies become more distant, and the spectra more inharmonic.

4.3.3 Steric energy

This parameter is computed from van der Waals interaction energies between particles. The
sonification of the van der Waals energy is based on the principle of the beatings between
two sounds frequentially close. As with the electrostatic force, for the van der Waals force
value there is not a linear relationship between the parameter and a quality judgement (being
good or bad). A mapping similar to the one described for the previous sonification method
(electrostatic force) has been employed, with the Y axis value being sonified. Two intermittent
sinusoidal pulses are played back simultaneously: if the quality value for the van der Waals
force is good, then the two waves have the same frequency, whilst as it becomes worse, one of
the two pulses reduces in frequency by up to 20 Hz from the other. This processing results in
the creation of beatings between the two frequencies. If there are no beatings, then the score
can be considered to be good. In contrast, if the beatings become more frequent (more rapid
beat frequency indicates greater frequency separation between the two pulses) the score is
becoming worse.

4.3.4 Hotspots at the interface

The number of "hotspots” at the complex interface refers to the list of amino acids present
within the current interface region, previously identified using experimental methods as
being important actors for protein-protein interaction. Finding hotspots at the protein-protein
interface is an important part in judging the quality of solutions. In a second stage, the two
audio streams are processed with a low-pass filter with the cutoff frequency controlled by
the percentage of protein hotspots which are situated on the interface region. If none of the
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hotspots are present on the interface the low-pass filter frequency is set at 200 Hz, making
the sound nearly inaudible. The cutoff frequency of the filter increases with the number
of hotspots present at the interface, making the sound clearer and brighter until, in the
optimal position, the frequency filtering is completely deactivated. The two audio streams
are rendered stereophonically, associating the left and right channels respectively to the first
and second protein.

5. Coupling simulation and interaction codes

Molecular simulation engines previously described provide time-dependent atomic or
particle positions, velocities and system energies according to biophysical models at different
scale. These models can now compute a molecular dynamics trajectory of interesting
biological systems in interactive time. This progress allows to control and visualise a
molecular simulation in progress. We have developed a generic library, called MDDriver,
in order to facilitate the implementation of such interactive simulations. It allows to easily
create a network connection between a molecular user interface and a physically-based
simulation. We use this library in order to study a real biomolecular system, simulated by
various interaction-enabled molecular engines and models. We use a classical molecular
visualisation tool and a haptic device to control the dynamic behavior of the molecule. This
approach provides encouraging results for interacting with a biomolecule and understanding
its dynamics. Our goal is to extend IMS approach to a broader range of simulation engines,
as the use of a specific simulation sofware or model often depends on the studied biological
system. We have thus developed a generic and independent library, called MDDriver, which
allows us to easily interface molecular simulation engines with molecular visualisation tools
through a network connection. As a first step, we have rendered the calculation modules
easily interchangeable while keeping the existing VMD user interface as MUI.

5.1 MDDriver : a library to coupling molecular simulations codes and molecular user
interfaces

In the VMD/NAMD architecture, the IMD network protocol [Stone et al. (2001)] was
developed in order to interface the Molecular User Interface (MUI) with the MD engine.
However, the use of a specific simulation engine and MUI strongly depends on the studied
biological system and on user habits. Adding IMD capabilities to other simulation engines
and molecular models as well as to a variety of MUIs in addition to VMD and NAMD
enables a whole range of new possibilities in interactive molecular simulations. This
approach allows us to address a larger user community working on molecular modeling and
simulations, sometimes based on their own home-made simulation engines. Following these
motivations, we developed a generic and independent library, called MDDriver, inspired by
the VMD/NAMD approach.

5.1.1 Software architecture

We have thus encapsulated the IMD protocol in the MDDriver library, allowing a developer to
easily adapt MUI code and MD code in order to extend them with IMD features. This interface
provides functions for the exchange of specific data structures over a network: atom positions
and system energies, computed for each simulation step by the MD engine (server part), and
user-applied forces on a selected atom set.
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Fig. 12. MDDriver library for interfacing a Molecular Dynamics simulation with a Molecular
User Interface (Interaction and Visualization code)

5.1.2 Molecular simulation MDDriver wrapper

This approach was tested, applied and improved by integrating calls to the MDDriver library
into the GROMACS simulation engine [Hess et al. (2008)], thus rendering the simulation
interactive via a MUI. We have used VMD as MUI in order to study the molecular behavior of
Guanylate Kinase (GK) using an all-atom model and a coarse-grained representation [Baaden
& Lavery (2007)] with GROMACS. Then we have tested a home-made simulation engine
dedicated to molecular docking, which was also IMD-enabled.

MDDriver module offers a simple, modular and generic solution to combine any
coordinates-based calculation code with various visualization programs. IMD simulation,
this powerful tool for exploration of biomolecules structure in large biological system, is
now accessible in a easier way to desktop or virtual reality computational environment.
We insist on the fact that the MDDriver library was designed for easy integration into any
molecular simulation engine providing time series of particle positions. Indeed there are
many approaches capable of simulating the dynamic behavior of biomolecules, such as
lattice simulations, elastic networks, coarse grain models or even quantum mechanical and
semi-empirical methods.

5.1.3 Performances

We will only briefly comment here the desktop use performances obtained for the MDDriver
library implementation to the GROMACS code. The data (coordinates, status and forces)
transfer rate between calculation and visualization modules essentially depends on the size of
the simulated system.Force application component alters slightly more IMD performances
for small systems, depending essentially on selected/total particles ratio (increasing data
exchange). In the context of large computing infrastructure deployment for GROMACS IMD
using MDDriver, similar performances have been observed. This confirming robustness of the
MDDriver library coupled to parallelized applications, performance of the display/interaction
installation being the main limitation for IMD simulations of large molecular systems.

6. Applications

We propose in this last section to illustrate the previous simulation, interaction and rendering
concepts especially designed for IMS, with several applications. In the first application, these
concepts was used to designed new approach and methodology for docking. In the three next
ones, these concepts was used in a research context to study some biostructural phenomena.
In the two last one, we present two cutting edge scientific sofware that used and included all
the innovative concepts presented in this chapter.
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6.1 CoRSAIRe : a multimodal and immersive molecular docking project

6.1.1 Main focus

The main focus of the CoRSAIRe project [?] is to design a new methodology in that
field based on advanced interaction and rendering possibilities, that Virtual Reality (VR)
technologies may offer. With respect to other works on docking, we are specifically studying
multi-sensorimotor rendering during an interactive docking task.

Usually user participation during the computationnal docking process was very limited,
since it only involved configuring docking scripts and choosing one result amongst the
computer-generated solutions to the studied problem. Indeed classic approaches to docking
provide large numbers of complex configuration based on 3D data describing partner
proteins. These algorithms take a long time to produce results, since they test all possible
geometric configurations to dock the two proteins. These configurations are then filtered
according to energy and physicochemical criteria. Finally, the scientist selects, in this set of
results, a smaller set of possible solutions that can be tested against each other experimentally.

Relying on user expertise before applying automatic docking algorithms interactive context
allows the user to use natural abilities for the detection of surface complementarity, as well
as prior implicit or literature based knowledge regarding for example the nature of the
protein-protein interface, what hotspots are present, etc.

It seems thus relevant to develop complementary or alternative approaches to docking. In
project CoRSAIRe (Combination of Sensorimotor Renderings for the Immersive Analysis of
Results) our hypothesis is that using Virtual Reality (VR) technologies and related interactions,
which rely on multiple sensory and motor channels, may help experts in this docking task.
There are several reasons for this. Firstly, stereoscopy, especially when it is adaptative,
may improve perception of 3D protein models. Furthermore, direct manipulation of several
proteins at the same time, as afforded by peripherals commonly used today for such tasks (e.g.
3D mouse, force-feedback interfaces, etc.) may be more intuitive and efficient than traditional,
desktop WIMP1-type interfaces. Additionally, multimodal management of sensorimotor
feedbacks (based on an approach aiming to dynamically specify adaptation of visual, haptic
and audio renderings to the characteristics of the information in use) is one possible answer
to the problems related to the simultaneous presentation of large amounts of data. Finally, a
strongly interactive approach of VR docking allows the docking expert to be placed on the
forefront of the work, rather than giving an automatic algorithm a complete control over the
generation of possible sets of solutions. We believe our approach, which combines benefits
of multimodal interaction with the capitalization of docking experts’ occupational skills (in
biology, crystallography, bioinformatics) in modelling will allow improvements in the speed
of predictions for the structure of protein-protein complexes, as well as in overall search
efficiency and in the quality of results obtained when analyzing possible solutions.

6.1.2 Discussion and results

This project allow us to define the multimodal allocation space ("modal allocation” [André
(2000)]) that refers to the specific use of one or more sensory modalities to display an
information. It is preferable for users to use optimal modal allocation considering both
technical constraint, task (e.g. characteristics of information relevant to scientists) and

1 Acronym of Window, Icon, Menu, and Pointing device.
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Visual Auditive Haptic
Surface representation ok
Surface collisions ok ok ok
Surface complementarity ok ok ok
Electrostatic interactions ok
Electrostatic energy ok ok ok
Steric interactions ok
Steric energy ok ok ok
Hydrophobic patchs ok
Hotspots at the interface ok ok

Table 1. Restricting the modal allocation space

operator-related constraints (e.g. characteristics of perception, of expertise, etc.). The results
of the project allow us to formulate the following principles for the design of a multimodal
application for molecular docking, summed up in table 1.

Fig. 13. A user immersed in the docking application (left). On the right, a sample screen
capture following selection of three conformations by the user.

The interactive process dedicated to protein protein docking designed into the CoRSAIre
project, allows significant reduction of the number of configurations to be tested by algorithms
used afterwards, and we maximize the use of the user expertise. Our approach could also be
reused in the design of future docking software, integrating factors such as protein flexibility,
based on the premise that many docking problems involve flexible partners. Furthermore,
this work should also focus on defining future situations of use of such tools. Indeed, our
interactions with future users identified several possible avenues for the use of docking tools,
e.g. teaching, scientific discovery, collaborative work, etc.

6.2 Interactively locating ion binding sites by steering particles into electrostatic potential
maps

Interactively locating ion binding sites by steering particles into electrostatic potential maps
Metal ions drive important parts of biology, yet it remains experimentally challenging to locate
their binding sites into biomolecules (protein, DNA). With the MyPal method (Molecular
scrutinY of PotentiALs), implemented in the BioSpring program, we use interactive steering of
charged ions in an electrostatic potential map in order to identify their potential binding sites
[Delalande et al. (2010)]. We use this method in order to facilitate the discovery of new relevant
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ion binding sites by successfully retrieving the location of cation binding sites in DNase I
enzyme and assessing their selectivity, combining atomic and coarse-grained resolutions.

Fig. 14. Visual summary of the interactive experiments. On the left, interactive potential
exploration of the DNase I enzyme using the MyPal method. On the middle, results of
experiments for detecting a priori unknown ion binding sites. The reference position of each
binding pocket is shown as a red sphere and MyPal predictions for a potential map with
(orange) or without (green) ionic strength are displayed by transparent spheres. On the right,
an ion substitution experiment ("molecular-billiard") at site 2 is depicted. Such an experiment
probes the selectivity of a given ionic pocket for different ions

We interactively scanned the electrostatic potential of DNase I by using Na+, Ca2+ and
Mg2+ as ionic probes. For the binding sites detection, Mg2+ cation was chosen as its double
charge facilitates long-range electrostatic steering towards the binding pockets and its small
size increases the accuracy for sensing the rough and detailed molecular surface at atomic
resolution. Taking into account ionic strength for calculating the electrostatic potential leads
to more accurate maps. However, without considering ionic strength we achieved comparable
predictions and more easily detect binding sites thanks long-range driving forces (Figure 16).
All four ion binding sites identified were retrieved by the MyPal approach. To assess the
selectivity of identified binding sites, we start with different ions (Na+, Ca2+, Mg2+ and Cl-)
at a given site and tried to interactively substitute this initial ion by another. Figure 16 and
Table 2 illustrate and summarize the results for these ion substitution "molecular-billiard"
simulations. As might be expected, chloride as an anion cannot be stabilized within any of
the four cation binding pockets, nor can it displace a bound cation. Sites that are magnesium
selective are well characterized by our approach. Less efficient substitution experiments may
be related to the simplicity of our model in which selectivity depends on the shape of the
pocket itself and the pathway for accessing it. Generally speaking, buried and narrow sites are
unreachable for large ions, whereas sites localized at the enzyme surface are readily subject
to ion exchange. In the latter case, haptic feedback helps the user to distinguish between
favourable and unfavourable substitutions.

The current implementation of MyPal/BioSpring was not designed in order to provide
precise quantitative binding affinity estimates, but to be capable of distinguishing in real time
between non-existing, weak and strong ion binding sites and assess the relative selectivity
of significantly different ionic probes. Despite the approximations made in the choice of
the model representation it should remain possible to quantify the strength of binding by
calculating the work required by the user to extract an ion from its binding site.

6.3 Interactive study of Guanylate Kynase opening and closure

In this study, we have worked on an intensive studied biomolecular system, the Guanylate
Kinase (GK) enzyme. Structures for this molecule are provided by experimental methods
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Probe (Site) Ca2+ (1) Ca2+ (2) Mg2+ or Ca2+(3) Mg2+ (4)
Mg2+/Ca2+ Ca �→ Mg Ca �→ Mg Mg � Ca Mg � Ca

Mg � Ca Mg �→ Ca Ca �→ Mg -
Na+ Ca � Na Ca �→ Na Mg � Na Mg � Na

Na �→ Ca Na �→ Ca Na �→ Mg -
Cl− Ca � Cl Ca � Cl Mg � Cl Mg � Cl

- - - -

Table 2. Ion substitution interactive simulation results. The table indicates whether
exchange from X to Y is possible ( �→) or impossible (�). For instance, Ca � Cl means that
Ca2+ cannot be displaced by Cl−. A minus sign indicates that initial positioning of the
chosen probe ion at the given binding pocket was not possible via our approach.

such as Nuclear Magnetic Resonance or X Ray cristallography. The molecule has a U shape
with either a closed or an open conformation (see 15). The closure mechanism of GK consists
in increasing the proximity of two substrate binding sites, for GMP and ATP, both essential
for the enzymatic reaction. The goal of our study is to understand which parts of this system
are involved in the closure mechanism. This mechanism has been investigated using our
MDDriver framework (VMD/MDDriver/GROMACS) at two levels of detail. The first level
corresponds to an all-atom model (18098 atoms), the second to a lower resolution coarse-grain
model (1900 beads), and the third to a augmented spring network model. Prospective
tests using coarse-grain simulations allowed for the efficient exploration of a broad range of
possibilities to close the enzyme, trying to reach a closed conformation similar to the available
experimental structures.

Fig. 15. Haptic control (red arrows in the red loop) of Guanylate Kinase closure. Secondary
structure cartoon representation of the open state (left) and the closed state (right)

Figure 15 shows a secondary structure representation of the protein, considering specific
architectural units such as the loops (white tubes), the helices (purple ribbons) and the beta
sheets (yellow arrows). The crucial role of one loop (highlighted in red in Figure 15) in
the initiation of GK’s closure could thus be identified. It was then confirmed in a second
phase using more detailed all-atom simulations. Understanding the features of this early
intermediate state occurring as an impulse for the closure mechanism allows us to propose a
novel mechanistic hypothesis. The loop move could be initiated by GMP docking, which may
drive this loop via long range electrostatic interactions. When the loop draws closer to the
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In this study, we have worked on an intensive studied biomolecular system, the Guanylate
Kinase (GK) enzyme. Structures for this molecule are provided by experimental methods
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Probe (Site) Ca2+ (1) Ca2+ (2) Mg2+ or Ca2+(3) Mg2+ (4)
Mg2+/Ca2+ Ca �→ Mg Ca �→ Mg Mg � Ca Mg � Ca

Mg � Ca Mg �→ Ca Ca �→ Mg -
Na+ Ca � Na Ca �→ Na Mg � Na Mg � Na

Na �→ Ca Na �→ Ca Na �→ Mg -
Cl− Ca � Cl Ca � Cl Mg � Cl Mg � Cl

- - - -

Table 2. Ion substitution interactive simulation results. The table indicates whether
exchange from X to Y is possible ( �→) or impossible (�). For instance, Ca � Cl means that
Ca2+ cannot be displaced by Cl−. A minus sign indicates that initial positioning of the
chosen probe ion at the given binding pocket was not possible via our approach.

such as Nuclear Magnetic Resonance or X Ray cristallography. The molecule has a U shape
with either a closed or an open conformation (see 15). The closure mechanism of GK consists
in increasing the proximity of two substrate binding sites, for GMP and ATP, both essential
for the enzymatic reaction. The goal of our study is to understand which parts of this system
are involved in the closure mechanism. This mechanism has been investigated using our
MDDriver framework (VMD/MDDriver/GROMACS) at two levels of detail. The first level
corresponds to an all-atom model (18098 atoms), the second to a lower resolution coarse-grain
model (1900 beads), and the third to a augmented spring network model. Prospective
tests using coarse-grain simulations allowed for the efficient exploration of a broad range of
possibilities to close the enzyme, trying to reach a closed conformation similar to the available
experimental structures.

Fig. 15. Haptic control (red arrows in the red loop) of Guanylate Kinase closure. Secondary
structure cartoon representation of the open state (left) and the closed state (right)

Figure 15 shows a secondary structure representation of the protein, considering specific
architectural units such as the loops (white tubes), the helices (purple ribbons) and the beta
sheets (yellow arrows). The crucial role of one loop (highlighted in red in Figure 15) in
the initiation of GK’s closure could thus be identified. It was then confirmed in a second
phase using more detailed all-atom simulations. Understanding the features of this early
intermediate state occurring as an impulse for the closure mechanism allows us to propose a
novel mechanistic hypothesis. The loop move could be initiated by GMP docking, which may
drive this loop via long range electrostatic interactions. When the loop draws closer to the
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other side of the enzyme, conformational changes could be triggered, subsequently inducing
a global closure of the enzyme. The interactive exploration of the simulation using the haptic
modality lead us to this theoretical hypothesis. It also suggests that electrostatic interactions
could be the main driving force for closure.

6.3.1 Modelling a transient stage of DNA repair by flexible docking of double stranded DNA
to RecA nucleoprotein filaments

Homologous recombination is a fundamental process enabling the repair of double-strand
breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments
formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences
that are homologous to the ssDNA and exchange the homologous strands. Due to the highly
dynamic character of this process and its rapid propagation along the filament, the sequence
recognition and strand exchange mechanism remains unknown at the structural level. By
the interactive and flexible approach available from the BioSpring program, we investigated
the possible geometries of association of the early encounter complex between RecA/ssDNA
filament and double-stranded DNA (dsDNA) [Saladin et al. (2010)]. Due to the huge size
of the system and its dense packing, we used a reduced representation for both protein and
DNA. In this study, a systematic docking was also performed to associate dsDNA and the
RecA/ssDNA complex, but this approach didn’t enable the consideration of flexible regions of
the nucleofilament RecA. BioSpring approach promoted to easily build a hybrid rigid-flexible
representation of the molecular system by combining an Augmented Spring Network model
(ASN) and a static molecular shape, and finally enabled to include very flexible L2 loops in the
structure of RecA/ssDNA receptor. These flexible L2 loops constituted the only interactively
controlled protein region, the rest of the RecA nucleofilament and the ssDNA were considered
as static. Incoming dsDNA (ligand) was the second molecular fragment described by a flexible
ASN model. During the interactive docking simulation, L2 loops moves were obtained by
pulling user-selected atoms, while position and orientation of the dsDNA were controlled by
acting on a fixed particles group (central nucleobases). Each single interactive simulation
consisted in (i) moving L2 loops and simultaneously (ii) pulling the dsDNA toward the
ssDNA, then (iii) allowing the relaxation of the system and finally (iv) saving the ligand and
receptor positions.

Docking of curved dsDNA structures permitted to reach a more stable molecular complex
than the one obtained from B-type DNA ligands. These simulations also demonstrate that
it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially
retaining its Watson-Crick pairing and emphasize the importance of RecA L2 loop mobility
for both recognition and strand exchange.

6.4 ePMV : embedding molecular modeling software directly inside of professional 3D
animation applications

ePMV, the Embedded Python Molecular Viewer [Johnson & Autin (2011)] is an open-source
plug-in, that runs the molecular modeling software PMV [Sanner (1999)] directly inside
of numerous professional 3D animation applications (hosts), to provide seamless access
the capabilities of both systems and to simultaneously link the host software to other
scientific algorithms. ePMV currently plugs into Maxon Cinema4D, Autodesk Maya, and
Blender. Uniting host and scientific algorithms into a single interface allows users from
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Fig. 16. Visual summary of the interactive experiments. On the left, interactive and flexible
low-resolution docking of dsDNA to the RecA/ssDNA complex, using BioSpring. The two
trackers enable the user to move at the same time (i) protein L2 loops (yellow or red, if
selected) and (ii) dsDNA (pink and red, for selected nucleobases). Static fragments of RecA
protein and ssDNA are shown in green/brown and purple spheres, respectively. On the
right, all-atom model obtained after reconstruction from one of the best BioSpring prediction.

varied backgrounds to assemble professional quality visuals and to perform computational
experiments with relative ease. The hybrid provides:

• high quality rendering with shadows, global illumination, ambient occlusion, etc
• intuitive GUI workflows that help users set up animations ranging from easy turntable

rotations to sophisticated mechanism-of-action movies
• mesoscale modeling that allows users to illustrate or animate complex cell events in

molecular detail by positioning objects with intuitive controls
• a common Python Platform that allows users to initiate sophisticated algorithms like

molecular dynamics or docking energy calculations on the fly and to interoperate these
algorithms with each other and with the host

The Interactive Molecular Driver [Stone et al. (2001)] and the callback action from Modeller
[Eswar & Sali (2008)] enable real-time interactive molecular simulations with additional forces
provided by the user. This interactive steering can operate at different levels, from selected
atoms or residues, to selected curve points associated with molecular backbones. Mouse
gestures and animated key frames can transmit forces or new coordinates to the simulation
calculator that is linked to the host GUI via ePMV. Sophisticated host algorithms like inverse
kinematics and efficient collision detection algorithms can operate on the same data as well.
With this setup, a ligand can be hand-guided into a binding site with real-time docking
scores provided by the Python modules of Autodock [Huey et al. (2007)]. Host-provided
physics shortcuts (e.g., soft-body springs for bonds) enable interactive flexible docking with
real-time scoring. At the cutting edge of molecular Augmented Reality, a user can interact
with data via handheld markers tracked by a camera [Gillet et al. (2005)] to perform an
interactive Rigid-body docking with intuitive midair hand gestures (see Figure 17 and
http://epmv.scripps.edu/videos/structure2011).
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Fig. 17. ePMV features through 8 examples

6.5 FvNano: A virtual laboratory to manipulate and visualize molecular systems

The main goal of FvNano is to provide an easy to use program to manipulate molecular
structures in "real time" on regular or high-performance computing (HPC) platforms. The idea
is to combine molecular dynamics (MD) software with modern human-computer interaction
(HCI) peripherals and GPU rendering. As previously told, combining MD with user
interaction is crucial for a better understanding of the molecular motions inside a protein
structure when a particular solvent is used or with an important number of active compounds.
MD simulations require a lot of computing power. Hence, the ability to use high-performance
computing platforms is mandatory when studying complex macromolecular systems.
However, the difference between regular and massively parallel architectures can make the
program hard to optimize for both platforms. This is solved by using a modular architecture
based on the Flow-VR middleware ?, http://flowvr.sourceforge.net/. In that case, MD
simulation, interaction and visualization can be represented as modular blocks linked together
by Flow-VR. Each of these blocks can then run on single or multiple threads according to the
user’s choice. Manipulating objects in a 3D environment with a 2D screen can be challenging,
for that purpose, FvNano currently implements two types of HCI peripherals: SpaceBalls and
haptic arms. SpaceBalls are used to move the viewpoint and haptic arms to manipulate the
molecular structures with force feedback support. The visualization part is also modular,
as of now two renderers are available: VMD and OpenGL. The OpenGL renderer uses
the HyperBalls GPU shaders previously described. FvNano can also be used to visualize
molecular trajectories computed by MD softwares with a simple user interface inspired by
video players. Related work within the VMD software has recently been discussed [Stone
et al. (2001)].
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Fig. 18. Screenshot of the interactive molecular dynamics application (left). The cyan cone is
the haptic arm avatar and the line shows the atom movement in progress. On the right a
screenshot of the molecular trajectory reader.

7. Conclusion

Protein interactions are now routinely studied via computer simulation to understand aspects
that cannot currently be studied by experiments. Recently, the Fold It! project [Cooper
et al. (2010)] - a 3D-puzzle desktop game, in which the user’s task is to fold proteins
interactively and without any knowledge prerequisites - showed that using interactivity
and insight of human minds can lead to more accurate results than pure computation.
Removing false-positive results is done implicitly by users that intuitively avoid erroneous
ways of molecule assembly using their experience and logic mind. More generally, molecular
simulations can now benefit from this approach to reduce computation and analysis time.

In this document, we presented an interactive approach to assist scientists in their study of
protein-protein docking phenomena using some advanced interaction and rendering features
offered by a Virtual Reality or advanced human-computer-interaction environment. In such
a context, it is important to take into account existing practices of domain experts used in
their everyday work. By formalizing user needs and tasks in order to propose a limited set of
design principles leading towards an appropriate tool such practices can be further improved,
whilst leaving some room for them to evolve in new directions.

Through different examples, we have seen in this chapter that this goal requires efforts from
many scientific domains. Experimental biologists describe the needs and validate the results
that bioinformaticians extract from the analysis of simulations. Computer science experts are
needed to provide efficient codes and graphics. Also, cognitive science helps to design suitable
interaction paradigms and user interfaces. Interaction can be used in many applications,
from rigid-body docking to accurate atomistic simulations, allowing the user to obtain a wide
range of results. The novelty of our approach is that it strives to ensure continuous user
participation in the process through direct manipulation of the protein models. In proposing
such an approach in which users are involved both upstream and downstream from automatic
docking procedures, we hope to maximize the use of their expertise. Hence, the interactive
approach efficiently introduces a human element in the process and benefits from the user’s
experience and insight. The resemblance of this kind of applications with video games should
not delude scientists to underestimate the scientific value of such techniques.
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1. Introduction  
Diverse molecules interact with proteins to produce a biological function. Proteins exhibit 
many interactions with other molecules including other proteins, nucleic acids, 
carbohydrates, lipids, minerals, metabolites, and chemical compounds, resulting in diverse 
roles within and/or between cells. Some of these proteins locate in subcellular organelles, 
where they modulate biochemical reactions, and some other proteins locate in membranes 
mediating various stimuli to signaling pathways. Cellular systems can be represented as 
complex networks. We may consider the molecules as nodes and the associations among the 
molecules as edges in the network. In this network, all kinds of the molecular interactions 
can be referred to as an interactome. Even though all kinds of the interactome are important, 
we here focus on protein-protein interactions (PPIs) since they are fundamental in cellular 
systems. To function correctly, a protein should interact with other proteins in the context of 
complex formation, signalling pathways and biochemical reactions. To perform a specific 
biological function, these interactions need to be specifically formed with proper interacting 
partners at the right time and locations.  

Given the knowledge of genome sequencing on model organisms including human, we 
have elucidated a large number of unknown molecular structures and interactions within 
nucleic acids. In the post-genomic era, functional genomics is an emerging area of research 
that seeks to annotate every bit of information of the genome structure with relevant 
biological function. Still, many proteins (or genes) remain functionally unannotated 
(Apweiler et al, 2004; Sharan et al, 2007). These missing links between structures and 
functions need to be resolved to understand complex biological phenomena including 
human diseases, development and aging. 

Protein function is widely defined in several different ways. It is highly context- and 
condition-dependent, which means that proteins participate in most biological processes. 
There have been various attempts to categorize the protein functions (Bork et al, 1998). One 
of them categorized the protein function into three parts: molecular function, cellular 
function and phenotypic function. First, the molecular function is defined as biochemical 
reactions performed by proteins. Second, the cellular function is defined as various 
pathways associated with proteins. Lastly, the phenotypic function is defined as an 
integration of all physiological subsystems to environmental stimuli. 
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Aside from the conceptual definition, many annotation efforts on protein function have been 
undertaken (Table 1). One of these efforts, the Gene Ontology (GO) consortium (Ashburner 
et al, 2000), made a standard and multi-labelled hierarchical annotation on proteins in the 
category of biological process, molecular function and cellular component. The GO 
consortium is regularly accumulating annotations on proteins according to GO category in 
open databases. In this chapter, we consider the three kinds of GO terms in annotation of 
protein function. 

Many experimental techniques are available for discovering the protein function, such as 
gene knockout and transcript knockdown, but these approaches are low-throughput and 
time-consuming. In recent decades novel high-throughput techniques have been developed, 
and we are now able to analysis genome-wide data, which is broadening our biological 
insights. Computational methods are necessary for analysing the massive quantity of data 
and they are complementary with the low- and high-throughput experimental methods. 

In this chapter, we first introduce PPI data available through public databases and compare 
the contents of major databases. We also describe PPI detection methods by experimental 
and computational approaches. Next, network- and non-network-based computational 
methods for the identification of protein function are described. Finally, computational 
prediction methods of protein subcellular localization, especially by exploiting PPI data, are 
shown. 
 

Databases Description 
GO The Gene Ontology project/consortium 

COGs Clusters of Orthologous Groups of proteins 
ENZYME A repository of information relative to the nomenclature of enzymes 

Pfam A database of protein families that includes their annotations and 
multiple sequence alignments  

PROSITE Database of protein domains, families and functional sites  
HAMAP High-quality Automated and Manual Annotation of microbial Proteomes 
UniProt The Universal Protein Resource 

FunCat MIPS (Munich Information Center for Protein Sequences) Functional 
Catalogue 

DAVID The Database for Annotation, Visualization and Integrated Discovery 
FANTOM A database for functional annotation of the mammalian genome 

ANNOVAR Functional annotation of genetic variants from high-throughput 
sequencing data 

EFICAz A genome-wide enzyme function annotation database 
KEGG Kyoto Encyclopedia of Genes and Genomes 

Table 1. Databases for the functional annotation of genes and proteins. 

2. PPI data 
PPI can be considered as one kind of protein interactome. Proteins mutually interact in the 
biological context for specific functions. Given the knowledge of a single gene, expressing 
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distinct transcripts and protein isoforms, a protein also interacts with other proteins 
including itself to give specific function. PPIs are defined as  physical interactions between 
protein pairs (Bonetta, 2010). There are also non-physical interactions such as genetic and 
functional interactions. Genetic interaction is typically defined as when two genes are 
simultaneously perturbed, with the quantitative phenotype being more or less than 
expected (Mani et al, 2008). Functional interaction between two proteins is a much broader 
concept than other experiment-derived interactions. It may include any functionally 
associated gene/protein pairs which are integrated and predicted from heterogeneous data. 
We will explain these computational prediction methods later in this section. 

The physical interactions between protein pairs also can be either direct or indirect. Binary 
interaction is an example of a direct interaction while indirect interaction includes subunits 
of protein complex. To give a specific function, proteins often form a large complex 
including direct and indirect interaction among the participant proteins. These interactions 
are also separable according to their binding lifetime. Some interactions between protein 
pairs are transient, with the interactions associating and dissociating under particular 
physiological conditions. On the other hand, some of proteins form stable complexes where 
the participants in the complexes permanently interact with each other. Various PPI types 
are defined in standard and annotated across many PPI databases (Cote et al, 2010; Kerrien 
et al, 2007). 

2.1 PPI databases 

Currently, there are 132 PPI databases indexed by the Pathguide (Bader et al, 2006; accessed 
23 Dec 2011). The quantity of physical interactions to date is 386,495 across all species when 
integrated among major 11 databases by the iRefWeb (Turner et al, 2010; accessed 23 Dec 
2011). The PPI data derived from both high- and low-throughput experiments are altogether 
deposited into any of primary databases which manually curate experimental results. These 
primary databases include not only physical interactions but also genetic interactions and 
annotate standard minimal information about a molecular interaction (MIMIx) (Orchard et 
al, 2007). There is an inconsistency problem related to the literature curation across different 
databases (Turinsky et al, 2010). Turinsky et al. confirmed that the agreement between 
curated interactions from 15,471 papers shared across nine databases was only 42% for 
interactions and 62% for proteins. This result was averaged between any two databases 
curated from the same publication. Some of the primary databases altogether formed a 
consortium called IMEx (The International Molecular Exchange) to enhance the quality of 
literature curation efforts.  

Since we have plenty of primary databases, comprehensive integration of those primary 
databases has become an intriguing research field. Such meta-databases minimize 
redundancy and inconsistency that are limitations of the primary databases (Turinsky et al, 
2010). Moreover, functional interaction databases consist of both experimentally-detected 
and computationally-predicted data. Sometimes, these predicted and experimental PPIs 
need to be distinguished for the degree of confidence. They both give useful information but 
should be separated according to the relevant evidence codes. There are also species-specific 
functional interaction databases (Lee et al, 2011; Lee et al, 2010a). 
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Type Name Description URL 

Primary 
databases 

BioGRID Physical and genetic 
interaction http://thebiogrid.org 

MINT Physical interaction http://mint.bio.uniroma2.it 

IntAct Physical interaction http://www.ebi.ac.uk/intact 

DIP Physical interaction http://dip.doe-mbi.ucla.edu 

BIND Physical and genetic 
interaction 

http://bond.unleashedinformatics.
com 

Phospho-
POINT 

A human kinase 
interactome resource http://kinase.bioinformatics.tw 

PIG Host-Pathogen interactome http://pig.vbi.vt.edu 

SPIKE 
A database of highly 
curated human signaling 
pathways 

http://www.cs.tau.ac.il/~spike 

MPPI The MIPS mammalian PPI 
database 

http://mips.helmholtz-
muenchen.de/proj/ppi 

HPRD Human physical interaction http://www.hprd.org 

CORUM Mammalian protein 
complexes 

http://mips.helmholtz-
muenchen.de /proj/corum 

Meta-
databases 

APID Agile Protein Interaction 
DataAnalyzer http://bioinfow.dep.usal.es/apid 

MiMi Michigan Molecular 
Interactions http://mimi.ncibi.org 

UniHI Unified Human Interactome http://www.mdc-berlin.de/unihi 

iRefWeb Interaction Reference Index http://wodaklab.org/iRefWeb 

DASMI 
Distributed Annotation 
System for Molecular 
Interactions

http://dasmi.de/dasmiweb.php 

HIPPIE 
Human Integrated Protein-
Protein Interaction 
rEference 

http://cbdm.mdc-
berlin.de/tools/hippie 

HAPPI 
Human Annotated and 
Predicted Protein 
Interaction database

http://bio.informatics.iupui.edu/
HAPPI 

Functional 
databases 

STRING 
Search Tool for the Retrieval 
of Interacting 
Genes/Proteins 

http://string-db.org 

Gene-
MANIA 

Multiple Association 
Network Integration 
Algorithm

http://genemania.org 

Functional
-Net 

Species-specific functional 
gene networks http://www.functionalnet.org 

Table 2. List of PPI databases. 
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Contents BIND BioGRID DIP HPRD IntAct MINT MPPI 

Biological role (PSI-MI) O O 

Experimental role (PSI-MI) O O 

Taxonomy ID O O 

Interaction category O O 

Interaction title 

Interaction type (Text) O 

Interaction type (PSI-MI) O O O 

Interactor type (peptide, 
protein)     O O  

Detection method (Text) O O 

Detection method (PSI-MI) O O O O 

Evidence (PMID or doi-
number)      O  

PubMed ID O O O O O O 

BioGRID ID O

HPRD ID O

NCBI Gene ID O O O

Protein ID O O O 

ID type O O O 

Protein accession number O O

UniProt ID O

Link to source ID O O O O 

Description O O

Confidence score O O 

Table 3. Contents of primary PPI databases. Available contents are colored in grey with “O” 
shape. 

We have listed some of the major primary databases, meta-databases, and functional 
databases in Table 2. Comparisons among the primary databases are shown in Table 3. We 
compared various features including interaction types, detection methods, references, and 
biological and experimental roles. This information would be valuable for researchers when 
they need to select and integrate various PPI data bases. 
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We have listed some of the major primary databases, meta-databases, and functional 
databases in Table 2. Comparisons among the primary databases are shown in Table 3. We 
compared various features including interaction types, detection methods, references, and 
biological and experimental roles. This information would be valuable for researchers when 
they need to select and integrate various PPI data bases. 
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2.2 Methods for PPI identification 

There are two major ways to determine PPIs. One is an experimental detection and the 
other is computational prediction. The former method is more reliable and well-
established in both small and large scales while the latter method is based on the 
characteristics of accumulated protein interactions. In this section, we will briefly describe 
both approaches. 

2.2.1 Experimental detection methods for PPIs  

Experimental detection of interactions between protein pairs is achieved by various 
methods. Here, we describe only two representative methods: yeast two-hybrid (Y2H) 
(Suter et al, 2008) and mass spectrometry (MS) (Berggard et al, 2007). These methods both 
detect physical PPIs but the type of PPIs is different. As previously stated, direct and binary 
PPIs are distinct from protein groups in a complex and this type of PPI is detected only by 
Y2H method. This method uses a transcription factor found in yeast which consists of two 
other domains. Y2H method relies on an artificial insertion of a protein coding sequence to 
one of the domains and another protein inserted on the other domain using a plasmid. PPI 
can be assessed by confirming phenotype of the target gene of the transcription factor. The 
Y2H method can detect PPIs in large-scale and the sensitivity is high, enabling detection of 
even weak transient PPIs. But, since the experiment is done only in the nucleus, the real 
location information of such PPIs is hard to annotate, which obscures the detailed biological 
interpretation. Moreover, Y2H detects only binary interactions and results in a high rate of 
false positive, which are noteworthy limitations. 

Another method in this category is based on mass-spectrometry (MS). The MS analyzes the 
mass of molecules rapidly and accurately. If the weight of all proteins in question is known, 
this information can be linked to the specific protein. This method is powerful when protein 
co-complexes are examined. Although it cannot provide details on the direct-level of 
interactions, the grouping of the proteins in a complex can be revealed. For this method, one 
protein (“bait”) and all of interacting partners in a complex are pulled out and separated by 
electrophoresis. Finally, all the constructs derived from electrophoresis are used for MS. This 
method yields many false positive results when the sampling strategy is thoroughly 
different. This sampling might include fake interactions resulting in a high rate of false 
readings. There are many strategies related to this problem (Bousquet-Dubouch et al, 2011; 
Gingras et al, 2007). The experimental results obtained with MS-based methods are different 
from those obtained with binary methods (Y2H). Data derived from co-complex 
experiments cannot directly assign a binary interpretation. An algorithm is needed to 
translate group-based observations into pairwise interactions. 

2.2.2 Computational prediction methods for PPIs 

While recent reviews (Lees et al, 2011; Pitre et al, 2008; Shoemaker & Panchenko, 2007; 
Skrabanek et al, 2008; Xia et al, 2010) have discussed computational prediction methods for 
PPIs in details, we here briefly introduce some of approaches that are widely used. 
Although the amounts of experimental resources of PPIs are growing rapidly, proteome-
wide PPIs information is still lacking and mostly limited on several model organisms. Given 
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wide types of indirect but genome-wide resources, we can enhance our understanding of 
overall protein interactome. Methods in prediction of direct physical PPIs are less 
investigated than those of functional association between protein pairs. These functional 
association methods of PPIs can give information of which protein pairs have same 
biological process and potential physical interactions. 

The first data used in these prediction methods is genomic sequences. Co-occurrence-based 
methods use assumption that if gene pairs are co-inherited across evolutionary processes 
(i.e. species), they are considered as functionally associated (Barker & Pagel, 2005; Bowers et 
al, 2004; Pellegrini et al, 1999). These methods applied to microorganisms and successfully 
discovered novel participants of known pathway (Carlson et al, 2004; Luttgen et al, 2000). 
Other similar methods based on this genomic sequence use the information of gene fusion 
events (Marcotte et al, 1999; Reid et al, 2010; Zhang et al, 2006) and gene neighbourhood 
(Ferrer et al, 2010; Itoh et al, 1999; Koonin et al, 2001). Another type of data used is amino 
acid (AA) sequences and the interface of interacting protein pairs are composed of specific 
AA residues (Tuncbag et al, 2008; Tuncbag et al, 2009). This knowledge is reflected in the co-
evolution of specific interface residues between interacting proteins and by alignments of 
multiple sequences, the results are highly correlated with physical PPIs (Pazos et al, 2005). 
Commonly occurring domain pairs are also considered in this context (Eddy, 2009; Finn et 
al, 2010; Stein et al, 2009; Yeats et al, 2011) and simple AA sequence such as 3-mers of 
interacting residues can be used (Ben-Hur & Noble, 2005). Another well-known information 
is homology of PPIs across different species. Methods on this information simply find PPIs 
which are conserved across species, called interologs (Matthews et al, 2001). Here, any 
known PPIs regarded as query to find conserved interactions across species using an 
ortholog database. There are many algorithms which follow this approach (Kemmer et al, 
2005; Persico et al, 2005). Aside from the sequence-level data, structural information is also a 
valuable resource to predict PPIs, especially a protein 3D structure. (Aloy & Russell, 2003; 
Ezkurdia et al, 2009; Hosur et al, 2011; Shoemaker et al, 2010; Singh et al, 2010; Zhang et al, 
2010). A huge amount of genome-wide gene expression profiles are another useful data to 
predict PPIs and they are investigated to define gene co-expression patterns of any pairs and 
consider higher correlation degree as higher probability of PPIs (Grigoriev, 2001; Lukk et al, 
2010; Stuart et al, 2003). As shown in the earlier section, there are many literature-curated 
PPI databases. While those approaches are based on the manual inspection, such PPIs 
information can be automatically extracted using a text-mining algorithm (Blaschke et al, 
2001; Szklarczyk et al, 2011; Tikk et al, 2010). 

3. Computational prediction methods for protein function 
Even before the prevalence of genome sequencing technologies, typical experimental 
identification on a protein function has been executed. Such identification has focused on a 
specific target gene or protein, or a small set of protein complexes. Gene knockout, knockdown 
of gene expression, and targeted mutations are some methods for protein function 
identification (Recillas-Targa, 2006; Skarnes et al, 2011). Such low-throughput experiments 
were replaced by high-throughput experiments including genome sequencing and 
determination of the protein interactome. Computational methods followed by massively 
archived data have been developed for better analysis. Based on the assumption that structural 
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similarity correlates with functional similarity, homology-based functional annotation across 
organisms has now become a trivial approach (Aloy et al, 2001; Gaudet et al, 2011). 

3.1 Non-network based approaches 

Classical computational methods use features from only a single protein in prediction of 
protein function (Bork et al, 1998). These approaches use a set of features like amino acid 
sequences, genome sequences, protein structures (2D and 3D), phylogenetic data, and gene 
expression data. PSI-BLAST (Altschul et al, 1997) and FASTA (Mount, 2007) are popular 
sequence alignment tools used to reveal homologous proteins between known and 
unknown (query) proteins. Proteins with similar sequences are assumed to have similar 
functions. Moreover, protein folding patterns are also preserved enough to identify 
homologs (Huynen et al, 1998; Sanchez-Chapado et al, 1997). The comparative genomics 
across different species is a powerful approach for analysing functional annotation of 
proteins. In fact, it has been suggested that correlation of sequence-structure is much 
stronger than that of sequence-function (Smith et al, 2000; Whisstock & Lesk, 2003). So many 
approaches take the sequence to structure to function route for protein function prediction 
(Fetrow & Skolnick, 1998). 

Likewise, these data are showing only single aspect of functional features conserved 
during evolution. Data derived from different sources can be inter-connected it should be 
integrated to analyse simultaneously (Kemmeren & Holstege, 2003). We next show that 
PPI networks potentially enrich functional relationship between protein pairs that may 
not be detectable from other genomic data such as primary or higher level sequence 
structure. 

3.2 Network-based approaches 

As we mentioned in the Introduction, biological function is never achieved by a single 
protein. Rather, proteins dynamically interact with each other and the interacting partners 
adopt similar performances for specific functions. With a plethora of data being generated 
by high-throughput proteomic experiments, it has become possible to use proteome-wide 
PPI patterns in protein function prediction. Among a broad type of protein interactome, a 
PPI network generates well-known data that is invaluable in prediction of protein 
function. It is possible to annotate the function of undefined proteins according to its 
neighbours that are functionally annotated. This assumption is based on simple idea 
called “guilt-by-association”, and we consider an association by possible physical 
interaction in any condition and, sometimes, functional association are given with 
relevant evidence score. 

Here, we review the general network-based approaches in predicting protein functions. 
These approaches are categorized into two methods for better description. The first one is 
a straightforward method of inferring protein function based on the topological structure 
of a PPI network. The other method first identifies distinct sub-networks from a whole 
PPI network. These sub-networks are also referred to as functional modules since they 
perform specific biological functions such as protein complexes, and metabolic and 
signalling pathways. Functional modules are detected by a broad variety of clustering 
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algorithms and, thereafter, each module is annotated with appropriate functional 
association. In this section, basic concepts and pioneering studies on this corresponding 
approaches are introduced.  

3.2.1 Direct annotation of protein function using PPI network 

3.2.1.1 Neighbourhood approaches 

Direct functional annotation considers the correlation of the network distance between two 
proteins, which means the closer the two proteins are in the network the more similar are 
their functions. One of the earliest studies extrapolated only adjacent neighbours within an 
entire PPI network. This simple approach used information of the immediate 
neighbourhood and took the most common functions up to three among its neighbours. In 
spite of the effectiveness, accuracy was achieved by 72% (Schwikowski et al, 2000). 
However, this method lacked significance values for each association and the full network 
topology was not considered in the annotation process. A strategy was proposed to tackle 
the first problem of assigning statistical significance (Hishigaki et al, 2001). This was done by 

using 2χ .-like scores and, instead of using the immediate neighbours, the n-neighbourhood 
of a protein that consists of proteins with distance of k-links to the protein is considered. 
Simply put, the neighbours of adjacent neighbours are taken into account with the 
frequencies of all the distance of in this neighbourhood. For an unknown protein, the 

functional enrichment in its n-neighbourhood in identified with 2χ test, and the top ranking 
functions are assigned to the unknown protein. In another approach, the shared 
neighbourhood of a pair of proteins are considered besides from the neighbourhood of the 
protein of interest. Chua et al. investigated the correlation between functional similarity and 
network distance (Chua et al, 2006). They developed a functional similarity score, called the 
FS-weight measure, which gives different weights to proteins depending on their network 
distance from the query protein. This approach showed higher accuracy when employing 
indirect interactions and its functional association. 

3.2.1.2 Global optimization approaches 

Although the neighbourhood approach is very attractive and effective by its simplicity, 
shortcomings arise when there is not enough number of protein neighbours and sufficiently 
annotated proteins. To overcome this issue, several approaches that utilize the entire 
topology of the network have been proposed. These global approaches attempt to optimize 
annotation of function-unknown protein using the topology of a whole network. One of the 
first studies that took this approach used the theory of Markov random fields, which 
determines the probability of a protein having a certain function (Deng et al, 2004). This 
theory is then used to determine the joint probability of the whole interaction network 
regarding to a certain function. This formulation is transformed to that of the conditional 
probability of a protein having a certain function given the annotations of its interaction 
partners. After that, the Gibbs sampling technique is iteratively applied to determine the 
stable values of this probability for each protein. This approach resulted in higher 
performance than those of neighbourhood-based approaches (Chua et al, 2006; Hishigaki et 
al, 2001; Schwikowski et al, 2000) when utilized to the yeast PPI data.  
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frequencies of all the distance of in this neighbourhood. For an unknown protein, the 

functional enrichment in its n-neighbourhood in identified with 2χ test, and the top ranking 
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protein of interest. Chua et al. investigated the correlation between functional similarity and 
network distance (Chua et al, 2006). They developed a functional similarity score, called the 
FS-weight measure, which gives different weights to proteins depending on their network 
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performance than those of neighbourhood-based approaches (Chua et al, 2006; Hishigaki et 
al, 2001; Schwikowski et al, 2000) when utilized to the yeast PPI data.  



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

74

Additional attempts according to this approach had been followed. Here, the objective 
function is defined for the whole network, which is a sum of the following variables 
(Vazquez et al, 2003). 

1. The number of neighbours of a protein having the same function as itself. 
2. The number of neighbours of a protein having the function under consideration. 

Thus, this function estimates the number of pairs of interacting proteins with no common 
functional annotation. Since a high value of this function is biologically undesirable, it is 
minimized using a simulated annealing procedure. As expected, this approach 
outperformed the majority rule-based strategy on the Saccharomyces cerevisiae interaction 
data (Schwikowski et al, 2000), since the latter tried to optimize only the second factor 
above. An additional advantage of this approach was that multiple annotations of all 
proteins were obtained in one shot, unlike earlier approaches which ran independent 
optimization procedures for different functions. 

The above discussion shows that a wide variety of approaches based on principles of global 
optimization have been proposed in the literature and many more are in the pipeline. The 
most accurate results in the eld of function prediction from PPI networks have also been 
achieved by these approaches, which is intuitively acceptable since they extract the 
maximum benet from the knowledge of the structure of the entire network. 

3.2.2 Indirect annotation of protein function 

This approach uses a protein interaction network, not directly for annotation, but identifies 
functional modules first and then assigns functions to unknown proteins based on their 
membership in the functional modules. This is based on the assumption that most biological 
networks are organized as distinct sub-networks to give specific functions (Hartwell et al, 
1999). We assume that proteins in the same module participate in a similar biological process. 
Modular patterns and dense regions are found in the PPI network (Gavin et al, 2006).  

3.2.2.1 Distance-based clustering approaches 

To find biologically significant modules, clustering algorithms can be applied efficiently. 
Clustering is a popular unsupervised learning algorithm that does not use any prior 
information about the class label. There are two widely-used ways of clustering: topology-
based or distance-based. The key procedure in distance-based clustering is to select the 
similarity measure between two proteins to detect modules. The distance between two 
proteins (also called as nodes) in a network is usually defined as the number of interactions 
(also called as edges) on the shortest path between them. However, there is a serious 
problem in this hierarchical clustering, known as the ‘ties in proximity’ problem (Arnau et 
al, 2005). This means that the distance between many protein pairs are identical.  

To solve this problem, a network clustering method was developed to identify modules in 
the biological network based on the fact that each node has a unique pattern of shortest path 
lengths to every other node. But for a specific module in the network, the nodes/members 
of the module shared similar pattern of shortest path lengths (Rives & Galitski, 2003). 
Another study used the hierarchical clustering method with the shortest path length 
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between proteins as a distance measure to overcome the ‘ties in proximity’. This was 
achieved by exploiting equally valid hierarchical clustering solution with a random select 
when ties are met (Arnau et al, 2005). Although many methods in the similarity measures 
have been proposed, a single validation for such methods is insufficient. For this, two 
evaluation schema are suggested, which are based on the depth of a hierarchical tree and 
width of the ordered adjacency matrix (Lu et al, 2004). Furthermore, there are various types 
of cellular network with distinct modular patterns, and so network-specific methods should 
be investigated in the future.  

3.2.2.2 Graph-based clustering approaches 

Dissecting functional modules in a large PPI network is the same problem of graph 
partitioning and clustering. One of the pioneering method using this network topology-
based concept was the MCODE (molecular complex detection algorithm) (Bader & Hogue, 
2003). This method predicts complexes in a large PPI network consisting of three processes. 
First, the nodes of the network are weighted by their core clustering coefficients (the density 
of the largest k-core of its adjacent neighbourhood), and then densely connected modules 
are identified in a greedy fashion. The use of this coefficient instead of a standard clustering 
coefficient was proposed, as it increases the weights of densely interconnected graph 
regions while giving small weights to the less connected nodes. The next step is to filter or 
add proteins based on the connectivity criteria. This method was applied to large-scale PPI 
networks and given as a plug-in for the Cytoscape (Kohl et al, 2011). 

Another similar study to find complexes and functional modules is based on super 
paramagnetic clustering. This method used an analogy to the physical features of a 
heterogeneous ferromagnetic model to detect densely connected clusters in a large graph 
(Spirin & Mirny, 2003). There is also an algorithm called the restricted neighbourhood 
search clustering (RNSC), which starts with an initial random cluster assignment and then 
proceeds by reassigning nodes to maximize the partition’s score. Here, the score represents 
an intra-connectivity in the cluster, not an inter-connectivity across other clusters. The RNSC 
algorithm is known to perform better than the MCODE algorithm (King et al, 2004). The 
Markov clustering algorithm (MCL) is another fast and scalable clustering algorithm based 
on simulation of random walks on the underlying graph (Pereira-Leal et al, 2004). This 
algorithm has an assumption that a random walker in natural clusters (i.e. dense region of 
the graph) sparsely goes from one to another natural cluster. Such clusters in a whole graph 
are structurally identified by the MCL algorithm. It starts by measuring the probabilities of 
random walks through the graph to build a stochastic "Markov" matrix, by alternating two 
operations: expansion and inflation. The expansion takes the squared power of the matrix 
while the inflation takes the Hadamard power of a matrix, followed by a re-scaling. 
Therefore the resulting matrix is remained as stochastic. Clusters are detected by alternation 
of expansion and inflation until the graph is partitioned into distinct subsets where no paths 
between these subsets are available. This algorithm can be efficiently implemented to 
weighted and large dense graphs. Various PPI networks were applied using the MCL 
algorithm to find functional modules such as protein complex (Krogan et al, 2006). 

It is true that a protein might have multiple functions and this characteristics of a protein 
leads to overlap of different modules. That means graph partitioning in a strict manner 
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between proteins as a distance measure to overcome the ‘ties in proximity’. This was 
achieved by exploiting equally valid hierarchical clustering solution with a random select 
when ties are met (Arnau et al, 2005). Although many methods in the similarity measures 
have been proposed, a single validation for such methods is insufficient. For this, two 
evaluation schema are suggested, which are based on the depth of a hierarchical tree and 
width of the ordered adjacency matrix (Lu et al, 2004). Furthermore, there are various types 
of cellular network with distinct modular patterns, and so network-specific methods should 
be investigated in the future.  

3.2.2.2 Graph-based clustering approaches 

Dissecting functional modules in a large PPI network is the same problem of graph 
partitioning and clustering. One of the pioneering method using this network topology-
based concept was the MCODE (molecular complex detection algorithm) (Bader & Hogue, 
2003). This method predicts complexes in a large PPI network consisting of three processes. 
First, the nodes of the network are weighted by their core clustering coefficients (the density 
of the largest k-core of its adjacent neighbourhood), and then densely connected modules 
are identified in a greedy fashion. The use of this coefficient instead of a standard clustering 
coefficient was proposed, as it increases the weights of densely interconnected graph 
regions while giving small weights to the less connected nodes. The next step is to filter or 
add proteins based on the connectivity criteria. This method was applied to large-scale PPI 
networks and given as a plug-in for the Cytoscape (Kohl et al, 2011). 

Another similar study to find complexes and functional modules is based on super 
paramagnetic clustering. This method used an analogy to the physical features of a 
heterogeneous ferromagnetic model to detect densely connected clusters in a large graph 
(Spirin & Mirny, 2003). There is also an algorithm called the restricted neighbourhood 
search clustering (RNSC), which starts with an initial random cluster assignment and then 
proceeds by reassigning nodes to maximize the partition’s score. Here, the score represents 
an intra-connectivity in the cluster, not an inter-connectivity across other clusters. The RNSC 
algorithm is known to perform better than the MCODE algorithm (King et al, 2004). The 
Markov clustering algorithm (MCL) is another fast and scalable clustering algorithm based 
on simulation of random walks on the underlying graph (Pereira-Leal et al, 2004). This 
algorithm has an assumption that a random walker in natural clusters (i.e. dense region of 
the graph) sparsely goes from one to another natural cluster. Such clusters in a whole graph 
are structurally identified by the MCL algorithm. It starts by measuring the probabilities of 
random walks through the graph to build a stochastic "Markov" matrix, by alternating two 
operations: expansion and inflation. The expansion takes the squared power of the matrix 
while the inflation takes the Hadamard power of a matrix, followed by a re-scaling. 
Therefore the resulting matrix is remained as stochastic. Clusters are detected by alternation 
of expansion and inflation until the graph is partitioned into distinct subsets where no paths 
between these subsets are available. This algorithm can be efficiently implemented to 
weighted and large dense graphs. Various PPI networks were applied using the MCL 
algorithm to find functional modules such as protein complex (Krogan et al, 2006). 

It is true that a protein might have multiple functions and this characteristics of a protein 
leads to overlap of different modules. That means graph partitioning in a strict manner 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

76

might not be reasonable for the PPI network. However, most current methods are based on 
the hard-partition algorithms, meaning that each protein can belong to only one specific 
module. To handle this limitation, a clustering algorithm based on the information flow was 
suggested. This algorithm efficiently identified the overlapping clusters in weighted PPI 
network by integrating semantic similarity between GO function terms (Cho et al, 2007). 
Since the common proteins in the overlapping modules are interpreted as a connecting 
bridge across the different modules, biologically significant and functional sub-networks 
could be identified. Still, there are few clustering methods identifying such overlapping 
modules. Novel clustering methods for this theme are required with enhancement of 
prediction accuracy. 

4. Prediction of protein subcellular localization 
4.1 Introduction 

Proteins should move to specific locations after synthesis to work in our body correctly. 
Thus, knowing subcellular localization of proteins is important to understand their own 
functions. Unicellular organisms like budding and fission yeasts can find systematic protein 
localization by experimental studies. However, such studies could not be performed well in 
higher eukaryotes such as Caenorhabditis elegans, Drosophila melanogaster, or mammals 
because of large-scale proteome sizes and technical difficulties associated with protein 
tagging.  

Therefore, bioinformatical approaches to develop efficient methods are required instead of 
wet experiments. Actually, many computational methods to predict subcellular localization 
of protein have been proposed over several decades. A considerable number of 
computational classification methods have been developed for this purpose. Typically these 
algorithms input list of features and output subcellular localizations of target proteins. The 
features contain various characteristics of the proteins. Molecular weight, amino acid 
content and codon bias can be the features. Input features for prediction of subcellular 
localization can be broadly categorized into four categories: protein sorting signals, 
empirically correlated characteristics, sequence homology with known answer sets, and 
other sources (Imai & Nakai, 2010). 

During the training phase, in the methods, learning utilizes a set of gold-standard proteins 
whose localizations are well known. This set consists of the feature vectors. After the 
training phase, a model is constructed to recognize those features or patterns of features that 
are useful and then predicts the subcellular localization of proteins whose localization is 
unknown. Various algorithms have been used to construct a model for prediction of sub-
cellular localization. 

In the field of bioinformatics, there are several problems to resolve for predicting subcellular 
localization of proteins. First, there are generally too many classes (localization). According 
to Huh et al, 22 distinct localizations exist in budding yeast. Next, one protein may have 
multiple different localizations (Huh et al, 2003). This is referred to a multi-label 
classification problem and traditional classification algorithms have a limit on handling the 
multi-label problem well. Another problem is that there may be a higher dimensional 
feature space for prediction. More than tens of thousands features exist in some cases. 
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Another issue is that data for each localization is too imbalanced. All these characteristics 
make the prediction difficult. More importantly, the localization prediction is sometimes 
difficult to achieve sufficient performance when we use information of single proteins only. 
Recently, large-scale protein-protein interaction networks have been elucidated in yeast, fly, 
worm, and human. To interact physically, two proteins should localize to the same or 
adjacent subcellular localization. That means we can get useful information of a protein 
from its interacting neighbours. Thus, we can improve the localization prediction 
performance particularly using PPI networks.  

4.2 Computational prediction of protein subcellular localization 

4.2.1 Single-protein feature based localization predictions 

Table 4 summarizes previous studies that have used the features of single proteins. The 
studies for prediction of subcellular localization have the following trends. The first is an 
increase in the number of predicting localizations. At first, Nakashima & Nishikawa 
predicted localization of a protein that is inter-cellular or extra-cellular using Amino Acid 
(AA) and Pair coupled Amino Acid (PairAA) (Nakashima & Nishikawa, 1994). After their 
study, many studies tried to increase the number of distinct localizations to predict. For 
example, Gardy et al predicted five distinct subcellular localization including ‘cytoplasmic’, 
‘inner membrane’, ‘periplasmic’, ‘outer membrane’ and ‘extra-cellular’ (Gardy et al, 2003). 
Nair & Rost predicted ten distinct subcellular localizations (Nair & Rost, 2003). Also, Chou 
& Cai predicted 22 distinct subcellular localizations that experimentally identified 
localization of Huh et al. (Chou & Cai, 2003).  

The second trend is handling of a multi-label problem. A protein can localize to several sub-
cellular locations. However, most of these studies did not consider multiple localization 
property, but rather assumed that a protein has a single representative localization. Also, the 
accuracy of prediction is lower when the number of distinct localizations for a protein is 
increased. Some researchers have been tried to address this issue (Lee et al, 2006).  

Another tendency is the development of a classification algorithm for an elaborate and 
efficient model construction. Least distance algorithm, artificial neural network, a nearest 
neighbour approach, a Markov model, a Bayesian network approach, and support vector 
machine (SVM) were used to archive the goal. Some studies mixed several algorithms. Lee 
et al. developed an algorithm that reflects of property of the prediction task (Lee et al, 2006). 
They developed an extended Density-induced Support Vector Data Description (D-SVDD) 
classification algorithm to handle well the issues related to class imbalance, higher 
dimensionality, multi-label, and many distinct classes. The classical D-SVDD algorithm can 
handle only one-class classification tasks. Thus, Lee et al. extended it to handle multi-label 
classification tasks.  

4.2.2 Network-based localization prediction 

As mentioned earlier, two proteins that localize to same or adjacent subcellular localization 
have a tendency to interact with each other. That means two proteins can be a tag protein to 
one other for subcellular localization. Therefore, if a molecular network such as PPIs is 
available, we may take advantage of the PPI network for the prediction. Several studies 
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tried to predict subcellular localization using network data. This section consists two parts: 
first one is a brief explanation of the study by Lee et al. (Lee et al, 2008), which is the 
cornerstone of the network-based approach for location prediction using PPI network. We 
describe a methodology to generate of feature vectors for a protein in the aforementioned 
study and introduce a DC-kNN classifier for the prediction. The second part is a summary 
of the network-based approaches from the work of Lee et al. to the present. 
 

Author(s) Method(s) Feature(s) # Classes Multi-label Imbalanced 
(Nakai & 

Kanehisa, 1991) Expert Systems SignalMotif 4 X X 

(Nakai & 
Kanehisa, 1992) Expert Systems AA, SingalMotif 14 X X 

(Nakashima & 
Nishikawa, 1994) Scoring System AA, diAA 2 X X 

(Cedano et al, 
1997) 

LDA using 
Mahalanobis distance AA 5 X X 

(Reinhardt & 
Hubbard, 1998) ANN Approach AA 3, 4 X X 

(Chou & Elrod, 
1999) CDA AA 12 X X 

(Yuan, 1999) Markov Model AA 3, 4 X X 
(Nakai & Horton, 

1999) k-NN approach SignalMotif 11 X X 

(Emanuelsson et 
al, 2000) Neural network SignalMotif 4 X X 

(Drawid & 
Gerstein, 2000) CDA Gene Expression 

Pattern 8 X X 

(Drawid & 
Gerstein, 2000) Bayesian Approach SignalMotif, 

HDEL motif 5, 6 X X 

(Cai et al, 2000) SVM AA 12 X X 
(Chou, 2000) Augumented CDA AA, SOC factor 5, 7, 12 X X 

(Chou, 2001) LDA using various 
distance measures pseuAA 5, 9, 12 X X 

(Hua & Sun, 2001) SVM AA 4 X X 
(Chou & Cai, 

2002) SVM SBASE-FunD 12 X X 

(Nair & Rost, 
2002) 

Nearest Neighbor 
Approach

functional 
annotation 10 X X 

(Cai et al, 2003) SVM SBASE-FunD, 
pseuAA 5 X X 

(Cai & Chou, 
2003) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA
3, 4 X X 

(Chou & Cai, 
2003) 

LDA using various 
distance measures pseuAA 14 X X 

(Pan et al, 2003) Augumented CDA pseuAA with filler 12 X X 
(Park & Kanehisa, 

2003) SVM AA, diAA, gapAA 12 X X 

(Zhou & Doctor, 
2003) 

Covariant discrinant 
algorithm AA 4 X X 

(Cai et al, 2003) SVM SBASE-FunD, 
pseuAA 5 X X 
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Author(s) Method(s) Feature(s) # Classes Multi-label Imbalanced 

(Gardy et al, 2003) SVM, HMM, Baysian AA, motif, 
homlogy analysis 5 X X 

(Reczko & 
Hatzigerrorgiou, 

2004) 
ANN Approach AA, SingalMotif 3 X X 

(Huang & Li, 
2004) fuzzy k-NN diAA 11 X X 

(Cai & Chou, 
2004) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA 
3, 4 X X 

(Chou & Cai, 
2005) 

Nearest Neighbor 
Approach 

FunDC(5875D), 
pseuAA 3, 4 X X 

(Bhasin & 
Raghava, 2004) SVM AA, diAA 4 X X 

(Lee et al, 2006) PLPD 
AA, diAA, 

gapAA, 
InterProFunD 

22 O O 

(Chou & Shen, 
2007) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA 
22 O X 

(Shatkay et al, 
2007) SVM SignalMotif, AA, 

text-based feature 11 X X 

(Garg et al, 2009) k-NN, PNN 

AA, sequence 
order, 

physicochemical 
properties 

11 X X 

(Zhu et al, 2009) SVM AA, PSSM 14 O X 
(Shen & Burger, 

2010) SVM AA, groupedAA, 
gapAA,, GO 4 X X 

(Mei et al, 2011) SVM AA, diAA, 
gapAA, GO 10 O X 

(Wang et al, 2011) Frequent Pattern Tree Motif, Overall-
sequence 12 X X 

(Mooney et al, 
2011) 

N-to-1 Neural 
Network BLAST 5 X O 

(Tian et al, 2011) PCA, WSVM PesAA 20 X X 

(Pierleoni et al, 
2011) SVM 

AA, ChemAA, 
protein length, 

GO 
3 X X 

Table 4. Summary of previous methods for prediction of protein subcellular location.  

4.2.2.1 Generation of feature vectors 

Lee et al. used three types of feature to predict the localization and integrated these features 
(Lee et al, 2008). These are single protein features (S) and two kinds of network 
neighbourhood features (N and L).  

Seven S features were based on a protein’s primary sequence and its chemical properties. 
Amino acid composition frequencies (AA), adjacent pair amino acid frequencies (diAA) and 
pair-wise amino acid frequencies with a gap which is length of 1 (gapAA) from a protein’s 
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tried to predict subcellular localization using network data. This section consists two parts: 
first one is a brief explanation of the study by Lee et al. (Lee et al, 2008), which is the 
cornerstone of the network-based approach for location prediction using PPI network. We 
describe a methodology to generate of feature vectors for a protein in the aforementioned 
study and introduce a DC-kNN classifier for the prediction. The second part is a summary 
of the network-based approaches from the work of Lee et al. to the present. 
 

Author(s) Method(s) Feature(s) # Classes Multi-label Imbalanced 
(Nakai & 

Kanehisa, 1991) Expert Systems SignalMotif 4 X X 

(Nakai & 
Kanehisa, 1992) Expert Systems AA, SingalMotif 14 X X 

(Nakashima & 
Nishikawa, 1994) Scoring System AA, diAA 2 X X 

(Cedano et al, 
1997) 

LDA using 
Mahalanobis distance AA 5 X X 

(Reinhardt & 
Hubbard, 1998) ANN Approach AA 3, 4 X X 

(Chou & Elrod, 
1999) CDA AA 12 X X 

(Yuan, 1999) Markov Model AA 3, 4 X X 
(Nakai & Horton, 

1999) k-NN approach SignalMotif 11 X X 

(Emanuelsson et 
al, 2000) Neural network SignalMotif 4 X X 

(Drawid & 
Gerstein, 2000) CDA Gene Expression 

Pattern 8 X X 

(Drawid & 
Gerstein, 2000) Bayesian Approach SignalMotif, 

HDEL motif 5, 6 X X 

(Cai et al, 2000) SVM AA 12 X X 
(Chou, 2000) Augumented CDA AA, SOC factor 5, 7, 12 X X 

(Chou, 2001) LDA using various 
distance measures pseuAA 5, 9, 12 X X 

(Hua & Sun, 2001) SVM AA 4 X X 
(Chou & Cai, 

2002) SVM SBASE-FunD 12 X X 

(Nair & Rost, 
2002) 

Nearest Neighbor 
Approach

functional 
annotation 10 X X 

(Cai et al, 2003) SVM SBASE-FunD, 
pseuAA 5 X X 

(Cai & Chou, 
2003) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA
3, 4 X X 

(Chou & Cai, 
2003) 

LDA using various 
distance measures pseuAA 14 X X 

(Pan et al, 2003) Augumented CDA pseuAA with filler 12 X X 
(Park & Kanehisa, 

2003) SVM AA, diAA, gapAA 12 X X 

(Zhou & Doctor, 
2003) 

Covariant discrinant 
algorithm AA 4 X X 

(Cai et al, 2003) SVM SBASE-FunD, 
pseuAA 5 X X 
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Author(s) Method(s) Feature(s) # Classes Multi-label Imbalanced 

(Gardy et al, 2003) SVM, HMM, Baysian AA, motif, 
homlogy analysis 5 X X 

(Reczko & 
Hatzigerrorgiou, 

2004) 
ANN Approach AA, SingalMotif 3 X X 

(Huang & Li, 
2004) fuzzy k-NN diAA 11 X X 

(Cai & Chou, 
2004) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA 
3, 4 X X 

(Chou & Cai, 
2005) 

Nearest Neighbor 
Approach 

FunDC(5875D), 
pseuAA 3, 4 X X 

(Bhasin & 
Raghava, 2004) SVM AA, diAA 4 X X 

(Lee et al, 2006) PLPD 
AA, diAA, 

gapAA, 
InterProFunD 

22 O O 

(Chou & Shen, 
2007) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA 
22 O X 

(Shatkay et al, 
2007) SVM SignalMotif, AA, 

text-based feature 11 X X 

(Garg et al, 2009) k-NN, PNN 

AA, sequence 
order, 

physicochemical 
properties 

11 X X 

(Zhu et al, 2009) SVM AA, PSSM 14 O X 
(Shen & Burger, 

2010) SVM AA, groupedAA, 
gapAA,, GO 4 X X 

(Mei et al, 2011) SVM AA, diAA, 
gapAA, GO 10 O X 

(Wang et al, 2011) Frequent Pattern Tree Motif, Overall-
sequence 12 X X 

(Mooney et al, 
2011) 

N-to-1 Neural 
Network BLAST 5 X O 

(Tian et al, 2011) PCA, WSVM PesAA 20 X X 

(Pierleoni et al, 
2011) SVM 

AA, ChemAA, 
protein length, 

GO 
3 X X 

Table 4. Summary of previous methods for prediction of protein subcellular location.  

4.2.2.1 Generation of feature vectors 

Lee et al. used three types of feature to predict the localization and integrated these features 
(Lee et al, 2008). These are single protein features (S) and two kinds of network 
neighbourhood features (N and L).  

Seven S features were based on a protein’s primary sequence and its chemical properties. 
Amino acid composition frequencies (AA), adjacent pair amino acid frequencies (diAA) and 
pair-wise amino acid frequencies with a gap which is length of 1 (gapAA) from a protein’s 
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primary sequence were used. Also, three kinds of chemical amino acid compositions 
(chemAA) were generated from normalized hydrophobicity (HPo), hydrophilicity (HPil), or 
side-chain mass (SCM). Also, they combined these chemical properties into pseudo-amino 
acid composition (pseuAA), which is another S feature vector. Occurrences of known 
signalling motifs in the primary protein sequence (Motif) are also used as one of the S 
features. The last S feature encoded functional annotations of the protein from Gene 
Ontology (GO) (Ashburner et al, 2000). Figure 1 provides an example. 

N network features are summary of S features from neighbourhood of a protein. Knowledge 
for neighbours of a protein comes from PPI data, which are pooled from various databases 
such as BioGRID (Stark et al, 2011), DIP (Salwinski et al, 2004) and SGD (Engel et al, 2010). L 
network features are summary of location distribution of interacting neighbours. Figure 2A 
shows a relationship among the three PPI databases. It shows that a single protein 
interaction database covers a different part of the whole reported interactions. The diagonal 
pattern in Figures 2B-D shows that interacting protein pairs share similar localization 
information. For example, a protein in an “ER to Golgi” tends to interact with other proteins 
which localized in the “ER to Golgi” more than other localizations. 

 
 

 
 

Fig. 1. Summary of feature generation scheme for a single protein (adapted from Lee et al, 2008). 
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Fig. 2. Correlation between known localizations and protein interactions of yeast proteins. 
(A) The number of interactions (inside the circles) and the fraction of interactions whose 
proteins share localization information (outside the circles) of three interaction databases: 
BiG, DIP and SGD. (B-D) They show that interacting protein pairs have similar localization 
information in DIP, BiG and SGD (adapted from Lee et al, 2008). 

4.2.2.2 Divide-and-Conquer k-Nearest Neighbour (DC-kNN) Classifier 

After generating feature vectors, large-scale feature vectors with a high order may generate. 
A high dimensional feature vectors generally cause some problems like curse-of-
dimensionality. In other words, data from higher dimensional feature vectors usually require 
a corresponding amount of inputs and it, sometimes, causes an over-fitting problem to a 
given dataset (Guyon et al, 2002). Also some feature vectors may be useless in constructing a 
model for a specific localization. Thus, individual model for different subcellular 
localizations may require different sets of useful feature sets. Therefore, extraction for 
feasible feature vectors for individual localizations may be needed to construct robust and 
reliable prediction models. 

To construct a prediction model, Lee et al. proposed a DC-kNN classifier which is a variety 
of a k-Nearest Neighbours classification algorithm. A DC-kNN classifier tackles high-
dimensional features in a divide-and-conquer manner. Briefly mentioning, a DC-kNN has 
three main steps (Figure 3): dividing, choosing, and synthesizing. In the dividing step, the 
full feature vector is divided into m meaningful subsets. After the dividing step, the k-
nearest neighbours are chosen for each protein and for each subvector. In the synthesizing 
step, results of kNNs of individual m sets are synthesized to produce confidence scores 
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using an average of Area under the ROC curve (AUC) for each localization. DC-kNN finds a 
feasible combination of feature sub-vectors for each label (localization) based on a feature 
forward selection approach.  

 
Fig. 3. Brief description of a DC-kNN (adapted from Lee et al, 2008). 

4.2.3 Results of location prediction 

Lee et al. first compared prediction performance of a DC-kNN for localization prediction 
with different feature sets: S features only, N features only, L features only, all features 
together (S+N+L), and random guesses. N and L features are generated using DIP 
(Salwinski et al, 2004). Performance of each case was evaluated by the technique of leave-
one-out cross-validation (LOOCV). Proteins of Saccharomyces cerevisiae (n=3914) (Huh et al, 
2003) were used for the LOOCV. They used three different performance metrics: Top-K, 
Total, and Balanced. These metrics were used to summarize the results of 3914 LOOCV 
runs. Top-K measurement considers as correct if at least one of the real localization of a 
protein is in the top-K predictions. Total measurement counts all the correctly predicted 
localizations based on the number of real localizations of test data. Balanced measure 
calculates the averaged fraction of correctly predicted proteins in each localization. As a 
result, every classifier showed clearly better performance than random guess (Figure 4A), 
and combination of S, N, and L features showed the highest performance. 

Figures 4A and 4B inform that information of neighbourhood acquired from a PPI 
database improves prediction performance. However, Figure 4C illustrates that acquiring 
more information does not always contribute to an improvement of performance. On the 
contrary, additional information can decrease prediction performance. To find the 
necessary feature vectors for each localization, Lee et al. used a DC-kNN and found 
feasible subsets using the prepared feature vectors for individual localizations (Figures 4C 
and 4D). Using the selected features for individual localizations, the average of the AUC 
values was 0.94. 
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Fig. 4. (A) Shows performance of the classifiers by input from various kinds of feature. 
(B) shows performance for combination of feature vectors. (C) shows averaged AUC of the 
classifier for each localization based on feature selection using a DC-kNN. (D) shows 
selected feature sets for each of 22 localizations in yeast (adapted from Lee et al, 2008). 
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Based on the methodology, Lee et al. applied their method to the prediction of the 
localizations of genome-wide yeast proteins. Surprisingly, they also validated novel 
localizations of 61 proteins. For example, Huh et al. reported that Noc4/Ypr144c and 
Utp21/Ylr409c were localized in the nucleus (Huh et al, 2003). However, the proposed 
method developed by Lee et al. predicted the localization of the both proteins as the 
nucleolus. They revaluated for both proteins using new experiments and finally confirmed 
the previous results of Huh et al. had errors (Figures 5A and 5B). The correct prediction 
mainly owes to the fact that Lee et al. combined evidence from multiple interacting partners. 
For example, Noc4 interacts with many other proteins known to exist in the nucleolus, so we 
can assume that Noc4 localizes nearby or directly in the nucleolus. They confirmed the 
assumption by the network neighbours (Lee et al, 2008) (Figure 5C). 

The number of localizations and known PPIs for yeast proteins are larger than those for 
other organisms. In other words, some organisms have less information on known 
localization and protein interaction, which might make the location prediction difficult 
based on a PPI network. Lee et al. evaluated their method using yeast data with some 
random missing information (Lee et al, 2008). As a result relatively robust results were 
obtained with less information. For example, the average number of neighbours of a protein 
in yeast is 27 and the number in worm is three. Decrement in the number of neighbours 
from yeast to worm was 9-fold. However, the average of AUC value decreased from 0.94 
(yeast) to 0.87 (worm) (Figure 6). In other words, their method can be easily applied, not 
only to yeast but to other species with less known localization and/or interaction 
information. Actually they predicted subcellular localization of fly, human, and Arabidopsis 
(Lee et al, 2008; Lee et al, 2010b) using protein interactions. The results of both works 
showed that the prediction worked well for the other organisms and could find real 
localizations of some unknown proteins (Figures 6-7). 

They also compared a DC-kNN with two previous popular methods, ISort (Chou & Cai, 
2005) and PSLT2 (Scott et al, 2005). ISort is a comprehensive sequence-based machine 
learning method. ISort can predict more than 15 compartments. PSLT2 is a previous method 
that used a protein interaction network to predict subcellular localizations. They compared 
to DC-kNN with ISort and PSLT2 using both total and balanced measures. As illustrated in 
Figure 8, DC-kNN outperformed both methods in total and balanced measurement. 

4.2.4 Other network-based methods 

After the study of Lee et al. in 2008, several studies based on network-based approaches 
tried to predict subcellular localization. Mintz-Oron et al. used a constraint-based method 
for predicting subcellular localization of enzymes based on their embedding metabolic 
network, relying on a parsimony principle of a minimal number of cross-membrane 
metabolite transporters (Mintz-Oron et al, 2009). They showed that their method 
outperformed pathway enrichment-base methods. Another group constructed a decision 
tree-based meta-classifier for identification of essential genes (Acencio & Lemke, 2009). 
Their method relied on network topological features, cellular localization and biological 
process information for prediction of essential genes. Tung & Lee integrated various 
biological data sources to get information of neighbour proteins in a probabilistic gene-
network (Tung & Lee, 2009). They predicted the subcellular localization using a Fuzzy k-
nearest neighbour classifier. Lee et al. curated IntAct Arabidopsis thaliana PPI dataset    
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Fig. 5. (A, B) represent results of new experiments for Noc4/Ypr144c and Utp21/Ylr409c. 
(C) shows the interacting neighbours of Ypr144c (adapted from Lee et al, 2008).  
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Fig. 6. Averaged AUC values across different organisms (adapted from Lee et al, 2010b). 

 
Fig. 7. Generated models for the location prediction for Fly (A), Human (B), and Arabidopsis 
(C) (adapted from Lee et al, 2008 and Lee et al, 2010b). 
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Lee et al. curated IntAct Arabidopsis thaliana PPI dataset (Aranda et al, 2010) using the DC-
kNN method, which was proposed before and which showed good performance (Lee et al, 
2010b). They also showed that the DC-kNN is applicable to other organisms. Kourmpetis et 
al. predicted a function of proteins in Saccharomyces cerevisiae based on network data, such as 
PPI data (Kourmpetis et al, 2010). They took a Bayesian Markov Random field analysis 
method for prediction and predicted the functions of 1170 un-annotated Saccharomyces 
cerevisiae proteins. 

 
Fig. 8. Performance comparison of Isort, PSLT2 and DC-kNN (adapted from Lee et al, 2008). 

5. Conclusions 
We reviewed on PPI databases and the methods for detection of PPIs. Then, the 
computational methods of protein function prediction were briefly reviewed. We finally 
discussed that the prediction of protein function, especially the subcellular localization, 
shows outstanding performance when using PPIs data. This is because real biological 
functions are maintaining through a cascade of PPIs. Moreover, the computational 
approaches are very much promising when compared to the experimental identification 
especially for the false reading corrections. Functional genomics is an ongoing field in 
systems biology and this must be done well to drive further progress. We are facing other 
issues concerning the lack of conditional protein interactomes. We have identified and 
accumulated only static information at the molecular level in cells to make a scaffold of 
cellular systems. Computational methods should be applied to this conditional analysis 
when sufficient data become available and the next field of utilization would be 
personalized medicines, such as the early diagnosis with specific markers and treatments 
with specific drug targets. 
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1. Introduction  
Advances in large scale technologies in proteomics, such as yeast two-hybrid (Y2H) 
screening and mass spectrometry (MS) have enabled us to generate large protein-protein 
interaction (PPI) networks. The structure of such networks has been frequently analysed to 
identify the modules, which constitute the basic “building blocks” of molecular networks. 
One of the challenges that systems biology is facing consists of explaining biological 
organisation in the light of the existence of modules in networks (Han et al., 2004; Pereira-
Leal et al., 2004; Petti and Church, 2005; Rives and Galitski, 2003). A series of studies 
attempting to reveal the modules in cellular networks, ranging from metabolic (Ravasz et 
al., 2002), to protein networks (Spirin and Mirny, 2003; Yook et al., 2004), support the 
proposal that modular architecture is one of the principles underlying biological 
organisation. 

Several key issues are being addressed in current research in systems biology, as a result of 
our post-genomic view that has expanded the role of the protein into an element of a 
network in which it has contextual functions within functional modules (Eisenberg et al., 
2000; Jeong et al., 2001). How do modules interact to achieve a certain functionality (Han et 
al., 2004; Rives and Galitski, 2003)? How can we evaluate the biological relevance of 
modules (Pereira-Leal et al., 2004; Poyatos and Hurst, 2004)? Answering those questions 
may contribute to better understanding of the relationships between structure, function and 
regulation of molecular networks, which is an important aim of systems biology (Qi and Ge, 
2006; Stelling et al., 2002). 

From the structural perspective, modules are often associated with highly connected clusters 
of proteins. Many efforts in this area have been directed towards analysing structural 
properties of the protein interaction graph, measured by clustering coefficient and shortest 
path distance for example, to derive modular formations. The main focus presented in this 
chapter is on defining similarity between protein interactions based on an integrated score 
that takes into consideration topology of PPI network along with the functional knowledge 
determined by semantic similarity. An important reason for considering knowledge 
represented in annotations a valuable complement to topological characteristics is 
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1. Introduction  
Advances in large scale technologies in proteomics, such as yeast two-hybrid (Y2H) 
screening and mass spectrometry (MS) have enabled us to generate large protein-protein 
interaction (PPI) networks. The structure of such networks has been frequently analysed to 
identify the modules, which constitute the basic “building blocks” of molecular networks. 
One of the challenges that systems biology is facing consists of explaining biological 
organisation in the light of the existence of modules in networks (Han et al., 2004; Pereira-
Leal et al., 2004; Petti and Church, 2005; Rives and Galitski, 2003). A series of studies 
attempting to reveal the modules in cellular networks, ranging from metabolic (Ravasz et 
al., 2002), to protein networks (Spirin and Mirny, 2003; Yook et al., 2004), support the 
proposal that modular architecture is one of the principles underlying biological 
organisation. 

Several key issues are being addressed in current research in systems biology, as a result of 
our post-genomic view that has expanded the role of the protein into an element of a 
network in which it has contextual functions within functional modules (Eisenberg et al., 
2000; Jeong et al., 2001). How do modules interact to achieve a certain functionality (Han et 
al., 2004; Rives and Galitski, 2003)? How can we evaluate the biological relevance of 
modules (Pereira-Leal et al., 2004; Poyatos and Hurst, 2004)? Answering those questions 
may contribute to better understanding of the relationships between structure, function and 
regulation of molecular networks, which is an important aim of systems biology (Qi and Ge, 
2006; Stelling et al., 2002). 

From the structural perspective, modules are often associated with highly connected clusters 
of proteins. Many efforts in this area have been directed towards analysing structural 
properties of the protein interaction graph, measured by clustering coefficient and shortest 
path distance for example, to derive modular formations. The main focus presented in this 
chapter is on defining similarity between protein interactions based on an integrated score 
that takes into consideration topology of PPI network along with the functional knowledge 
determined by semantic similarity. An important reason for considering knowledge 
represented in annotations a valuable complement to topological characteristics is 
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encompassed in the concept of functional modules themselves. A functional module consists 
of proteins that cooperate towards achieving a particular function or participate in similar 
processes. Hence, considering annotation that describes molecular functions and biological 
processes should enrich the protein-protein interactions. Functional information can be 
retrieved from Gene Ontology (GO), which is a structured vocabulary used to annotate 
proteins with information about their molecular function, participation in biological 
processes or localization in cellular components. A module-identifying algorithm proposed 
earlier (Lubovac et al., 2006), SWEMODE (Semantic WEights for MODule Elucidation), that 
relies on an integrated measure, called semantic cohesiveness, corresponds to one of the 
successful approaches that contributes to achieve the important aims of systems biology. 
This method will be the focus of attention in this chapter.  

2. Background 
Molecular biology is becoming a highly modular science where functional modules are 
considered to be a critical level of biological organization. The term “module”, as 
understood in molecular biology, was originally defined as a discrete unit with a function 
that is separable from those of other modules (Hartwell et al., 1999). Furthermore, 
modularity refers to clusters of elements that work in a co-operative fashion to achieve some 
defined function. Protein complexes constitute one example type of module, since the 
proteins within a complex interact functionally and physically to form a robust unit, which 
in its turn carries out some biological function (Yook et al., 2004).  

One of the key issues to be solved with help of bioinformatics is the deciphering of the 
complex architecture of biological networks. 

2.1 Climbing life’s complexity pyramid 

Biological networks are often modular and compound, and involve connections between 
groups of genes and proteins as well as between individual elements. A simple complexity 
pyramid (see Fig. 1) suggested by Oltvai and Barabasi (2002), illustrates different levels of 
cellular organisation. 

Living systems are organised at both logical and physical levels.  The individual nucleotides 
are elementary building blocks of DNA and RNA molecules, which, in turn, are organised 
into higher level structures such as regulatory elements, and genes. DNA is physically 
organised into larger structures such as chromatin and chromosomes. Groups of genes, 
proteins, RNAs (the bottom level of the pyramid in Fig. 1) may be organised into pathways 
in metabolism, and motifs in genetic regulatory networks (see level 2). Regulatory motifs 
may in turn serve as building blocks of functional modules (level 3). There is a growing 
body of evidence that the modules are then organised in a hierarchical manner (Barabasi 
and Oltvai, 2004; Oltvai and Barabasi, 2002; Ravasz et al., 2002), defining the large-scale 
functional organisation of the cell (level 4 in Fig. 1). 

The way these various structures interact with each other determines the machinery of a 
cell. Cells and the extracellular matrix, which surrounds and supports cells, build up the 
tissues that in turn are organised into organs, and so forth.  
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Fig. 1. Life’s complexity pyramid redrawn from (Oltvai and Barabasi, 2002).  

The integration of different layers in the pyramid to achieve a better understanding of 
system-level rules that govern cell function is one of the challenges in systems biology. 
Computational analysis tools and methods are needed at each level but also across different 
levels. Here, the integrative approach for deriving modules at the third level in the pyramid 
is described, which also make it possible to climb to the top, and provide means for 
revealing large-scale organisation. 

2.2 Modularity in cellular networks 

“Modularity is a fundamental design principle whereby components are partitioned 
according to common physical, regulatory, or functional properties” (Petti and Church, 
2005). Modules can be found in many systems, for example, food webs, networks of web 
pages describing related subjects (Flake et al., 2002), networks of friends in sociology 
(Newman, 2003), or scientific collaboration networks (Newman, 2001). A usual synonym for 
the term module in other scientific disciplines, like sociology for example, is community or 
community structure. In a study by Flake et al., (2002), the term web community is for 
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example defined as “a collection of web pages such that each member page has more 
hyperlinks within the community than outside of the community”. This definition may be 
adjusted further, according to Flake et al., (2002), to identify communities of varying sizes 
and levels of cohesiveness (clustering).  

Furthermore, modularity involves groups of elements that work in a co-operative fashion to 
achieve some well-defined function. In a general network representation, a module appears 
as a highly interconnected group of nodes (Barabasi and Oltvai, 2004). Modules can be 
interpreted as separated substructures of a network or pathway, e.g. a protein complex is a 
module of a protein interaction network. Protein complexes are well-defined examples of 
modularity since they consist of proteins that interact functionally and physically to form a 
tightly connected unit, which, in turn, carries out some biological function (Yook et al., 
2004). Another example of modular organisation can be found in genetic regulatory 
networks where several transcription factor binding sites, organised into functional units, 
i.e. modules, play a crucial role in gene transcription. 

The members that constitute modules are more strongly related to each other than to 
members of other modules, which is reflected in the network topology. The modular nature 
of PPI networks is reflected by a high degree of clustering, measured by the clustering 
coefficient. The clustering coefficient measures the local cohesiveness around a node, and it 
is defined, for any node i, as the fraction of neighbours of i that are connected to each other 
(Watts and Strogatz, 1998). Simply stated, the clustering coefficient ci measures the presence 
of ‘triangles’ which have a corner at i (see the triangles with dashed sides in Fig. 2). The high 
degree of clustering is based on local sub-graphs with a high density of internal connections, 
while being less tightly connected to the rest of the network (Uhrig, 2006).  

i

 
Fig. 2. Example of a protein sub-graph with triangle-forming proteins. 

As pointed out by Barabasi and Oltvai (2004), each module may be reduced to a set of 
triangles, and a high density of such triangles is highly characteristic for PPI networks, 
pointing at the modular nature of such networks. By averaging the clustering coefficient 
over all nodes we can obtain a global measure of the cohesiveness of the network, where a 
high average clustering coefficient indicates the presence of modularity. It has been 
confirmed in many studies that most real large-scale networks tend to contain dense 
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clusters, in the sense that the average clustering coefficient of such networks is much greater 
than for random networks. In contrast, if modularity is absent in the network, the average 
clustering coefficient is comparable to that of a randomised network.  

The exact meaning of modularity in biological networks depends on the network under 
consideration. For example, modules in protein networks are often seen as static molecular 
complexes (such as the ribosome) or as dynamic signalling pathways (such as the MAPK 
cascade). There are also examples of large modular molecule complexes that are in turn 
organised in modules.  One of such complexes is yeast Mediator, which transmits regulatory 
signals from DNA-binding transcription factors to RNA polymerase II. The Mediator 
complex is thought to be composed of 24 subunits organised in four modules, named the 
head, middle, tail and Cdk8 modules. In gene regulatory networks, modules are often seen 
as sets of genes controlled by the same set of transcription factors under certain conditions 
(Segal et al., 2003). 

Modules should not be seen as isolated components, since it has been shown that some 
crosstalk and overlap exists between them (Han et al., 2004; Schwikowski et al., 2000). 
Instead, modules should be considered as components that have dense intra-connectivity 
but sparse inter-connectivity. In a study analysing protein interaction networks in the yeast 
Saccharomyces cerevisiae, Schwikowski et al., (2000) reported global patterns of interactions of 
proteins within functional classes or subcellular compartments, as well as many possible 
cross-connections. It is further pointed out by Qi and Ge (2006) that the existence of the links 
between modules emphasises the coordination of the cellular processes. For example, Petti 
and Church (2005) investigated possible transcriptional coordination between glycolysis and 
lipid metabolism modules.  

A growing body of work supports the idea that such modules underlie much of cellular 
functioning (Gavin et al., 2006; Han et al., 2004; Pereira-Leal et al., 2004; Qi and Ge, 2006; 
Rives and Galitski, 2003), and that functional modules are the most relevant organisational 
units of a cell from the perspective of systems biology (Hartwell et al., 1999).   

2.3 Integrating functional knowledge in module discovery 

Although topology-based network measures, such as clustering coefficient, play an 
important role in module discovery, there are some reasons why we should integrate 
functional knowledge as well when deriving modular formations. High-throughput protein 
interaction data that is often used to identify modules is very noisy (Titz et al., 2004). 
Technologies such as Y2H often result in many false positives that may cause false 
conclusions in the analysis. A possible approach to decrease the number of false interactions 
may be to focus on the “high confidence” data sets, where all interactions have been 
confirmed by several experiments. However, in this way the majority of the existing 
interactions would be discarded from further analysis. A better approach should imply 
incorporating the functional knowledge associated with available interactions into the 
analysis. This has also been pointed out in previous studies that focus on deriving protein 
complexes by using topological information. In (Przulj et al., 2004), it has been observed that 
the increasing size of PPI networks (by including medium and low confidence interactions) 
has resulted in a decreasing number of highly connected sub-graphs or clusters which may 
correspond to protein complexes. As Przulj, et al., (2004) state, the reason for this may be the 
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increasing noise in the data, and a possible solution to this problem is the integration of PPI 
networks with annotation or gene expression data. In sub-chapter 2.4 a possible general 
framework for such integrative approach for module identification is described. 

2.4 A general framework for integrative module identification 

There are many ways of measuring similarity between proteins. The main proposal 
presented here considers protein similarity based on an integrated score that takes into 
consideration protein interaction data (as a topology source) and functional information 
based on semantic similarity. As pointed out previously, an ideal approach should take into 
consideration both temporal and spatial data, to be able to reflect the true dynamics of the 
cellular networks. It is therefore worthwhile to discuss how the methods presented here 
may be generalised to cope with several sources of information. Our module-identifying 
framework may be generalised by: 

1. considering several sources of topological information 
2. considering several sources of functional information 

Topological information may refer to, for example, protein-protein interactions obtained 
from different experimental sources, such as Y2H and MS. However, this information may 
also be derived from different topological properties like clustering coefficient, edge 
betweenness, etc.  

Besides semantic similarity values based on protein GO terms that we used in this work, 
there are many other sources of functional information that may be useful for predicting 
membership in protein complexes. One of the most prominent sources is gene expression 
data generated using various high-throughput platforms, such as microarrays. Expression 
profile correlation coefficients may, for example, be used to assign similarity scores to 
pairwise interactions.  Other sources of functional information are essentiality, phylogenetic 
profiles, localisation, the MIPS functional catalogue, etc. 

In this study, as in the majority of others, protein interactions are treated as binary, i.e. the 
edges in a network are either present or absent. Bearing in mind the fact that large-scale 
methods, although offering vast improvements in efficiency, still have much higher error 
rates than small-scale methods, a step towards generalisation of the proposed algorithms 
would be to treat protein interaction networks probabilistically. By treating the edges as 
binary (indicating presence/absence of interaction), we cannot distinguish edges supported 
by multiple evidence types, from edges supported by evidence of differing quality. There 
are several ways of assigning probabilities to individual pairs of proteins based on the 
amount and type of supporting evidence (Asthana et al., 2004; Jansen et al., 2002; Jansen et 
al., 2003). When dealing with several data sources that need to be combined in order to 
improve the prediction, a usual way of combining these consists of overlapping different 
interactomes. This approach, in turn, gives rise to the question whether it is more beneficial 
to consider the union of the disparate datasets or their intersection.  One of the extremes that 
may be envisaged is that each one of the networks that are to be integrated has a low rate of 
false positives (FP) but a high rate of false negatives (FN). In this case, the union of the two 
sets of interactions would be advantageous. At the other extreme, when dealing with 
networks with high FP rates and low FN rates, the intersection between the different 
networks is preferable. 
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The problem of finding an optimal combination of unions and intersections among the 
different networks may be defined, as described in (Jansen et al., 2002), as finding a trade-off 
between the highest possible coverage (TP/(TP+FN)) and the lowest possible error rate 
(FP/(TP+FP)). Determining the error rate is still an open question, as pointed out in (Jansen 
et al., 2002). 

A hypothetical example of integrating different data sources that may be useful in generalising 
the proposed approaches is given in Fig. 3. The top part of the figure shows four possible data 
sources that may be useful for module identification. Two of them are topological sources, 
denoted as t1 and t2, and are usually treated as binary networks. The other two sources, 
denoted as f1 and f2, may be used to assign functional weights to the edges. For example, when 
using gene expression as a possible source for weighting the edges, the probability of finding 
two proteins in a complex, given a certain correlation between their expression profiles, may 
be a possible way to assign weights (Jansen et al., 2002). Gene ontology sub-graphs as a 
possible source of functional information is visualised in the third square in Fig. 3, where 
semantic similarity between ontology terms may be used to reflect the functional similarity 
between the proteins, as assumed in this work. These functional weights may also be 
transformed into binary values, by setting different thresholds, where the level of the 
threshold determines the sensitivity and specificity of the experiment. 

 
Fig. 3. Hypothetical integration of four data sources for module identification. 

The bottom part of Fig. 3 shows the hypothetical module sets generated with different 
combinations of data sets. The Venn diagram to the right in the figure shows binary subset 
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profiles, where profile 1110 includes all data points that are present in data sets t1, t2, and f1. 
Mset1110, for example, denotes the set of modules derived from the combination of MS, 
Y2H, and GO semantic similarity weights, where px denotes a protein x belonging the 
module. 

3. Module identification based on an integrated approach 
The algorithm described in previous work (Lubovac et al., 2006), SWEMODE (Semantic 
WEeights for MODule Elucidation), is an example of a method that employs an integrated 
approach for deriving functional modules, based on the functional and topological 
cohesiveness of the sub-graphs. Here, an integrated weighting score, called weighted 
clustering coefficient, that forms the bases for this method will be described. The reason for 
focusing on description of the integrative score here is that it can be applied as a part of 
node weighting procedure in other methods for deriving modules of PPI networks. 

3.1 Weighted clustering coefficient 

As depicted in earlier work, the separate edge weights do not provide an overall picture of 
the network’s complexity. Therefore, we here consider the sum of all weights between a 
particular node and its neighbours, also referred to as the node strength. The strength si of 
the node i is defined as: 
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Given two proteins, i and j, with Ti and Tj containing m and n terms, respectively, the 
protein-protein semantic similarity ssij based on GO terms, is defined as the average inter-set 
similarity between terms from the given term sets (see Equation 2). 
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Determining the similarity between two proteins i and j, is preceded by calculation of the 
similarity between the terms belonging to the term sets Ti and Tj that are used to annotate 
these proteins. Given the ontology terms tk ∈  Ti and tl ∈  Tj, the semantic similarity measure 
proposed by (Lin, 1998) is defined as: 
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Where p(tx) is the probability of term tx and pms(tk,tl) is the probability of the minimum 
subsumer of tk and tl, which is defined as the lowest probability found among the parent 
terms shared by tk and tl (Lord et al., 2003). 

In previous work, some extensions of the topological clustering coefficient have been 
developed for weighted networks. In (Barrat et al., 2004), two scores that integrate 
topological and weighted features of the nodes − weighted clustering coefficient wc  and 
weighted average nearest-neighbours degree wnn  are introduced. These scores have 
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previously been applied to two types of complex weighted networks, namely, the world-
wide airport network and the scientist collaboration network. A first attempt to apply these 
integrated scores on PPI networks was described in (Lubovac et al., 2006). A weighted 
measure that uses semantic similarity weights was introduced. Weighted clustering 
coefficient wc  is defined as: 
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Where si is the functional strength of node i (see Equation 1) and ssij is the semantic 
similarity reflecting the functional weight of the interaction (see Equation 2). For each 
triangle formed in the neighbourhood of node i, involving nodes j and h, the semantic 
similarities ssij and ssih are calculated. Hence, not only the number of triangles in the 
neighbourhood of the node i is considered but also the relative functional similarity between 
the nodes that form those triangles, with regard to the total functional strength of the node. 
The normalisation factor si(ki-1) represents the summed weight of all edges connected from 
node i, multiplied by the maximum possible number of triangles in which each edge may 
participate. It also ensures that 10 ≤≤ wc . This measure can be involve any of the three 
aspects of Gene Ontology - molecular function, biological process and cellular component, 
or the combination of these.   

4. Comparison with topology-based methods for module identification 
The aim of this sub-chapter is to demonstrate the performance of the approach called 
SWEMODE (Lubovac et al., 2006), based on an integrative score described in 3.1, by 
comparing it to two purely topological approaches. One of the topology-based method for 
detecting modules from a PPI networks has been developed by Luo and Scheuerman (2006) 
and further analysed in (Luo et al., 2007). The module notion proposed was based on the 
degree definition of the sub-graphs. Unlike the approach described in Section 3, this method 
is based solely on topological properties of the protein sub-graph.  

Modules generated with SWEMODE were also compared with the modules derived in 
(Przulj et al., 2004), based on HCS (Highly Connected Subgraphs) clustering algorithm 
(Hartuv and Shamir, 2000). This method aims to find disjoint subsets (clusters) that should 
satisfy following criteria: homogeneity – members of the same cluster are highly similar to 
each other; and separation: members of different clusters have low similarity to each other. 

4.1 Protein-protein interaction data 

For the evaluation purpose, two different PPI networks have been used. The first one was 
derived from the Database of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu), 
which is a database that stores and organises experimentally determined PPI (Xenarios et 
al., 2000). There is the subset of PPI from Yeast S. cerevisiae, denoted as CORE, which is the 
result of assessment with the Expression Profile Reliability Index (ERP Index) and the 
Paralogous Verification Method (PVM) (for further details, see (Deane et al., 2002)). The 
CORE subset contained 6379 interactions. 
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and further analysed in (Luo et al., 2007). The module notion proposed was based on the 
degree definition of the sub-graphs. Unlike the approach described in Section 3, this method 
is based solely on topological properties of the protein sub-graph.  

Modules generated with SWEMODE were also compared with the modules derived in 
(Przulj et al., 2004), based on HCS (Highly Connected Subgraphs) clustering algorithm 
(Hartuv and Shamir, 2000). This method aims to find disjoint subsets (clusters) that should 
satisfy following criteria: homogeneity – members of the same cluster are highly similar to 
each other; and separation: members of different clusters have low similarity to each other. 

4.1 Protein-protein interaction data 

For the evaluation purpose, two different PPI networks have been used. The first one was 
derived from the Database of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu), 
which is a database that stores and organises experimentally determined PPI (Xenarios et 
al., 2000). There is the subset of PPI from Yeast S. cerevisiae, denoted as CORE, which is the 
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The second data set of PPI is obtained from the study by (von Mering et al., 2002). In that 
study, a quality assessment of large-scale data sets of protein-protein interactions in yeast 
was performed. A critical evaluation of the accuracy of high-throughput data is needed, 
because of the high rate of false interactions in these data sets. In (von Mering et al., 2002), 
data sets from yeast two-hybrid (Y2H) systems, protein complex purification techniques that 
rely on mass-spectroscopy (TAP and HMS-PCI), correlated mRNA expression profiles, 
genetic interactions, and in silico interaction predictions were analysed. As stated further in 
this study, each of these methods can be used to predict protein interactions, even though 
their goals are slightly different.  

The authors integrated about 80 000 interactions between yeast proteins and found that only 
2 455 were supported by more than one method. This low overlap between sets of protein 
interactions obtained from different methods may be due to the high fraction of false 
positives, but may also be caused by the difficulties for some methods to capture certain 
types of interactions. All interactions are classified by the level of confidence (low, medium, 
high), based on the evidence that supports them. In our study, we have used the interaction 
set with high level of confidence, meaning that all interactions are confirmed by several 
methods. This data set will be referred to as “von Mering”. The data set contains 2 455 
interactions between 988 proteins.  

4.2 Evaluation against MIPS functional categories 

The Munich Information Center for Protein Sequences (MIPS) provides high quality curated 
genome-related information, such as protein-protein interactions, protein complexes, 
protein functional categories, etc., spanning over several organisms.  

The MIPS functional catalogue database consists of different fields, such as functional 
catalogue (FunCat) number, EC number, GO number, keywords etc. FunCat is an annotation 
scheme that provides functional descriptions of proteins (Ruepp et al., 2004). There are in total 
28 main functional categories that are hierarchically structured. These categories cover 
functional fields such as metabolism, signal transduction, cellular transport etc. 

The MIPS Comprehensive Yeast Genome Database (CYGD) provides information on the 
molecular structure and functional network of S. cerevisiae. The information used here for 
the evaluation purposes is the protein complex catalogue that contains a manually curated 
set of protein complexes that serve as an example of a type of module. There is another data 
set containing protein complexes obtained from (Gavin et al., 2002). This data set was 
produced by using a single experimental method, whereas the complex data set from MIPS 
has been derived from experiments from many labs using different techniques. Therefore, 
MIPS database is more realistic and appropriate to use for evaluation. 

To evaluate and compare the performance of SWEMODE with two other methods for 
module identification, overlap score is used. In previous work, a similar evaluation has been 
applied to the clustering algorithm MCODE (Bader and Hogue, 2003), with respect to the 
number of matched complexes, but here slightly different definition of overlap score is used 
(see Equation 5). 

The overlap score Ol  (Poyatos and Hurst, 2004), is defined as: 
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where iM  is the predicted module, and jM  is a module from the MIPS complex data set. 
The Ol  measure assigns a score of 0 to modules that have no intersection with any known 
protein complex, whereas modules that exactly matches a known complex get the score 1.  

4.3 Results 

A total of 99 modules were detected in (Luo and Scheuermann, 2006). A new agglomerative 
algorithm was developed to identify modules from the network by combining the new 
module definition with the relative edge order generated by the Girvan-Newman algorithm. 
A JAVA program, MoNet, was developed to implement the algorithm Luo et al. (2007). 
Applying MoNet to the yeast core protein interaction network from the database of 
interacting proteins (DIP) identified 86 simple modules with sizes larger than 3 proteins. For 
convenience, those modules will be referred to as MoNet modules.   

Evaluation of the MoNet modules with the overlap score threshold has been performed, and 
the results are compared with the resulting modules from SWEMODE, generated across 
approximately 400 different parameter settings (for parameter settings, see (Lubovac et al., 
2006). We found that the modules derived from the latter show higher agreement with MIPS 
complexes (see Fig. 4). This comparison also indicates that introducing knowledge in terms  

 

 
 
Fig. 4. Comparison between MoNet modules and SWEMODE modules. 
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of semantic similarity into the network topology seems to be advantageous over using only 
topology information. Furthermore, this method produces one single partition of the 
network, which does not seem biologically plausible, as many proteins may be involved in 
different processes. 

We also compared our SWEMODE modules obtained from von Mering data with the 
modules derived in (Przulj et al., 2004), based on HCS. The modules generated with 
SWEMODE showed also here higher overlap with MIPS complexes (see Fig. 5). A more 
detailed analysis shows that both algorithms resulted in 39 identical modules. However, as 
HCS only discern the complexes that are highly interconnected, it discards many clusters 
that correspond to known complexes. 

Another disadvantage of both methods that are here compared to SWEMODE is that they 
do not allow any overlap between modules, i.e. they produce disjoint clusters.   

 

 
 
Fig. 5. Comparison between SWEMODE modules and modules generated with HCS 
clustering method. 

5. Conclusion 
The focus of attention in this chapter is the knowledge-based method that integrates domain 
specific knowledge, in this case functional information from Gene Ontology, with 
topological information, to derive modular structures from PPI networks. There are clear 
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disadvantages with the approaches that only rely on topological information, as previously 
described. In contrast to these methods that often suffer from lack of biological plausibility, 
the approach described here takes into consideration the functional knowledge about the 
experimental interactions, and in this way strengthen the validity of the obtained modular 
structures. Modules obtained in this way serve as models for studying interconnectivity, 
which is a step towards reconstruction of the higher order hierarchy of cellular networks.   

Three different biological aspects − molecular function, biological process and cellular 
component, have been employed and tested for their suitability for deriving modules. The 
identification of protein complexes may become more challenging as additional PPI data 
becomes available, because the interactions are noisy, and the integration of PPI data with 
annotation might prove a useful solution to this problem. The integrated approaches 
contribute to this solution, by increasing the confidence in high-throughput Y2H data. The 
approach also provides means for an increased understanding of the higher-order structures 
underlying cellular function. As annotations become more complete, the increased 
biological relevance of our module predictions with integrated approaches is expected to be 
even more evident.  

One of the biggest issues in this type of study is the difficulty to clearly characterise 
modules. There is no generally accepted definition of modules. A pioneering work in this 
area, performed by Hartwell et al. (1999) provides a wide definition, which leaves space for 
different authors to define different more specific criteria. This is, as also pointed out in 
(Schlosser and Wagner, 2004), unavoidable, and “retaining a pragmatic pluralism of 
different modularity concepts is probably a fruitful strategy for broadening our perspective 
and illuminating the importance of modularity at many different levels of organization”. 

A possible future application of the method described in this chapter is identification of 
modules of genes and proteins involved in various diseases, such as cancer. This module-
level knowledge can contribute to the understanding of cancer on system-level, which may 
be useful for developing new drugs. Cancer-related networks for a specific type of cancer 
may be derived from, for example, gene expression data. Deriving gene networks makes it 
possible to apply network theoretic approaches on the interconnected genes that are 
potentially related to cancer development. Furthermore, a comparative analysis of the 
cancer-related networks derived from different types of cancer could be performed to 
identify modules that are shared among different types, but also to identify the specific 
processes that characterize a certain type of cancer.   

Modular analysis may also be applied to identify general properties of the interrelated genes 
that are involved in the origin of cancer cells. A suitable model for this analysis is a gene 
fusion network in human neoplasia (Hoglund et al., 2006). By investigating topological 
properties of the cancer nodes in the network, such as node betweenness centrality, the 
cancer-related genes that act as “bridges” or communication points between various 
modules that correspond to cancer related processes may be identified. 

Explaining the relationships between structure, function and regulation of molecular 
networks at different levels of the complexity pyramid of life is one of the main goals in 
systems biology. By integrating the topology, i.e. various structural properties of the 
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networks with the functional knowledge encoded in protein annotations, and also analysing 
the interconnectivity between modules at different levels of the hierarchy, we aim to 
contribute to this goal. With the increasing availability of protein interaction data and more 
fine-grained GO annotations, this will help constructing a more complete view of 
interconnected modules to better understand the organisation of cells. 
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networks with the functional knowledge encoded in protein annotations, and also analysing 
the interconnectivity between modules at different levels of the hierarchy, we aim to 
contribute to this goal. With the increasing availability of protein interaction data and more 
fine-grained GO annotations, this will help constructing a more complete view of 
interconnected modules to better understand the organisation of cells. 
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1. Introduction

Proteins with interactions carry out most biological functions within living cells such as
gene expression, enzymatic reactions, signal transduction, inter-cellular communications and
immunoreactions. As the interactions are mediated by short sequence of residues among
the long stretches of interacting sequences, these interacting residues or so-called interaction
(binding) sites are at the central spot of proteome research. Although many imaging wet-lab
techniques like X-ray crystallography, nuclear magnetic resonance spectroscopy, electron
microscopy and mass spectrometry have been developed to determine protein interaction
sites, the solved amount of protein interaction sites constitute only a tiny proportion among
the whole population due to high cost and low throughput. Computational methods are
still considered as the major approaches for the deep understanding of protein binding
sites, especially for their subtle 3-dimensional structure properties that are not accessible by
experimental methods.

The classical graph concept—maximal biclique subgraph (also known as maximal complete
bipartite subgraph)—has been emerged recently for bioinformatics research closely related to
topological structures of protein interaction networks and biomolecular binding sites. For
example, Thomas et al. introduced complementary domains in (Thomas et al., 2003), and
they showed that the complementary domains can form near complete bipartite subgraphs
in PPI networks. A lock-and-key model has been proposed by Morrison et al. which is also
based on the concept of maximal complete bipartite subgraphs (Morrison et al., 2006). Very
recently, Andreopoulos et al. used clusters in PPI networks for identifying locally significant
protein mediators (Andreopoulos et al., 2007). Their idea is to cluster common-friend
proteins, which are in fact complete-bipartite proteins, based on their similarity to their direct
neighborhoods in PPI networks. Other computational methods studying bipartite structures
of PPI networks include (Bu et al., 2003; Hishigaki et al., 2001) which are focused on protein
function prediction.

To identify motif pairs at protein interaction sites, Li et al. introduced a novel method with the
core idea related to the concept of complete bipartite subgraphs from PPI networks (Li et al.,
2006). The first step of the algorithm in (Li et al., 2006) finds large subnetworks with
all-versus-all interactions (complete bipartite subgraphs) between a pair of protein groups.
As the proteins within these protein groups have similar protein interactions and may share
the same interaction sites, the second step of Li’s algorithm is to compute conserved motifs
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the long stretches of interacting sequences, these interacting residues or so-called interaction
(binding) sites are at the central spot of proteome research. Although many imaging wet-lab
techniques like X-ray crystallography, nuclear magnetic resonance spectroscopy, electron
microscopy and mass spectrometry have been developed to determine protein interaction
sites, the solved amount of protein interaction sites constitute only a tiny proportion among
the whole population due to high cost and low throughput. Computational methods are
still considered as the major approaches for the deep understanding of protein binding
sites, especially for their subtle 3-dimensional structure properties that are not accessible by
experimental methods.

The classical graph concept—maximal biclique subgraph (also known as maximal complete
bipartite subgraph)—has been emerged recently for bioinformatics research closely related to
topological structures of protein interaction networks and biomolecular binding sites. For
example, Thomas et al. introduced complementary domains in (Thomas et al., 2003), and
they showed that the complementary domains can form near complete bipartite subgraphs
in PPI networks. A lock-and-key model has been proposed by Morrison et al. which is also
based on the concept of maximal complete bipartite subgraphs (Morrison et al., 2006). Very
recently, Andreopoulos et al. used clusters in PPI networks for identifying locally significant
protein mediators (Andreopoulos et al., 2007). Their idea is to cluster common-friend
proteins, which are in fact complete-bipartite proteins, based on their similarity to their direct
neighborhoods in PPI networks. Other computational methods studying bipartite structures
of PPI networks include (Bu et al., 2003; Hishigaki et al., 2001) which are focused on protein
function prediction.

To identify motif pairs at protein interaction sites, Li et al. introduced a novel method with the
core idea related to the concept of complete bipartite subgraphs from PPI networks (Li et al.,
2006). The first step of the algorithm in (Li et al., 2006) finds large subnetworks with
all-versus-all interactions (complete bipartite subgraphs) between a pair of protein groups.
As the proteins within these protein groups have similar protein interactions and may share
the same interaction sites, the second step of Li’s algorithm is to compute conserved motifs
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(possible interaction sites) by multiple sequence alignments within each protein group. Thus,
those conserved motifs can be paired with motifs identified from other protein groups to
model protein interaction sites. One of the novel aspects of the algorithm in (Li et al., 2006) is
that it combines two types of data: the PPI data and the associated sequence data for modeling
binding motif pairs.

Each protein in the above PPI networks is represented by a vertex and every interaction
between two proteins is represented by an edge. Discovering complete bipartite subgraphs
in PPI networks can thus be formulated as the following biclique problem: Given a graph,
the biclique problem is to find a subgraph which is bipartite and complete. The objective is
to maximize the number of vertices or edges in the bipartite complete subgraph. We note
that the maximum vertex biclique problem is polynomial time solvable (Yannakakis, 1981).
This problem is also equivalent to the maximum independent set problem on bipartite graphs
which is known to be solvable by a minimum cut algorithm. However, the maximum vertex
balanced biclique problem is NP-hard (Garey & Johnson, 1979). The maximum edge biclique
problem is proved to be NP-hard as well (Peeters, 2003).

In this paper, we consider incompleteness of biological data, as the interaction data of PPI
networks is usually not fully available. On the other hand, within an interacting protein
group pair, some proteins in one group may only interact with a proportion of the proteins
in the other group. Therefore, many subgraphs formed by interacting protein group pairs
are not perfect bicliques. They are more often near complete bipartite subgraphs. Therefore,
methods of finding bicliques may miss many useful interacting protein group pairs. To deal
with this problem, we use quasi-bicliques instead of bicliques to find interacting protein
group pairs. With the quasi-biclique, even though some interactions are missing in a protein
interaction subnetwork, we can still find the two interacting protein groups. In this paper,
we introduce and investigate the maximum vertex quasi-biclique problem. We show that the
problem is NP-hard. We also propose approximation and heuristic algorithms for finding
large quasi-bicliques in PPI networks. The applications for finding protein-protein binding
sites are illustrated.

2. Bicliques and quasi-bicliques

Let G = (V , E) be an undirected graph, where each vertex represents a protein and there is an
edge connecting two vertices if the two proteins have an interaction. Since G is an undirected
graph, any edge (u, v) ∈ E implies (v, u) ∈ E . For a selected edge (u, v) in G , in order to find
the two groups of proteins having the similar pairs of binding sites, we translate the graph
G = (V , E) into a bipartite graph. Let X = {x|(x, v) ∈ E}, Y1 = {y|(u, y) ∈ E&y �∈ X} and
Y2 = {w|(u, w) ∈ E&w ∈ X}. For a vertex w ∈ Y2, w is incident to both u and v in G . Thus
both X and Y2 contain w. We keep w in X and replace w in Y2 with a new virtual vertex w.
After replacing all vertices w in Y2 with w, we get a new vertex set Y2. Let Y = Y1 ∪ Y2 and
E = {(x, y)|(x, y) ∈ E&x ∈ X&y ∈ Y1} ∪ {(x, w)|(x, w) ∈ E&x ∈ X&w ∈ Y2}. In this way,
we have a bipartite graph G = (X ∪ Y, E). A biclique in G corresponds to two subsets of
vertices, say, subset A and subset B, in G . In G , every vertex in A is adjacent to all the vertices
in B, and every vertex in B is adjacent to all the vertices in A. Moreover, A ∩ B may not be
empty. In this case, for any vertex w ∈ A ∩ B, (w, w) ∈ E . This is the case, where the protein
has a self-loop. Self-loops are very common in practice. When a self-loop appears, one protein
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molecule interacts with another identical protein molecule. For example, two identical protein
subunits can assemble together to form a homodimeric protein.

In the following, we focus on the bipartite graph G = (X ∪ Y, E). For a vertex x ∈ X and
a vertex set Y� ⊆ Y, the degree of x in Y� is the number of vertices in Y� that are adjacent
to x, denoted by d(x, Y�) = |{y|y ∈ Y�&(x, y) ∈ E}|. Similarly, for a vertex y ∈ Y and
X� ⊆ X, we use d(y, X�) to denote |{x|x ∈ X�&(x, y) ∈ E}|. Now, we are ready to define the
δ-quasi-biclique.

Definition 1. For a bipartite graph G = (X ∪ Y, E) and a parameter 0 < δ ≤ 1
2 , G is called a

δ-quasi-biclique if for each x ∈ X, d(x, Y) ≥ (1 − δ)|Y| and for each y ∈ Y, d(y, X) ≥ (1 − δ)|X|.

Similarly, a δ-quasi-biclique in G corresponds to two subsets of vertices, say, subset A and
subset B, in G . In G , every vertex in A is adjacent to at least (1 − δ)|B| vertices in B, and
every vertex in B is adjacent to at least (1 − δ)|A| vertices in A. Moreover, according to the
translation and the definition, A ∩ B may not be empty. Again, if a protein appears in both
sides of a δ-quasi-biclique and there is an edge between the two corresponding vertices, the
protein has a self-loop. In our experiments, we observe that about 22% of the δ-quasi-bicliques
produced by our program contain self-loop proteins.

In many applications, due to various reasons, some edges in a clique/biclique may
be missing and a clique/biclique becomes a quasi-clique/quasi-biclique. Thus, finding
quasi-cliques/quasi-bicliques is more important in practice. Here we show that large
quasi-bicliques may not contain any large bicliques.

Theorem 1. Let G = (X ∪ Y, E) be a random graph with |X| = |Y| = n, where for each pair of
vertices x ∈ X and y ∈ Y, (x, y) is chosen, randomly and independently, to be an edge in E with
probability 2

3 . When n → ∞, with high probability, G is a 1
2 -quasi-biclique, and G does not contain

any biclique G� = (X� ∪ Y�, E�) with |X�| ≥ 2 log n and |Y�| ≥ 2 log n.

In the biological context, Theorem 1 indicates that it is possible that some large interacting
protein groups cannot be obtained by simply finding a maximal biclique if a few (interaction)
edges are missing. As large interacting protein groups are more useful, according to this
theorem, we have to develop new computational algorithms to extract from PPI networks
large interacting protein groups which form quasi-bicliques.

In terms of false positive edges, both quasi-biclique and biclique can handle spurious edges
very well. If very few spurious edges are added, in most cases, an irrelative protein will
not be included in the quasi-bicliques or biclique unless (1 − δ)|A| spurious edges are
simultaneously added to the protein that has no interaction with any of the proteins in A,
where A is one of the two interaction groups.

The maximum vertex quasi-biclique problem is defined as follows.

Definition 2. Given a bipartite graph G = (X ∪ Y, E) and 0 < δ ≤ 1
2 , the maximum vertex

δ-quasi-biclique problem is to find X� ⊆ X and Y� ⊆ Y such that the X� ∪ Y� induced subgraph is a
δ-quasi-biclique and |X� |+ |Y�| is maximized.

The maximum vertex biclique problem, where δ = 0, can be solved in polynomial
time (Yannakakis, 1981). Here we show that the maximum vertex δ-quasi-biclique problem
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(possible interaction sites) by multiple sequence alignments within each protein group. Thus,
those conserved motifs can be paired with motifs identified from other protein groups to
model protein interaction sites. One of the novel aspects of the algorithm in (Li et al., 2006) is
that it combines two types of data: the PPI data and the associated sequence data for modeling
binding motif pairs.

Each protein in the above PPI networks is represented by a vertex and every interaction
between two proteins is represented by an edge. Discovering complete bipartite subgraphs
in PPI networks can thus be formulated as the following biclique problem: Given a graph,
the biclique problem is to find a subgraph which is bipartite and complete. The objective is
to maximize the number of vertices or edges in the bipartite complete subgraph. We note
that the maximum vertex biclique problem is polynomial time solvable (Yannakakis, 1981).
This problem is also equivalent to the maximum independent set problem on bipartite graphs
which is known to be solvable by a minimum cut algorithm. However, the maximum vertex
balanced biclique problem is NP-hard (Garey & Johnson, 1979). The maximum edge biclique
problem is proved to be NP-hard as well (Peeters, 2003).

In this paper, we consider incompleteness of biological data, as the interaction data of PPI
networks is usually not fully available. On the other hand, within an interacting protein
group pair, some proteins in one group may only interact with a proportion of the proteins
in the other group. Therefore, many subgraphs formed by interacting protein group pairs
are not perfect bicliques. They are more often near complete bipartite subgraphs. Therefore,
methods of finding bicliques may miss many useful interacting protein group pairs. To deal
with this problem, we use quasi-bicliques instead of bicliques to find interacting protein
group pairs. With the quasi-biclique, even though some interactions are missing in a protein
interaction subnetwork, we can still find the two interacting protein groups. In this paper,
we introduce and investigate the maximum vertex quasi-biclique problem. We show that the
problem is NP-hard. We also propose approximation and heuristic algorithms for finding
large quasi-bicliques in PPI networks. The applications for finding protein-protein binding
sites are illustrated.

2. Bicliques and quasi-bicliques

Let G = (V , E) be an undirected graph, where each vertex represents a protein and there is an
edge connecting two vertices if the two proteins have an interaction. Since G is an undirected
graph, any edge (u, v) ∈ E implies (v, u) ∈ E . For a selected edge (u, v) in G , in order to find
the two groups of proteins having the similar pairs of binding sites, we translate the graph
G = (V , E) into a bipartite graph. Let X = {x|(x, v) ∈ E}, Y1 = {y|(u, y) ∈ E&y �∈ X} and
Y2 = {w|(u, w) ∈ E&w ∈ X}. For a vertex w ∈ Y2, w is incident to both u and v in G . Thus
both X and Y2 contain w. We keep w in X and replace w in Y2 with a new virtual vertex w.
After replacing all vertices w in Y2 with w, we get a new vertex set Y2. Let Y = Y1 ∪ Y2 and
E = {(x, y)|(x, y) ∈ E&x ∈ X&y ∈ Y1} ∪ {(x, w)|(x, w) ∈ E&x ∈ X&w ∈ Y2}. In this way,
we have a bipartite graph G = (X ∪ Y, E). A biclique in G corresponds to two subsets of
vertices, say, subset A and subset B, in G . In G , every vertex in A is adjacent to all the vertices
in B, and every vertex in B is adjacent to all the vertices in A. Moreover, A ∩ B may not be
empty. In this case, for any vertex w ∈ A ∩ B, (w, w) ∈ E . This is the case, where the protein
has a self-loop. Self-loops are very common in practice. When a self-loop appears, one protein
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molecule interacts with another identical protein molecule. For example, two identical protein
subunits can assemble together to form a homodimeric protein.

In the following, we focus on the bipartite graph G = (X ∪ Y, E). For a vertex x ∈ X and
a vertex set Y� ⊆ Y, the degree of x in Y� is the number of vertices in Y� that are adjacent
to x, denoted by d(x, Y�) = |{y|y ∈ Y�&(x, y) ∈ E}|. Similarly, for a vertex y ∈ Y and
X� ⊆ X, we use d(y, X�) to denote |{x|x ∈ X�&(x, y) ∈ E}|. Now, we are ready to define the
δ-quasi-biclique.

Definition 1. For a bipartite graph G = (X ∪ Y, E) and a parameter 0 < δ ≤ 1
2 , G is called a

δ-quasi-biclique if for each x ∈ X, d(x, Y) ≥ (1 − δ)|Y| and for each y ∈ Y, d(y, X) ≥ (1 − δ)|X|.

Similarly, a δ-quasi-biclique in G corresponds to two subsets of vertices, say, subset A and
subset B, in G . In G , every vertex in A is adjacent to at least (1 − δ)|B| vertices in B, and
every vertex in B is adjacent to at least (1 − δ)|A| vertices in A. Moreover, according to the
translation and the definition, A ∩ B may not be empty. Again, if a protein appears in both
sides of a δ-quasi-biclique and there is an edge between the two corresponding vertices, the
protein has a self-loop. In our experiments, we observe that about 22% of the δ-quasi-bicliques
produced by our program contain self-loop proteins.

In many applications, due to various reasons, some edges in a clique/biclique may
be missing and a clique/biclique becomes a quasi-clique/quasi-biclique. Thus, finding
quasi-cliques/quasi-bicliques is more important in practice. Here we show that large
quasi-bicliques may not contain any large bicliques.

Theorem 1. Let G = (X ∪ Y, E) be a random graph with |X| = |Y| = n, where for each pair of
vertices x ∈ X and y ∈ Y, (x, y) is chosen, randomly and independently, to be an edge in E with
probability 2

3 . When n → ∞, with high probability, G is a 1
2 -quasi-biclique, and G does not contain

any biclique G� = (X� ∪ Y�, E�) with |X�| ≥ 2 log n and |Y�| ≥ 2 log n.

In the biological context, Theorem 1 indicates that it is possible that some large interacting
protein groups cannot be obtained by simply finding a maximal biclique if a few (interaction)
edges are missing. As large interacting protein groups are more useful, according to this
theorem, we have to develop new computational algorithms to extract from PPI networks
large interacting protein groups which form quasi-bicliques.

In terms of false positive edges, both quasi-biclique and biclique can handle spurious edges
very well. If very few spurious edges are added, in most cases, an irrelative protein will
not be included in the quasi-bicliques or biclique unless (1 − δ)|A| spurious edges are
simultaneously added to the protein that has no interaction with any of the proteins in A,
where A is one of the two interaction groups.

The maximum vertex quasi-biclique problem is defined as follows.

Definition 2. Given a bipartite graph G = (X ∪ Y, E) and 0 < δ ≤ 1
2 , the maximum vertex

δ-quasi-biclique problem is to find X� ⊆ X and Y� ⊆ Y such that the X� ∪ Y� induced subgraph is a
δ-quasi-biclique and |X� |+ |Y�| is maximized.

The maximum vertex biclique problem, where δ = 0, can be solved in polynomial
time (Yannakakis, 1981). Here we show that the maximum vertex δ-quasi-biclique problem
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when δ > 0 is NP-hard. The reduction is from X3C (Exact Cover by 3-Sets), which is known
to be NP-hard (Karp, 1972).

Theorem 2. For any constant integers p > 0 and q > 0 such that 0 <
p
q ≤ 1

2 , the maximum vertex
p
q -quasi-biclique problem is NP-hard.

3. A polynomial time approximation scheme

The following lemma that is originally from (Li et al., 2002) will be repeatedly used in our
proofs.

Lemma 1. Let X1, X2, . . . , Xn be n independent random 0-1 variables, where Xi takes 1 with
probability pi, 0 < pi < 1. Let X = ∑n

i=1 Xi, and μ = E[X]. Then for any 0 < � ≤ 1,

Pr(X > μ + � n) < exp(− 1
3

n�2),

Pr(X < μ − � n) ≤ exp(− 1
2

n�2).

The Main Ideas and Techniques: The problem can be formulated as a quadratic
programming problem. We use a random sampling technique and a randomized rounding
method to get a good approximate solution for the quadratic programming problem under
the conditions that |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|). The random sampling technique
involves to randomly select r1 = Ω(log |Xopt|)) vertices from Xopt when Xopt is not known.
This can be done when |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|).
In order to make sure that |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|), we design a combinatorial
approach to find a subset X� ⊆ X and a subset Y� ⊆ Y such that |X�| = Ω(|Xopt| + |Yopt|),
|X� ∩Xopt| ≥ (1− �)|Xopt, |Y�| = Ω(|Xopt|+ |Yopt|) and |Y� ∩Yopt| ≥ (1− �)|Yopt|. See Lemma
2. Thus, we can work on a bipartite graph induced by X� and Y�. Without loss of generality, we
can assume that |Yopt| ≥ |Xopt|. Now, two subcases arise: Case 1: |Xopt| ≤ �|Yopt|, and Case
2: |Xopt| > �|Yopt|. For case 1, we can use linear programming approach and a brute-force
approach to solve the problem. For case 2, we can use the quadratic programming approach
to solve the problem.

Let G = (X ∪ Y, E) be the input bipartite graph. Let Xopt ⊆ X and Yopt ⊆ Y be the optimal
biclique for the maximum quasi-biclique problem. Without loss of generality, we can assume
that

Assumption 1: |Yopt| ≥ |Xopt|.
The basic idea of our algorithm is to (1) formulate the problem into a quadratic programming
problem and (2) use a random sampling approach to approximately solve the problem. In
order to make the random sampling approach work, we have to make sure that

|Xopt| = Ω(|X|) (1)

and

|Yopt| = Ω(|Y|). (2)
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However, for any input bipartite graph G = (X ∪ Y, E), there is no guarantee that (1) and
(2) hold. Here we propose a method to find a subset X� of X and Y� of Y such that for any
t > 0, |Xopt| = Ω(|X�|), |Xopt ∩ X� | ≥ t−1

t |Xopt|, |Yopt| = Ω(|Y�|), and |Yopt ∩ Y�| ≥ t−1
t |Yopt|.

If we can obtain this kind of X� and Y�, then we can work on the induced bipartite graph
G� = (X� ∪ Y�, E�), where E� = {(u, v)|u ∈ X�, v ∈ Y� and (u, v) ∈ E}. Obviously, any good
approximate solution of G� is also a good approximate solution of G.

Let xi be a vertex in the bipartite graph G = (X ∪Y, E). Define D(xi, Y) to be the set of vertices
in Y that are incident to xi. The following lemma tells us how to obtain X� and Y�.

Lemma 2. For any t > 0, there exist k vertices x1, x2, . . ., xk in X for k = �δt� such that
|⋃k

i=1 D(xi , Y)| ≤ k(|Yopt| + |Xopt|) and |Yopt ∩ ⋃k
i=1 D(xi , Y)| ≥ t−1

t |Yopt|. Similarly, there
exists k vertices y1, y2, . . ., yk in Y for k = �δt − 1� such that |⋃k

i=1 D(yi, X)| ≤ k(|Yopt|+ |Xopt|)
and |Xopt ∩⋃k

i=1 D(yi, X)| ≥ t−1
t |Xopt|.

Though we do not know which k vertices in X we should choose, we can try all possible
size k subsets of X in O(|X|k) time for constant k. The value of k is �δt� and is determined
by t later. Thus, from now on, we assume that the k vertices x1, x2, . . ., xk are known. Let
X� = ⋃k

i=1 D(yi, X) and Y� = ⋃k
i=1 D(xi, Y). We will focus on finding a quasi-biclique in the

sub-graph G� = (X� ∪ Y�, E�) of G induced by X� and Y�.

Let X�
opt ⊆ X� and Y�

opt ⊆ Y� be a quasi-(δ + 1
t )-biclique with maximum number of vertices in

G�. From Lemma 2, |X�
opt|+ |Y�

opt| ≥ (1− 1
t )(|Xopt|+ |Yopt|) since X� ∩ Xopt and Y� ∩Yopt also

form a quasi-δ + 1
t -biclique of size (1 − 1

t )(|Xopt|+ |Yopt|). From now on, we will try to find a
good approximate solution for X�

opt and Y�
opt.

If |X�
opt| and |Y�

opt| are approximately the same, then we have |X�
opt| = Ω(|X�|) and |Y�

opt| =
Ω(|Y�|). That is, (1) and (2) hold for graph G�. Therefore, we can use quadratic programming
approach to solve the problem. Nevertheless, there is no guarantee that |X�

opt| and |Y�
opt| are

approximately the same. For any � > 0, we consider two cases.

Case 1: |X�
opt| < �|Y�

opt|. In this case, the number of vertices in Y�
opt will dominate the size of

the whole quasi-biclique. If we select a vertex x ∈ X�
opt, then x and D(x, Y�) form a biclique of

size at least 1 + (1 − δ)|d(x, Y�)| ≥ 1 + (1 − δ)|Y�
opt|. When the value of δ is big with respect to

�, we do not have the desired quasi-biclique. If we try to add more vertices from Y�, we have
to guarantee that for every selected vertex y in Y�, y is incident to at least (1 − δ)|X�| selected
vertices in X�. This is impossible if x is the only selected vertex from X�. Therefore, we have to
consider to add more vertices from both X� and Y�. It is clear that the task here is non-trivial.

In the following lemma, we will show that there exists a subset of r vertices (for some constant
r) Xr ⊆ X� and a subset Y��

opt ⊆ Y�
opt such that Xr and Y��

opt form a quasi-(δ + ���)-biclique with
|Y��

opt| ≥ (1 − ���)|Yopt| for some ��� > 0. Here r and ��� are closely related.

Lemma 3. Let 1
t = ��. There exists a subset X�

r of X�
opt containing r = 2

��2 log( 1
�� ) elements and a

subset Y��
opt of Y�

opt with |Y��
opt| ≥ (1 − r(r−1)

2|Xopt| − 2��)|Y�
opt| such that X�

r and Y��
opt form a quasi-(δ +

r(r−1)
2|X�

opt| + 2��)-biclique.
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when δ > 0 is NP-hard. The reduction is from X3C (Exact Cover by 3-Sets), which is known
to be NP-hard (Karp, 1972).

Theorem 2. For any constant integers p > 0 and q > 0 such that 0 <
p
q ≤ 1

2 , the maximum vertex
p
q -quasi-biclique problem is NP-hard.

3. A polynomial time approximation scheme

The following lemma that is originally from (Li et al., 2002) will be repeatedly used in our
proofs.

Lemma 1. Let X1, X2, . . . , Xn be n independent random 0-1 variables, where Xi takes 1 with
probability pi, 0 < pi < 1. Let X = ∑n

i=1 Xi, and μ = E[X]. Then for any 0 < � ≤ 1,

Pr(X > μ + � n) < exp(− 1
3

n�2),

Pr(X < μ − � n) ≤ exp(− 1
2

n�2).

The Main Ideas and Techniques: The problem can be formulated as a quadratic
programming problem. We use a random sampling technique and a randomized rounding
method to get a good approximate solution for the quadratic programming problem under
the conditions that |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|). The random sampling technique
involves to randomly select r1 = Ω(log |Xopt|)) vertices from Xopt when Xopt is not known.
This can be done when |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|).
In order to make sure that |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|), we design a combinatorial
approach to find a subset X� ⊆ X and a subset Y� ⊆ Y such that |X�| = Ω(|Xopt| + |Yopt|),
|X� ∩Xopt| ≥ (1− �)|Xopt, |Y�| = Ω(|Xopt|+ |Yopt|) and |Y� ∩Yopt| ≥ (1− �)|Yopt|. See Lemma
2. Thus, we can work on a bipartite graph induced by X� and Y�. Without loss of generality, we
can assume that |Yopt| ≥ |Xopt|. Now, two subcases arise: Case 1: |Xopt| ≤ �|Yopt|, and Case
2: |Xopt| > �|Yopt|. For case 1, we can use linear programming approach and a brute-force
approach to solve the problem. For case 2, we can use the quadratic programming approach
to solve the problem.

Let G = (X ∪ Y, E) be the input bipartite graph. Let Xopt ⊆ X and Yopt ⊆ Y be the optimal
biclique for the maximum quasi-biclique problem. Without loss of generality, we can assume
that

Assumption 1: |Yopt| ≥ |Xopt|.
The basic idea of our algorithm is to (1) formulate the problem into a quadratic programming
problem and (2) use a random sampling approach to approximately solve the problem. In
order to make the random sampling approach work, we have to make sure that

|Xopt| = Ω(|X|) (1)

and

|Yopt| = Ω(|Y|). (2)
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However, for any input bipartite graph G = (X ∪ Y, E), there is no guarantee that (1) and
(2) hold. Here we propose a method to find a subset X� of X and Y� of Y such that for any
t > 0, |Xopt| = Ω(|X�|), |Xopt ∩ X� | ≥ t−1

t |Xopt|, |Yopt| = Ω(|Y�|), and |Yopt ∩ Y�| ≥ t−1
t |Yopt|.

If we can obtain this kind of X� and Y�, then we can work on the induced bipartite graph
G� = (X� ∪ Y�, E�), where E� = {(u, v)|u ∈ X�, v ∈ Y� and (u, v) ∈ E}. Obviously, any good
approximate solution of G� is also a good approximate solution of G.

Let xi be a vertex in the bipartite graph G = (X ∪Y, E). Define D(xi, Y) to be the set of vertices
in Y that are incident to xi. The following lemma tells us how to obtain X� and Y�.

Lemma 2. For any t > 0, there exist k vertices x1, x2, . . ., xk in X for k = �δt� such that
|⋃k

i=1 D(xi , Y)| ≤ k(|Yopt| + |Xopt|) and |Yopt ∩ ⋃k
i=1 D(xi , Y)| ≥ t−1

t |Yopt|. Similarly, there
exists k vertices y1, y2, . . ., yk in Y for k = �δt − 1� such that |⋃k

i=1 D(yi, X)| ≤ k(|Yopt|+ |Xopt|)
and |Xopt ∩⋃k

i=1 D(yi, X)| ≥ t−1
t |Xopt|.

Though we do not know which k vertices in X we should choose, we can try all possible
size k subsets of X in O(|X|k) time for constant k. The value of k is �δt� and is determined
by t later. Thus, from now on, we assume that the k vertices x1, x2, . . ., xk are known. Let
X� = ⋃k

i=1 D(yi, X) and Y� = ⋃k
i=1 D(xi, Y). We will focus on finding a quasi-biclique in the

sub-graph G� = (X� ∪ Y�, E�) of G induced by X� and Y�.

Let X�
opt ⊆ X� and Y�

opt ⊆ Y� be a quasi-(δ + 1
t )-biclique with maximum number of vertices in

G�. From Lemma 2, |X�
opt|+ |Y�

opt| ≥ (1− 1
t )(|Xopt|+ |Yopt|) since X� ∩ Xopt and Y� ∩Yopt also

form a quasi-δ + 1
t -biclique of size (1 − 1

t )(|Xopt|+ |Yopt|). From now on, we will try to find a
good approximate solution for X�

opt and Y�
opt.

If |X�
opt| and |Y�

opt| are approximately the same, then we have |X�
opt| = Ω(|X�|) and |Y�

opt| =
Ω(|Y�|). That is, (1) and (2) hold for graph G�. Therefore, we can use quadratic programming
approach to solve the problem. Nevertheless, there is no guarantee that |X�

opt| and |Y�
opt| are

approximately the same. For any � > 0, we consider two cases.

Case 1: |X�
opt| < �|Y�

opt|. In this case, the number of vertices in Y�
opt will dominate the size of

the whole quasi-biclique. If we select a vertex x ∈ X�
opt, then x and D(x, Y�) form a biclique of

size at least 1 + (1 − δ)|d(x, Y�)| ≥ 1 + (1 − δ)|Y�
opt|. When the value of δ is big with respect to

�, we do not have the desired quasi-biclique. If we try to add more vertices from Y�, we have
to guarantee that for every selected vertex y in Y�, y is incident to at least (1 − δ)|X�| selected
vertices in X�. This is impossible if x is the only selected vertex from X�. Therefore, we have to
consider to add more vertices from both X� and Y�. It is clear that the task here is non-trivial.

In the following lemma, we will show that there exists a subset of r vertices (for some constant
r) Xr ⊆ X� and a subset Y��

opt ⊆ Y�
opt such that Xr and Y��

opt form a quasi-(δ + ���)-biclique with
|Y��

opt| ≥ (1 − ���)|Yopt| for some ��� > 0. Here r and ��� are closely related.

Lemma 3. Let 1
t = ��. There exists a subset X�

r of X�
opt containing r = 2

��2 log( 1
�� ) elements and a

subset Y��
opt of Y�

opt with |Y��
opt| ≥ (1 − r(r−1)

2|Xopt| − 2��)|Y�
opt| such that X�

r and Y��
opt form a quasi-(δ +

r(r−1)
2|X�

opt| + 2��)-biclique.

117Mining Protein Interaction Groups



6 Will-be-set-by-IN-TECH

Based on Lemma 3, we can design an algorithm that finds a quasi-(δ + 4��)-biclique with size
at least (1 − 4�� − �)(|X�

opt|+ |Y�
opt|). Let G� = (X� ∪ Y�, E�) be the sub-graph obtained from

Lemma 2. For any �� > 0, define r = 2
��2 log( 1

�� ).

Case 1.1. |X�
opt| ≥ r(r−1)

�� : When |X�
opt| ≥ r(r−1)

�� , r(r−1)
2|X�

opt| ≤ ��. Thus, there exist a quasi-(δ +

3��)-biclique Xr ⊂ X� and Y��
opt as described in Lemma 3.

We select r vertices from X�. For each subset Xr ⊆ X� of r vertices {v1, v2, . . . , vr}, we define
the following integer linear programming. Let ci,j be a constant, where ci,j = 1 if (vi, uj) ∈ E�;
and ci,j = 0 if (vi, uj) �∈ E�. Let yi be a 0/1 variable, where yi = 1 indicates that the vertex ui
in Y� is selected in the quasi-biclique and yi = 0 otherwise.

yi(
r

∑
j=1

ci,j) ≥ (1 − δ − 1
t
− ��)r (3)

|Y�|
∑
i=1

yici,j ≥ (1 − δ − 3��)|Y�
opt| for j = 1, 2, . . . , r, (4)

Here we do not know |Y�
opt|. However, we can guess the value of |Y�

opt| by trying |Y�
opt| =

1, 2, . . . , |Y�|. The integer programming problem formulated by (3) and (4) has no objective
function and we just want a feasible solution to fit (3) and (4). The integer programming
problem is hard to solve. However, we can obtain a fractional solution ȳi for (3) and (4) with
0 ≤ ȳi ≤ 1 in polynomial time. After obtaining the fractional solution ȳi, we randomly set yi
to be 1 with probability ȳi.

Lemma 4. Assume that 1
2 (1 − δ − 3��)|Y�

opt|��2 ≥ 2 log r and 1
t = ��. With probability at least

1 − 1
r , we can get a pair of subsets XA ⊆ X� and YA ⊆ Y� (an integer solution) by randomized

rounding according to the probability ȳi such that XA and YA form a quasi-(δ + 4��)-biclique with
|XA|+ |YA| ≥ (1 − δ − 4��)|Y�

opt|.

A standard method in (Li et al., 2002) can give a de-randomized algorithm.

When 1
2 (1 − δ − 3��)|Y�

opt|)��2 < 2 log r, we can enumerate all possible subsets of size (1 − δ −
3��)|Y�

opt| in Y� in polynomial time to get the desired solution.

Case 1.2. |X�
opt| < r(r−1)

�� : In this case, X�
opt and Y�

opt form the desired quasi-δ-biclique. Instead
of selecting r vertices in X�, we select |X�

opt| vertices in X�. Though we do not know the value

of |x�opt|, we can guess the value for |x�opt| = 1, 2, . . . , r(r−1)
�� . We also solve the integer linear

programming (3) and (4) in the same way as in Case 1.1. The algorithm for Case 1 is given in
Fig. 1.

Theorem 3. Assume |X�
opt| ≤ �|Y�

opt|. We set 1
t = �� in the algorithm. With probability at

least 1 − 1
r , Algorithm 1 finds a quasi-(δ + 4��)-biclique XA ⊆ X and YA ⊆ Y with |XA| +

|YA| ≥ (1 − δ − 4��)(|Xopt| + |Yopt|)(1 − ��)/(1 + �) in time O((|X||Y|)�δt�[|X||Y||Y�| 4 log r
��2 +

|X� | r(r−1)
�� r(r−1)

�� (|X|+ |Y|)3)]).
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Algorithm 1: Algorithm for Solving Case 1: |X�
opt| ≤ �|Y�

opt|.
Input: a bipartite graph G = (X ∪ Y, E), a real number 0 ≤ δ ≤ 0.5, a number

t > 0, a number � > 0, and a number �� > 0.
0. Let k = �δt�.
1. for any v1, v2, . . . , vk ∈ X and any u1, u2, . . . , uk ∈ Y do
2. Set X� = ∪k

i=1D(vi, Y) and Y� = ∪k
i=1D(ui, X).

3 r == 2
��2 log( 1

�� )
4 Guess |X�

opt| and |Y�
opt| assuming |X�

opt| ≤ �|Y�
opt|.

5 if 1
2 (1 − δ − 3��)|Y�

opt|��2 < 2 log r then enumerate all possible subsets of
size (1− δ− 3��)|Y�

opt| in Y� in polynomial time to get the desired solution.
6 if 1

2 (1 − δ − 3��)|Y�
opt|)��2 > 2 log r) then

7 for i = r, r + 1, . . . r(r−1)
�� do

8 for every i-elements subset Xi = {x1, x2, . . . , xi} do
9 give a fractinal solution ȳi for (3) and (4).
10 randomly set yi = 1 with probability ȳi.
8. Output a δ + 1

t + 4�� quasi-biclique with the biggest |XA|+ |YA|.
Fig. 1. The algorithm for solving Case 1.

Case 2: |X�
opt| ≥ �|Y�

opt|. In this case, we have |X�
opt| = Ω(|X� |) and |Y�

opt| = Ω(|Y�|). We
will use a quadratic programming approach to solve the problem. We can formulate the
quasi-biclique problem for the bipartite graph G� = (X� ∪ Y�, E�) into the following quadratic
programming problem.

Quadratic programming formulation:

Let xi and yj be 0/1 variables, where xi = 1 indicates that vertex vi in X� is in the quasi-biclique
and yj = 1 indicates that vertex uj in Y� is in the quasi-biclique. Define ei,j = 1 if (vi, uj) ∈ E�
and ei,j = 0 otherwise. Let c1 and c2 be two integers representing the sizes of X�

opt and Y�
opt,

respectively. We can guess the values of c1 and c2 in polynomial time though we do not know
c1 and c2. We have the following inequalities:

yi(
|X�|
∑
j=1

ei,jxj) ≥ (1 − δ − 1
t
)yic1 for i = 1, 2, . . . , |Y�| (5)

xi(
|Y�|
∑
j=1

ei,jyj) ≥ (1 − δ − 1
t
)xic2 for i = 1, 2, . . . , |X� | (6)

|Y�|
∑
i=1

yi = c1, (7)

|X�|
∑
i=1

xi = c2. (8)

(5) and (6) indicate that xi > 0 and yi > 0 imply that ∑
|X�|
j=1 ei,jxj ≥ (1 − δ − 1

t )c1 and

∑
|Y�|
j=1 ei,jyj ≥ (1 − δ − 1

t )c2, respectively.
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Based on Lemma 3, we can design an algorithm that finds a quasi-(δ + 4��)-biclique with size
at least (1 − 4�� − �)(|X�

opt|+ |Y�
opt|). Let G� = (X� ∪ Y�, E�) be the sub-graph obtained from

Lemma 2. For any �� > 0, define r = 2
��2 log( 1

�� ).

Case 1.1. |X�
opt| ≥ r(r−1)

�� : When |X�
opt| ≥ r(r−1)

�� , r(r−1)
2|X�

opt| ≤ ��. Thus, there exist a quasi-(δ +

3��)-biclique Xr ⊂ X� and Y��
opt as described in Lemma 3.

We select r vertices from X�. For each subset Xr ⊆ X� of r vertices {v1, v2, . . . , vr}, we define
the following integer linear programming. Let ci,j be a constant, where ci,j = 1 if (vi, uj) ∈ E�;
and ci,j = 0 if (vi, uj) �∈ E�. Let yi be a 0/1 variable, where yi = 1 indicates that the vertex ui
in Y� is selected in the quasi-biclique and yi = 0 otherwise.

yi(
r

∑
j=1

ci,j) ≥ (1 − δ − 1
t
− ��)r (3)

|Y�|
∑
i=1

yici,j ≥ (1 − δ − 3��)|Y�
opt| for j = 1, 2, . . . , r, (4)

Here we do not know |Y�
opt|. However, we can guess the value of |Y�

opt| by trying |Y�
opt| =

1, 2, . . . , |Y�|. The integer programming problem formulated by (3) and (4) has no objective
function and we just want a feasible solution to fit (3) and (4). The integer programming
problem is hard to solve. However, we can obtain a fractional solution ȳi for (3) and (4) with
0 ≤ ȳi ≤ 1 in polynomial time. After obtaining the fractional solution ȳi, we randomly set yi
to be 1 with probability ȳi.

Lemma 4. Assume that 1
2 (1 − δ − 3��)|Y�

opt|��2 ≥ 2 log r and 1
t = ��. With probability at least

1 − 1
r , we can get a pair of subsets XA ⊆ X� and YA ⊆ Y� (an integer solution) by randomized

rounding according to the probability ȳi such that XA and YA form a quasi-(δ + 4��)-biclique with
|XA|+ |YA| ≥ (1 − δ − 4��)|Y�

opt|.

A standard method in (Li et al., 2002) can give a de-randomized algorithm.

When 1
2 (1 − δ − 3��)|Y�

opt|)��2 < 2 log r, we can enumerate all possible subsets of size (1 − δ −
3��)|Y�

opt| in Y� in polynomial time to get the desired solution.

Case 1.2. |X�
opt| < r(r−1)

�� : In this case, X�
opt and Y�

opt form the desired quasi-δ-biclique. Instead
of selecting r vertices in X�, we select |X�

opt| vertices in X�. Though we do not know the value

of |x�opt|, we can guess the value for |x�opt| = 1, 2, . . . , r(r−1)
�� . We also solve the integer linear

programming (3) and (4) in the same way as in Case 1.1. The algorithm for Case 1 is given in
Fig. 1.

Theorem 3. Assume |X�
opt| ≤ �|Y�

opt|. We set 1
t = �� in the algorithm. With probability at

least 1 − 1
r , Algorithm 1 finds a quasi-(δ + 4��)-biclique XA ⊆ X and YA ⊆ Y with |XA| +

|YA| ≥ (1 − δ − 4��)(|Xopt| + |Yopt|)(1 − ��)/(1 + �) in time O((|X||Y|)�δt�[|X||Y||Y�| 4 log r
��2 +

|X� | r(r−1)
�� r(r−1)

�� (|X|+ |Y|)3)]).
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Algorithm 1: Algorithm for Solving Case 1: |X�
opt| ≤ �|Y�

opt|.
Input: a bipartite graph G = (X ∪ Y, E), a real number 0 ≤ δ ≤ 0.5, a number

t > 0, a number � > 0, and a number �� > 0.
0. Let k = �δt�.
1. for any v1, v2, . . . , vk ∈ X and any u1, u2, . . . , uk ∈ Y do
2. Set X� = ∪k

i=1D(vi, Y) and Y� = ∪k
i=1D(ui, X).

3 r == 2
��2 log( 1

�� )
4 Guess |X�

opt| and |Y�
opt| assuming |X�

opt| ≤ �|Y�
opt|.

5 if 1
2 (1 − δ − 3��)|Y�

opt|��2 < 2 log r then enumerate all possible subsets of
size (1− δ− 3��)|Y�

opt| in Y� in polynomial time to get the desired solution.
6 if 1

2 (1 − δ − 3��)|Y�
opt|)��2 > 2 log r) then

7 for i = r, r + 1, . . . r(r−1)
�� do

8 for every i-elements subset Xi = {x1, x2, . . . , xi} do
9 give a fractinal solution ȳi for (3) and (4).
10 randomly set yi = 1 with probability ȳi.
8. Output a δ + 1

t + 4�� quasi-biclique with the biggest |XA|+ |YA|.
Fig. 1. The algorithm for solving Case 1.

Case 2: |X�
opt| ≥ �|Y�

opt|. In this case, we have |X�
opt| = Ω(|X� |) and |Y�

opt| = Ω(|Y�|). We
will use a quadratic programming approach to solve the problem. We can formulate the
quasi-biclique problem for the bipartite graph G� = (X� ∪ Y�, E�) into the following quadratic
programming problem.

Quadratic programming formulation:

Let xi and yj be 0/1 variables, where xi = 1 indicates that vertex vi in X� is in the quasi-biclique
and yj = 1 indicates that vertex uj in Y� is in the quasi-biclique. Define ei,j = 1 if (vi, uj) ∈ E�
and ei,j = 0 otherwise. Let c1 and c2 be two integers representing the sizes of X�

opt and Y�
opt,

respectively. We can guess the values of c1 and c2 in polynomial time though we do not know
c1 and c2. We have the following inequalities:

yi(
|X�|
∑
j=1

ei,jxj) ≥ (1 − δ − 1
t
)yic1 for i = 1, 2, . . . , |Y�| (5)

xi(
|Y�|
∑
j=1

ei,jyj) ≥ (1 − δ − 1
t
)xic2 for i = 1, 2, . . . , |X� | (6)

|Y�|
∑
i=1

yi = c1, (7)

|X�|
∑
i=1

xi = c2. (8)

(5) and (6) indicate that xi > 0 and yi > 0 imply that ∑
|X�|
j=1 ei,jxj ≥ (1 − δ − 1

t )c1 and

∑
|Y�|
j=1 ei,jyj ≥ (1 − δ − 1

t )c2, respectively.
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Let x̂i and ŷj be the 0/1 integer solution for the quadratic programming problem (5)-(8). Let

r̂i = ∑
|X�|
j=1 ei,j x̂j and ŝi = ∑

|Y�|
j=1 ei,jŷj. To deal with the quadratic programming problem, the key

idea here is to estimate the values of r̂i and ŝj. If we know the values of r̂i and ŷj, then (5) and
(6) become

yir̂i ≥ yic1(1 − δ − 1
t
) for i = 1, 2, . . . , |Y�| (9)

xi ŝi ≥ xic2(1 − δ − 1
t
) for i = 1, 2, . . . , |X�|, (10)

where r̂i and ŝi in (9) and (10) are constants and the quadratic inequalities become linear
inequalities.

Estimating r̂i and ŝi.

The approach for giving a good estimation of r̂i and ŝi is to randomly and independently
select a subset BX� of O(log(|X�

opt|)) vertices and a subset BY� of O(log(|Y�
opt|)) vertices in X�

opt
and Y�

opt, respectively. Let c1 = |X�
opt| and c2 = |Y�

opt|. We do not know c1 and c2, but we
can guess them in O(|X� | × |Y�|) time. Then we can use c1

k ∑vj∈BX� ei,j and c2
k ∑uj∈BY� ei,j to

estimate r̂i and ŝi, respectively. Since we do not know X�
opt and Y�

opt, it is not easy to randomly
and independently select vertices from X�

opt and Y�
opt. We develop a method to randomly

select p × log |Y�| vertices in Y�
opt from Y� when Y�

opt is not known. Here p is a constant to be
determined later.

Finding p log |Y�| vertices in Y�
opt when Y�

opt is not known

Let |Y�| = c|Y�
opt|. The idea here is to randomly and independently select a subset B of (c +

1) × p × log |Y�| vertices from Y� and enumerate all size p × log |Y�| subsets of B in time

Cp log |Y�|
p(c+1) log |Y�| ≤ O(|Y�|p(c+1)). We can show that with high probability, we can get a set of

p log |Y�| vertices randomly and independently selected from Y�
opt.

Lemma 5. With probability at least 1 − |Y�|−
p

2c2(c+1) , B contains a size p log |Y�| subset of Y�
opt.

Proof. Let us consider the probability that B contains less than p log |Y�| vertices in Y�
opt. Let

b be the expected number of vertices in B that are also in Y�
opt. Recall that |Y�| = c|Y�

opt|. If

we randomly select a vertex in Y�, the probability that the vertex is in Y�
opt is 1

c . Let μ be the

expected number of vertices in B that are in Y�
opt. We have μ = |B|

c = 1
c �(c + 1)p log |Y�|�. Let

X1, X2, . . . , X|B| be |B| independent random 0/1 variables, where Xi = 1 with probability 1
c

indicating that the selected vertex is in Yopt. Thus,

b =
|B|
∑
i=1

Xi (11)
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and

μ = E(
|B|
∑
i=1

Xi) =
1
c
�(c + 1)p log |Y�|�. (12)

Since we selected (c + 1)p log |Y�| vertices,

|B| = �(c + 1)(p log |Y�|)�. (13)

Based on Lemma 1, we have

Pr(b < p log |Y�|) ≤ Pr(b < (
1
c
− 1

c(c + 1)
)�(c + 1)(p log |Y�|)�)

= Pr(
|B|
∑
i=1

Xi < μ − 1
c(c + 1)

|B|) (From (11), (12) and (13))

≤ exp(− 1
2c2(c + 1)2 |B|)

≤ exp(− 1
2c2(c + 1)2 (c + 1)(p log |Y�|))

= exp(− p log |Y�|
2c2(c + 1)

) = |Y�|−
p

2c2(c+1) .

Therefore, with probability at most |Y�|−
p

2c2(c+1) , B does not contain any size p log |Y�| subset
of Y�

opt. This completes the proof.

Let BX� and BY� be the sets of randomly and independently selected vertices in X�
opt and Y�

opt.
Let |BX� | = p1 log |X�| and |BY� | = p2 log |Y�|. We define r̄i = ∑vj∈BX� ei,j and s̄i = ∑uj∈BY� ei,j.
The following lemma shows that c1

|BX� | r̄i and c2
|BY� | s̄i are good approximations of r̂i and ŝi.

Lemma 6. With probability at least 1 − 2|Y�||X�|− �2
3 p1 − 2|X�||Y�|− �2

3 p2 , for any i = 1, 2, . . . , |X�|
and j = 1, 2, . . . , |Y�|,

(1 − �)r̂i ≤ c1
|BX� | r̄i ≤ (1 + �)r̂i

and
(1 − �)ŝj ≤ c2

|BY� | s̄j ≤ (1 + �)ŝj.

Now, we set ri = c1
|BX� | r̄i and si = c2

|BY� | s̄j. We consider the following linear programming
problem.
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Let x̂i and ŷj be the 0/1 integer solution for the quadratic programming problem (5)-(8). Let

r̂i = ∑
|X�|
j=1 ei,j x̂j and ŝi = ∑

|Y�|
j=1 ei,jŷj. To deal with the quadratic programming problem, the key

idea here is to estimate the values of r̂i and ŝj. If we know the values of r̂i and ŷj, then (5) and
(6) become

yir̂i ≥ yic1(1 − δ − 1
t
) for i = 1, 2, . . . , |Y�| (9)

xi ŝi ≥ xic2(1 − δ − 1
t
) for i = 1, 2, . . . , |X�|, (10)

where r̂i and ŝi in (9) and (10) are constants and the quadratic inequalities become linear
inequalities.

Estimating r̂i and ŝi.

The approach for giving a good estimation of r̂i and ŝi is to randomly and independently
select a subset BX� of O(log(|X�

opt|)) vertices and a subset BY� of O(log(|Y�
opt|)) vertices in X�

opt
and Y�

opt, respectively. Let c1 = |X�
opt| and c2 = |Y�

opt|. We do not know c1 and c2, but we
can guess them in O(|X� | × |Y�|) time. Then we can use c1

k ∑vj∈BX� ei,j and c2
k ∑uj∈BY� ei,j to

estimate r̂i and ŝi, respectively. Since we do not know X�
opt and Y�

opt, it is not easy to randomly
and independently select vertices from X�

opt and Y�
opt. We develop a method to randomly

select p × log |Y�| vertices in Y�
opt from Y� when Y�

opt is not known. Here p is a constant to be
determined later.

Finding p log |Y�| vertices in Y�
opt when Y�

opt is not known

Let |Y�| = c|Y�
opt|. The idea here is to randomly and independently select a subset B of (c +

1) × p × log |Y�| vertices from Y� and enumerate all size p × log |Y�| subsets of B in time

Cp log |Y�|
p(c+1) log |Y�| ≤ O(|Y�|p(c+1)). We can show that with high probability, we can get a set of

p log |Y�| vertices randomly and independently selected from Y�
opt.

Lemma 5. With probability at least 1 − |Y�|−
p

2c2(c+1) , B contains a size p log |Y�| subset of Y�
opt.

Proof. Let us consider the probability that B contains less than p log |Y�| vertices in Y�
opt. Let

b be the expected number of vertices in B that are also in Y�
opt. Recall that |Y�| = c|Y�

opt|. If

we randomly select a vertex in Y�, the probability that the vertex is in Y�
opt is 1

c . Let μ be the

expected number of vertices in B that are in Y�
opt. We have μ = |B|

c = 1
c �(c + 1)p log |Y�|�. Let

X1, X2, . . . , X|B| be |B| independent random 0/1 variables, where Xi = 1 with probability 1
c

indicating that the selected vertex is in Yopt. Thus,

b =
|B|
∑
i=1

Xi (11)
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and

μ = E(
|B|
∑
i=1

Xi) =
1
c
�(c + 1)p log |Y�|�. (12)

Since we selected (c + 1)p log |Y�| vertices,

|B| = �(c + 1)(p log |Y�|)�. (13)

Based on Lemma 1, we have

Pr(b < p log |Y�|) ≤ Pr(b < (
1
c
− 1

c(c + 1)
)�(c + 1)(p log |Y�|)�)

= Pr(
|B|
∑
i=1

Xi < μ − 1
c(c + 1)

|B|) (From (11), (12) and (13))

≤ exp(− 1
2c2(c + 1)2 |B|)

≤ exp(− 1
2c2(c + 1)2 (c + 1)(p log |Y�|))

= exp(− p log |Y�|
2c2(c + 1)

) = |Y�|−
p

2c2(c+1) .

Therefore, with probability at most |Y�|−
p

2c2(c+1) , B does not contain any size p log |Y�| subset
of Y�

opt. This completes the proof.

Let BX� and BY� be the sets of randomly and independently selected vertices in X�
opt and Y�

opt.
Let |BX� | = p1 log |X�| and |BY� | = p2 log |Y�|. We define r̄i = ∑vj∈BX� ei,j and s̄i = ∑uj∈BY� ei,j.
The following lemma shows that c1

|BX� | r̄i and c2
|BY� | s̄i are good approximations of r̂i and ŝi.

Lemma 6. With probability at least 1 − 2|Y�||X�|− �2
3 p1 − 2|X�||Y�|− �2

3 p2 , for any i = 1, 2, . . . , |X�|
and j = 1, 2, . . . , |Y�|,

(1 − �)r̂i ≤ c1
|BX� | r̄i ≤ (1 + �)r̂i

and
(1 − �)ŝj ≤ c2

|BY� | s̄j ≤ (1 + �)ŝj.

Now, we set ri = c1
|BX� | r̄i and si = c2

|BY� | s̄j. We consider the following linear programming
problem.
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yiri ≥ yic1(1 − �)(1 − δ) for i = 1, 2, . . . , m, (14)

xisi ≥ xic2(1 − �)(1 − δ) for i = 1, 2, . . . , m, (15)
|Y�|
∑
i=1

yi = c1, (16)

|X�|
∑
i=1

xi = c2 (17)

|X�|
∑
j=1

ei,jxj ≥ ri
1 + �

(18)

|Y�|
∑
j=1

ei,jyj ≥ si
1 + �

. (19)

The term (1 − �) in (14) and (15) ensures that the quadratic programming problem has a
solution when the estimated values of ri and si are smaller than r̂i and ŝi. Similarly, the term
(1 + �) in (18) and (19) ensures that the quadratic programming problem has a solution when
the estimated values of ri and si are bigger than r̂i and ŝi.

Randomized rounding

Let x�i and y�j be a fractional solution for (14) -(19). In order to get a 0/1 solution, we randomly
set xi and yj to be 1 using the fractional solution as the probability. That is, we randomly set
xi and yj to be 1’s with probability x�i and y�i , respectively. (Otherwise, xi and yj will be 0.)

Lemma 7. With probability 1 − 2exp(− 1
3 |X� |�2) − 2exp(− 1

3 |Y�|�2) − |Y�|exp(− 1
2 |X� |�2) −

|X� |exp(− 1
2 |Y�|�2), we can find a subset X̂ ⊆ X� and a subset Ŷ ⊆ Y� with (1 − �)c1 ≤ |X�| ≤

(1 + �)c1 and (1 − �)c2 ≤ |Y�| ≤ (1 + �)c2 such that for any x ∈ X̂, d(x, Y�) ≥ (1 − δ − 4�)|Ŷ|
and for any y ∈ Ŷ, d(y, X) ≥ (1 − δ − 4�)|X̂|.

The complete algorithm for Case 2 is given in Fig. 2. Let k = �δt� as defined in Lemma 2.
Here cx , cy are set to be k(1 + 1

� ) and 2k, respectively. p1 = p2 = 5
�2 .

Theorem 4. With probability at least 1− o(1), Algorithm 2 finds a quasi-(δ+ 4�+ 1
t )-biclique of size

(1 − 1
t − �)(|Xopt|+ |Yopt|) in O((k × 1

�2 |X||Y|)�δt�(|X| 5
�2 k(1+ 1

� ) + |Y| 5
�2 2k)(|X|+ |Y|3)) time.

We can derandomize the algorithm to get a polynomial time deterministic algorithm. Step 3
can be derandomized by using the standard method. For instance, instead of randomly and
independently choosing p1 log(|X�|) and p2 log(|Y�|) vertices from X� and Y�, we can pick the
vertices encountered on a random walk of the same length on a constant degree expander.
Obviously, the number of such random walks on a constant degree expander is polynomial.
Thus, by enumerating all random walks of length p1 log(|X�|) and p2 log(|Y�|), we have a
polynomial time deterministic algorithm.
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Algorithm 2: Algorithm for Soving Case 2: |X�
opt| > �|Y�

opt|.
Input: a bipartite graph G = (X ∪ Y, E), a real number 0 ≤ δ ≤ 0.5, a number

t > 0 and a number � > 0.
0. Let k = �δt�, p1 = p2 = 5

�2 , cx = k(1 + 1
� ) and cy = 2k.

1. for any v1, v2, . . . , vk ∈ X and any u1, u2, . . . , uk ∈ Y do
2. Set X� = ∪k

i=1D(vi, Y) and Y� = ∪k
i=1D(ui, X).

3 Randomly and independently select a set SX� of (cx + 1)p1 log |X� |
vertices in X� and a set SY� of (cy + 1)p2 log |Y�| vertices in Y�.

4 for any size p1 log |X�| subsset BX� of SX� and size p2 log |X�| subset BY�
of SY� do

(a) r̄i =
c1

|BX� | ∑vi∈|B|X� ei,j

(b) s̄i =
c2

|BY� | ∑ui∈|B|Y� ei,j

(c) Get a fractional solution x�i and y�i for xi ∈ X� and yi ∈ Y� of
(11)-(16)

(d) do randomrized rouding according to x�i and y�i
(e) XA = {vi|xi = 1} and YA = {ui|yi = 1}

5. Output a δ + 1
t + 4� quasi-biclique with the biggest |XA|+ |YA|.

Fig. 2. The algorithm for Case 2.

Step 4 (d) can be derandomized by using Raghavan’s conditional probabilities method
(Raghavan, 1988). From Case 1 and Case 2, we can immediately obtain the following theorem.

Theorem 5. There exists a polynomial time approximation scheme that outputs a quasi-biclique XA ⊆
X and YA ⊆ Y with |XA|+ |YA| ≥ (1 − �)(|Xopt|+ |Yopt|) such that any vertex x ∈ XA is incident
to at least (1− δ− �)|YA| vertices in YA and any vertex y ∈ YA is incident to at least (1− δ− �)|XA|
vertices in XA for any � > 0, where Xopt and Yopt form the optimal solution.

4. The heuristic algorithm

In practice, we need to find large quasi-bicliques in PPI networks. Here, we propose a heuristic
algorithm to find large quasi-bicliques. Consider a PPI network G = (V , E). Our heuristic
algorithm has two steps. First, we construct a bipartite graph from the graph G based on a
pair of interacting proteins (u, v). Using the method described at the beginning of Section
2, we can get a bipartite graph G = (X ∪ Y, E). Second, we find quasi-bicliques in G. The
bipartite graph G contains all proteins that have interactions with u or v. So we can find large
quasi-bicliques containing u and v in the bipartite graph.

In the algorithm for finding quasi-bicliques in G, we have two parameters δ and τ, which
control the quality and sizes of the quasi-bicliques. We use a greedy method to get the seeds
for finding large quasi-bicliques in G. At the beginning, we set X� = φ and Y� = Y. In each
step, we find a vertex with the maximum degree in X − X�. The vertex is added into the
biclique vertex set X�, and we eliminate all vertices y in Y� such that d(y, X�) < (1 − δ)|X�|.
We will continue this process until the size of Y� is less than τ. At each step, we get a seed for
finding large quasi-bicliques.

The seeds may miss some possible vertices in the quasi-bicliques. We can extend the seeds
to find larger quasi-bicliques. Let X�� = X� and Y�� = Y� be a pair of seed vertex sets. In
the first step, we can find a vertex x in X − X�� with the largest degree d(x, Y��) in X − X��. If
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yiri ≥ yic1(1 − �)(1 − δ) for i = 1, 2, . . . , m, (14)

xisi ≥ xic2(1 − �)(1 − δ) for i = 1, 2, . . . , m, (15)
|Y�|
∑
i=1

yi = c1, (16)

|X�|
∑
i=1

xi = c2 (17)

|X�|
∑
j=1

ei,jxj ≥ ri
1 + �

(18)

|Y�|
∑
j=1

ei,jyj ≥ si
1 + �

. (19)

The term (1 − �) in (14) and (15) ensures that the quadratic programming problem has a
solution when the estimated values of ri and si are smaller than r̂i and ŝi. Similarly, the term
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3 |Y�|�2) − |Y�|exp(− 1
2 |X� |�2) −

|X� |exp(− 1
2 |Y�|�2), we can find a subset X̂ ⊆ X� and a subset Ŷ ⊆ Y� with (1 − �)c1 ≤ |X�| ≤
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� ) and 2k, respectively. p1 = p2 = 5
�2 .
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t − �)(|Xopt|+ |Yopt|) in O((k × 1

�2 |X||Y|)�δt�(|X| 5
�2 k(1+ 1

� ) + |Y| 5
�2 2k)(|X|+ |Y|3)) time.

We can derandomize the algorithm to get a polynomial time deterministic algorithm. Step 3
can be derandomized by using the standard method. For instance, instead of randomly and
independently choosing p1 log(|X�|) and p2 log(|Y�|) vertices from X� and Y�, we can pick the
vertices encountered on a random walk of the same length on a constant degree expander.
Obviously, the number of such random walks on a constant degree expander is polynomial.
Thus, by enumerating all random walks of length p1 log(|X�|) and p2 log(|Y�|), we have a
polynomial time deterministic algorithm.
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Algorithm 2: Algorithm for Soving Case 2: |X�
opt| > �|Y�

opt|.
Input: a bipartite graph G = (X ∪ Y, E), a real number 0 ≤ δ ≤ 0.5, a number
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�2 , cx = k(1 + 1
� ) and cy = 2k.
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i=1D(vi, Y) and Y� = ∪k
i=1D(ui, X).
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vertices in X� and a set SY� of (cy + 1)p2 log |Y�| vertices in Y�.
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(b) s̄i =
c2

|BY� | ∑ui∈|B|Y� ei,j

(c) Get a fractional solution x�i and y�i for xi ∈ X� and yi ∈ Y� of
(11)-(16)

(d) do randomrized rouding according to x�i and y�i
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5. Output a δ + 1
t + 4� quasi-biclique with the biggest |XA|+ |YA|.

Fig. 2. The algorithm for Case 2.

Step 4 (d) can be derandomized by using Raghavan’s conditional probabilities method
(Raghavan, 1988). From Case 1 and Case 2, we can immediately obtain the following theorem.

Theorem 5. There exists a polynomial time approximation scheme that outputs a quasi-biclique XA ⊆
X and YA ⊆ Y with |XA|+ |YA| ≥ (1 − �)(|Xopt|+ |Yopt|) such that any vertex x ∈ XA is incident
to at least (1− δ− �)|YA| vertices in YA and any vertex y ∈ YA is incident to at least (1− δ− �)|XA|
vertices in XA for any � > 0, where Xopt and Yopt form the optimal solution.

4. The heuristic algorithm

In practice, we need to find large quasi-bicliques in PPI networks. Here, we propose a heuristic
algorithm to find large quasi-bicliques. Consider a PPI network G = (V , E). Our heuristic
algorithm has two steps. First, we construct a bipartite graph from the graph G based on a
pair of interacting proteins (u, v). Using the method described at the beginning of Section
2, we can get a bipartite graph G = (X ∪ Y, E). Second, we find quasi-bicliques in G. The
bipartite graph G contains all proteins that have interactions with u or v. So we can find large
quasi-bicliques containing u and v in the bipartite graph.

In the algorithm for finding quasi-bicliques in G, we have two parameters δ and τ, which
control the quality and sizes of the quasi-bicliques. We use a greedy method to get the seeds
for finding large quasi-bicliques in G. At the beginning, we set X� = φ and Y� = Y. In each
step, we find a vertex with the maximum degree in X − X�. The vertex is added into the
biclique vertex set X�, and we eliminate all vertices y in Y� such that d(y, X�) < (1 − δ)|X�|.
We will continue this process until the size of Y� is less than τ. At each step, we get a seed for
finding large quasi-bicliques.

The seeds may miss some possible vertices in the quasi-bicliques. We can extend the seeds
to find larger quasi-bicliques. Let X�� = X� and Y�� = Y� be a pair of seed vertex sets. In
the first step, we can find a vertex x in X − X�� with the largest degree d(x, Y��) in X − X��. If
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d(x, Y��) ≥ (1 − δ)|Y��|, we add the vertex x to X��. In the second step, we can find a vertex y
in Y − Y�� with the largest d(y, X��) in Y − Y��. If d(y, X��) ≥ (1 − δ)|X��|, we add the vertex y
to Y��. We repeat the above two steps until no vertex can be added. The whole algorithm is
shown in Fig. 3. We can also exchange the two vertex sets X and Y to find more quasi-bicliques
using the algorithm.

Let n be the number of vertices in the bipartite graph G. In the greedy algorithm, the time
complexity of Steps 3 − 5 and Step 10 is O(n), and the time complexity of Steps 6− 9 is O(n2).
So the time complexity of Steps 3 − 10 is dominated by O(n2). Since Steps 3 − 10 is repeated
O(n) times, the time complexity of the whole algorithm is O(n3).

The Greedy Algorithm
Input A bipartite graph (X ∪Y, E) and two parameters

δ and τ.
Output A set of δ-quasi-bicliques (X� ∪ Y�, E�) with

|X� | ≥ τ and |Y�| ≥ τ.
1. Let X� = φ and Y� = Y.
2. while |Y�| ≥ τ and X� �= X do
3. Find the vertex x ∈ X − X� with the maximum

degree d(x, Y�).
4. Add x into X�, X� = X� ∪ {x}, and delete from Y�

all vertices y ∈ Y� such that d(y, X�) < (1 − δ)|X� |.
5. X�� = X� and Y�� = Y�.
6. repeat
7. Find the vertex x ∈ X − X�� with the

maximum degree d(x, Y��). If d(x, Y��) ≥ (1 −
δ)|Y��|, add x to X��, X�� = X�� ∪ {x}.

8. Find the vertex y ∈ Y − Y�� with the
maximum degree d(y, X��). If d(y, X��) ≥ (1 −
δ)|X��|, add y to Y��, Y�� = Y�� ∪ {y}.

9. until no vertex is added in the steps 7 and 8.
10. if |X��| ≥ τ , |Y��| ≥ τ, for each x ∈ X��,

d(x, Y��) ≥ (1 − δ)|Y��|, for each y ∈ Y��,
d(y, X��) ≥ (1 − δ)|X��|, output (X�� ∪ Y��) as a
quasi-biclique.

Fig. 3. The greedy algorithm.

5. Finding motifs from the multiple sequence alignment of computed δ-bicliques.

We implemented the heuristic algorithm described in the last section in JAVA. The software
is called PPIExtend. In the implementation, we added a new parameter α to speed up the
algorithm. In Step 3, instead of selecting one vertex with the best degree, we can select the
best α vertices in X − X� and add all the α vertices into X� in Step 4. As shown in the last
step of the algorithm, some vertices in X�� may be adjacent to less than (1 − δ)|Y��| vertices in
Y��, but the average degree of the vertices in X�� is no less than (1 − δ)|Y��|. Similarly, some
vertices in Y�� may be adjacent to less than (1− δ)|X��| vertices in |X��|, but the average degree
of the vertices in Y�� is no less than (1 − δ)|X��|. In our experiments, these quasi-bicliques are
still output to get more useful quasi-bicliques.
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Our algorithm for PPIExtend consists of two steps: (i) find interacting protein group
pairs (quasi-bicliques) using the greedy algorithm, (ii) find conserved motifs from multiple
sequence alignments for each of the protein groups. (We use the existing multiple sequence
alignment software PROTOMAT (Pietrokovski, 1996).)

The motifs found by PROTOMAT can be viewed as a block, that is a conserved region in a
multiple sequence alignment of the proteins in a group. For each biclique X and Y obtained
by the greedy algorithm, we use SX and SY to denote the sets of motifs obtained by the
multiple sequence alignments of protein sequences in X and Y, respectively. Any pair of
motifs (m1, m2) with m1 ∈ SX and m2 ∈ SY is a candidate protein-protein interaction motif
pair. Thus, our algorithm can also output lots of motif pairs as candidate protein-protein
interaction motif pairs.

We look at the numbers of motifs found by the programs PPIExtend and FPClose∗ that are
also in the two block databases, BLOCKS (Pietrokovski, 1996) and PRINTS (Attwood & Beck,
1994). The LAMA program (Pietrokovski, 1996) is used to find the local optimal alignment
of two blocks (the motif output by PPIExtend/FPClose∗ and a block in the databases), where
the Z-score is computed to measure the alignments. The default threshold of Z-score was
used in the experiments. The results are reported in Table 1. From this table, we can see
that our method has more mappings to BLOCKS and PRINTS than FPClose∗ (Li et al., 2006;
Grahne & Zhu, 2003).

BLOCKS PRINTS BOTH
blocks domains blocks domains blocks domains

FPClose∗ 6408/24294 3128/4944 2174/11170 1093/1850 24.1% 62.1%
PPIExtend 9325/29767 4191/6149 2423/11435 1160/1900 28.5% 66.4%

Table 1. The mappings between the motifs and the two databases: BLOCKS and PRINTS.
FPClose∗ uses BLOCKS 14.0 and PRINTS 37.0. Our PPIExtend method uses BLOCKS 14.3
and PRINTS 38.0. Each entry a/b means the motifs are mapped to a blocks(domains) in all b
blocks(domains) in the databases.

BLOCKS PRINTS Pfam iPfam
Version 14.3 38.0 20.0 20.0
Number of domains 6149 1900 8296 2883
Number of entries 29767 11435 8296 3019

Table 2. Databases used in the experiments.

We look at the numbers of motif pairs found by the two programs PPIExtend and FPClose∗
that can be mapped into domain-domain interaction pairs in the domain-domain interaction
database iPfam (Finn et al., 2005). The versions of the databases are shown in Table 2. The
iPfam database is built on top of the Pfam database (Sonnhammer et al., 1997) which stores
the information of protein domain-domain interactions. To examine whether the motif pairs
found by PPIExtend and FPClose∗ can match some pairs of interacting domains in iPfam, we
map our motif pairs to domain pairs in iPfam through the integrated protein family database
InterPro (Apweiler et al., 2001) which integrates a number of databases. In fact, we strictly
follow the procedure as suggested in (Li et al., 2006). (1) We map our motifs to domains
(protein groups) in the database BLOCKS or PRINTS; (2) we map a protein group of BLOCKS
to a protein group of InterPro based on the one-to-one mapping between an entry of BLOCKS
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that can be mapped into domain-domain interaction pairs in the domain-domain interaction
database iPfam (Finn et al., 2005). The versions of the databases are shown in Table 2. The
iPfam database is built on top of the Pfam database (Sonnhammer et al., 1997) which stores
the information of protein domain-domain interactions. To examine whether the motif pairs
found by PPIExtend and FPClose∗ can match some pairs of interacting domains in iPfam, we
map our motif pairs to domain pairs in iPfam through the integrated protein family database
InterPro (Apweiler et al., 2001) which integrates a number of databases. In fact, we strictly
follow the procedure as suggested in (Li et al., 2006). (1) We map our motifs to domains
(protein groups) in the database BLOCKS or PRINTS; (2) we map a protein group of BLOCKS
to a protein group of InterPro based on the one-to-one mapping between an entry of BLOCKS
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and an entry of InterPro; (Note that both PRINTS and Pfam are member databases of InterPro,
and the mapping between PRINTS and Pfam is clear.) (3) we use existing cross-links between
protein groups of InterPro and domains of Pfam to determine the crosslinks between the
motifs found by PPIExtend/FPClose∗ and Pfam domains. In this way, we can map our motif
pairs into domain pairs with Pfam domain entries. Note that the mapping between motif
pairs and domain pairs is not one-to-one.

We observed that the motif pairs found by PPIExtend can map to 81 distinct domain pairs
in iPfam. However, only 18 domain pairs were reported in (Li et al., 2006). This is a
significant improvement and the main reason is the use of quasi-bicliques. In the 81 domain
pairs, 48 pairs are domain-domain interactions on one protein (self-loops) and 33 pairs are
domain-domain interactions on different proteins. Although the self-loops form a large
portion, we still find many other domain-domain interactions that are not self-loops.

6. Protein interaction sites: a case study

In this section, we present detailed information about binding motif pairs that can be
mapped to interacting domain pairs. The first motif pair is derived from a protein
group pair in which the left protein group contains 7 proteins and the right protein
group contains 10 proteins. There are 66 interactions between the two groups of proteins.
Using the hypergeometric probability model, the p-value of the protein group pair is
less than 1.57 × 10−191. PROTOMAT finds two left blocks and two right blocks in this
protein group pair. The second left block contains 20 positions and the first right block
contains 12 positions. By the mapping method, the positions 1 − 19 of the second left
block can be aligned with the positions 9 − 27 of block IPB001425B in BLOCKS, and the
positions 4 − 12 of the first right block can be aligned with the positions 1 − 9 of block
IPB003660A in BLOCKS. Block IPB001425B is in the Bac_rhodopsin domain, and block
IPB003660A is in the HAMP domain. See Table 3 for more details. Our binding motif
pair can map into the domain pair (PF00672, PF01036) in iPfam. iPfam shows that the
HAMP domain interacts with the Bac_rhodopsin domain in protein complexes such as
lh2s. 1h2s is the complex of Natronobacterium pharaonis sensory rho-dopsin II (sRII) with
receptor-binding domain of HtrII. The X-ray structure of 1h2s was obtained at 1.93 Å
resolution (Gordeliy et al., 2002) and it provided an atomic picture of the first step of the signal
transduction. The interactions in the sRII-HtrII complex have been intensively investigated
to find the signal relay mechanism from the receptor to the transducer (Bergo et al., 2005;
Inoue et al., 2007; Sudo et al., 2007). The 3D structure of the interactions is shown in
Fig. 4(a) and 4(b), which are generated by Protein Explorer (Martz, 2002). The shortest
residue-residue distance between the two motifs in a pair is also interesting. In protein
complex 1h2s, there are two chains: chain A (1h2s_A) and chain B (1h2s_B). The left
motif is located at positions 168 − 186 of 1h2s_A, and the right motif is located at
positions 61 − 69 of 1h2s_B (Table 3). We downloaded the coordinate information of 1h2s
from http://www.ebi.ac.uk/msd-srv/msdlite/atlas/summary/1h2s.html, and computed
the residue-residue distances between the two motifs. The shortest residue-residue distance
is 4.07 Å between atom 1346 of residue 177 in 1h2s_A and atom 2018 of residue 69 in
protein 1h2s_B (Fig. 4(b)). The average shortest residue-residue distance is 9.17Å. From these
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(a) The 3D structure of 1h2s
(asymmetric unit).

(b) The backbone structure of the two motifs in 1h2s.

Fig. 4. (a) The 3D structure (best viewed in color) of the interactions between the
Bac_rhodopsin domain and the HAMP domain in 1h2s. The left part is chain A and contains
the Bac_rhodopsin domain. The right part is chain B and contains the HAMP domain. (b)
The backbone structure of the interactions between segment [168V,186A] in 1h2s_A and
segment [61V,69I] in 1h2s_B.

calculation and information, we may conclude that the positions 1− 19 of the second left block
and the positions 4 − 12 of the first right block are possibly interaction sites.

7. Prediction of binding sites

After obtaining candidate domains (conserved regions) in multiple sequence alignment, we
can further verify if a pairs of predicted domains really interact with each other by using
some tools for protein binding site prediction. Here we briefly introduce a method originally
in (Guo & Wang, 2011). This method assumes that the 3D structures of the two given proteins
are known.

Given two complete protein structures, the task is to find the binding sites between the two
proteins. The method contains three steps. Firstly, we do local sequence alignment at the
atom level to get the alignments of conserved regions. Those alignments of conserved regions
may contain some gaps. Secondly, among the conserved regions obtained in Step 1, we use
the 3D structure information to identify the surface segments. Finally, for any pair of the
surface segments identified in Step 2, we compute a rigid transformation to compare the
similarity of the two substructures in 3D space and output the qualified pairs as binding sites.
When computing the rigid transformations, we treat each protein as a molecule with some
volume and introduce a method to ensure that the two whole protein 3D structures have no
overlap under such a rigid transformation in 3D space. The software package is available at
http://sites.google.com/site/guofeics/bsfinder.
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Fig. 4. (a) The 3D structure (best viewed in color) of the interactions between the
Bac_rhodopsin domain and the HAMP domain in 1h2s. The left part is chain A and contains
the Bac_rhodopsin domain. The right part is chain B and contains the HAMP domain. (b)
The backbone structure of the interactions between segment [168V,186A] in 1h2s_A and
segment [61V,69I] in 1h2s_B.

calculation and information, we may conclude that the positions 1− 19 of the second left block
and the positions 4 − 12 of the first right block are possibly interaction sites.

7. Prediction of binding sites

After obtaining candidate domains (conserved regions) in multiple sequence alignment, we
can further verify if a pairs of predicted domains really interact with each other by using
some tools for protein binding site prediction. Here we briefly introduce a method originally
in (Guo & Wang, 2011). This method assumes that the 3D structures of the two given proteins
are known.

Given two complete protein structures, the task is to find the binding sites between the two
proteins. The method contains three steps. Firstly, we do local sequence alignment at the
atom level to get the alignments of conserved regions. Those alignments of conserved regions
may contain some gaps. Secondly, among the conserved regions obtained in Step 1, we use
the 3D structure information to identify the surface segments. Finally, for any pair of the
surface segments identified in Step 2, we compute a rigid transformation to compare the
similarity of the two substructures in 3D space and output the qualified pairs as binding sites.
When computing the rigid transformations, we treat each protein as a molecule with some
volume and introduce a method to ensure that the two whole protein 3D structures have no
overlap under such a rigid transformation in 3D space. The software package is available at
http://sites.google.com/site/guofeics/bsfinder.
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16 Will-be-set-by-IN-TECH

AC l18493xB;
distance from previous block=(4,396)

DE none BL IIK motif=[6,0,17] motomat=[1,1,-10]
width=20 seqs=7

DIP:8095N ( 206) VIGILIISYTKATCDMLAGK
DIP:4973N ( 536) MILILIAQFWVAIAPIGEGK
DIP:5150N ( 417) LIKDEINNDKKDNADDKYIK
DIP:5371N ( 384) IILALIVTILWFMLRGNTAK
DIP:676N ( 402) VIVAWIFFVVSFVTTSSVGK
...
pdb 1h2s_A ( 168) VILWAIYPFIWLLGPPGVA
Bac_rhodopsin: VVLWLAYPVVWLLGPEGIG

AC r18493xA;
distance from previous block=(7,177)

DE none BL LLL motif=[6,0,17] motomat=[1,1,-10]
width=12 seqs=8

DIP:7371N ( 10) LALIILYLSIPL
DIP:8128N ( 35) LSLRFLALIFDL
DIP:4176N ( 106) LVLTSLSLTLLL
DIP:7280N ( 11) LSLFLPPVAVFL
DIP:5331N ( 178) LSFFVLCGLARL
...
pdb 1h2s_B ( 61) VSAILGLII
HAMP: IALLLALLL

Table 3. Left block l18493xB aligning with the Bac_rhodopsin domain and right block
r18493xA aligning with the HAMP domain. For brevity, only 5 sequences in each of the two
blocks are shown. In line Bac_rhodopsin and line HAMP, each letter is the amino acid with
the highest frequency in the corresponding column in the multiple alignment. Pdb 1h2s_A
and pdb 1h2s_B are chain A and chain B in protein complex 1h2s, respectively.

8. Conclusion

We have proposed algorithms for finding the maximum vertex quasi-biclique problem. We
illustrate the applications of the proposed algorithms for finding protein-protein binding sites.
The general approach contains three steps: (1) find quasi-bicliques from PPI networks; (2) do
multiple sequence alignment for each of the groups in the quasi-biclique and identify possible
domains on the protein sequences. (3) use other methods, e.g., the one in (Guo & Wang, 2011),
to further confirm the binding sites.
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1. Introduction 
After the entire human DNA sequence was made public, many post-genome researchers 
began to investigate the systems of living creatures. Creatures consist of vast collections of 
proteins and their bodies are maintained by complex interactions among genes, proteins, 
and organic molecules. One major area of interest is how the characteristics of each creature 
are manifest and what kind of proteins, genes, and their interactions are related to them. 

Much research to detect protein–protein interactions has been conducted. The most direct 
approach to tackle protein–protein interactions is to identify the evidence of the interactions 
through in vitro or in vivo experiments. Since several high-throughput experimental methods 
to detect physical interactions of proteins, such as yeast two-hybrid [1] and tandem affinity 
purification [2], have been developed, a significant number of protein interactions have been 
clarified that accelerated the exploration for protein functionality. 

As vast amounts of genome sequences became available, computational approaches to infer 
protein–protein interactions became more focused. They typically assume some hypotheses 
of biological activity or property, and search biological databases with their own analytical 
methods for combinations of proteins to satisfy their hypotheses. Initially, many of these 
methods simply used gene or protein sequences, e.g., the method based on conservation of 
gene neighborhoods [3], the Rosetta Stone method [4][5], and the sequence-based co-
evolution method [6]. Later, as various public databases became available, such as 3D-
structures, domains, motifs, pathways, and phylogenetic profiles, various advanced 
methods to search for protein–protein interactions were developed. These methods and 
their results are available on the Web [7]. 

As one computational approach, gene or protein expression-based analysis is widely used to 
understand gene or protein interactions, which is the focus of this article. These methods 
were originally developed for microarray experiments that produced gene expression 
profiles, but they can apply to protein expression data as well. Because we can now obtain 
the expression profile of genes using high-throughput experiments such as microarray, 
protein chip, and 2D-electrophoresis, algorithms to derive interactions from expression data 
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As one computational approach, gene or protein expression-based analysis is widely used to 
understand gene or protein interactions, which is the focus of this article. These methods 
were originally developed for microarray experiments that produced gene expression 
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protein chip, and 2D-electrophoresis, algorithms to derive interactions from expression data 
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are increasingly valuable. As a basic analysis, the correlation coefficient of expression levels 
between two proteins is often used to measure the interaction level of protein pairs. (Note 
that, in this article, we call this type of interaction the sole effect, which refers to the effect on 
a protein from another single protein.) However, since protein interactions have more 
complex structures, more sophisticated analyses such as Bayesian networks [8] have been 
used to understand combinatorial effects among proteins. A Bayesian network provides the 
optimal network computed from a set of expression data, which shows the landscape of 
interaction effects among proteins. Although this network does not infer direct physical 
interactions, it helps us gain a better understanding of protein functions. However, since the 
process of Bayesian network analysis considers the sole effects and the combinatorial effects 
together, it cannot recognize the combinatorial effects alone. 

In this article, we treat interactions among three proteins. We derive the combinatorial effect 
level, which emerges only when the three proteins are together, besides the sole effects that 
emerge between two proteins. The combinatorial effect level is estimated in a statistical 
manner, which will lead to a better understanding of protein interactions and a guide to 
deeper investigations. 

The remainder of this paper is organized as follows. In Section 2, we describe related work 
to understand the current state of the art in this research area. In Section 3, we describe the 
model of protein–protein interactions used in our method, and present the method to 
retrieve the combinatorial effect of three proteins. In Section 4, we evaluate our method by 
applying it to real protein expression data, and finally in Section 5 present the conclusions. 

2. Related work 
In this section, we give a short introduction of the major approaches used to predict protein–
protein interactions. 

Many computational methods to predict protein–protein interactions have been proposed. 
They utilize various kinds of public data such as genome sequences, amino-acid sequences, 
pathways, domains, 3D-structures, motifs, and phylogenetic profiles, to identify a property 
of protein pairs in order to predict protein–protein interactions. One typical genome-
sequence-based technique is based on conservation of gene neighbourhood [3]. This 
technique assumes that genes with similar functions or genes that are in the same pathways 
are transcribed together as a single unit known as an operon. Thus, finding two proteins 
that are neighbours in several genomes infers that they interact or have similar functions. 
Another typical sequence-based technique is called the Rosetta Stone method [4][5]. This 
method is based on the fact that several pairs of proteins interacting with each other have 
their homologs in other single proteins, called Rosetta Stone proteins. The phylogenetic 
profile method [6] uses a series of gene sequences in evolution and detects the set of genes 
that are simultaneously present or absent in the sequences. Since proteins in interaction tend 
to disappear simultaneously, finding the set of such genes predicts that the corresponding 
proteins interact. In addition, the in silico two-hybrid system [9] provides a fully alignment-
based protein–protein interaction prediction. This technique tries to detect physical 
interaction of proteins within their 3D structures by means of correlation of sequences of 
sites among target proteins. Recently, docking analysis using 3D structures of proteins has 
progressed rapidly. The main difficulty in docking analysis is that there are many potential 
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ways in which proteins can interact, and protein surfaces are flexible. Currently, one of the 
major approaches is a global search based on fast Fourier Transform [10]. Including the 
methods introduced in this brief discussion, there are a tremendous number of techniques to 
predict protein–protein interactions, and their algorithms and results are available in public 
databases. For more details, see [7][11]. 

Boolean networks [12] and Bayesian networks [8] are well known as computational methods 
to predict interactions from expression data. It is important to note that they treat gene 
interactions rather than protein interactions since most of them originally suppose 
microarray data as their source of analysis. However, they can also treat protein expression 
data.  

A Boolean network [12] is a network that represents causal association and it is typically 
generated from a pattern of time-series expression data. In Boolean networks, a set of 
expression levels for a sample at time t is regarded as “state” at some time t, where each 
expression level is typically represented by “1 (expressed)” or “0 (not expressed).” To 
compute the network, the time-series state transition is analyzed to learn the functions to 
determine the state at time t+1 from the current state at time t. As a result, an expression 
level of a protein at time t+1 is determined depending on the expression level of several 
proteins at time t. This dependency indicates the protein–protein interaction, although it 
does not always indicate a direct interaction. There are several versions and extensions of 
Boolean networks. Akutsu et al. proposed a model and an algorithm of Boolean networks 
that is generated from non-time-series expression data [13]. Laubenbacher et al. proposed 
multistate Boolean networks [14]. However, these models cannot treat noise and, thus, often 
fail in computing networks. To overcome this problem, Shumulevich et al. proposed a 
model of probabilistic Boolean networks [15] that enables Boolean networks to apply to 
practical real expression data that includes noise.  

A Bayesian network [8] is also a model of interactions often used in computational 
approaches that is typically built from expression data with discrete expression levels. 
Bayesian networks represent a joint distribution of random variables, and its direct edge 
between nodes represents causal association of those nodes. The learning process of a 
Bayesian network includes the optimization of network topology, where the evaluation of 
topologies is based on some information criterion, which is typically based on entropy. Note 
that it evaluates, for each node, the strength of the relationship between the node and its 
parents in the network, meaning that the sole effects and the combinatorial effects are 
evaluated together. Later, as an extension of the model, the Dynamic Bayesian network 
model was proposed [16], which handles time-series expression data. For details of this kind 
of network learning, there are several survey articles available, such as [17][18]. 

3. Method to retrieve combinatorial effects 
3.1 Expression data used in our method 

In this section, we explain the typical representation of protein expression data. Protein 
expression data represents the expression level of each protein i in sample j. Typically, the 
number of proteins in the data are several hundreds to thousands while the number of 
samples is usually several tens and at most hundreds.  
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are increasingly valuable. As a basic analysis, the correlation coefficient of expression levels 
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used to understand combinatorial effects among proteins. A Bayesian network provides the 
optimal network computed from a set of expression data, which shows the landscape of 
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ways in which proteins can interact, and protein surfaces are flexible. Currently, one of the 
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microarray data as their source of analysis. However, they can also treat protein expression 
data.  
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generated from a pattern of time-series expression data. In Boolean networks, a set of 
expression levels for a sample at time t is regarded as “state” at some time t, where each 
expression level is typically represented by “1 (expressed)” or “0 (not expressed).” To 
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level of a protein at time t+1 is determined depending on the expression level of several 
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does not always indicate a direct interaction. There are several versions and extensions of 
Boolean networks. Akutsu et al. proposed a model and an algorithm of Boolean networks 
that is generated from non-time-series expression data [13]. Laubenbacher et al. proposed 
multistate Boolean networks [14]. However, these models cannot treat noise and, thus, often 
fail in computing networks. To overcome this problem, Shumulevich et al. proposed a 
model of probabilistic Boolean networks [15] that enables Boolean networks to apply to 
practical real expression data that includes noise.  

A Bayesian network [8] is also a model of interactions often used in computational 
approaches that is typically built from expression data with discrete expression levels. 
Bayesian networks represent a joint distribution of random variables, and its direct edge 
between nodes represents causal association of those nodes. The learning process of a 
Bayesian network includes the optimization of network topology, where the evaluation of 
topologies is based on some information criterion, which is typically based on entropy. Note 
that it evaluates, for each node, the strength of the relationship between the node and its 
parents in the network, meaning that the sole effects and the combinatorial effects are 
evaluated together. Later, as an extension of the model, the Dynamic Bayesian network 
model was proposed [16], which handles time-series expression data. For details of this kind 
of network learning, there are several survey articles available, such as [17][18]. 

3. Method to retrieve combinatorial effects 
3.1 Expression data used in our method 

In this section, we explain the typical representation of protein expression data. Protein 
expression data represents the expression level of each protein i in sample j. Typically, the 
number of proteins in the data are several hundreds to thousands while the number of 
samples is usually several tens and at most hundreds.  
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Fig. 1. The process of obtaining Proteome Expression Data. 

 
Fig. 2. The Data Format for Our Data Mining Process. 

Protein expression data is obtained from several methods or devices such as protein arrays, 
2D electrophoresis, and mass spectrometry. Among these, we now introduce a 2D 
electrophoresis-based method [19] as a typical way of generating protein expression data. 
The process of obtaining protein expression data is somewhat complicated compared to 
microarray data that measures gene expression levels (see Figure 1). First, we prepare target 
samples and obtain 2D electrophoresis images from each target sample through an 
experimental biological process. Second, we identify areas (in the rest of this article we call 
them spots) of separated proteins using image-processing software and measure the 
expression level of each spot. Third, we match the spots among different images such that 
the matched spots indicate the same protein. Finally, we normalize the values of expression 
levels using a normalization method as a preprocess to the data mining processes. As a 
result, we have a set of protein expression levels as shown in Figure 2, which shows the 
expression levels of each protein in each sample.  
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Fig. 3. The Interaction Model to Predict. 

 
Fig. 4. How to Measure Sole and Total Effect Level of Protein A and B on C. 

3.2 Combinatorial protein-protein interaction model 

The protein–protein interaction model we try to predict in this paper is shown in Figure 3. 
Three proteins, A, B, and C, are related to this model, where A and B individually effect the 
expression level of C, but if both A and B are expressed together, they have a far larger effect 
on the expression level of C. We call the effect from A to C (resp. B to C) the sole effect, and 
we call the whole effect from A and B on C the total effect. Note that the total effect consists 
of two sole effects and the combinatorial effect appears only if both A and B express. What we 
want to retrieve from expression data is the combinatorial effect of A and B on C.  

To measure the combinatorial effect, we first estimate the amount of total effect of A and B 
on C. Then from the estimated total effect level, we subtract the two sole effects, i.e., the 
effect of A − C and B − C, to obtain the combinatorial effect level.  

Note that the three proteins may interact directly or indirectly. We try to extract the three 
proteins that work in the same functional groups by identifying the behaviour of expression 
levels following our model of interaction. 
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Fig. 5. Dividing Total Effect into Sole and Combinatorial Effect. 

3.3 Estimating sole and total interaction levels based on conditional probability 

We use conditional probability to retrieve this interaction from expression data. The 
probability of the sole interactions of A − C and B − C are measured by conditional 
probability, as shown in Figure 4. Namely, the sole interaction effect level of A on C is 
measured as the ratio of the number of samples in which the expression levels of both A and 
C are sufficiently high out of the number of samples in which the expression level of A is 
sufficiently high. The total interaction effect of A and B on C is also measured in a similar 
manner, i.e., the ratio of the number of samples in which the expression level of A, B, and C 
are all sufficiently high out of the number of samples in which the expression levels of both 
A and B are sufficiently high. 

The definitions and formulation of our problems are as follows. We handle proteins i (1 ≤ i ≤ 
I) and samples j (1 ≤ j ≤ J), both of which are included in the input expression data. We also 
call the proteins A, B, C, ..., and so on. As a parameter, we define r (0 < r <1) as the threshold 
of the ratio used to judge the expression, i.e., if the expression level of sample j for protein i 
is within the top r among all the expression levels of protein i, we call the protein i 
“expressed” in sample j. Let |�| be the number of samples in which protein A is expressed, 
and similarly, let |� � �| be the number of samples in which both protein A and B are 
expressed. Then, we define ��� = |���|

|�|  as the sole effect level of A on C. Similarly, the sole 

effect level of B on C is defined as ��� = |���|
|�| , and the total effect level of A and B on C is 

defined as ����� = |�����|
|���| . 

3.4 Retrieving combinatorial effect 

What we want to estimate is the amount of the combinatorial interaction effect level, which 
can be estimated from the total interaction level (presented in the previous section) and the 
sole effect levels of A − C and B − C (see Figure 5). To estimate the combinatorial effect level 
for the combination of the three proteins A, B, and C, we split the total interaction effect into 
two parts, i.e., into two sole interaction effects and the combinatorial effect. Then, the 
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difference between them is regarded as the combinatorial effect level that we wish to 
compute. To obtain the combinatorial effect level, we compute the statistical distribution of 
the total effect levels ������ = |�����|

|���| , which are computed through the simulation executed 
under the assumption that no combinatorial effect exists over A, B, and C. From the 
distribution of ������ = |�����|

|���|  and the total effect score ����� = |�����|
|���| , which is the total 

effect level presented in the previous subsection, we can estimate the combinatorial effect 
level.  

The computer simulation to compute the distribution of ������ = |�����|
|���|  is performed as 

follows. For the corresponding value of � and �, which are the sole effect values for the 
combination A − C and B − C, we first create distributions of A, B, and C randomly such that 
the sole effect levels of A − C and B − C are � and �, respectively. Since those distributions 
are created randomly, it is possible to assume that they do not include any combinatorial 
effect. Then we compute the total effect score of the combination A, B, and C. After a 
sufficient number of repetitions of this process, we obtain the distribution of ������  as the 
accumulation of the total effect scores. Note that we do not consider what kind of 
distribution A, B, and C follow in our method since we determine if the protein is expressed 
using the threshold r of the ranking in expression levels. 

From this total effect distribution ������ , we compute the combinatorial effect as a z-score in 

the distribution of ������ . The z-score �����  is defined as ����� = ������ ���
� , where �����  is the total 

effect level of A, B, and C obtained from the real data, and � and � are the average and the 
standard deviation of the distribution of ������  obtained from the computer simulation, 
respectively. Namely, the z-score is the difference between the average���of the 
distribution of ������  and the real total effect level obtained from the real data, which is 
measured as the unit value �. Intuitively, the z-score indicates the probability of the value 
�����  assuming that the combinatorial effect does not exist, which implies the level of the 
combinatorial effect. 

To compute the distribution of the total effect levels through the simulation, however, 
requires considerable computing time so it is desirable to precompute the distribution. Thus, 
we prepared a distribution table that shows the average and the standard deviation of the 
distribution for each value of � and �, as shown in Figure 6. Note that when we compute the 
distributions in Figure 6, we prepared the data of A, B, and C with 10,000 samples and we 
perform 5,000,000 trials for each pair of � and �. Because we computed the table for 20 
values of � and � between 0 and 1, for obtaining the corresponding values of � and � we 
used the value in the table that is the closest to � and � of A, B, and C. 

Now we summarize the proposed method. First, we enumerate every combination of the 
three proteins A, B, and C from the input data set. For each of the combinations, we 
compute the total effect level �����  of A, B, and C. By referring to the precomputed 
distribution table, we find the distribution of�������  corresponding to the value � and � of A, 
B, and C. From the distribution of ������ , and the total effect level ����� , we obtain the 
combinatorial effect level of A and B on C as the corresponding z-score. Finally, we create a 
ranking of all the combinations of the three proteins by ordering them by the z-score. 
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Prediction of Combinatorial Protein-Protein Interaction  
from Expression Data Based on Conditional Probability 137 

difference between them is regarded as the combinatorial effect level that we wish to 
compute. To obtain the combinatorial effect level, we compute the statistical distribution of 
the total effect levels ������ = |�����|

|���| , which are computed through the simulation executed 
under the assumption that no combinatorial effect exists over A, B, and C. From the 
distribution of ������ = |�����|

|���|  and the total effect score ����� = |�����|
|���| , which is the total 

effect level presented in the previous subsection, we can estimate the combinatorial effect 
level.  

The computer simulation to compute the distribution of ������ = |�����|
|���|  is performed as 

follows. For the corresponding value of � and �, which are the sole effect values for the 
combination A − C and B − C, we first create distributions of A, B, and C randomly such that 
the sole effect levels of A − C and B − C are � and �, respectively. Since those distributions 
are created randomly, it is possible to assume that they do not include any combinatorial 
effect. Then we compute the total effect score of the combination A, B, and C. After a 
sufficient number of repetitions of this process, we obtain the distribution of ������  as the 
accumulation of the total effect scores. Note that we do not consider what kind of 
distribution A, B, and C follow in our method since we determine if the protein is expressed 
using the threshold r of the ranking in expression levels. 

From this total effect distribution ������ , we compute the combinatorial effect as a z-score in 

the distribution of ������ . The z-score �����  is defined as ����� = ������ ���
� , where �����  is the total 

effect level of A, B, and C obtained from the real data, and � and � are the average and the 
standard deviation of the distribution of ������  obtained from the computer simulation, 
respectively. Namely, the z-score is the difference between the average���of the 
distribution of ������  and the real total effect level obtained from the real data, which is 
measured as the unit value �. Intuitively, the z-score indicates the probability of the value 
�����  assuming that the combinatorial effect does not exist, which implies the level of the 
combinatorial effect. 

To compute the distribution of the total effect levels through the simulation, however, 
requires considerable computing time so it is desirable to precompute the distribution. Thus, 
we prepared a distribution table that shows the average and the standard deviation of the 
distribution for each value of � and �, as shown in Figure 6. Note that when we compute the 
distributions in Figure 6, we prepared the data of A, B, and C with 10,000 samples and we 
perform 5,000,000 trials for each pair of � and �. Because we computed the table for 20 
values of � and � between 0 and 1, for obtaining the corresponding values of � and � we 
used the value in the table that is the closest to � and � of A, B, and C. 

Now we summarize the proposed method. First, we enumerate every combination of the 
three proteins A, B, and C from the input data set. For each of the combinations, we 
compute the total effect level �����  of A, B, and C. By referring to the precomputed 
distribution table, we find the distribution of�������  corresponding to the value � and � of A, 
B, and C. From the distribution of ������ , and the total effect level ����� , we obtain the 
combinatorial effect level of A and B on C as the corresponding z-score. Finally, we create a 
ranking of all the combinations of the three proteins by ordering them by the z-score. 
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Fig. 6. The Distribution Table of  Created through Simulation. 

4. Evaluation 
4.1 Property of expression data used in our method 

In this section, we explain the preprocess applied to the expression data, and also describe 
the basic property of the data. The expression data used in this experiment originated from 
the sample of fat near the kidney of black cattle. We performed 2D electrophoresis on each 
sample and measured the volume of each separated spot that corresponds to each protein. 
For details of the protocol of the experiment, see [19]. 

We preprocessed the expression data to improve the reliability of the expression data. Our 
preprocess consists of the following three steps. First, we removed from the data the  
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Fig. 7. The histogram of correlation coefficient between proteins. 

samples and the proteins that included more than 10% of null expression levels. This was done 
because samples or proteins with so many null values significantly reduce the reliability of the 
expression data. Next, we normalized the expression data with the global scaling method [20], 
where for every sample a scale factor is applied such that the total sum of the protein 
expression levels in the sample is 1. Finally, we removed the samples with high repetition 
error. Note that, in fact, in this data set, we performed 2D electrophoresis twice for each 
sample to confirm the accuracy of each electrophoresis experiment. To maintain the reliability 
of the data, we removed the sample in which more than 30% of the spots have a high 
repetation error or null value. Specifically, we consider a spot to have high repetation error if 
the larger expression level is larger than 1.3 times the value of the smaller expression level. 
Otherwise, the average of the two expression levels is used for each sample-protein pair. As a 
result, the expression data used for our evaluation consist of 124 samples and 670 proteins.  

In order to indicate a characteristic of this data, we investigated the correlation between 
proteins. See Figure 7 for the results of calculating correlation coefficients for all pairs of the 
proteins. Note that the number of pairs is 670C2 in total. Figure 7 is the histogram where the 
horizontal axis shows the correlation coefficient separated into classes with 0.05 intervals and 
the vertical axis shows the frequency of each class. From this result, we can see that most of the 
correlation coefficients take positive values, and many of them take relatively large values. 

4.2 Evaluation experiment of retrieving combinatorial effect 

4.2.1 Methods 

We performed the experiment to evaluate the performance of the proposed method by 
applying it to the expression data described in Section 4.1. As a parameter of the experiment, 
we used the values of 50% and 30% as the threshold r to define the phenomenon that a 
protein is expressed.  

To maintain statistical reliability, we excluded from the analysis the combinations of three 
proteins where the number of samples was insufficient. Namely, we ignored the 
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applying it to the expression data described in Section 4.1. As a parameter of the experiment, 
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combinations of the three proteins if |A ∩ B|, which is the denominator in the total effect 
level ����� , was less than 35 in case of r is 50%, and less than 20 in case r is 30%. Similarly, we 
also removed the combinations if |A ∩ B ∩ C| was less than 18 in case of r is 50%, and less 
than 10 in case r is 30%. Furthermore, for the computation, we only used the samples in 
which all the expression levels of the three proteins are not null. 

4.2.2 Results 

In this section, we describe the results of the evaluation experiments. Figure 8 shows the 
histogram of the case of r = 50%, where the horizontal axis indicates the z-scores separated 
into classes with 0.5 intervals, and the vertical axis indicates the number of combinations in 
each class. Figure 9 shows the ranking of the top 30 combinations of proteins in terms of z-
score. This table includes the columns of the spot numbers of proteins A, B, C, z-score of the 
combinations, ��� and ��� (the sole effect levels), �����  (the total effect level), |A ∩ B| and 
|A ∩ B ∩ C| (the number of samples contained in each phenomenon). 

Under the significance level of 1%, we extracted 462,706 combinations in which a strong 
combinatorial effect is inferred. Here, we caluculate the corresponding p-value to the 
significance level of 1% using the formula of the Bonferroni correction presented in [21], i.e., 

p-value � 1 � �
��������

� , where n is the number of combinations of three proteins and � is the 

significance level. This suggests that if p-value = 1 � �
�������.���
����������� = 6.713 × 10��� or less, the 

combinatorial effect exists. When the p-value is 6.713 × 10���, then the corresponding z-
score is 6.423. This is computed as the point in the normal distribution where the probability 
that the value will become more than the point is p-value = 6.713 × 10���. Figure 8 shows 
only the part where the z-score is larger than 6.423. Note that the probability of a z-score 
larger than 6.423 is only 6.713 × 10��� if we assume that there is no combinatorial effect. 
This and the results of Figure 8 imply that our expression data includes many combinations 
in which the combinatorial effect exists.  

Figure 9 shows that most of the sole effects of the shown combinations occur between 0.4 
and 0.45, and the total effects occur between 0.45 and 0.55. Moreover, in most of the 
combinations, |A ∩ B| takes values close to 35, which is the threshold value to judge 
statistical reliability. This implies that combinations of lower |A ∩ B| tend to have larger z-
scores. Although it is not shown in Figure 9, the combinations of lower ranks have larger 
values of |A ∩ B|.  
Figures 10 and 11 show the results with r = 30%. Compared to Figure 8, z-scores tend to 
have lower values. In addition, the number of combinations with z-scores larger than 6.423 
decreases to 167,320. Here, 6.423 is the corresponding p-value with the significance level of 
1%. In Figure 11, all of the total effects take a value of 1.0 and all of |A ∩ B| take a value of 20, 
which is the threshold value to judge statistical reliability. Furthermore, about 97.8% of the 
total effects take 1.0 in the retrieved 167,320 combinations. This means that in most of 
retrieved combinations, protein C is expressed in all the samples in which both proteins A 
and B are expressed. This appears to be an unusual tendency. Since in the case of 30% the 
number of samples in the phenomenon “express” is smaller than in the case of 50%, it is 
possible that the number of samples is not sufficient to ensure a reliable statistical analysis. 
One of our future projects will be to clarify why this result appears in the case of r = 30%. 
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Fig. 10. The histogram of z-score (r=30%). 
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4.3 Evaluation experiment of exchangeable proteins 

4.3.1 Procedure to exchange proteins 

In this section, for the combinations that have high z-scores, we investigate the z-scores when 
we exchange protein A with protein D in the case where D has a high correlation coefficient 
with A. Figure 9 shows that many high z-score combinations include C as the common 
protein, although A and B are also found as common proteins. Since our method defines the 
samples with the top r expression levels as expressed, having similar z-scores is intuitively 
inferred if we exchange A with D when D has a high correlation coefficient with A. We believe 
this is because there are many pairs of proteins in our data set that have a high correlation 
coefficient allowing us to retrieve so many combinations with a high combinatorial effect. In 
order to confirm this, we performed an experiment where we exchanged proteins. 

The experiment is as follows. First, we create the list of proteins for D that have correlation 
coefficients against A that are larger than a certain threshold value. Next, we exchange A 
with D, and calculate the z-score �����  for all combinations of proteins D, B, and C. 

4.3.2 Result of exchanging protein 

Figure 12 shows the value of the z-scores �����  when A and D are exchanged in the highest z-
score combination of A, B, and C in the case r = 50%, where A is exchanged with D if D has 
the correlation coefficient with A larger than 0.8. This table includes the columns of the spot 
numbers of proteins A, B, C, protein D exchanged with A, correl(A,D) (the correlation 
coefficient of A and D), ��� (the sole effect level when A and D are exchanged), ��� (the sole 
effect level of before exchanging), �����  (the total effect level), |D ∩ B| and |D ∩ B ∩ C| (the 
number of samples contained in each phenomenon). In addition, this table is sorted in 
descending order of z-score. 

Figure 12 shows that the lowest z-score as a result of exchanging is 5.503. Note that there are 
only three combinations that have a z-score less than 6.423, by which the combinatorial effect 
is inferred under the significance level of 1%. This means that the z-score tends to be high 
when two proteins with a strong correlation are exchanged. Accordingly, one of the reasons 
that so many combinations that have a combinatorial effect are retrieved in our data seems to 
be that our data includes so many pairs of proteins in which the correlation coefficient is high. 

5. Conclusion 
In this paper, we proposed a method to retrieve the combinatorial protein–protein (or gene-
gene) interactions from expression data using statistics of conditional probability. We 
suppose a model of protein–protein interactions in which the expression level of C takes a 
large value only if proteins A and B are expressed together. This is the first study to estimate 
the combinatorial effect level apart from the sole effect. In this study we described our 
method to treat protein interactions, but note that our method is also applicable to gene 
expression data generated from microarray experiments.  

We evaluated our method using real expression data obtained from a 2D electrophoresis-
based experiment. We performed two evaluation experiments with two different parameters, 
i.e., r = 50% and r = 30%. As a result, the real expression data used in our experiment 
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Fig. 12. The ranking of z-score about exchangeable proteins (r=50%). 

included a considerable number of combinations in which combinatorial effect is inferred. 
However, the results are quite different between the two parameters of r that we used in our 
expeirment. This may be because the number of samples is not sufficient for statistical 
analysis, and we hope to clarify the validity of our method in detail in our future work. 
Further, we confirmed that we can exchange protein of A with D when D has strong 
correlation with A, and we found that the combinatorial effect is still strong even when A is 
exchanged with D.  

In the future, we would like to perform more experiments to further validate our proposed 
method. In addition, we would like to develop an algorithm for the analytical computation 
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of the statistical distribution under the assumption of no combinatorial effect, i.e., we would 
like to compute the distribution shown in Figure 6 without simulation. If such fast 
computation is possible, it enables us to easily vary the threshold r, and it also enables us to 
compute a more accurate analysis. Finally, we also would like to find the known interactions 
in our results verify the value of this data-mining method. 
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1. Introduction 
Proteins are involved in many essential cellular processes, such as metabolism and 
signalling. They function by interacting with other molecules within the cell. Thus, protein 
interaction is one of the important keys to understand protein functions. As a consequence 
of the development of high-throughput experimental methods for detecting protein 
interactions, large volumes of data are now available. Although the data are valuable, there 
are limitations to their application. Therefore, computational methods are helpful tools for 
predicting protein interactions. With the increase in genome sequence data, the importance 
of computational methods in this field is growing more and more.  

Another important factor to understand protein function is flexibility, because a protein 
molecule is not a rigid body. Flexible regions are often necessary for proteins to perform 
their functions, e.g. by enabling their flexible conformations to interact with other molecules 
and proteins. Therefore, it is important to understand the relationship between protein 
flexibility and protein interactions. In accordance with the increasing numbers of available 
protein structures, several databases that deal with protein flexibility have been built. 
Computational methods for analyzing protein motion are also being developed, for 
applications to PPI (protein-protein interaction) data. 

The aim of this chapter is to provide a review on PPI prediction by computational techniques. 
In the first half of this chapter, the concepts and applications of several methods for inferring 
PPIs are introduced. They use genomic information based on evolutionary events. In the 
second half, the databases and prediction methods that deal with protein flexibility are 
introduced, and the possibility of inferring PPIs from protein flexibility will be discussed.  

2. Computational methods to infer PPIs 
The prediction of PPIs can be regarded as a binary classification problem, whereby the aim 
is to identify pairs of proteins as either interacting or non-interacting. PPIs can be divided 
into three types (Brown et al., 2010). The first is direct protein interactions, which involve 
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1. Introduction 
Proteins are involved in many essential cellular processes, such as metabolism and 
signalling. They function by interacting with other molecules within the cell. Thus, protein 
interaction is one of the important keys to understand protein functions. As a consequence 
of the development of high-throughput experimental methods for detecting protein 
interactions, large volumes of data are now available. Although the data are valuable, there 
are limitations to their application. Therefore, computational methods are helpful tools for 
predicting protein interactions. With the increase in genome sequence data, the importance 
of computational methods in this field is growing more and more.  

Another important factor to understand protein function is flexibility, because a protein 
molecule is not a rigid body. Flexible regions are often necessary for proteins to perform 
their functions, e.g. by enabling their flexible conformations to interact with other molecules 
and proteins. Therefore, it is important to understand the relationship between protein 
flexibility and protein interactions. In accordance with the increasing numbers of available 
protein structures, several databases that deal with protein flexibility have been built. 
Computational methods for analyzing protein motion are also being developed, for 
applications to PPI (protein-protein interaction) data. 

The aim of this chapter is to provide a review on PPI prediction by computational techniques. 
In the first half of this chapter, the concepts and applications of several methods for inferring 
PPIs are introduced. They use genomic information based on evolutionary events. In the 
second half, the databases and prediction methods that deal with protein flexibility are 
introduced, and the possibility of inferring PPIs from protein flexibility will be discussed.  

2. Computational methods to infer PPIs 
The prediction of PPIs can be regarded as a binary classification problem, whereby the aim 
is to identify pairs of proteins as either interacting or non-interacting. PPIs can be divided 
into three types (Brown et al., 2010). The first is direct protein interactions, which involve 
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direct physical contacts between proteins. The second is indirect functional association. In 
this case, the interacting protein pair does not have a direct physical contact, but it indirectly 
interacts, such as in the formation of a complex. The third is a member of biological 
pathway. In this case, the protein pairs do not form a complex, but their interactions occur in 
a logical order (for instance, in a signalling pathway).  

Proteins exert their biological functions by participating in a PPI network. Protein interactions, 
as well as their biochemical functions, work as a type of selective pressure during evolution. 
Therefore, they influence the genome structure associated with the protein interactions. 
Conversely, analyzing the changes in the patterns on the genome makes it possible to infer 
PPIs. Several evolutionary events function as factors that impact the evolution of PPIs, 
including horizontal gene transfer, operon structure, co-evolution, co-expression, and lineage-
specific gene loss. Several methods that infer PPIs using these various types of evolutionary 
information have been developed (Valencia and Pazos, 2002; Skrabanek et al., 2008). In this 
section, the principles and applications of PPI prediction methods are introduced. The 
different PPI prediction methods (Shoemaker and Panchenko, 2007) are listed in Table 1. First, 
the genomic inference methods (Rosetta stone, conservation of gene neighborhood, and 
phylogenetic profile), which predict functional association using genomic context, are 
presented. Next, the methods (mirror tree, in silico two-hybrid system) based on co-evolution 
are introduced, which are applicable to domain interactions as well as protein interactions. 
Finally, the sequence signature and machine learning based-methods are presented. 
 

Method Interaction Type Interaction 

Rosetta stone Indirect functional association Protein 
Conservation of gene neighborhood Indirect functional association Protein 
Phylogenetic profiles Indirect functional association Protein/domain 
Mirror tree Indirect functional association Protein/domain 
In silico two-hybrid system Direct physical interaction Protein/domain 
Sequence signature Direct physical interaction Protein/domain 
Supervised classification Direct physical interaction Protein/domain 

Table 1. Summary of PPI prediction methods. 

The second column represents the interaction type predicted by the method. The third 
column shows whether the method is designed to predict protein or domain interaction. 

2.1 Rosetta stone 

The Rosetta stone approach infers PPIs by comparing different genomes. It is often observed 
that two proteins that interact in genome i have a homologous protein that is fused into one 
protein in genome j (Fig. 1). These two gene products are functionally related in many cases 
(Enright et al., 1999). The fused protein is called a ‘Rosetta stone protein’, since it serves as a 
key for unlocking the functional relationship between two genes that are encoded 
independently in the genome. The Rosetta stone approach estimates functionally related 
protein pairs based on such a concept. The benefit of this approach is applicable to all 
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genomes, including those of Eukaryote. Not surprisingly, the inference of a protein 
interaction is restricted to the case where the gene fusion can be detected. 

Hence, the approach searches for the proteins that are conserved between different organisms. 
The following two points must be considered, in order to obtain higher prediction accuracy. 
First, the proteins that interact with many other proteins, such as the HRG domain, and the 
CBS domain, which binds to DNA, should be removed. Second, the analysis is focused on the 
case where the pairs of genes that are fused together are orthologous. As an extension of the 
Rosetta stone approach, it can predict a functionally related gene cluster by combining several 
results. Four proteins, A, B, C, and D, are considered to be functionally related if the Rosetta 
stone proteins of the A-B, B-C, and C-D pairs are found. 

Applying the Rosetta stone approach to many genomes revealed 6,809 potentially 
interacting pairs in Escherichia coli and 45,502 pairs in yeast (Marcotte et al., 1999). The two 
proteins in each pair have significant sequence similarity to a single fused protein in another 
genome. Some proteins interact with several other proteins, and these connections 
apparently represent functional interactions, such as complexes or pathways. 

 
Gene X is the Rosetta stone protein, indicating that protein A and protein B are functionally related. 

Fig. 1. The concept of the Rosetta stone approach. 

2.2 Conservation of gene neighborhood 

The genome comparison among Bacteria or Archaea indicated that the gene order and the 
operon structure are not conserved on the genome. This is because they have changed with 
evolutionary events, such as recombination, gene disruption, gene formation, and horizontal 
gene transfer. These phenomena suggest that the gene order is basically not subjected to 
selective pressure. However, the gene order or gene clusters on a genome are conserved if 
the gene products physically interact with each other, such as by complex formation, or if 
the proteins are transcribed as a single unit (Dandekar et al., 1998). Briefly, it is often 
observed that the genes encoding proteins that either form a complex via physical 
interaction or work together in the same pathway are encoded in the same operon in 
different genomes. Thus, the gene order is conserved among different genomes, although 
the operon structure is fundamentally unstable during evolution (Fig. 2(A)). The 
conservation of the gene neighborhood approach infers proteins that are involved in the 
same biological process, using genome information. Many of the functionally related genes 
predicted by this approach encode proteins that either interact with each other directly, 
participate in the formation of the same complex, or work in the same metabolic pathway.  

genome i

genome j

Gene A Gene B

Gene X (= Rosetta stone protein)

Protein BProtein A
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specific gene loss. Several methods that infer PPIs using these various types of evolutionary 
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section, the principles and applications of PPI prediction methods are introduced. The 
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phylogenetic profile), which predict functional association using genomic context, are 
presented. Next, the methods (mirror tree, in silico two-hybrid system) based on co-evolution 
are introduced, which are applicable to domain interactions as well as protein interactions. 
Finally, the sequence signature and machine learning based-methods are presented. 
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Table 1. Summary of PPI prediction methods. 

The second column represents the interaction type predicted by the method. The third 
column shows whether the method is designed to predict protein or domain interaction. 

2.1 Rosetta stone 

The Rosetta stone approach infers PPIs by comparing different genomes. It is often observed 
that two proteins that interact in genome i have a homologous protein that is fused into one 
protein in genome j (Fig. 1). These two gene products are functionally related in many cases 
(Enright et al., 1999). The fused protein is called a ‘Rosetta stone protein’, since it serves as a 
key for unlocking the functional relationship between two genes that are encoded 
independently in the genome. The Rosetta stone approach estimates functionally related 
protein pairs based on such a concept. The benefit of this approach is applicable to all 
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genomes, including those of Eukaryote. Not surprisingly, the inference of a protein 
interaction is restricted to the case where the gene fusion can be detected. 

Hence, the approach searches for the proteins that are conserved between different organisms. 
The following two points must be considered, in order to obtain higher prediction accuracy. 
First, the proteins that interact with many other proteins, such as the HRG domain, and the 
CBS domain, which binds to DNA, should be removed. Second, the analysis is focused on the 
case where the pairs of genes that are fused together are orthologous. As an extension of the 
Rosetta stone approach, it can predict a functionally related gene cluster by combining several 
results. Four proteins, A, B, C, and D, are considered to be functionally related if the Rosetta 
stone proteins of the A-B, B-C, and C-D pairs are found. 

Applying the Rosetta stone approach to many genomes revealed 6,809 potentially 
interacting pairs in Escherichia coli and 45,502 pairs in yeast (Marcotte et al., 1999). The two 
proteins in each pair have significant sequence similarity to a single fused protein in another 
genome. Some proteins interact with several other proteins, and these connections 
apparently represent functional interactions, such as complexes or pathways. 

 
Gene X is the Rosetta stone protein, indicating that protein A and protein B are functionally related. 

Fig. 1. The concept of the Rosetta stone approach. 

2.2 Conservation of gene neighborhood 

The genome comparison among Bacteria or Archaea indicated that the gene order and the 
operon structure are not conserved on the genome. This is because they have changed with 
evolutionary events, such as recombination, gene disruption, gene formation, and horizontal 
gene transfer. These phenomena suggest that the gene order is basically not subjected to 
selective pressure. However, the gene order or gene clusters on a genome are conserved if 
the gene products physically interact with each other, such as by complex formation, or if 
the proteins are transcribed as a single unit (Dandekar et al., 1998). Briefly, it is often 
observed that the genes encoding proteins that either form a complex via physical 
interaction or work together in the same pathway are encoded in the same operon in 
different genomes. Thus, the gene order is conserved among different genomes, although 
the operon structure is fundamentally unstable during evolution (Fig. 2(A)). The 
conservation of the gene neighborhood approach infers proteins that are involved in the 
same biological process, using genome information. Many of the functionally related genes 
predicted by this approach encode proteins that either interact with each other directly, 
participate in the formation of the same complex, or work in the same metabolic pathway.  
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The conserved clusters of genes in an operon are detected by various concepts, such as Run 
or BBH (bidirectional best hit) (Overbeek et al., 1999) (Fig. 2(B)). A set of genes is called a 
“run” if they all occur on the same strand and the gaps between adjacent genes are 300 bases 
or less. Any pair of genes occurring within a single run is called “close”. If gene Xi in 
genome i is closest to Xj in genome j and Xj is closest to Xi, then Xi and Xj are called BBH. 
Genes (Xi, Yi) from genome i and genes (Xj, Yj) from genome j form a PCBBH (pair of close 
bidirectional best hit) if two pairs of BBHs are considered. The conservation of gene 
neighborhood approach uses such virtual operons and orthologs to infer PPIs. That is, two 
orthologous groups are considered to have a connection if they co-occur in the same 
potential operon two or more times. The advantage of this approach is that the conservation 
of gene order or gene co-occurrence in the Run is stricter than the Rosetta stone and 
phylogenetic profile approaches, and it can cover a wider range of genes. However, the 
application of this approach is limited to Bacteria or Archaea that have operon structures.  

Snel et al. reported 3,033 orthologous groups with 8,178 pairwise significant associations, by 
comparing 38 genomes (Snel et al., 2002). Among them, 88% of the 516 small, disjointed 
clusters, containing 2.7 orthologous groups on average, have a more homogeneous 
functional composition, in terms of the COG functional category. They are regarded as 
functional modules. 
 

 
Different boxes signify different genes. The triangles represent genes that lack a conserved gene order. 
Protein A, protein B, and protein C, which line up in the same order among different organisms, are 
considered to be functionally associated.  

Fig. 2. Illustration of (A) the concept of the conservation of gene neighborhood approach 
and (B) the definitions of BBH, PCBBH, and PCH (pairs of close homologs). 
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2.3 Phylogenetic profile 

This approach is based on a concept derived from the lineage-specific gene loss. The genes 
encoding proteins that interact with each other co-occur in different genomes. If one gene is 
absent in a genome, and then the other gene that interacts with it also is lost. On the basis of 
this hypothesis, the phylogenetic profile approach infers PPIs from genome comparisons. 
The phylogenetic profile approach is based on the co-occurrence of gene pairs, while the 
conservation of gene neighborhood approach is based on the gene order or co-occurrence of 
genes. The advantage is that it is applicable to Eukaryote, since it is not necessary to 
consider operon structure. In addition, this approach is different from the prediction 
method based on the operon, in that the rate of predicted genes that belong to the same 
biological process is higher. The approach has two disadvantages. The first point is that the 
analysis targets are limited to the organisms with completely sequenced genomes, because 
whether a certain gene is actually encoded in the genome must be known. The second is that 
this approach is not applicable for the proteins encoded in all organisms that are analysis 
subjects. 

The functional relationship between two genes is detected by comparing their phylogenetic 
profiles (Fig. 3) (Pellegrini et al., 1999). A phylogenetic profile is constructed for each protein, 
as a vector of N elements, where N is the number of genomes. Each position of the profile 
represents whether the protein that is homologous to the target protein is absent (signified 
by 0) or present (1) in each genome. Consequently, the phylogenetic distribution is shown 
by a long binary number along with each genome. A functionally related protein pair is 
detected by searching for the same phylogenetic distribution patterns. This method is 
applicable to domains as well as proteins (Pagel et al., 2004). 

Pellegrini et al. applied a phylogenetic profile approach to the Escherichia coli genome and 16 
other fully sequenced genomes, in order to predict the functions of uncharacterized 
proteins. When the function of a protein is assumed to be the same as that of its neighbors in 
the phylogenetic-profile space, 18% of the neighbor keywords overlapped the known 
keywords of the query protein. This indicates that the phylogenetic profile approach has the 
ability to assign functions to uncharacterized proteins. 

 
Protein A and protein C are considered to interact with each other, since they have the same profile 
(10101).  

Fig. 3. An example of the phylogenetic profile approach. 

genome i genome j genome k genome l genome m
gene A 1 0 1 0 1
gene B 1 1 0 1 1
gene C 1 0 1 0 1
gene D 1 0 1 1 1
gene E 0 1 1 0 1

Protein CProtein A

Phylogenetic profile (10101)
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The conserved clusters of genes in an operon are detected by various concepts, such as Run 
or BBH (bidirectional best hit) (Overbeek et al., 1999) (Fig. 2(B)). A set of genes is called a 
“run” if they all occur on the same strand and the gaps between adjacent genes are 300 bases 
or less. Any pair of genes occurring within a single run is called “close”. If gene Xi in 
genome i is closest to Xj in genome j and Xj is closest to Xi, then Xi and Xj are called BBH. 
Genes (Xi, Yi) from genome i and genes (Xj, Yj) from genome j form a PCBBH (pair of close 
bidirectional best hit) if two pairs of BBHs are considered. The conservation of gene 
neighborhood approach uses such virtual operons and orthologs to infer PPIs. That is, two 
orthologous groups are considered to have a connection if they co-occur in the same 
potential operon two or more times. The advantage of this approach is that the conservation 
of gene order or gene co-occurrence in the Run is stricter than the Rosetta stone and 
phylogenetic profile approaches, and it can cover a wider range of genes. However, the 
application of this approach is limited to Bacteria or Archaea that have operon structures.  

Snel et al. reported 3,033 orthologous groups with 8,178 pairwise significant associations, by 
comparing 38 genomes (Snel et al., 2002). Among them, 88% of the 516 small, disjointed 
clusters, containing 2.7 orthologous groups on average, have a more homogeneous 
functional composition, in terms of the COG functional category. They are regarded as 
functional modules. 
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2.3 Phylogenetic profile 

This approach is based on a concept derived from the lineage-specific gene loss. The genes 
encoding proteins that interact with each other co-occur in different genomes. If one gene is 
absent in a genome, and then the other gene that interacts with it also is lost. On the basis of 
this hypothesis, the phylogenetic profile approach infers PPIs from genome comparisons. 
The phylogenetic profile approach is based on the co-occurrence of gene pairs, while the 
conservation of gene neighborhood approach is based on the gene order or co-occurrence of 
genes. The advantage is that it is applicable to Eukaryote, since it is not necessary to 
consider operon structure. In addition, this approach is different from the prediction 
method based on the operon, in that the rate of predicted genes that belong to the same 
biological process is higher. The approach has two disadvantages. The first point is that the 
analysis targets are limited to the organisms with completely sequenced genomes, because 
whether a certain gene is actually encoded in the genome must be known. The second is that 
this approach is not applicable for the proteins encoded in all organisms that are analysis 
subjects. 

The functional relationship between two genes is detected by comparing their phylogenetic 
profiles (Fig. 3) (Pellegrini et al., 1999). A phylogenetic profile is constructed for each protein, 
as a vector of N elements, where N is the number of genomes. Each position of the profile 
represents whether the protein that is homologous to the target protein is absent (signified 
by 0) or present (1) in each genome. Consequently, the phylogenetic distribution is shown 
by a long binary number along with each genome. A functionally related protein pair is 
detected by searching for the same phylogenetic distribution patterns. This method is 
applicable to domains as well as proteins (Pagel et al., 2004). 

Pellegrini et al. applied a phylogenetic profile approach to the Escherichia coli genome and 16 
other fully sequenced genomes, in order to predict the functions of uncharacterized 
proteins. When the function of a protein is assumed to be the same as that of its neighbors in 
the phylogenetic-profile space, 18% of the neighbor keywords overlapped the known 
keywords of the query protein. This indicates that the phylogenetic profile approach has the 
ability to assign functions to uncharacterized proteins. 

 
Protein A and protein C are considered to interact with each other, since they have the same profile 
(10101).  
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2.4 Mirror tree 

Pairs of physically contacting proteins co-evolve, such as insulin and its receptors (Fryxell, 
1996). Co-evolution refers to the phenomenon in which the evolution found in one protein 
has a considerable effect on the evolution of its partner protein, in order to maintain the 
protein interaction. Therefore, the amino acid substitutions are expected to occur at the same 
time in the interacting proteins. As a result, the two phylogenetic trees drawn for the 
interacting proteins show a greater degree of similarity than those drawn for proteins 
without interactions (Goh et al., 2000). The mirror tree approach infers two protein/domain 
interaction pairs, using the similarity between the phylogenetic trees as an indicator. The 
advantage of this approach is that it can be applied to an organism whose genome has not 
been completely sequenced. Conversely, the approach is not applicable to a gene that shows 
a species-specific loss. In addition, the applications of this approach are limited to the cases 
where high-quality and complete multiple sequence alignments, including sequences from 
the common organisms, can be obtained. 

The similarity between two proteins/domains can be quantified as follows (Fig. 4) (Pazos and 
Valencia, 2001). First, for two proteins or domains, the multiple sequence alignments are built 
using orthologous proteins that are collected from N organisms. Next, the distant matrices are 
constructed from the genetic distances among all sequences, based on the multiple sequence 
alignment. The correlation coefficient between the two distance matrices is calculated. The 
value can be considered as an indicator that shows the intensity of co-evolution. Hence, if the 
value is close to one, it is judged that the two phylogenetic trees , and the two proteins are 
considered to interact. The mirror tree approach does not depend on the method used to 
construct the phylogenetic tree, since it does not compare them directly. 

 
The trees have the same number of leaves and the same organisms in the leaves.  

Fig. 4. The flow of the mirror tree approach. 
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The mirror tree method was applied to six protein families of ligand-receptor pairs, to 
predict the interaction partners (Goh and Cohen, 2002). Consequently, 79% of all known 
binding partners on average were detected. In addition, potentially new binding partner in 
the syntaxin/Unc-18 protein and TGF-β/TGF-β receptor families were found among 
previously characterized proteins.  

2.5 In silico two-hybrid system 

The in silico two-hybrid system infers physical contact sites by computing the correlation 
coefficient of amino acid variation between two sites, using the multiple sequence 
alignments for protein pairs (Göbel et al., 1994). That is, in the residue pairs that are in 
physical contact or related functionally, the amino acids tend to change at the same time. 
This type of correlated mutation is called co-variation. The similarity of the variation 
patterns is thought to be related to compensatory mutation. The in cilico two-hybrid system 
infers PPIs by expanding this concept. This system can detect an interaction accompanied by 
physical contact, and estimates the protein binding sites as well as interacting protein pairs. 
Meanwhile, the main limitation of this system is the requirement of high quality alignments 
that include a wide range of common organisms encoding the two proteins, in the same 
manner as the mirror tree approach. 

The in silico two-hybrid system quantifies the degree of co-variation between pairs of 
residues (Fig. 5) (Pazos and Valencia, 2002). First, a multiple sequence alignments are built  

  
On the top, the alignments are built for two different proteins (protein A and protein B), including the 
corresponding sequences from different organisms (org i, j, k…). On the bottom, the distributions of the 
correlated coefficients for the pair of residues internal to the two proteins (Caa and Cbb) and for the pair 
of residues from each of the two proteins (Cab) are represented.  

Fig. 5. A schematic representation of the in silico two-hybrid system. 
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Pairs of physically contacting proteins co-evolve, such as insulin and its receptors (Fryxell, 
1996). Co-evolution refers to the phenomenon in which the evolution found in one protein 
has a considerable effect on the evolution of its partner protein, in order to maintain the 
protein interaction. Therefore, the amino acid substitutions are expected to occur at the same 
time in the interacting proteins. As a result, the two phylogenetic trees drawn for the 
interacting proteins show a greater degree of similarity than those drawn for proteins 
without interactions (Goh et al., 2000). The mirror tree approach infers two protein/domain 
interaction pairs, using the similarity between the phylogenetic trees as an indicator. The 
advantage of this approach is that it can be applied to an organism whose genome has not 
been completely sequenced. Conversely, the approach is not applicable to a gene that shows 
a species-specific loss. In addition, the applications of this approach are limited to the cases 
where high-quality and complete multiple sequence alignments, including sequences from 
the common organisms, can be obtained. 

The similarity between two proteins/domains can be quantified as follows (Fig. 4) (Pazos and 
Valencia, 2001). First, for two proteins or domains, the multiple sequence alignments are built 
using orthologous proteins that are collected from N organisms. Next, the distant matrices are 
constructed from the genetic distances among all sequences, based on the multiple sequence 
alignment. The correlation coefficient between the two distance matrices is calculated. The 
value can be considered as an indicator that shows the intensity of co-evolution. Hence, if the 
value is close to one, it is judged that the two phylogenetic trees , and the two proteins are 
considered to interact. The mirror tree approach does not depend on the method used to 
construct the phylogenetic tree, since it does not compare them directly. 

 
The trees have the same number of leaves and the same organisms in the leaves.  

Fig. 4. The flow of the mirror tree approach. 

Protein A Protein B

Ai
Aj
Ak
Al
Am

Ai
Aj
Ak
Al
Am

similaritysimilarity

Bi
Bj
Bk
Bl
Bm

Bi
Bj
Bk
Bl
Bm

Ai Aj Ak Al Am
Ai 1 5 6 6
Aj 6 6 6
Ak 4 4
Al 1
Am

Ai Aj Ak Al Am
Ai 1 5 6 6
Aj 6 6 6
Ak 4 4
Al 1
Am

Bi Bj Bk Bl Bm
Bi 1 3 6 7
Bj 4 5 6
Bk 6 3
Bl 2
Bm

Bi Bj Bk Bl Bm
Bi 1 3 6 7
Bj 4 5 6
Bk 6 3
Bl 2
Bm

distance matrices

org i
org j
org k
org l
org m

org i
org j
org k
org l

org m

 
Inferring Protein-Protein Interactions (PPIs) Based on Computational Methods 153 

The mirror tree method was applied to six protein families of ligand-receptor pairs, to 
predict the interaction partners (Goh and Cohen, 2002). Consequently, 79% of all known 
binding partners on average were detected. In addition, potentially new binding partner in 
the syntaxin/Unc-18 protein and TGF-β/TGF-β receptor families were found among 
previously characterized proteins.  

2.5 In silico two-hybrid system 

The in silico two-hybrid system infers physical contact sites by computing the correlation 
coefficient of amino acid variation between two sites, using the multiple sequence 
alignments for protein pairs (Göbel et al., 1994). That is, in the residue pairs that are in 
physical contact or related functionally, the amino acids tend to change at the same time. 
This type of correlated mutation is called co-variation. The similarity of the variation 
patterns is thought to be related to compensatory mutation. The in cilico two-hybrid system 
infers PPIs by expanding this concept. This system can detect an interaction accompanied by 
physical contact, and estimates the protein binding sites as well as interacting protein pairs. 
Meanwhile, the main limitation of this system is the requirement of high quality alignments 
that include a wide range of common organisms encoding the two proteins, in the same 
manner as the mirror tree approach. 

The in silico two-hybrid system quantifies the degree of co-variation between pairs of 
residues (Fig. 5) (Pazos and Valencia, 2002). First, a multiple sequence alignments are built  

  
On the top, the alignments are built for two different proteins (protein A and protein B), including the 
corresponding sequences from different organisms (org i, j, k…). On the bottom, the distributions of the 
correlated coefficients for the pair of residues internal to the two proteins (Caa and Cbb) and for the pair 
of residues from each of the two proteins (Cab) are represented.  

Fig. 5. A schematic representation of the in silico two-hybrid system. 
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using orthologs derived from the common organism for two proteins. Next, the correlation 
coefficients between all combinations of sites in a protein are computed, and the frequency 
distribution of the values that are computed between two sites is investigated. Similarly, the 
correlation coefficients between all combinations of two sites from different proteins are 
calculated, and the frequency distribution is computed. Finally, the interaction index score is 
computed by using the three frequency distributions of correlation coefficients. If the value 
is close to one, then the two proteins are considered to interact. 

Pazos et al. applied this system to four test sets: 1) 14 two-domain proteins with a tight 
intradomain interaction, from the PDB, 2) 53 proteins including 31 known interactions, 3) 
195 pairs with 15 possible interactions, derived from 749 predicted interactions, and 4) 321 
pairs, 17 of which are known to interact, from the SPIN database. As a result, it 
discriminated between true and false interactions in a significant number of cases.  

2.6 Sequence signature 

The sequence signature approach, which predicts interacting proteins based on domain 
information, has developed separately from the methods using genome comparison or 
protein sequence analysis. This approach utilizes sequence and/or structure motifs in order 
to discriminate interacting proteins. In this approach, the characteristic pairs of sequence 
signatures are prepared from a database including experimentally determined interacting 
proteins, where one protein contains one sequence-signature and its interacting partner 
contains the other sequence-signature. The pairs that occur with high frequency are termed 
“correlated sequence-signatures”, and they can be used for the prediction of putative 
interacting partners. The prediction result provides the pairs of protein/domain groups that 
include the correlated sequence-signature, while the other methods described above predict 
one-on-one protein pairs. Combining this approach with other techniques can yield higher 
performance. 

In this approach, the sequence-signature of the signature combinations must be constructed 
to identify the correlated sequence-signatures (Fig. 6) (Sprinzak and Margalit, 2001). First, 
the experimentally determined interacting protein pairs are collected. Then, the sequence-
signatures, defined by a motif database such as InterPro, are identified for each sequence. 
Each entry (a,b) in the table shows the number of protein pairs, composed of one protein 
containing signature a and its partner containing signature b. Next, the occurrence 
frequencies of the sequence-signature are converted into the log-odds. The sequence-
signature with a positive log-odds value is considered to be observed more frequently in the 
interactive pairs. Therefore, they are regarding as having a correlated sequence-signature. 
Finally, this approach searches for the protein or domain pairs that contain the correlated 
sequence-signature. 

An example of applying the Myb domain and the Bromodomain that are correlated 
sequence-signature to the yeast S. cerevisiae is shown (Sprinzak and Margalit, 2001). There 
are 19 and 10 protein sequences containing the Myb domain and the Bromodomain, 
respectively. Therefore, in this case, 190 protein interaction pairs are predicted, out of which 
five interactions were already known.  
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In the left panel, each row contains the sequences of the pair of protein A and protein B. Each sequence 
has a sequence-signature, illustrated by shapes. In the right panel, a contingency table of the signature 
combination is described, where each entry (a,b) in the table shows the number of protein pairs. For 
example, the sequence-signature pair represented by a square and a pentagon appears in two pairs of 
interacting proteins. The most abundant pair of sequence-signatures is indicated by bold type.  

Fig. 6. A scheme for detecting correlated sequence-signatures in interacting proteins. 

2.7 Supervised classification 

The PPI prediction can be defined as a binary classification problem. Therefore, a statistical 
model or machine learning method can be applied to the problem of determining whether a 
pair of proteins is interacting or non-interacting. The K-Nearest Neighbor (KNN) (Qi et al., 
2006), Naïve Bayesian (NB) (Jansen et al., 2003; Lu et al., 2005), support vector machines  
(SVM) (Lo et al., 2005), Artificial Neural Networks (ANN) (Ma et al., 2007), and Random 
Forest (RF); (Chen and Liu, 2005; Qi et al., 2005) methods were previously applied to this 
problem. The advantage of these methods is to use data that integrated different datasets. 
Datasets that do not directly measure PPI, such as sequence and structure information, can 
be used to infer PPIs. Conversely, the weak point is that the predictive performance varies 
widely, depending on the quality of the dataset and the selection of statistical methods.  

In a statistical model, protein pairs are expressed by N dimensional vectors, where N is the 
number of features. For example, gene co-expression, GO biological process similarity, MIPS 
functional similarity, and essentiality are used as features in Jansen’s work (Jansen et al., 
2003). In addition, sequence information, such as homology and domain data, is used. Two 
points must be considered when the prediction model is built. The first is that it is necessary 
to pay attention to the quality of the experimental data used for training and evaluating 
statistical model, since the performance of the prediction model strongly depends on them. 
A high-throughput experimental method, such as Yeast Two-Hybrid (Y2H), Mass 
Spectrometry and Tandem Affinity Purification (MS TAP), and gene co-expression, can 
detect proteomic-wide PPIs, yielding vast amounts of protein interaction data within the 
cell. However, these data are often noisy, incomplete, and low-reproducible, since they 
contain contradictory values. The second is that the selection of an appropriate classification 
technique is an important task. 
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using orthologs derived from the common organism for two proteins. Next, the correlation 
coefficients between all combinations of sites in a protein are computed, and the frequency 
distribution of the values that are computed between two sites is investigated. Similarly, the 
correlation coefficients between all combinations of two sites from different proteins are 
calculated, and the frequency distribution is computed. Finally, the interaction index score is 
computed by using the three frequency distributions of correlation coefficients. If the value 
is close to one, then the two proteins are considered to interact. 
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195 pairs with 15 possible interactions, derived from 749 predicted interactions, and 4) 321 
pairs, 17 of which are known to interact, from the SPIN database. As a result, it 
discriminated between true and false interactions in a significant number of cases.  
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The sequence signature approach, which predicts interacting proteins based on domain 
information, has developed separately from the methods using genome comparison or 
protein sequence analysis. This approach utilizes sequence and/or structure motifs in order 
to discriminate interacting proteins. In this approach, the characteristic pairs of sequence 
signatures are prepared from a database including experimentally determined interacting 
proteins, where one protein contains one sequence-signature and its interacting partner 
contains the other sequence-signature. The pairs that occur with high frequency are termed 
“correlated sequence-signatures”, and they can be used for the prediction of putative 
interacting partners. The prediction result provides the pairs of protein/domain groups that 
include the correlated sequence-signature, while the other methods described above predict 
one-on-one protein pairs. Combining this approach with other techniques can yield higher 
performance. 

In this approach, the sequence-signature of the signature combinations must be constructed 
to identify the correlated sequence-signatures (Fig. 6) (Sprinzak and Margalit, 2001). First, 
the experimentally determined interacting protein pairs are collected. Then, the sequence-
signatures, defined by a motif database such as InterPro, are identified for each sequence. 
Each entry (a,b) in the table shows the number of protein pairs, composed of one protein 
containing signature a and its partner containing signature b. Next, the occurrence 
frequencies of the sequence-signature are converted into the log-odds. The sequence-
signature with a positive log-odds value is considered to be observed more frequently in the 
interactive pairs. Therefore, they are regarding as having a correlated sequence-signature. 
Finally, this approach searches for the protein or domain pairs that contain the correlated 
sequence-signature. 

An example of applying the Myb domain and the Bromodomain that are correlated 
sequence-signature to the yeast S. cerevisiae is shown (Sprinzak and Margalit, 2001). There 
are 19 and 10 protein sequences containing the Myb domain and the Bromodomain, 
respectively. Therefore, in this case, 190 protein interaction pairs are predicted, out of which 
five interactions were already known.  
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The statistical model was developed to infer PPIs in the human and yeast genomes (Lee et 
al., 2004; Rhodes et al., 2005). Qi et al. applied six different classifiers (RF, KNN, NB, Decision 
Tree, Logistic Regression, and SVM) to predict PPIs, and among them, the RF classifier 
exhibited the highest performance (Qi et al., 2006). In addition, gene expression is the most 
important feature for prediction. 

3. Computational methods to infer protein flexibility 
A protein molecule is not a rigid body. The scale of protein motions is very broad: motions 
range from local fluctuations, such as those seen in loop regions, to global ones involving 
changes in the relative positions of rigid domains. Protein motion is often necessary for 
proteins to perform their specific biological functions. For example, a protein possesses 
certain conformations in order to interact with its partner protein in many cases. Therefore, 
structural flexibility is an important feature to consider for understanding protein functions. 

Experimental methods that analyze protein dynamics have been developed. Nuclear 
magnetic resonance (NMR) is a powerful experimental technique (Williams, 1989). NOEs 
and relaxation experiments provide information related to picosecond-microsecond-scale 
motions of the backbone atoms (Chill et al., 2004; Gitti et al., 2005). Also, model-free analysis 
enables quantitative determination of the fluctuations and slow conformational changes of 
the backbone amide vectors (Lipari and Szabo, 1982a; Lipari and Szabo, 1982b). Although 
NMR provides a detailed view of protein dynamics, it is time-consuming and suffers from 
size limitations.  

In contrast, computational methods are useful to calculate the dynamics of proteins for 
which structures are available. They are divided into two types of method. One method 
compares the structures of a protein crystallized under different conditions or different 
conformers obtained by NMR. The structural differences indicate flexible regions (Shatsky et 
al., 2002; Ye and Godzik, 2004). Another computational method is to simulate protein 
dynamics by methods such as Normal Model Analysis (NMA) and Molecular Dynamics 
(MD). With the increasing number of available protein structures and the development of 
high-performance computers, databases that treat protein dynamics have been developed 
(Table 2). Some databases are introduced below. 

ProMode 

ProMode is a database including NMA results from analyses performed with a full-atom 
model for many proteins. It displays realistic three-dimensional motions at an atomic level, 
using a free plug-in, Charm. In addition, the dynamic domains and their mutual screw 
motions defined from NMA results are displayed. 

MolMovDB 

The database of macromolecular movements (MolMovDB) is a collection of quantitative 
data for flexibility and a number of graphical representations. The motions are generated 
from alignments of pairs of structures from the Protein Data Bank (PDB). The motions are 
divided into various classes (e.g. ‘hinged domain’ or ‘allosteric’), according to the type of 
conformational change. 
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DynDom database 

DynDom, a domain motion analysis program, analyzes the conformational change in terms 
of dynamic domains, interdomain screw axes, and interdomain bending regions, by 
comparing two structures when at least two X-ray conformers are available. The DynDom 
database displays details on the conformational changes obtained from the DynDom 
analysis results.  

iGNM 

The database contains visual and quantitative information on the collective modes predicted 
by the Gaussian Network Model (GNM) for the structure in the PDB. The output includes 
the equilibrium fluctuations of residues and comparisons with X-ray crystallographic B-
factors, the sizes of residue motions in different collective modes, the cross-correlations 
between the residue fluctuations or domain motions, and other useful information.  
 

Database 
name 

HTTP address Description Reference 

ProMode http://cube.socs.w
aseda.ac.jp/pages/j
sp/index.jsp 

Large-scale collection of animations of 
the normal mode vibrating proteins 
with the full-atom models. 

Wako et al., 
2004 

MolMovDB http://www.molm
ovdb.org/ 

Visualization and classification of 
molecular motions according to their 
size and mechanism. 

Echols et al., 
2003 

DynDom 
database 

http://fizz.cmp.ue
a.ac.uk/dyndom/ 

Collection of domains, hinge axes and 
hinge bending residues in proteins. 

Lee et al., 
2003 

iGNM http://ignm.ccbb.p
itt.edu/ 

Static and animated images for 
describing the conformational mobility 
of proteins by computing the GNM 
dynamics. 

Yang et al., 
2005 

Table 2. List of databases that deal with conformational changes. 

4. PPI prediction from protein flexibility 
A Structural flexibility is an important characteristic of protein that is frequently related to 
their functions, as reviewed in section 3. Flexible regions are often necessary for proteins to 
bind a ligand or another protein. When we focus on the motion of a protein backbone 
segment, the movement can be classified conceptually into two forms: internal motion and 
external motion (Nishikawa and Go, 1987). An internal motion is the deformation of the 
segment itself, while an external motion involves only rotational and translational motions, 
as a rigid body. The segment fluctuates as a rigid body by changes in the dihedral angles of 
the flanking residues. For this reason, internal and external motions are considered to be 
fundamentally different. 

This section introduces a means for the calculation of internal and external motions in a 
protein, by the constriction of statistical models, called “FlexRetriver”, and its application to 
PPI data (Hirose et al., 2010).  
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The statistical model was developed to infer PPIs in the human and yeast genomes (Lee et 
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Tree, Logistic Regression, and SVM) to predict PPIs, and among them, the RF classifier 
exhibited the highest performance (Qi et al., 2006). In addition, gene expression is the most 
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proteins to perform their specific biological functions. For example, a protein possesses 
certain conformations in order to interact with its partner protein in many cases. Therefore, 
structural flexibility is an important feature to consider for understanding protein functions. 

Experimental methods that analyze protein dynamics have been developed. Nuclear 
magnetic resonance (NMR) is a powerful experimental technique (Williams, 1989). NOEs 
and relaxation experiments provide information related to picosecond-microsecond-scale 
motions of the backbone atoms (Chill et al., 2004; Gitti et al., 2005). Also, model-free analysis 
enables quantitative determination of the fluctuations and slow conformational changes of 
the backbone amide vectors (Lipari and Szabo, 1982a; Lipari and Szabo, 1982b). Although 
NMR provides a detailed view of protein dynamics, it is time-consuming and suffers from 
size limitations.  

In contrast, computational methods are useful to calculate the dynamics of proteins for 
which structures are available. They are divided into two types of method. One method 
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conformers obtained by NMR. The structural differences indicate flexible regions (Shatsky et 
al., 2002; Ye and Godzik, 2004). Another computational method is to simulate protein 
dynamics by methods such as Normal Model Analysis (NMA) and Molecular Dynamics 
(MD). With the increasing number of available protein structures and the development of 
high-performance computers, databases that treat protein dynamics have been developed 
(Table 2). Some databases are introduced below. 
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ProMode is a database including NMA results from analyses performed with a full-atom 
model for many proteins. It displays realistic three-dimensional motions at an atomic level, 
using a free plug-in, Charm. In addition, the dynamic domains and their mutual screw 
motions defined from NMA results are displayed. 

MolMovDB 

The database of macromolecular movements (MolMovDB) is a collection of quantitative 
data for flexibility and a number of graphical representations. The motions are generated 
from alignments of pairs of structures from the Protein Data Bank (PDB). The motions are 
divided into various classes (e.g. ‘hinged domain’ or ‘allosteric’), according to the type of 
conformational change. 
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DynDom database 

DynDom, a domain motion analysis program, analyzes the conformational change in terms 
of dynamic domains, interdomain screw axes, and interdomain bending regions, by 
comparing two structures when at least two X-ray conformers are available. The DynDom 
database displays details on the conformational changes obtained from the DynDom 
analysis results.  
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by the Gaussian Network Model (GNM) for the structure in the PDB. The output includes 
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4. PPI prediction from protein flexibility 
A Structural flexibility is an important characteristic of protein that is frequently related to 
their functions, as reviewed in section 3. Flexible regions are often necessary for proteins to 
bind a ligand or another protein. When we focus on the motion of a protein backbone 
segment, the movement can be classified conceptually into two forms: internal motion and 
external motion (Nishikawa and Go, 1987). An internal motion is the deformation of the 
segment itself, while an external motion involves only rotational and translational motions, 
as a rigid body. The segment fluctuates as a rigid body by changes in the dihedral angles of 
the flanking residues. For this reason, internal and external motions are considered to be 
fundamentally different. 

This section introduces a means for the calculation of internal and external motions in a 
protein, by the constriction of statistical models, called “FlexRetriver”, and its application to 
PPI data (Hirose et al., 2010).  
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4.1 Development of a method for predicting internal and external motions 

This subsection introduces the RF-based method for predicting the internal and external 
motions defined by the NMA from the sequence information.  

4.1.1 Calculation of internal and external motions 

Using FEDER/2 (Wako et al., 2004), the NMA was performed for the energy-minimized 
conformation, with the PDB data as the starting conformation. In the NMA, the mean-
square displacement of atom a, < 2

aD >, in the thermal fluctuations is given as the sum of 
contributions from individual modes 

2 2

1

N

a ak
k

D D
=

< >= , 

where akD  is the displacement vector of atom a in the k-th normal mode, and N is the 
number of dihedral angles used as independent variables, i.e., the number of normal modes. 

In this study, two conformations for a nine-residue segment in each normal mode are 
considered. The displacement vector of atom a by this purely translational and rotational 
motion is designated as e

akD , and the residual one is designated as i
akD . Then, akD  is 

decomposed as 

e i
ak ak akD D D= + . 

The superscripts e and i respectively stand for external and internal. The mean square 
deviation of atom a is given as 
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The third term on the right-hand side of this equation is usually much smaller than the first 
two terms. Therefore, the mean-square deviation of atom a is decomposed approximately 
into external (first term) and internal (second term) ones. In this case, we are interested in 
the main-chain fluctuation; for simplicity, only the Cα atom in this decomposition is 
considered. This means that we selected data for the Cα atoms from the results obtained 
using NMA with a full-atom model. 

4.1.2 Dataset 

The dataset was created by selecting protein chains from ProMode, as follows. Proteins with 
a root mean square deviation (RMSD) of more than 2Å between the energy-minimized 
structure and the PDB structure were excluded. Protein chains with redundant SCOP IDs 
were excluded, multi-domain proteins defined by SCOP were then removed. Next, some 
proteins were discarded so that the maximum pairwise sequence identity was limited to 
25%. The resulting dataset comprised 481 chains (87,236 residues).  
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We calculated the internal and external motions using NMA with a full-atom model for all 
proteins in the dataset. Raw NMA values were normalized to correct for the variability 
among proteins in the dataset.  

4.1.3 Structure-specific protein mobility propensity 

The protein mobility propensities of amino acids are associated with their secondary 
structures and accessible surface areas (ASAs). The protein mobility propensity was divided 
into three types of protein mobility: the high and low groups comprised amino acids with 
normalized NMA scores higher than 1 and lower than -1, respectively, while the normal 
group comprised amino acids with normalized NMA scores between 1 and -1. The 
structure-specific protein mobility propensity (SpecProg(n,s,g)) was calculated as 

2( , , ) ( , , ) ( , )SpecProp n s g log freq n s g freq n s= , 

where freq(n,s,g) and freq(n,s) respectively represent the relative frequencies of amino acid n 
in the g protein mobility group of the s state dataset and in the s dataset. The s state indicates 
a secondary structure or ASA. 

The results of the structure-specific protein mobility propensity are shown in Fig. 7. For 
most amino acids, the protein mobility propensity pattern (in the high, normal, and low 
groups in the same type of secondary structure) depended on the type of secondary structure 
(Fig. 7(A)). For example, for both motions, the high mobility propensity of proline (Pro) was 
low in alpha helices and beta sheets, but high in other structures. This might be because Pro is 
a secondary structure breaker and its amide nitrogen cannot form a hydrogen bond. On the 
other hand, the low mobility propensity of hydrophobic amino acids tended to be high in  

 
The upper and lower tables represent the results of internal and external motions, respectively. The 
terms high, normal, and low stand for the protein mobility of the high, normal and low states, 
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4.1 Development of a method for predicting internal and external motions 

This subsection introduces the RF-based method for predicting the internal and external 
motions defined by the NMA from the sequence information.  

4.1.1 Calculation of internal and external motions 

Using FEDER/2 (Wako et al., 2004), the NMA was performed for the energy-minimized 
conformation, with the PDB data as the starting conformation. In the NMA, the mean-
square displacement of atom a, < 2

aD >, in the thermal fluctuations is given as the sum of 
contributions from individual modes 

2 2

1

N

a ak
k

D D
=

< >= , 

where akD  is the displacement vector of atom a in the k-th normal mode, and N is the 
number of dihedral angles used as independent variables, i.e., the number of normal modes. 

In this study, two conformations for a nine-residue segment in each normal mode are 
considered. The displacement vector of atom a by this purely translational and rotational 
motion is designated as e

akD , and the residual one is designated as i
akD . Then, akD  is 

decomposed as 

e i
ak ak akD D D= + . 

The superscripts e and i respectively stand for external and internal. The mean square 
deviation of atom a is given as 

2 22 2e i e i
a ak ak ak ak
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a a a aD D D D=< > + < > + < ⋅ > . 

The third term on the right-hand side of this equation is usually much smaller than the first 
two terms. Therefore, the mean-square deviation of atom a is decomposed approximately 
into external (first term) and internal (second term) ones. In this case, we are interested in 
the main-chain fluctuation; for simplicity, only the Cα atom in this decomposition is 
considered. This means that we selected data for the Cα atoms from the results obtained 
using NMA with a full-atom model. 

4.1.2 Dataset 

The dataset was created by selecting protein chains from ProMode, as follows. Proteins with 
a root mean square deviation (RMSD) of more than 2Å between the energy-minimized 
structure and the PDB structure were excluded. Protein chains with redundant SCOP IDs 
were excluded, multi-domain proteins defined by SCOP were then removed. Next, some 
proteins were discarded so that the maximum pairwise sequence identity was limited to 
25%. The resulting dataset comprised 481 chains (87,236 residues).  
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We calculated the internal and external motions using NMA with a full-atom model for all 
proteins in the dataset. Raw NMA values were normalized to correct for the variability 
among proteins in the dataset.  
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group comprised amino acids with normalized NMA scores between 1 and -1. The 
structure-specific protein mobility propensity (SpecProg(n,s,g)) was calculated as 

2( , , ) ( , , ) ( , )SpecProp n s g log freq n s g freq n s= , 

where freq(n,s,g) and freq(n,s) respectively represent the relative frequencies of amino acid n 
in the g protein mobility group of the s state dataset and in the s dataset. The s state indicates 
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alpha helices and beta sheets, but low in other structures. The distribution of high mobility 
propensity in other structures is similar to that of the propensity in hinge regions (Flores et 
al., 2007). Similarly, the protein mobility propensity pattern changes, depending on the ASA 
(Fig. 7(B)). The high mobility propensity became higher with increasing ASA, as seen for 
hydrophilic amino acids. In contrast, high mobility propensity of hydrophobic  amino acids 
was lower with increasing ASA. The external motion might be more strongly influenced by 
the ASA, as compared to the internal motion. Altogether, these results strongly suggest that 
the secondary structure and the ASA influence the degrees of the internal and external 
motions.  

4.1.4 Construction of a prediction method 

A method for predicting internal and external motions was built by applying RF, which is a 
type of supervised classification algorithm. The sequence in the sliding window (with sizes 
of 11 and 17 residues for internal and external motions, respectively) was encoded by using 
paired amino acid information, corresponding to the variable. The variables were obtained 
by adding two features, which are derived from the amino acid pairs of the central amino 
acid with the other amino acids in the window. In total, 18 features were defined, and they 
were divided into four groups, designated as physicochemical, mobility, secondary 
structure (predicted by psipred (Jones, 1999) or PHD (Rost, 1996)), and ASA (predicted by 
sable (Adamczak et al., 2005) or RVPnet (Ahmad et al., 2003)). The profile-based predictors 
(psipred and sable) have higher prediction accuracy than the amino-acid propensity-based 
predictors (PHD and RVPnet). The value of a feature of an amino acid was set to one if the 
amino acid satisfied a feature’s definition, and to zero otherwise. 

The RF algorithm was used to build a prediction model for classifying amino acids into the 
three classes: flexible, intermediate, and rigid. Three RF prediction models were trained for 
the three categories of window location: the center of a secondary structure (CS), the remote 
area from a secondary structure (RS), and the periphery of a secondary structure (PS). The 
RF prediction models classified the windows into the three classes, and their prediction 
results were attributed to the central residue in the window. The results of the classification 
obtained from the RF were then converted into a score.  

4.1.5 Prediction performance 

The prediction results were assessed on a residue basis, by which the predicted score in the 
sequence was compared to the normalized NMA score. The prediction performance was 
evaluated by using three criteria: the mean absolute error (MAE), correlated coefficient (CC), 
and Receiver Operating Characteristic (ROC) curves. The MAE was defined as the absolute 
difference between two values. The MAE value approaches 0 as the prediction improves. 
The CC was also computed between two values. The CC ranges from -1 to 1, and a large, 
positive value represents a better prediction. The ROC curve was obtained by plotting the 
false positive rate against the true positive rate. A larger area under the ROC curve (AUC) 
indicates a more robust algorithm.  

The prediction performance of FlexRetriever was compared with those of three published 
methods (PROFbval (Schlessinger et al., 2006), POODLE-S (Shimizu et al., 2007), FlexPred 
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(Kuznetsov and McDuffie, 2008)), and the naïve model. The naïve model is based on the 
simple idea that protein motion tends to be large in a coil or loop region and small in a 
secondary structure. The FlexRetriver, which implemented psipred and sable, yielded the 
lowest MAE and the highest CC among all prediction methods for both motions (Table 3). 
However, it is noteworthy that the distribution of CC varied widely. Additionally, in 
AUC, FlexRetriever exhibited the best performance among all methods.  
 

(A) Internal motion 
Method MAE CC AUC 
FlexRetriever (PHD & RVPnet) 0.621 0.482 0.765 
FlexRetriever (psipred & sable) 0.605 0.525 0.786 
Naïve model (PHD) 0.988 0.248 0.653 
Naïve model (psipred) 0.952 0.293 0.672 
PROFbval 0.743 0.367 0.693 
POODLE-S - - 0.730 
FlexPred - - 0.741 

(B) External motion 
Method MAE CC AUC 
FlexRetriever (PHD & RVPnet) 0.571 0.541 0.777 
FlexRetriever (psipred & sable) 0.542 0.597 0.806 
Naïve model (PHD) 0.970 0.262 0.661 
Naïve model (psipred) 0.929 0.320 0.681 
PROFbval 0.608 0.547 0.784 
POODLE-S - - 0.783 
FlexPred - - 0.777 

The CC and MAE were estimated by performing a five-fold cross validation test. The highest scores in 
each criterion are underlined. PHD and psipred in parentheses signify the secondary structure 
predictor. Similarly, RVPnet and sable represent the ASA predictor. “-“: scores could not be calculated.  

Table 3. Comparison of prediction performance. 

4.2 Applying FlexRetriever to PPI data 

In this study, we utilized the set of 20 proteins that undergo large conformational changes 
upon association (> 2Å Cα RMSD) created by Dobbins et al., with which they demonstrated 
the relationship between normal mode fluctuations and conformational change (Dobbins et 
al., 2008). They regarded protein motions as being associated with their functions, because 
they are observed along with the PPI. We compared the internal motion with the observed 
conformational change region, because it was defined as the deformation of a segment itself. 
To begin with, we present three typical results, in which the observed conformational 
change regions are located in a binding site, a hinge region, and other regions. We will then 
discuss the overall results.  
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(Kuznetsov and McDuffie, 2008)), and the naïve model. The naïve model is based on the 
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secondary structure. The FlexRetriver, which implemented psipred and sable, yielded the 
lowest MAE and the highest CC among all prediction methods for both motions (Table 3). 
However, it is noteworthy that the distribution of CC varied widely. Additionally, in 
AUC, FlexRetriever exhibited the best performance among all methods.  
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i. Ecotin 

Ecotin, a homodimeric protein, is an inhibitor of a group of homologous serine proteases, 
such as trypsin, chymotrypsin, and elastase. One dimeric inhibitor binds to a protease 
molecule. From a comparison of two structures determined with different crystalline 
environments, an inherent flexible loop was identified in the binding site with trypsin. It 
was necessary for its inhibitory function (Shin et al., 1996). FlexRetriever predicted high 
internal motion for the corresponding loop (Fig. 8(A)). 

ii. Fab fragment 

The fragment antigen binding (Fab fragment) region is the site where an antibody binds to 
antigens. It is a heterodimer of the heavy and light chains in each of the two composed 
domains. The hinge region between the two domains changed its conformation when Fab 
bound to hemagglutinin derived from a flu virus (Fleury et al., 1998). FlexRetriever 
predicted high internal motion at the hinge region in each chain (Fig. 8(B)). 

iii. Erythropoietin 

Erythropoietin (EPO) is a hormone produced primarily in the kidneys. It has a four-helical 
bundle topology with two long loops, and binds to the extracellular domain of the EPO 
receptor. The CD loop, which is located in a region remote from the binding site, changed its 
conformation (Cheetham et al., 1998). FlexRetriever predicted high internal motion for the 
corresponding loop (Fig. 8(C)). 

 
The observed degrees of conformational change and the predicted scores for internal motion are 
mapped, respectively, with a gradient from zero (white) to a high score (dark red) onto their structures 
in the upper and lower sections. The regions enclosed with a yellow dotted line are the regions with 
observed conformational changes. The free-state and complex-state structures are displayed, 
respectively, in the upper and lower sections.  

Fig. 8. Example of the relationship between the predicted internal motions and the observed 
conformational changes of (A) ectin, (B) Fab fragment, and (C) erythropoietin. 
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Overall results 

When FlexRetriever was applied to a set of 20 proteins, three or more consecutive residues 
with high internal scores were regarded as candidates for the regions undergoing 
conformational changes. From a comparison between the observed conformational change 
regions with the predicted high internal motion regions, at least one overlap was found in 
85% of the proteins studied. If the analysis object was limited to the 16 proteins that interact 
with only one partner, then the overlap was observed in 15 proteins (94% of the proteins 
studied). These observations suggest that FlexRetriever is a sensitive method for the 
detection of protein motions related to PPIs, including binding sites.  

4.3 Web server 

The presented method is implemented in the FlexRetriever server, which has been designed 
with a user-friendly interface to provide easily interpretable prediction results.  

The server accepts the submission of a single amino acid sequence with less than 1,000 
amino acids in the FASTA format (Fig. 9(A)). The user is asked to choose a calculation mode. 

 

 
On the result page, a graph is displayed on the top, and two structures on which the scores of the 
internal and external motions are mapped are shown in the middle. They can be downloaded as a 
PyMol file. The table with the raw scores is displayed below the structures.  

Fig. 9. Images of FlexRetriever’s (A) top page and (B) result page.  
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The calculation time of the fast mode, which uses PHD for secondary structure prediction 
and RVPnet for ASA prediction, is shorter than that of the slow mode, but its performance is 
poorer. 

The results page is divided into three sections (Fig. 9(B)). The first section (graph view) 
provides the graph which contains the prediction results of both motions. The second 
section (structure view) presents the degrees of internal and external motions on the three-
dimensional structure. The third section (table view) lists the amino acids and the raw scores 
of their internal and external motions. 

FlexRetriever is available at http://mbs.cbrc.jp/FlexRetriever and is free.  

5. Conclusion 
This chapter provides an overview of the computational methods to infer pairs of 
interacting proteins and to study the relevance of protein flexibility. Genomic information 
and experimental data are now readily available, and thus computational methods will 
become more important tools in the field of analyzing or inferring PPIs. In addition, as a 
novel attempt to predict PPIs, we have presented an efficient algorithm for predicting 
flexible regions in proteins, and shown its application to PPIs. The tool is expected to be 
useful for inferring motions associated with PPIs. 
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1. Introduction  
Macromolecules such as proteins contain a large number of atoms, which lead to complex 
dynamic behaviors not usually seen in simpler molecular systems with only a few to tens of 
atoms. Characterizing the biochemical and biophysical properties of macromolecules, 
including their interactions with other molecules, has been a central research theme for many 
decades. The field is especially accelerated by recent advances in experimental techniques, 
such as nuclear magnetic resonance (NMR) and single-molecule measurements, and 
computational powers that has been facilitated to simulate molecular dynamics at large scales.  

Chemical kinetics has been well developed for simple molecular systems, and most of the 
small molecular reactions can be described accurately by kinetic equations. However, it’s 
hard to describe a macromolecular system using simple mathematical equations, because  
reactions at the macromolecular level usually involve complicated processes and dynamic 
behaviors. Even so, biochemists have done many efforts to find a way to describe the 
biological systems. Many equations and models have been published by using approximate 
treatments or hypothesis. 

If biochemists were asked what is the most important mathematical equation they know, 
most likely the answer you will hear is the Michaelis-Menten equation. Michaelis–Menten 
equation is one of the simplest and best-known equations describing enzyme kinetics 
(Menten and Michaelis, 1913). It is named after American biochemist Leonor Michaelis and 
Canadian physician Maud Menten. For a typical enzymatic reaction one often finds that the 
following scheme works reasonably well, 

 
1

   E  kS E S E P
α

α−

⎯⎯⎯→+ ⎯⎯→ +←⎯⎯⎯  (1) 

with S, E, ES, P representing the substrate, the free enzyme, the enzyme-substrate complex, 
and the product. Then one has the rate of product formation: (after certain assumptions, 
such as the enzyme concentration being much less than the substrate concentration) 
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computational powers that has been facilitated to simulate molecular dynamics at large scales.  

Chemical kinetics has been well developed for simple molecular systems, and most of the 
small molecular reactions can be described accurately by kinetic equations. However, it’s 
hard to describe a macromolecular system using simple mathematical equations, because  
reactions at the macromolecular level usually involve complicated processes and dynamic 
behaviors. Even so, biochemists have done many efforts to find a way to describe the 
biological systems. Many equations and models have been published by using approximate 
treatments or hypothesis. 

If biochemists were asked what is the most important mathematical equation they know, 
most likely the answer you will hear is the Michaelis-Menten equation. Michaelis–Menten 
equation is one of the simplest and best-known equations describing enzyme kinetics 
(Menten and Michaelis, 1913). It is named after American biochemist Leonor Michaelis and 
Canadian physician Maud Menten. For a typical enzymatic reaction one often finds that the 
following scheme works reasonably well, 
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with S, E, ES, P representing the substrate, the free enzyme, the enzyme-substrate complex, 
and the product. Then one has the rate of product formation: (after certain assumptions, 
such as the enzyme concentration being much less than the substrate concentration) 
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In this model, the rate of product formation increases along with the substrate concentration 
[S] with the characteristic hyperbolic relationship, asymptotically approaching its maximum 
rate Vmax = k[E]t, ([E]t is the total enzyme concentration) attained when all enzymes are 
bound to substrates .We can use Km to represent (α-1+k)/α, named Michaelis constant. It is the 
substrate concentration at which the reaction rate is at half the maximum rate, and is a 
measure of the substrate's affinity for the enzyme. A small Km indicates high affinity, 
meaning that the rate approaches Vmax more quickly. 

The Michaelis–Menten equation was first proposed for investigating the kinetics of an 
enzymatic (invertase) reaction mechanism in 1913 (Menten and Michaelis, 1913). Later, it 
has been widely used in a variety of biochemical transitions other than enzyme-substrate 
interaction, which includes antigen-antibody binding, DNA-DNA hybridization and 
protein-protein interaction. There is no exaggeration to say that the Michaelis–Menten 
model has greatly pushed forward our understanding of enzymatic reactions. 

However, biochemists also found that many enzymes show kinetics are more complicated 
than the Michaelis-Menten kinetics. Frieden coined the name “hysteretic enzyme“ referring 
to “those enzymes which respond slowly (in terms of some kinetic characteristic) to a rapid 
change in ligand, either substrate or modifier, concentration” (Frieden, 1970). Since then a 
sizable literature exists on the enzyme behavior. The list of hysteretic enzymes cover 
proteins working in many organisms from bacteria to mammalians (Frieden, 1979), with one 
of the latest examples related to the protein secreted by bacteria Staphylococcus aureus to 
induce host blood coagulation (Kroh et al., 2009). The kinetics, especially the enzymatic 
activity of a hysteretic enzyme, cannot adapt to new environmental conditions quickly. The 
delay time can be surprisingly long. For example, upon changing the solution’s pH value, it 
takes more than two hours for alkaline phosphatase to relax to the enzymatic activity 
corresponding to the new pH value (Behzadi et al., 1999). The mnemonic behavior is 
another key example of slow conformational dynamic disorder advocated by Richard and 
his colleagues (Cornish-Bowden and Cardenas, 1987; Frieden, 1970; Frieden, 1979; Ricard 
and Cornish-Bowden, 1987). It refers to the phenomenon that “the free enzyme alone which 
undergoes the ‘slow’ transition…upon the desorption of the last product from the active 
site, the enzyme retains for a while the conformation stabilized by that product before 
relapsing to another conformation” (Ricard and Cornish-Bowden, 1987). Their observation 
revealed that Mnemonic enzymes show non-Michaelis-Menten (NMM) behaviors. The 
concepts of mnemonic and hysteretic enzymes emphasize the steady-state kinetics and the 
transient kinetics leading to the steady state, respectively.  However, the conformational 
change in a protein is the rate limiting step in both enzymatic reactions which are slower 
than the actual chemical reaction step (chemical bond breaking and forming). To this end, a 
unified model exists (Ainslie et al., 1972).  

A deeper understanding on the origin of the mnemonic and hysteretic behaviors comes 
from biophysical studies. A related phenomenon called dynamic disorder has been 
discussed extensively in the physical chemistry and biophysics communities. Dynamic 
disorder refers to the phenomena that the ‘rate constant’ of a process is actually a random 
function of time, and is affected by some slow protein conformational motions (Frauenfelder 
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et al., 1999; Zwanzig, 1990). A molecule fluctuates constantly at finite temperature. The 
Reaction Coordinate (RC) is an important concept in chemical rate theories (Hanggi et al., 
1990). The RC is a special coordinate in the configurational space (expanded by the spatial 
coordinates of all the atoms in the system), which leads the system from the reactant 
configuration to the product configuration. A fundamental assumption in most rate theories 
(such as the transition state theory) states that the dynamics along the RC is much slower 
than fluctuations along all other coordinates. Consequently, for any given RC position, one 
may assume other degrees of freedom approaches approximately equilibrium. This is the 
so-called adiabatic approximation. Deviation from this assumption is treated as secondary 
correction (Grote and Hynes, 1980). Chemical rate theories based on this assumption are 
remarkably successful in explaining the dynamics involving small molecules. The dynamics 
of a system can be well characterized by a rate constant. However, the situation is much 
more complicated in macromolecules like proteins, RNAs, and DNAs. Macromolecules have 
a large number of atoms and possible conformations. The conformational fluctuation time 
scales of macromolecules span from tens of femtoseconds to hundreds of seconds 
(McCammon and Harvey, 1987). Consequently, conformational fluctuations can be 
comparable or even slower than the process involving chemical bond breaking and 
formation. The adiabatic approximation seriously breaks down at this regime. If one focuses 
on the dynamics of processes involving chemical reactions, the canonical concept of “rate 
constant” no longer holds. Since the pioneering work of Frauenfelder and coworkers on 
ligand binding to myoglobin (Austin et al., 1975), extensive experimental and theoretical 
studies have been performed on this subject (see for example ref. (Zwanzig, 1990) for further 
references). Additionally, the conformational fluctuation of a macromolecule is an 
individual behaviour, many dynamic processes were hidden under the ensemble 
measurements. Fortunately, recent advances in room-temperature single-molecule 
fluorescence techniques gave us an opportunity to investigate the conformational dynamics 
on the single-molecule level. Hence, the dynamic disorders in an individual macromolecule 
has been demonstrated directly through single molecule enzymology measurements 
recently  (English et al., 2006; Min et al., 2005b; Xie and Lu, 1999). For example, Xie and 
coworkers showed that both enzymes‘ conformation and catalytic activity fluctuate over 
time, especially the turnover time distribution of one β-galactosidase molecule spans 
several orders of magnitude (10-3 s to 10 s). Their results revealed that although a fluctuating 
enzyme still exhibits MM steady-state kinetics in a large region of time scales, the apparent 
Michaelis and catalytic rate constants do have different microscopic interpretations. It is also 
shown that at certain conditions dynamic disorder results in Non-Michaelis-Menten kinetics 
(Min et al., 2006). Single molecule measurements on several enzymes suggested that the 
existence of dynamic disorder in biomolecules is a rule rather than exception (Min et al., 
2005a). So if problems arise, when there are only a few copies of a particular enzyme in a 
living cell, do these fluctuations result in a noticeable physiological effect? 

Therefore, an important question we need to ask is: What is the biological consequence of 
dynamic disorder? Frieden insightfully noticed that “it is of interest that the majority of 
enzymes exhibiting this type of (hysteretic) behavior can be classed as regulatory enzymes” (Frieden, 
1979). A series of important questions emerge naturally: Is the existence of complex 
enzymatic kinetic behaviors an evolutional byproduct or selected trait? Is there any 
biological function for it? How can such diverse and complex enzymatic kinetic behaviors 
affect our understanding of regulatory protein interaction networks? 
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In recent years, studying interactions of molecules in a cell from a systems perspective has 
been gaining popularity. Researchers in this newly formed field “systems biology” 
emphasize that to characterize a complex system, it is insufficient to take the reductionist’s 
view. Combining several reactions together, one can form reaction networks with emerging 
dynamic behaviors such as switches, oscillators, etc, and ultimately the life form (Alon, 2007; 
Kholodenko, 2006; Tyson et al., 2001). In the new era of systems biology, a modeler may deal 
with hundreds to thousands ordinary differential rate equations describing various 
biological processes. The hope is that by knowing the network topology and associated rate 
constants (which requires daunting experimental efforts), one can reveal the secret of life 
and even synthesize life.  

On modeling such regulatory protein interaction networks, it is common practice to assume 
that each enzymatic reaction can be described by a simple rate process, especially by the 
Michaelis-Menten kinetics. In our opinion, most contemporary researches on biological 
network dynamics emphasize the effect of network topology without giving sufficient 
consideration of the biochemical/biophysical properties of each composing macromolecule. 
One of the reasons that account for the current state of affair is due to a lack of experimental 
data and theoretical understanding in the "intermediate regime" between single-molecule 
studies of individual enzymes (relatively simple) and cellular dynamics (too complex). 
Recent advances in single-molecule techniques give us hope to study larger systems. One of 
its unique advantages is the ability to study macromolecular dynamics under room 
temperature and nonequilibrium state, which well mimics physiological conditions of a 
living cell. Using these single-molecule experimental results to build the cellular dynamics 
model will be a promising and significative research field. 

In this chapter, we will present a unified mathematical formalism describing both 
conformational change and chemical reactions. Then we will discuss some implications of 
slow conformational changes in protein allostery and network dynamics. 

2. Coarse grained mathematical description of conformational changes   
Substrate binding often induces considerable changes of the protein conformation, 
especially in the binding pocket. This is the so-called induced-fit model. To explicitly take 
into account the induced conformational change, one can generalize the scheme given in 
Equation 1 to what shown in Fig. 1A. The substrate and protein form a loosely bound 
complex first. Their mutual interactions drive further conformational change of the binding 
pocket to form a tight bound complex, where atoms are properly aligned for chemical bond 
breaking and forming to take place. Next the binding pocket opens to release the product 
and is ready for another cycle. Mathematically one can write a set of ordinary differential 
based rate equations to describe the dynamics, or perform stochastic simulations of the 
process.  

For a more complete description of the continuous nature of conformational changes, one 
can reduce the conformational complexity of the system to a few well defined degrees of 
freedom with slow dynamics (Xing, 2007). For example, let’s denote x to represent the 
conformational coordinate of the enzyme from open to close of the binding pocket, and U(x) 
the potential of mean force along x. In general U(x) is affected by substrate binding. 
Therefore, in a minimal model the chemical state of the binding pocket (the catalytic site) 
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can be: Emp (empty), Rec (reactant bound), or Prod (product bound). As shown in Figure 
1B, each state is described by a potential curve Ui(x) along the conformational coordinate, 
and localized transitions can happen between two potentials. For an enzymatic cycle, a 
reactant molecule first binds onto the catalytic site (Emp→Rec), then forms a more compact 
complex, next the chemical reaction happens (Rec→Prod), and finally the catalytic site is 
open and the product is released (Prod→Emp). Notice that binding molecules may shift 
both the curve shape and minimum position, and some conformational motion is necessary 
during the cycle. The harmonic shape of the curves shown in Figure 1B is only illustrative. A 
more complete description is to use the two (or higher) dimensional potential surfaces 
plotted in Figure 1C. The plot should be only viewed as illustrative. Within an enzymatic 
cycle, the system zigzags through the potential surface, with motions along both the 
conformational and reaction coordinates coupled. Figure 1D gives projection of the potential 
surface along the reaction coordinate at two conformational coordinate values. The curves 
have the characteristic double well shape. For barrier crossing processes, a system spends 
most of the time at potential wells, and the actual barrier-crossing time is transient and fast. 
Therefore, one can reduce the two-dimensional surface (Figure 1C) to one-dimensional 
projections along the conformational coordinate (Figure 1B), and approximate transitions 
along the reaction coordinate by rate processes among the one-dimensional potential curves.  

With the above introduction of potential curves, we can now formulate the governing 
dynamic equations by a set of over-damped Langevin equations coupled to Markov 
chemical transitions (Xing, 2007; Zwanzig, 2001),    

 ( )( ) ( )i
i i

dU xdx t f t
dt dx

ζ = − + , (3)  

where x and Ui as defined above, ζi is the drag coefficient along the molecular 
conformational coordinate, and f is the random fluctuation force with the property <f(t)f(t’)> 
= 2 kBTζδ(t-t’), with kB the Boltamann’s constant, T the temperature. Chemical transitions 
accompany motions along the conformational coordinate with x-dependent transition rates. 
In general the dynamics may be non-Markovian and contain a memory effect (Zwanzig, 
2001). Min et al. observed a power law memory kernel for single protein conformational 
fluctuations (Min et al., 2005b). Xing and Kim showed that the observation can be well 
reproduced using a coarse-grained protein fluctuation model, with both of two adjustable 
parameters agree with other independent studies (Xing and Kim, 2006). However here we 
will assume Markovian dynamics for simplicity. The Langevin dynamics described by 
Equation 3 can be equally described by a set of coupled Fokker-Planck equations, 
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Where Di = kBT/ζi is the diffusion constant, Kij is the transition matrix element, and ρi(x) is 
the probability density to find the system at position x and state i.  

The formalism given by Equations 3 and 4 is widely used to model systems such as electron 
transfer reactions, protein motors (Bustamante et al., 2001; Julicher et al., 1997; Wang and 
Oster, 1998; Xing et al., 2006; Xing et al., 2005), as well as enzymatic reactions here (Gopich 
and Szabo, 2006; Min et al., 2008; Qian et al., 2009; Xing, 2007). 
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Fig. 1. Descriptions of coupling between chemical reactions and conformational changes.  
(A) A discrete enzymatic cycle model with conformational changes. (B) A minimal continuous 
model representing three potentials of mean force along a conformational coordinate.  
(C) A continuous model with explicit reaction and conformational coordinates.  
(D) Two protein conformations and the corresponding potentials of mean force along the 
reaction coordinate.  

The continuous form of Equation 4 can also be discretized to a form more familiar to 
biochemists1, 

 

(5)

                                                 
1 A mathematical procedure for the discretization is given in Xing, J., Wang, H.-Y., and Oster, G. (2005). 
From continuum Fokker-Planck models to discrete kinetic models. Biophys J 89, 1551-1563. 
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Fig. 2. Different models for allostery. (A) Schematic illustration of allosteric regulation.  
(B) Schematic potentials of mean force illustrating the MWC (left) and the KNF (right) 
models. (C) A nonequilibrium dynamic model. 

Equations 3-5 describe richer physics than the simple induced fit model does. The 
conformational changes include contributions from binding induction as well as enzyme 
spontaneous fluctuations. There may be a number of parallel pathways for an enzymatic 
reaction corresponding to different protein conformations. An optimal conformation for one 
step of the reaction may not be the optimal conformation for another step. If an enzyme can 
transit among these conformations faster than a chemical transition event (including 
substrate/product binding and release), then the system can mainly follow the tortuous 
optimal pathway involving different conformations shown in Figure 1B and C. If the 
conformational change is comparable or slower than chemical events, multiple pathways 
may contribute significantly to the dynamics, and one observes time varying enzyme 
activity at the single molecule level, which leads to the phenomenon “dynamic disorder“. 
One origin of the slow dynamics of intramolecular dynamics comes from diffusion along 
rugged potential surfaces with numerous potential barriers (Frauenfelder et al., 1991). 
Zwanzig shows that the effectic diffusion constant is greatly reduced along a rugged 
potential (Zwanzig, 1988). For example, for a rugged potential with a gaussian distributed 
barrier height, and root-mean-square ε, the so-called roughness parameter, the effective 
diffusion constant is scaled as, 

 ( )2exp /effective BD D k Tε = −   (6) 

which can be greatly reduced from the bare value of D. 
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Fig. 1. Descriptions of coupling between chemical reactions and conformational changes.  
(A) A discrete enzymatic cycle model with conformational changes. (B) A minimal continuous 
model representing three potentials of mean force along a conformational coordinate.  
(C) A continuous model with explicit reaction and conformational coordinates.  
(D) Two protein conformations and the corresponding potentials of mean force along the 
reaction coordinate.  

The continuous form of Equation 4 can also be discretized to a form more familiar to 
biochemists1, 

 

(5)

                                                 
1 A mathematical procedure for the discretization is given in Xing, J., Wang, H.-Y., and Oster, G. (2005). 
From continuum Fokker-Planck models to discrete kinetic models. Biophys J 89, 1551-1563. 
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Fig. 2. Different models for allostery. (A) Schematic illustration of allosteric regulation.  
(B) Schematic potentials of mean force illustrating the MWC (left) and the KNF (right) 
models. (C) A nonequilibrium dynamic model. 
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3. Thermodynamic versus dynamic models for allostery 
A cell needs to adjust its metabolic, transcriptional, and translational activities to respond to 
changes in the external and internal environment. Allostery and covalent modification are 
two fundamental mechanisms for regulating protein activities (Alberts et al., 2002). 
Allostery refers to the phenomenon that binding of an effector molecule to a protein’s 
allosteric site affects the protein activity at its active site, which is usually physically distinct 
from where the effector binds. The discovery of allosteric regulations was in the 1950s, 
followed by a general description of allostery in the early 1960s, has been regarded as 
revolutionary at that time (Alberts et al., 2002). Not surprisingly, to understand the 
mechanism of allosteric regulation is an important topic in structural biology. Below we will 
focus on allosteric enzymes. For simplicity, we will restrict our discussions to positive 
allosteric effect, i.e., effector binding increases enzymatic activity. The discussions can be 
easily generalized to negative allosteric effects. 

3.1 Conventional models of allostery  

There are two popular models proposed to explain the allosteric effects. The concerted 
MWC model by Monod, Wyman, and Changeux, assumes that an allosteric protein can exist 
in two (or more) conformations with different reactivity, and effector binding modifies the 
thermal equilibrium distribution of the conformers (Monod et al., 1965). Recent population 
shift models re-emphasize the idea of preexisting populations (Goodey and Benkovic, 2008; 
Kern and Zuiderweg, 2003; Pan et al., 2000; Volkman et al., 2001). The sequential model 
described by Koshland, Nemethy, and Filmer is based on the induced-fit mechanism, and 
assumes that effector binding results in (slight) structural change at another site and affects 
the substrate affinity (Koshland et al., 1966). While different in details, both of the above 
models assume that the allosteric mechanism is through modification of the equilibrium 
conformation distribution of the allosteric protein by effector binding. For later discussions, 
we denote the mechanisms as “thermodynamic regulation”.  

The mechanisms of thermodynamic regulation impose strong requirements on the mechanical 
properties of an allosteric protein. The distance between the two binding sites of an allosteric 
protein can be far. For example, the bacterial chemotaxis receptor has the two reaction regions 
separated as far as 15 nm (Kim et al., 2002). In this case, signal propagation requires a network 
of mechanical strain relaying residues with mechanical properties distinguishing them well 
from the surroundings to minimize thermal dissipation – Notice that distortion of a soft donut 
at one side has negligible effect on another side of the donut. Mechanical stresses due to 
effector molecule binding irradiate from the binding site, propagate through the relaying 
network, and con-focus on the reaction region at the other side of the protein (Amaro et al., 
2009; Amaro et al., 2007; Balabin et al., 2009; Cecchini et al., 2008; Cui and Karplus, 2008; 
Horovitz and Willison, 2005; Ranson et al., 2006). However, it is challenging to transmit the 
mechanical energy faithfully against thermal dissipation over a long distance. A possible 
solution is the attraction shift model proposed by Yu and Koshland(Yu and Koshland, 2001).   

From a chemical physics perspective, current existing models on allosteric effects differ in 
some details of the potential shapes. The MWC and the recent population-shift model 
emphasizes that there are pre-existing populations for all the possible forms, as exemplified by 
the double well shaped potentials and the two corresponding conformers in the left panel of 
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Figure 2C. Effector binding only shifts their relative populations. The KNF model emphasizes 
that without the effector the protein exists mainly in one form (conformer 2 in the right panel 
of Figure 2C).  Effector binding shifts the protein to another form (conformer 1) with different 
reactivity. The functions U(x) are potentials of mean force, which suggests that the effect of 
effector binding can be enthalpic or entropic (Cooper and Dryden, 1984). Therefore in some 
sense there is no fundamental difference between the KNF and MWC models. They differ only 
in the extent of each conformer being populated, which is related to the free energy difference 
between conformers ΔU (in Figure 2C) through the Boltzman factor.  

3.2 Possibly neglected dynamic aspect of allostery 

The above allosteric models focus on the conformational changes decoupled from those 
changes associated with an enzymatic cycle. Consequently, the distribution along the 
conformational coordinate can be described as thermodynamic equilibrium. However, as 
discussed in section 2, an enzymatic cycle usually inevitably involves enzyme 
conformational changes, so the distribution of the latter is in general driven out of 
equilibrium due to coupling to the nonequilibrium chemical reactions. In many cases, as 
Frieden wrote, “conformational changes after substrate addition but preceding the chemical 
transformation, or after the chemical transformation but preceding product release may be 
rate-limiting” (Frieden, 1979). Recent NMR studies further demonstrate conformational 
changes as rate-limiting steps (Boehr et al., 2006; Cole and Loria, 2002). Based on these 
experimental observations, Xing proposed that the conformational change dynamics within 
an enzymatic cycle can be subject to allosteric modulation (Xing, 2007).  

Enzyme conformational changes can be thermally activated barrier crossing events, and 
effectors function by modifying the height of the dominant barrier. Alternatively, effectors 
may accelerate conformational changes through decreasing the potential roughness (see 
Figure 2D). Intuitively, for the latter mechanism effectors transform rusty engines (enzymes) 
into better-oiled ones.  

Figure 3 schematically summarizes possible effector binding induced changes of the 
potentials of mean force along a conformational coordinate, which then affects the  

 
Fig. 3. Summary of effects of effector binding on the potential of mean force: (1) relative free 
energy difference of the two conformers; (2) Width of the potential well; (3) Barrier height; 
(4) Potential roughness. 
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Figure 2C. Effector binding only shifts their relative populations. The KNF model emphasizes 
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of Figure 2C).  Effector binding shifts the protein to another form (conformer 1) with different 
reactivity. The functions U(x) are potentials of mean force, which suggests that the effect of 
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Fig. 3. Summary of effects of effector binding on the potential of mean force: (1) relative free 
energy difference of the two conformers; (2) Width of the potential well; (3) Barrier height; 
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enzymatic reaction dynamics. The changes can be the relative height of the potential wells 
representing different conformers (labelled 1 in Figure 3, enthalpic), the widths of potential 
wells (labelled 2, entropic), the barrier height (labelled 3) and the potential roughness 
(labelled 4) (dynamic). For a given enzyme subject to a given effector regulation, one or 
more effects may play the dominant role.  

 
Fig. 4. Possible scenarios of modifying potential roughness. Relative motion between two 
protein surfaces (A) can be modulated through changing the linkage stiffness (B) or the 
arrangement of surface residues (C), or solvant accessibility (D).  

Further experimental and theoretical studies are necessary to reveal the detailed molecular 
mechanisms for the proposed potential roughness regulation. Figure 4 gives some possible 
scenarios. Suppose during the process of conformational change, two protein surfaces need 
to move along each other, with numerous residues dangling on the surfaces forming and 
breaking noncovalent interaction pairs, e.g., hydrogen bonds. If these residues are rigidly 
connected to the protein body, one can treat the process as two rigid bodies moving relative 
to each other. At a given instance moving of the two surfaces requires breaking of all the 
previously formed interaction pairs (see Figure 4A). The repetitive breaking and forming 
interaction pairs result in rugged potentials along the moving coordinate. Effector binding 
may increase the elasticity of the residue linkages or the protein body. Then the two surfaces 
can move with some of the existing interaction pairs being stretched but not necessarily 
broken (see Figure 4B). Formation of new interaction pairs may energetically facilitate 
eventual broken of these bonds. This increased elasticity effectively smoothen the potential 
of mean force. Similarly, effector binding induced displacement of some residues may also 
reduce the average number of interaction pairs formed at a given relative position of the two 
surfaces. Effector binding may also increase solvent (water) molecule accessibility to the 
protein interface. Water molecules are effective on bridging interactions between displaced 
residues, and thus stabilizing the intermediate configurations (see Figure 4D). 
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3.3 Allosteric regulation of bacterial flagellar motor switching  

Here we specifically discuss allosteric regulation in the bacterial flagellar motor system. 
Although the flagellar motor switching process does not involve enzymatic cycles directly, 
the process shares some features common to what we discussed in section 3.2.  

 
Fig. 5. Cartoon illustrations of the BFM torque generation/switching structure and the 
concept of conformational spread on the rotor ring (A) Schematic plot of the main structural 
components of the BFM. In this figure some rotor units (red) are in CW state against 
majority of the rotor units (blue) driving the motor rotating along CCW direction. (B) Top-
view of the rotor ring complex with putative binding positions of the CheY-P molecules. 

The bacterial flagellar motor (BFM) is a molecular device most bacteria use to rotate their 
flagella when swimming in aqueous environment. Using the transmembrane 
electrochemical proton (or sodium) motive force as the power source, the bacterial flagellar 
motor can rotate at an impressive high speed of a few hundred Hz and consequently, free-
swimming bacteria can propel their cell body at a speed of 15-100 μm/s, or up to 100 cell 
body lengths per second (Berg, 2003, 2004; Sowa and Berry, 2008). Figure 5A shows a 
schematic cartoon plot of the major components of the E. coli BFM derived from previous 
research of electron microscopy, sequencing and mutational studies. These structural 
components can be categorized into two groups according to their function: the rotor and 
the stators. In the center of the motor, a long extracellular flagellum (about 5 or 10 times the 
length of the cell body) is connected to the basal body of the motor through a flexible hook 
domain. The basal body consists of a few protein rings, functioning as the rotor of the 
machine, and spans across the outer membrane, peptidoglycan and inner membrane into 
the cytoplasm of the cell (Berg, 2004). Around the periphery of the rotor, a circular array of 
8-11 stator complexes are located. Each stator complex functions independently as a torque 
generation unit. When ions (proton or sodium) flow from periplasm to cytoplasm through 
an ion channel on the stator complex, conformational changes are triggered by ion binding 
on/off events, and therefore deliver torque to the rotor at the interface between the 
cytoplasmic domain of the stator complex and C-terminal domain of one of the 26 copies of 
FliG monomers on the rotor (Sowa et al., 2005). A series of mathematical models haven been 
proposed to explain the working mechanism of the BFM (Bai et al., 2009; Meacci and Tu, 
2009; Mora et al., 2009; Xing et al., 2006).   
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The bacterial flagellar motor (BFM) is a molecular device most bacteria use to rotate their 
flagella when swimming in aqueous environment. Using the transmembrane 
electrochemical proton (or sodium) motive force as the power source, the bacterial flagellar 
motor can rotate at an impressive high speed of a few hundred Hz and consequently, free-
swimming bacteria can propel their cell body at a speed of 15-100 μm/s, or up to 100 cell 
body lengths per second (Berg, 2003, 2004; Sowa and Berry, 2008). Figure 5A shows a 
schematic cartoon plot of the major components of the E. coli BFM derived from previous 
research of electron microscopy, sequencing and mutational studies. These structural 
components can be categorized into two groups according to their function: the rotor and 
the stators. In the center of the motor, a long extracellular flagellum (about 5 or 10 times the 
length of the cell body) is connected to the basal body of the motor through a flexible hook 
domain. The basal body consists of a few protein rings, functioning as the rotor of the 
machine, and spans across the outer membrane, peptidoglycan and inner membrane into 
the cytoplasm of the cell (Berg, 2004). Around the periphery of the rotor, a circular array of 
8-11 stator complexes are located. Each stator complex functions independently as a torque 
generation unit. When ions (proton or sodium) flow from periplasm to cytoplasm through 
an ion channel on the stator complex, conformational changes are triggered by ion binding 
on/off events, and therefore deliver torque to the rotor at the interface between the 
cytoplasmic domain of the stator complex and C-terminal domain of one of the 26 copies of 
FliG monomers on the rotor (Sowa et al., 2005). A series of mathematical models haven been 
proposed to explain the working mechanism of the BFM (Bai et al., 2009; Meacci and Tu, 
2009; Mora et al., 2009; Xing et al., 2006).   
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The bacterial flagellar motor is not only important for the propulsion of the cell, but also 
crucial for bacterial chemotaxis. In the E. coli chemotaxis system, chemical gradients 
(attractant or repellent) are sensed through multiple transmembrane methyl-accepting 
chemotaxis proteins (MCPs) (Berg, 2004). When extracellular chemotactic attractants (or 
repellents) bind to MCPs, conformational changes through the membrane inhibit (or trigger) 
the autophosphorylation in the histidine kinase, CheA. CheA in turn transfers phosphoryl 
groups to conserved aspartate residues in the response regulators CheY. The 
phosphorylated form of CheY, CheY-P, diffuses away across the cytoplasm of the cell and 
binds to the bottom of the FliM/FliN complex of the flagellar motor. When attractant 
gradient is sensed, CheY-P concentration is low in the cytoplasm and therefore less CheY-P 
molecules bind to the flagellar motor, which favours counter-clockwise (CCW) rotation of 
the motor. When most of the motors on the membrane spin CCW, flagellar filaments form a 
bundle and propel the cell steadily forward. When repellent gradient is sensed, CheY-P 
concentration is raised and more CheY-P binds to the flagellar motor, which leads to 
clockwise (CW) rotation of the motor. When a few motors (can be as few as one) spin CW, 
flagellar filaments fly apart and the cell tumbles. The bacterial flagellar motor (BFM) 
switches stochastically between CCW and CW states and therefore the cell repeats a ‘run’-
‘tumble’-‘run’ pattern. This enables a chemotactic navigation in a low Reynolds number 
environment (reviewed in Berg, book E. coli in motion). The ratio of the rotation direction 
CCW/CW is tuned by the concentration of the signalling protein, CheY-P.  

The problem of BFM switching response to cytoplasmic CheY-P concentration is essentially 
a protein allosteric regulation. When the effector (CheY-P) binds to the bottom of each rotor 
unit (a protein complex formed by roughly 1:1:1 of FliG, FliM, FliN protein), it makes CW 
rotation more favourable (Figure 5B). However, a careful examination of the BFM switching 
shows that the allosteric regulation here has distinct features: 1) in previous in vivo 
experiment (Cluzel et al., 2000), Cluzel et al. monitored in real time the relationship between 
BFM switching bias and CheY-P concentration in the cell and found that the response curve 
is ultrasensitive with a Hill coefficient of ~ 10. Later FRET experiment further showed that 
binding of CheY-P to FliM is much less cooperative than motor switching response (Sourjik 
and Berg, 2002). The molecular mechanism of this high cooperativity in BFM switching 
response remains unknown. 2) the BFM rotor has a ring structure, which is a large 
multisubunit protein complexes formed by 26 identical rotor units. For such a large 
multisubunit protein complex, an absolute coupling between subunits as the MWC model 
requires seems very unlikely. 3) the BFM rotates in full speed stably in CCW or CW 
directions, and transitions between these two states are brief and fast. This indicates that the 
26 rotor units on the basal body of the BFM are in a coherent conformation for most of the 
time and switching of the whole ring can finish within a very short time period. The above 
facts also put the KNF model in doubt. As in the KNF model, coupling between effector 
binding and conformation is absolute: When an effector binds a rotor unit, that rotor unit 
switches direction.  

Therefore a new type of model is in needed to explain the molecular mechanism of the BFM 
switching. Duke et al. constructed a mathematical model of the general allosteric scheme 
based on the idea proposed by Eigen (Eigen, 1968) in which both types of coupling are 
probabilistic (Duke et al., 2001; Duke and Bray, 1999). This model encompasses the classical 
mechanisms at its limits and introduces the mechanism of conformational spread, with 
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domains of a particular conformational state growing or shrinking faster than ligand 
binding. Particular regions in the parameter space of the conformational spread model 
reproduce the classical WMC and KNF model (Duke et al., 2001).  

Here we introduce the conformational spread model modified for studying the BFM 
switching mechanism. In this model, first we assumed that each rotor unit can take two 
conformations: CCW and CW. The rotor unit in CCW state generates torque along CCW 
direction when interacting with a stator unit; the rotor unit in CW state generates torque 
along CW direction when interacting with a stator unit. Each rotor unit undergoes rapid 
flipping between these two conformations and may also bind a single CheY-P molecule. On 
the free energy diagram, we further assumed that for each rotor unit the CCW state is 
energetically favoured by Ea while the binding of CheY-P stabilizes the CW state. As shown 
in Figure 6A, the free energy of the CW state (red) changes from +EA to – EA relative to the 
CCW state (blue), when a rotor unit binds CheY-P. 

 
Fig. 6. Energy states of a rotor unit in the BFM switch complex. (A) The free energy of the 
CW state (red) changes from +EA to –EA relative to the CCW state (blue), when a rotor unit 
binds CheY-P. (B) The rotor unit is stabilized by EJ if the adjacent neighbor is in the same 
conformation.  

In order to reproduce the ultrasensitivity of the BFM switching, a coupling energy EJ 
between adjacent neighbors in the ring is introduced. The free energy of a rotor unit is 
further stabilized by a coupling energy EJ when each neighboring rotor unit is in the same 
conformational state (Figure 6B), an idea inspired by the classical Ising phase transition 
theory from condensed matter physics.  

In this conformational spread model, the rotor ring shows distinct features upon 
increasing of EJ. Below a critical coupling energy, the ring exhibits a random pattern of 
states as the rotor units flip independently of each other. Above the critical coupling 
energy, switch-like behaviour emerges: the ring spends the majority of time in a coherent 
configuration, either all in CCW or CW states, with abrupt stochastic switching between 
these two states. Unlike the MWC model, the conformational spread model allows the 
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domains of a particular conformational state growing or shrinking faster than ligand 
binding. Particular regions in the parameter space of the conformational spread model 
reproduce the classical WMC and KNF model (Duke et al., 2001).  

Here we introduce the conformational spread model modified for studying the BFM 
switching mechanism. In this model, first we assumed that each rotor unit can take two 
conformations: CCW and CW. The rotor unit in CCW state generates torque along CCW 
direction when interacting with a stator unit; the rotor unit in CW state generates torque 
along CW direction when interacting with a stator unit. Each rotor unit undergoes rapid 
flipping between these two conformations and may also bind a single CheY-P molecule. On 
the free energy diagram, we further assumed that for each rotor unit the CCW state is 
energetically favoured by Ea while the binding of CheY-P stabilizes the CW state. As shown 
in Figure 6A, the free energy of the CW state (red) changes from +EA to – EA relative to the 
CCW state (blue), when a rotor unit binds CheY-P. 

 
Fig. 6. Energy states of a rotor unit in the BFM switch complex. (A) The free energy of the 
CW state (red) changes from +EA to –EA relative to the CCW state (blue), when a rotor unit 
binds CheY-P. (B) The rotor unit is stabilized by EJ if the adjacent neighbor is in the same 
conformation.  

In order to reproduce the ultrasensitivity of the BFM switching, a coupling energy EJ 
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further stabilized by a coupling energy EJ when each neighboring rotor unit is in the same 
conformational state (Figure 6B), an idea inspired by the classical Ising phase transition 
theory from condensed matter physics.  
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increasing of EJ. Below a critical coupling energy, the ring exhibits a random pattern of 
states as the rotor units flip independently of each other. Above the critical coupling 
energy, switch-like behaviour emerges: the ring spends the majority of time in a coherent 
configuration, either all in CCW or CW states, with abrupt stochastic switching between 
these two states. Unlike the MWC model, the conformational spread model allows the 
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existence of an intermediate (or mixed) configuration of the rotor units on the ring; and 
unlike the KNF model, the conformational spread model also allows rotor units stay in its 
original conformation without being switched by effector binding events. By 
implementing parallel Monte Carlo processes, one can simulate BFM switching response 
to CheY-P concentration. In each iteration, each rotor unit on the ring is visited and polled 
to determine whether to stay in the old state or jump to a new state according to the free 
energy difference between the two states as a function of 1) free energy of the rotor unit 
itself 2) binding condition of the regulator molecule CheY-P 3) energy coupling of 
adjacent neighboring subunits.  

The conformational spread model has successfully reproduced previous experimental 
observations that 1) the BFM switching bias responses ultrasensitively to changes in CheY-P 
concentration 2) the motor rotates stably in CCW and CW states with occasional fast 
transitions from one coherent state to the other. The model also made several new 
predictions: 3) creation of domains of the opposite conformation is frequent due to fast 
flipping of single rotor unit, but most of them shrink and disappear, failing to occupy the 
whole ring. However, some big fluctuations can still produce obvious slowdowns and 
pausing of the motor. Therefore, speed traces of the BFM should have frequent transient 
speed slowdowns and pauses. 4) the switch interval (the time that the motor spends in the 
CCW or CW state) follows a single exponential distribution. 5) the switch time, the time that 
the motor takes to complete a switch, is non-instantaneous. It can be modeled as a biased 
random walk along the ring. The characteristic switching time depends on the size of the 
ring and flipping rate of each rotor unit in a complicated manner. Due to the stochastic 
nature of this conformational spread, we expect to see a wide distribution of switching 
times. 

With the cutting-edge single molecule detection technique, the above predictions of the 
conformational spread model has recently been confirmed (Bai et al., 2010). Instead of 
instant transition , switches between CCW and CW rotor states were found to follow a 
broad distribution, with switching time ranging from less than 2 milliseconds to several 
hundred milliseconds, and transient intermediate states containing a mixture of CW/CCW 
rotor units have been observed. The conformational spread model has provided a molecular 
mechanism for the BFM switching, and more importantly, it sheds light on allosteric 
regulation in large protein complexes. In addition to the canonical MWC and KNF models, 
the conformational spread model provides a new comprehensive approach to allostery, and 
is consistent with the discussion in section 3.2 that both kinetic and thermodynamic aspects 
should be considered.  

4. Coupling between slow conformational change and network dynamics 
A biological network usually functions in a noisy ever-changing environment. Therefore, 
the network should be: 1) robust ─ functioning normally despite environmental noises; 2) 
adaptive ─ the tendency to function optimally by adjusting to the environmental changes; 3) 
sensitive ─ sharp response to the regulating signals. It is not-fully understood how a 
biological network can achieve these requirements simultaneously. Contemporary 
researches emphasize that the dynamic properties of a network is closely related to its 
topology.  
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Many in vivo biological processes involve only a small number of substrate molecules. When 
this number is in the range of hundreds or even smaller, stochastic effect becomes 
predominant. Chemical reactions take place in a stochastic rather than deterministic way. 
Therefore one should track the discrete numbers of individual species explicitly in the rate 
equation formalism. So far, many studies have shown that one might make erroneous 
conclusions without considering the stochastic effect (Samoilov et al., 2005; Wylie et al., 
2007). Noise propagation through a network is currently an important research topic 
(Levine et al., 2007; Paulsson et al., 2000; Pedraza and van Oudenaarden, 2005; Rao et al., 
2002; Rosenfeld et al., 2005; Samoilov et al., 2005; Shibata and Fujimoto, 2005; Suel et al., 
2007; Swain et al., 2002). One usually assumes that the stochastic effect mainly arises from 
small number of identical molecules, and rate constants are still assumed well defined.  

With the existence of dynamic disorder, the activity of a single enzyme (and so of a small 
number of enzymes) is a varying quantity. This adds another noise source with unique (multi-
time scale, non-white noise) properties (Min and Xie, 2006; Xing and Kim, 2006). For bulk 
concentrations, fluctuations due to dynamic disorder are suppressed by averaging over a large 
number of molecules. However, existence of NMM kinetics can still manifest itself in a 
network. If there are only a small number of protein molecules, as in many in vivo processes, 
dynamic disorder will greatly affect the network dynamics. The conventionally considered 
stochastic effect is mainly due to number variations of identical molecules. Here a new source 
of stochastic effect arises from small numbers of molecules with the same chemical structure 
but different conformations. Dynamic disorder induced stochastic effect has some unique 
properties, which require special theoretical treatment, and may result in novel dynamic 
behaviors. First, direct fluctuation of the rate constants over several orders of magnitude may 
have dramatic effects on the network dynamics. Second, the associated time scales have broad 
range. The Gaussian white noise approximation is widely used in stochastic modeling of 
network dynamics with the assumption that some processes are much faster than others 
(Gillespie, 2000). Existence of broad time scale distribution makes the situation more 
complicated. Furthermore, a biological system may actively utilize this new source of noise. 
Noises from different sources may not necessarily add up. Instead they may cancel each other 
and result in smaller overall fluctuations (Paulsson et al., 2000; Samoilov et al., 2005). We 
expect that the existence of dynamic disorder not only further complicates the situation, but 
may also provide additional degrees of freedom for regulation since the rates can be 
continuously tuned. Especially we expect that existence of dynamic disorder may require 
dramatic modification on our understanding of signal transduction networks. Many of these 
processes involve a small number of molecules, and are featured by short reaction time scales 
(within minutes), high sensitivity and specificity (responding to specific molecules only).  

Wu et al. examined the coupling between enzyme conformational fluctuations and a 
phosphorylation-dephosphorylation cycle (PdPC) (Wu et al., 2009). The PdPC is a common 
protein interaction network structure found in biological systems. In a PdPC, the substrate 
can be in phosphorylated and dephosphorylated forms with distinct chemical properties. 
The conversions are catalyzed by a kinase (E1 in Figure 7A) and a phosphatase (E2 in Figure 
7A) at the expense of ATP hydrolysis. Under the condition that the enzymes are saturated 
by the substrates, the system shows ultrasensitivity (Goldbeter and Koshland, 1981). As 
shown in Figure 7B, the fraction of the phosphorylated substrate form, f(W-P), is close to 
zero if the ratio between E1 and E2 enzymatic activities θ <1, but close to 1 if θ >1. Now 
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consider a system with a finite size, e.g. 50 E1 molecules, 50 E2 molecules, and a total of 1500 
substrate molecules as used to generate results in Figure 7C & D. Enzyme activities fluctuate 
due to conformational fluctuations. For simplicity let us assume that E1 can stochastically 
convert between an active and a less active forms. While the average value of θ  = 1.1, it 
fluctuates within the range [0.7, 1.5], depending on the number of E1 molecules in the active 
form. For convenience of discussion, let us also define the response time of the PdPC, τ, as 
the time it takes for the fraction of W-P reaching half given at time 0 the system jumps from 
θ  < 1 το θ > 1 due to enzyme conformational fluctuations. The response time clearly related 
to the enzymatic turnover rate. As the trajectories in Figure7C show, for slow θ fluctuation 
Δθ is amplified to ΔW-P due to the ultrasensitivity of the PdPC and the much larger number 
of substrate molecules compared to enzymes. However, with θ fluctuation much faster than 
τ,  the PdPC only responses to the average value of θ . Therefore depending on the relative 
time scale between θ fluctuation and the response time of the PdPC to θ change, fluctuations 
of θ can be either amplified or suppressed.   

 
Fig. 7. Coupling between enzyme conformational fluctuations and a phosphorylation-
dephosphorylation cycle. (A) A phosphorylation-dephosphorylation cycle (PdPC).  
(B) Ultrasensitivity of a PdPC. (C) Trajectories of enzyme activity due to slow 
conformational fluctuations and the corresponding substrate fluctuation. (D) Similar to C 
but with fast conformational fluctuations.  

5. Conclusion  
Slow conformational motions in macromolecules play crucial roles in their unique function 
in enzymatic reactions as well as biological networks. We suggest that these motions are of 
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great functional importance, which can only be fully appreciated in the context of regulatory 
networks. Collaborative researches from molecular and cellular level studies are urgently 
needed for this largely unexplored area.   
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1. Introduction 
Biological functions depend on all kinds of interaction networks; life is a miracle of all types 
of molecular interactions. Among them, proteins interacting with proteins, nucleic acids and 
small compounds play a central role (Barabasi & Oltvai, 2004; Przulj, 2011; Vidal, et al., 
2011). To guide protein engineering studies for better enzymes, antibodies and drugs, 
structural and functional characterization of protein interaction sites at the residue or atom 
level is of great help. Experimental approaches such as X-ray diffraction of protein complex 
can define structural binding sites at the atomic level (Bickerton, et al., 2011; Higurashi, et 
al., 2009); mutagenesis and binding test are capable of identifying functional binding sites at 
the residue or group level (Moreira, et al., 2007; Peng, et al., 2011). However, these means 
are costly, time-consuming and sometimes technically difficult or even impossible. 
Moreover, they are not always applicable on a large scale. As a result, computer tools for the 
prediction of protein interaction sites have been increasingly popular for complementing 
experimental techniques (Fernández-Recio, 2011; Wass, et al., 2011).  

The existing methods for the prediction of protein interaction sites can be grouped into three 
categories based on the main input data used. The first category consists of methods using 
protein sequence as the only input (Ofran & Rost, 2007; Res, et al., 2005). Methods in the 
second category such as molecular docking and simulation solely use structure data as input 
(Kozakov, et al., 2010; Mashiach, et al., 2010). Methods of the third category make use of a 
mimotope motif or a set of mimotope sequences together with protein sequence or structure 
as input (Huang, et al., 2011). 

In this chapter, we review methods of the third category, focusing on their current statuses, 
discussing challenges and providing suggestions to advance this field. 

2. Mapping protein-protein interaction sites using mimotope analysis 
Mimotopes are peptides mimicking protein interaction sites; they are initially acquired from 
chemical synthesis (Geysen, et al., 1986). High-throughput obtainment of mimotopes has 
achieved since phage display and other surface display technologies became available 
(Smith, 1985; Smith & Petrenko, 1997). Taking phage display as an example, random DNA 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

188 

Ricard, J., and Cornish-Bowden, A. (1987). Co-operative and allosteric enzymes: 20 years on. 
Eur J Biochem 166, 255-272. 

Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S., and Elowitz, M.B. (2005). Gene Regulation 
at the Single-Cell Level. Science 307, 1962-1965. 

Samoilov, M., Plyasunov, S., and Arkin, A.P. (2005). Stochastic amplification and signaling 
in enzymatic futile cycles through noise-induced bistability with oscillations. Proc 
Natl Acad Sci USA 102, 2310-2315. 

Shibata, T., and Fujimoto, K. (2005). Noisy signal amplification in ultrasensitive signal 
transduction. Proc Natl Acad Sci USA 102, 331-336. 

Sourjik, V., and Berg, H.C. (2002). Binding of the Escherichia coli response regulator CheY to 
its target measured in vivo by fluorescence resonance energy transfer. Proc Natl 
Acad Sci USA 99, 12669-12674. 

Sowa, Y., and Berry, R.M. (2008). Bacterial flagellar motor. Quart Rev Biophys 41, 103-132. 
Sowa, Y., Rowe, A.D., Leake, M.C., Yakushi, T., Homma, M., Ishijima, A., and Berry, R.M. 

(2005). Direct observation of steps in rotation of the bacterial flagellar motor. 
Nature 437, 916-919. 

Suel, G.M., Kulkarni, R.P., Dworkin, J., Garcia-Ojalvo, J., and Elowitz, M.B. (2007). Tunability 
and noise dependence in differentiation dynamics. Science 315, 1716-1719. 

Swain, P.S., Elowitz, M.B., and Siggia, E.D. (2002). Intrinsic and extrinsic contributions to 
stochasticity in gene expression. Proc Natl Acad Sci USA 99, 12795-12800. 

Tyson, J.J., Chen, K., and Novak, B. (2001). Network dynamics and cell physiology. Nat Rev 
Mol Cell Biol 2, 908-916. 

Volkman, B.F., Lipson, D., Wemmer, D.E., and Kern, D. (2001). Two-state allosteric behavior 
in a single-domain signaling protein. Science 291, 2429-2433. 

Wang, H., and Oster, G. (1998). Energy transduction in the F1 motor of ATP synthase. 
Nature 396, 279-282. 

Wu, Z., Elgart, V., Qian, H., and Xing, J. (2009). Amplification and Detection of Single-
Molecule Conformational Fluctuation through a Protein Interaction Network with 
Bimodal Distributions. J Phys Chem B 113, 12375-12381. 

Wylie, D.C., Das, J., and Chakraborty, A.K. (2007). Sensitivity of T cells to antigen and 
antagonism emerges from differential regulation of the same molecular signaling 
module. Proc Natl Acad Sci USA, 0611482104. 

Xie, X.S., and Lu, H.P. (1999). Single-molecule enzymology. J Biol Chem 274, 15967-15970. 
Xing, J. (2007). Nonequilibrium dynamic mechanism for allosteric effect. Phys Rev Lett 99, 

168103. 
Xing, J., Bai, F., Berry, R., and Oster, G. (2006). Torque-speed relationship for the bacterial 

flagellar motor. Proc Natl Acad Sci USA 103, 1260-1265. 
Xing, J., and Kim, K.S. (2006). Protein fluctuations and breakdown of time-scale separation 

in rate theories. Phys Rev E 74, 061911. 
Xing, J., Wang, H.-Y., and Oster, G. (2005). From continuum Fokker-Planck models to 

discrete kinetic models. Biophys J 89, 1551-1563. 
Yu, E.W., and Koshland, D.E. (2001). Propagating conformational changes over long (and 

short) distances in proteins. Proc Natl Acad Sci USA 98, 9517-9520. 
Zwanzig, R. (1988). Diffusion in a Rough Potential. Proc Natl Acad Sci USA 85, 2029-2030. 
Zwanzig, R. (1990). Rate-Processes with Dynamic Disorder. Acc Chem Res 23, 148-152. 
Zwanzig, R. (2001). Nonequilibrium statistical mechanics (Oxford, Oxford University Press). 

9 

Prediction of Protein Interaction  
Sites Using Mimotope Analysis 

Jian Huang, Beibei Ru and Ping Dai 
School of Life Science and Technology  

University of Electronic Science and Technology of China 
China 

1. Introduction 
Biological functions depend on all kinds of interaction networks; life is a miracle of all types 
of molecular interactions. Among them, proteins interacting with proteins, nucleic acids and 
small compounds play a central role (Barabasi & Oltvai, 2004; Przulj, 2011; Vidal, et al., 
2011). To guide protein engineering studies for better enzymes, antibodies and drugs, 
structural and functional characterization of protein interaction sites at the residue or atom 
level is of great help. Experimental approaches such as X-ray diffraction of protein complex 
can define structural binding sites at the atomic level (Bickerton, et al., 2011; Higurashi, et 
al., 2009); mutagenesis and binding test are capable of identifying functional binding sites at 
the residue or group level (Moreira, et al., 2007; Peng, et al., 2011). However, these means 
are costly, time-consuming and sometimes technically difficult or even impossible. 
Moreover, they are not always applicable on a large scale. As a result, computer tools for the 
prediction of protein interaction sites have been increasingly popular for complementing 
experimental techniques (Fernández-Recio, 2011; Wass, et al., 2011).  

The existing methods for the prediction of protein interaction sites can be grouped into three 
categories based on the main input data used. The first category consists of methods using 
protein sequence as the only input (Ofran & Rost, 2007; Res, et al., 2005). Methods in the 
second category such as molecular docking and simulation solely use structure data as input 
(Kozakov, et al., 2010; Mashiach, et al., 2010). Methods of the third category make use of a 
mimotope motif or a set of mimotope sequences together with protein sequence or structure 
as input (Huang, et al., 2011). 

In this chapter, we review methods of the third category, focusing on their current statuses, 
discussing challenges and providing suggestions to advance this field. 

2. Mapping protein-protein interaction sites using mimotope analysis 
Mimotopes are peptides mimicking protein interaction sites; they are initially acquired from 
chemical synthesis (Geysen, et al., 1986). High-throughput obtainment of mimotopes has 
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sequences can be inserted into genes coding for coat proteins of bacteriophage to make 
combinatorial libraries. As shown in Figure 1, the combinatorial library can be incubated 
and selected with an immobilized protein, termed as the target. The natural partner of the 
target is called as the template. Phages without affinity to the target are washed away with 
buffer. Then, bound phages are eluted with the target, the template or stronger buffer only. 
The bound phages are further amplified by infecting bacteria to form a secondary library, 
which is then used for the next round of incubating, washing, eluting and amplifying. After 
several rounds of such processes which are well known as biopanning, phage clones are 
picked randomly from the isolation of bound phages and sequenced. The affinities of these 
phage clones or corresponding peptides to the target are measured by surface plasmon 
resonance, enzyme-linked immunosorbent assay or other binding assays. The foreign inserts 
which enable corresponding phage clones to bind the target competitively with a template 
are considered as mimotopes. 

 
Fig. 1. Schematic view of in vitro phage display and mimotope analysis. 

As described above, a set of mimotopes can be readily obtained via phage display. They are 
capable of binding to the target and blocking the interaction between the target and the 
template. Therefore, it implies that the information of protein interaction sites is encoded in 
mimotopes and can be predicted by decoding mimotopes. It is only natural to suppose that 
the mimotopes are similar to the binding site on the template at the sequential or structural 
level. Indeed, all approaches to prediction of protein interaction sites based on mimotopes 
depend on either the sequence or the structure of the template. Thus, the existing methods 
can be divided into the following two groups: 

2.1 Methods based on template sequence 

Various methods based on template sequence are summarized in Figure 2. In brief, a set of 
mimotopes are aligned with the corresponding template to find out the similar region in 
sequence, which is thought to be at least a part of the target-binding site on the template 
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protein. Sometimes, sequences of paralogs or orthologs of the template are also aligned to 
help the identification of the protein interaction site. In some studies, consensus sequences 
or motifs are derived from the blocks of mimotope alignments. Then, consensus sequences 
are aligned to the template sequence; motifs are scanned along the template sequence. And 
the template segments similar to consensus sequences or matching the motifs are considered 
to be a part of the protein interaction sites. If the template itself is not determined, local 
alignment search with each mimotope or the consensus sequence against the protein 
database would help to predict reasonable candidates of template and its binding sites. The 
template and corresponding interaction sites can also be predicted through pattern search 
with mimotope motifs against the protein database. 

 
Fig. 2. Flow chart of methods based on template sequence. 

As shown in Figure 2, methods based on template sequence involve several steps and 
tasks such as aligning sequence, inferring consensus sequence or motifs, searching local 
alignment or motif against the protein database. Among them, sequence alignment is 
undoubtedly the most important one. Methods based on template sequence can be 
fulfilled with visual inspection, general-purpose programs and tools specially designed 
for mimotope analysis. 

2.1.1 Manual sequence analysis with visual inspection 

Some mimotopes are very similar or even identical to some part of the template sequence 
every now and then, indicating the segment involving in binding the target protein. In 
this situation, the protein binding site can be easily depicted through aligning mimotope 
and template sequence manually by visual inspection. A 6mer random library was 
screened with the monoclonal antibody GDO5 raised against the Hantaan virus 
glycoprotein G2. After three rounds of panning, the mimotope obtained had the sequence 
LEYPWH, which was very similar to the template sequence 94YEYPWH99, implying the 
site where GDO5 bound (Fack, et al., 1997). The Ph.D.-7 random phage library was 
panned using the anti-SEB monoclonal antibody ab53981 (Urushibata, et al., 2010). 
Among the mimotopes obtained, SPDELHK was almost identical to 8PDELHK13 of the 
staphylococcal enterotoxin B. The ab53981 binding site was thus located. Four anti-HBsAg 
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sequences can be inserted into genes coding for coat proteins of bacteriophage to make 
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picked randomly from the isolation of bound phages and sequenced. The affinities of these 
phage clones or corresponding peptides to the target are measured by surface plasmon 
resonance, enzyme-linked immunosorbent assay or other binding assays. The foreign inserts 
which enable corresponding phage clones to bind the target competitively with a template 
are considered as mimotopes. 

 
Fig. 1. Schematic view of in vitro phage display and mimotope analysis. 
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protein. Sometimes, sequences of paralogs or orthologs of the template are also aligned to 
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are aligned to the template sequence; motifs are scanned along the template sequence. And 
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to be a part of the protein interaction sites. If the template itself is not determined, local 
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database would help to predict reasonable candidates of template and its binding sites. The 
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site where GDO5 bound (Fack, et al., 1997). The Ph.D.-7 random phage library was 
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monoclonal antibodies, namely H5, H35, H53 and H166 were characterized using phage 
display (Chen, et al., 1996). Manually aligning 16 H166-binding mimotopes with the 
HBsAg sequences from subtype adw2, ayw2 and ayw3, Chen et al found that most 
mimotopes have the CRTC or CKTC subsequences by visual inspection, which were 
identical to the segments from 121 to 124 of the HBsAg. The epitope recognized by H166 
was thus indicated. Nonetheless, sequence alignment programs are necessary when there 
are a lot of sequences to be aligned or the similarity between the mimotope and template 
sequence is not obvious. 

2.1.2 General-purpose sequence analysis tools 

General-purpose tools for sequence alignment, local alignment and pattern search have 
been widely used in the prediction of protein interaction sites based on mimotope and 
template sequences. As we described above, Chen et al identified the H166-binding site by 
visual inspection. However, the software GENEWORK was used in the left three cases 
(Chen, et al., 1996). Significant matches were found by manual analysis on the dot-matrix 
diagrams produced by GENEWORK. For example, ARARCEHRSGLSL as one part of an 
H35-selected mimotope was aligned to 166ASARFSWLSL175 of the HBsAg sequence from 
subtype ayw3, locating the H35-binding site (Chen, et al., 1996). MDM2-binding peptides 
were obtained using mRNA display (Shiheido, et al., 2011); the peptides were aligned 
using the ClustalW program (Larkin, et al., 2007). Compared with the sequence of P53, a 
similar segment 17-28 was found be the MDM2-P53 interaction site (Shiheido, et al., 2011). 
A monoclonal antibody against the West Nile virus capsid protein was generated and 
designated as 6D3 (E. C. Sun, et al., 2011). A 12mer peptide library was screened with 6D3 
to produce a set of mimotopes. Alignment revealed a consensus segment KKPGGPG, 
which was same to the subsequence 3-9 of West Nile virus capsid protein. A monoclonal 
antibody 2A10G6 was raised against the heat-inactivated dengue virus and used to screen 
the Ph.D.-12 random phage library. Alignment of mimotopes revealed a consensus 
FFDRTWP, which corresponded well with 98DRGW101 located at the tip of the fusion 
loop of E protein of dengue virus (Deng, et al., 2011). In the studies of Sun and Deng, 
MegAlign software within the Lasergene suite was used to align the orthologs of the 
template. In the study of Urushibata, the ClustalW program was used to align the 
paralogs of the template (Urushibata, et al., 2010). These studies showed that orthologs or 
paralogs were helpful for locating the binding sites. 

Unlike the interaction between an antigen and corresponding antibody, a protein may have 
quite a few partners sometimes or its natural partner may be unknown. In these situations, 
the sequence alignment between mimotope and template cannot be done directly. However, 
a local alignment search against the protein sequence database helps to identify candidate 
templates and binding sites. The AC3 protein of geminiviruses was characterized using 
phage display (Pasumarthy, et al., 2011). Each AC3-specific peptide sequence obtained was 
then searched for local alignment against the Arabidopsis non-redundant protein database 
at NCBI through BLASTP program adjusted for short sequence (Mount, 2007). Proteins from 
a few metabolic pathways were identified as putative AC3-interacting proteins. For 
example, YALKHLPESTIP was very similar with 704YALKHIRES712 of the Hua Enhancer 1 
(HEN1). Thus HEN1 might interact with the AC3 protein around 704YALKHIRES712 
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(Pasumarthy, et al., 2011). LipL32, the major outer membrane protein of pathogenic 
Leptospira, was panned against the Ph.D.-7 phage library. For each mimotope obtained, a 
BLASTP search against the protein database was performed. Quite a few proteins expressed 
on the surface of target cells of pathogenic Leptospira were suggested to interact with 
LipL32. For example, the mimotope HLPPNHT is similar with the sequence PLPPEHT of 
Collagen XX, indicating LipL32 might bind to Collagen XX at that site (Chaemchuen, et al., 
2011). The strategy of mimotope blast against protein databases has also been used to 
deduce small molecule binding sites and drug targets (Chen, et al., 2006; Takakusagi, et al., 
2010; Takami, et al., 2011), infer proteins involving in cell interactions (Kanki, et al., 2011; 
Zhao, et al., 2010). 

Besides tools for local alignment search, pattern search against the protein database has 
also been used to find possible templates and their target-binding sites. SdrC is important 
in the interactions between Staphylococcus aureus and its host. However, the host ligand 
interacting with SdrC was not previously identified. The Ph.D.-12 phage library was 
screened with SdrC and eight phage clones displayed significantly higher affinity to SdrC. 
These clones were sequenced, and an alignment revealed the consensus sequence 
HHIHHFH. It was then used for a pattern search against the human protein database 
allowing for zero, one and two residue mismatches. The results showed that human 
neurexin 1β, 2β, 3β and a T-type voltage-dependent calcium channel might be the host 
ligands interacting with SdrC. Among them, the subsequence 10-16 of human neurexin 1β 
was identical to the consensus sequence, which implied SdrC might bind to human 
neurexin 1β at the site 10HHIHHFH16 (Perosa, et al., 2010). Autoantibodies against 
centromere associated protein A (CENP-A) were purified from sera of eight systemic 
sclerosis patients with the immunodominant epitope of CENP-A (Ap17–30). These 
antibodies were used to screen a phage library. The binding phage clones were 
sequenced, and the inserted peptides were aligned with MULTALIN (Corpet, 1988) to 
derive antigenic motifs. Human proteins containing such motifs were searched in the 
SwissProt Protein Sequence Database using the ScanProsite tool. Taking the PTPxxGPxxR 
motif as an example, 20PTPTPGPSRR29 of human CENP-A was certainly found. 
However, 53PTPAPGPGRR62 of human Forkhead box protein E3 (FOXE3) also matched 
the motif, indicating those autoantibodies could interact with FOXE3 at the site around 
53-62. Indeed, the peptide 53-62 of FOXE3 was confirmed to behave similarly in binding 
and inhibition assays with anti-Ap17–30 IgG (Barbu, et al., 2010). 

2.1.3 Specially designed sequence analysis tools 

Even very recently, general-purpose tools for sequence alignment, local alignment and 
pattern search remain popular in the study of mapping protein interaction sites based on 
mimotopes. One reason for this is that these tools are freely, stably and conveniently 
available. However, these general-purpose tools have their limits. For example, most of 
them are not good at aligning a very short sequence (mimotope) to quite a long sequence 
(template). Furthermore, they are less efficient to deduce conformational binding sites, 
which are made of segments far away in primary sequence but close on the surface of 
template structure. Specially designed tools are thus needed for sequence analyses of 
mimotopes and templates. 
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monoclonal antibodies, namely H5, H35, H53 and H166 were characterized using phage 
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deduce small molecule binding sites and drug targets (Chen, et al., 2006; Takakusagi, et al., 
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Zhao, et al., 2010). 

Besides tools for local alignment search, pattern search against the protein database has 
also been used to find possible templates and their target-binding sites. SdrC is important 
in the interactions between Staphylococcus aureus and its host. However, the host ligand 
interacting with SdrC was not previously identified. The Ph.D.-12 phage library was 
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allowing for zero, one and two residue mismatches. The results showed that human 
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To delineate conformational binding sites on protein, the program FINDMAP was 
proposed (Mumey, et al., 2003). FINDMAP allowed any permutations (e.g. inversion) of 
the mimotope sequence to align its template sequence. Furthermore, gaps even large gaps 
were permitted in both mimotope and template sequences. Such alignment was proven to 
be NP-complete and a branch-and-bound algorithm was used to solve the problem in 
practice. As FINDMAP could deal with only one mimotope each time, an improved 
version called EPIMAP was introduced later. It was capable of aligning each mimotope to 
the template, producing a set of top-scoring alignments, selecting the most mutually 
compatible alignments and filtering out spurious alignments (Mumey, et al., 2006). 
MimAlign was a meta-method. It combined results from four multiple sequence 
alignments of the template and its mimotopes (Moreau, et al., 2006). In the RELIC suite, 
there were quite a few tools specially designed for analysis on mimotopes (Mandava, et 
al., 2004). For example, MOTIF1 and MOTIF2 were designed to identify weak sequence 
motifs within short peptide sequence; MATCH, FASTAcon and FASTAskan were 
designed for optimal sequence alignments between mimotopes and its template. 
Although the RELIC suite focused on the interaction between small molecule and protein, 
its sequence tools were often used in the analysis of protein-protein interaction sites. For 
instance, MMACHC-binding peptides were aligned to MMADHC with tools in RELIC 
and five MMACHC-binding sites on the protein MMADHC were predicted (Plesa, et al., 
2011). Mouse monoclonal antibodies against the predominant VSGs LiTat 1.3 and LiTat 
1.5 of T.b. gambiense were used to screen  PhD.-12 and Ph.D.-C7C phage libraries. 
Epitopes were identified by sequence alignment performed manually and with RELIC 
suite (Van Nieuwenhove, et al., 2011). For example, ALLPFKDHLPYP selected with the 
monoclonal antibody H12H3 against VSG LiTat 1.5 was aligned to 
269AQAVYKDHDPDQ280 of VSG LiTat 1.5. The following experiment did show that the 
binding of H12H3 to synthetic ALLPFKDHLPYP was inhibited by human African 
trypanosomiasis sera. Regretfully, all the special tools described here are now hard or 
impossible to access. 

2.1.4 Methods based on template sequence: challenges and suggestions 

Methods based on template sequence are of their advantages. For example, they can be used 
in any condition because no structural information is required during prediction. Even if the 
template sequence is not given, local alignment or pattern search against protein databases 
may fulfil the task of inferring possible templates and protein interaction sites. However, to 
evaluate the results of sequence alignment, local alignment search and pattern search is still 
a great challenge. 

Two formulae have been proposed to compute the frequency of finding similar sequences in 
two random sequences with different lengths (Chen, et al., 1996). One formula is for a single 
sequence match; another is for nearby matches within a pair of two sequences. This was a 
good attempt to evaluate if a continuous or discontinuous match was significant or just by 
chance. Chen et al assumed that 20 different residues were with equal probability at each 
position of the two sequences. However, it is not true in real case. To be more reasonable, 
we suggest using the residue frequency of the corresponding phage library for mimotopes 
and the actual frequency for template with long sequence. For short or unknown template, 
use the amino acids frequency of SwissProt. 
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Although the BLAST program has its statistical means to evaluate a match, they are not fit 
for short peptides such as mimotopes. In the study of Pasumarthy et al, a lot of matches 
were found. Among them, the mimotope FPKAFHHHKIY was found to be similar with 
317HKIY310 of the Retinoblastoma like protein (pRBR) with an E-value of 1250 and pRBR 
was known to be an AC3-interacting protein. The mimotope DAMIMKKHWHRF was 
found to be similar with 164MIMK167 of the Geminivirus Rep interacting kinase 1 
(GRIK1) with an E-value of 517 and GRIK1 did interact with the AC1 protein. Thus, they 
used the E-value 1250 as the threshold to filter the blast results. The candidate list was 
further shortened with one of the following conditions: (1) at least two hits from the same 
or different peptides; (2) with E-value less than 517 (Pasumarthy, et al., 2011). In another 
study, only a tri-peptide or longer sequence match was considered (Kanki, et al., 2011). It 
seems that the evaluation of sequence matches found by sequence alignment, local 
alignment search and pattern search are rather arbitrary. As the standard is different case 
by case, the results from these tools are more like a kind of indication rather than a formal 
prediction. The results can be confirmed only when more background information is 
available. Results from sequence alignment, local alignment search and pattern search are 
same in nature: similarity matches between mimotope and a protein sequence. Thus, a 
general statistics model or method that evaluates the similarity match reasonably is 
urgently needed. 

As described previously, methods based on template sequence have succeeded in many 
cases. However, it is more frequent that mimotopes show little similarities to the template, 
especially when the interaction sites are conformational. Thus methods based on template 
sequence often fail too. TSOL18 is a host-protective oncosphere antigen of Taenia solium, 
which is a cestode parasite causing cysticercosis in humans and pigs. The Ph.D.-12 phage 
library was screened with the anti-TSOL18 monoclonal antibody 17E1. The mimotopes 
were aligned to the TSOL18 protein sequence using ClustalW software. No significant 
match was found (Guo, et al., 2010). Intact oocytes surrounded by canine zona pellucida 
proteins were used to identify peptide sequences from phage display libraries that could 
recognize and bind to zona pellucida proteins (Samoylova, et al., 2010). The selection of a 
12mer library resulted in identification of four sequences with the common NNXXPIL 
motif discovered by the MOTIF2 program in the RELIC suite. Among them, 
NNQSPILKLSIH was synthesized and immunized in dogs. The anti-NNQSPILKLSIH 
antibodies did bind to the acrosomal region of the canine sperm cell. However, BLAST 
search did not result in identification of homologies to known sperm proteins or other 
mammalian proteins. Thus, to predict protein interaction sites that are discontinuous 
using only sequences of mimotope and template is a great challenge. Though the 
FINDMAP program is a good attempt on this, it is still far from satisfactory. As the entry 
number of the PDB database increases exponentially, more and more protein structures 
become available to be used in the prediction of protein interaction sites based on 
mimotope analysis (Rose, et al., 2011). 

2.2 Methods based on template structure 

When sequence similarities are not found, it is very likely that mimotopes resemble a special 
region on the surface of template rather than a linear segment of template sequence. The 
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prediction of protein interaction sites based on mimotope sequences and corresponding 
template structure is actually to identify and evaluate surface regions on the template that 
are similar to mimotopes. 

2.2.1 Algorithms, programs and web servers 

In 1995, Pizzi et al described the first method that predicted discontinuous antibody binding 
site based on mimotopes and the antigen structure (Pizzi, et al., 1995). Since then, quite a few 
algorithms, programs and web servers have been published by different teams around the 
world. All these methods can be divided into four groups. The first one is the motif-based 
group, which align a motif or consensus sequence to template structure. This group includes 
3DEX (Schreiber, et al., 2005), MIMOX (Huang, et al., 2006) and the MimCons section of 
MIMOP program (Moreau, et al., 2006). The second group includes Mapitope (Bublil, et al., 
2006; Bublil, et al., 2007; Enshell-Seijffers, et al., 2003; Tarnovitski, et al., 2006) and its 
derivatives (Denisov, et al., 2009; Denisova, et al., 2008; Denisova, et al., 2009; Denisova, et al., 
2010). It can be called the pairs-based group because amino acid pairs on the template surface 
are considered to be simulated by amino acid pairs in the mimotope sequence. The third one is 
the patch-based group, which evaluates similarities between surface patches on template and 
mimotopes. SiteLight (Halperin, et al., 2003) and EpiSearch (Negi & Braun, 2009) belong to this 
group. The fourth is the graph-based group, which aligns a set of query peptides to a graph 
representing the template surface. Pepsurf (Mayrose, Shlomi, et al., 2007) and Pep-3D-Search 
(Huang, et al., 2008) belong to this group. To improve the performances of existing programs, 
hybrid methods such as MimoPro (Chen, et al., 2011) and meta-servers such as Pepitope 
(Mayrose, Penn, et al., 2007) were also proposed. 

As tools mentioned above have been reviewed in detail recently (Huang, et al., 2011), here 
we only introduce LocaPep, a tool proposed very recently (Pacios, et al., 2011). For each 
mimotope, this program firstly scans the template surface to select seeds. Then it searches 
residues adjacent to each seed to form a cluster. For each residue in a cluster, its total score is 
the weighted sum of the area, exposure, contacts and distance score. At last, the final 
consensus cluster is calculated to form the binding site predicted. LocaPep is written with 
Fortran90 independent of any specific library and runs in command line mode. Its source 
code,  manual and binaries are available at http://atenea.montes.upm.es. 

2.2.2 Benchmarking tools of the trade 

As described above, quite a few methods based on template structure are available for the 
phage display community to predict protein interaction sites. All these methods have 
succeeded in some case studies. These test cases were either compiled from published 
papers or from special databases such as the ASPD database (Valuev, et al., 2002) and the 
MimoDB database (Huang, et al., 2012; Ru, et al., 2010). However, no systematic evaluations 
were done when these methods were published. This is due to a relative lack of the type of 
data where the target-template complex is solved and the relevant mimotope data is 
available simultaneously. 

As the protein structure and mimotope data increase rapidly (Huang, et al., 2012; Rose, et 
al., 2011), now it becomes possible to make benchmarks for the trade to evaluate its tools at a 
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larger scale. Sun et al compiled a benchmark from the PDB database (Sun, et al., 2011) and 
the MimoDB database. It included 47 test cases in which 18 cases were with structures of the 
antigen-antibody complexes and 29 cases had structures of other protein-protein complexes. 
They further kept only one test case for each complex with the same template, which made a 
representative dataset with 30 test cases. Five popular tools, i.e. Mapitope, PepSurf, 
Pepitope, EpiSearch and Pep-3D-Search, were evaluated with the benchmark and the 
representative dataset. The results showed that performances of these tools were better than 
random predictions. However, their overall performances were still not satisfactory. Most 
tools were good at some cases but failed with other cases. 

Our group has also compiled a benchmark called MimoBench (Huang, et al., 2012). It can be 
freely accessed from http://immunet.cn/mimodb/mimobench.php. Currently, MimoBench 
has 23, 23 and 27 sets of data for antibody–antigen complex, receptor–ligand complex and 
other protein-protein complex respectively. Using this benchmark, we have performed a 
preliminary evaluation on Mapitope, Episearch and MimoPro by their default parameters. 
Our results showed that performances of these tools were poor in many cases. However, 
they made quite accurate predictions in some cases. Taking the AUC value 0.8 as a cutoff, 
the three benchmarked tools succeeded in overlapping but different cases, which suggested 
that these tools complemented each other. Thus, it is recommended to use several tools 
together in the prediction of protein–protein interaction sites based on mimotopes. 

2.2.3 Methods based on template structure: Challenges and suggestions 

Methods based on template structure are capable of predicting the conformational sites of 
protein-protein interactions. However, the existing tools are not robust enough. Sun et al 
reported that many test cases in their benchmark dataset could not be applied to the five 
tools they evaluated due to software limitations (Sun, et al., 2011). We met the same problem 
when we compared Mapitope, Episearch and MimoPro using MimoBench. For example, 
four test cases were excluded from benchmarking because these tools did not work on the 
template with two or more chains. Another 10 cases were dropped because MimoPro 
returned no results for unknown reason (Huang, et al., 2012). Hence, tools in the future 
should be more robust. Furthermore, they should also be more convenient to access. It is 
hoped that web sites of these tools are stable and easy to access. No login is required. Thus, 
they can be utilized more conveniently whether they are standalone tools or web servers. 

As described in the previous section, performances of the existing tools based on template 
structure are poor in many cases. To improve their performances is one of the greatest 
challenges in this field. We have suggested that the poor performance might partly due to 
information loss and noise inclusion during the experimental and computational process 
(Huang, et al., 2009). Considering the two points in mind, the accuracy of deciphering 
protein interaction sites using mimotopes might be improved. We will discuss on this issue 
in the following section. 

2.3 Data cleaning tools 

Due to the limitation of experiments, the biopanning results are noisy. They are usually a 
mixture of mimotopes (desired signal) and target-unrelated peptides (unwanted noise). 
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Target-unrelated peptides (TUPs) can be divided into two categories. One is called 
selection-related TUP. They appear in the biopanning results because they are selected by 
contaminants or other components of the screening system rather than the target 
(Menendez & Scott, 2005; Vodnik, et al., 2011). Propagation-related TUP makes another 
category (Brammer, et al., 2008; Derda, et al., 2011; Thomas, et al., 2010). They sneak into 
the output of biopanning because they have a higher infection rate or faster secretion rate. 
Phages with growth advantage can be not only noise but also decrease the library 
diversity and lead to a loss of useful mimotopes. Simulations and experiments showed 
that subtle differences in growth rate yielded drastic differences in clone abundances after 
rounds of amplifications (Derda, et al., 2011). Thus, propagation-related TUP may even 
dominate the biopanning results. As TUPs are peptides unrelated to the target, they 
undoubtedly interfere with the prediction of protein interaction sites based on mimotopes 
if a TUP is taken as a mimotope. Changing experimental conditions and improving 
experimental methods can decrease TUPs. For example, increasing the stringency of 
panning may reduce TUPs; subtractive procedures may decrease selection-related TUPs; 
amplification in isolated compartment can mitigate the growth advantage of propagation-
related TUPs (Derda, et al., 2010). However, TUPs cannot be eradicated experimentally. 
To exclude TUPs from the biopanning with computational tools has become an alternative 
and more convenient choice. 

2.3.1 Data cleaning tool based on information theory 

Based on the information theory, the program INFO in the RELIC suite (Mandava, et al., 
2004) calculates information content for each peptide of the panning result. Two input files 
are required. The first one is a text file with a minimum of 50 peptide sequences from clones 
randomly selected from a naive library. The second file is the query of users, one or more 
peptide sequences selected from that same library. INFO first uses AAFREQ to calculate the 
amino acid frequency distributions at each position of the inserted peptide sequences from 
the parent library. The probability of random occurrence of any peptide can be calculated by 
multiplying the probability of each amino acid occurring at each position. The natural 
logarithm of the probability of a peptide multiplied by -1 is defined as its information 
content. Obviously, if the query peptide has very high information content, it is less possible 
to appear in the panning result. If it does occur in the result, it is more likely to be the 
mimotope selected by specific binding to the target. On the contrary, when a peptide with 
very low information content is observed in the result, it is less confident of taking it as a 
mimotope because it may be a propagation-related TUP. The INFO program was also 
integrated in other tools in the RELIC suite such as MATCH, HETEROalign and 
FASTAskan. However, all these tools have regretfully been inaccessible for about one year, 
which makes the RELIC suite now a real relic. 

2.3.2 Data cleaning tool based on TUP motif 

We have developed a free web server called SAROTUP, which is short for scanner and 
reporter of target-unrelated peptides (Huang, et al., 2010). It can be used to scan and exclude 
possible target-unrelated peptides from biopanning result. SAROTUP is based on known 
TUP motifs and sequences. In the current version, a set of 26 TUP motifs and 27 known TUP 
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sequences are collected from literature and compiled into the program. Among them, nine 
sequences are known or highly suspected to be propagation-related TUPs; the left 42 motifs 
or sequences are for selection-related TUPs, including 14 for albumin binders, six for 
unrelated antibody binders, five for immunoglobulin Fc region binders, five for streptavidin 
binders, five for plastic binders, four for bivalent metal ion binders and one for biotin 
binders, protein A binders and lipid A binders respectively. We had tested SAROTUP 
before the MimoDB database was constructed. The results showed that: (1) TUPs were often 
seen and taken as mimotopes; (2) epitope prediction based on mimotopes was greatly 
interfered if TUPs were used in the analysis; (3) SAROTUP improved performances of 
epitope mapping based on mimotopes through cleaning the input data; (4) SAROTUP also 
helped to explain experiment results. However, as a tool based on pattern search, SAROTUP 
cannot deal with TUPs without known motifs. 

2.3.3 Data cleaning tool based on database search 

The problem mentioned above was partly solved when the MimoDB database became 
available (Huang, et al., 2012; Ru, et al., 2010). With a lot of biopanning results and relevant 
background information collected, this database can be used as a virtual and comprehensive 
control for experimental biologists. In the MimoDB database version 2.0, a batched peptide 
search tool can be used for a set of peptides to search against the database. If a peptide has 
been reported by different groups with different targets, it may be a TUP rather than a 
mimotope. This is because the chance of obtaining an identical peptide from a library having 
millions or billions of different peptides with a completely different target is extremely 
small. If this happens, the peptide obtained may be due to some common factors in the 
biopanning systems rather than by the target. The MimoBlast tool of the MimoDB database 
can further find out those peptides not identical but highly similar to the query peptides. 
Such peptides may also be TUPs. New TUP motifs can be derived from analyzing the result 
of MimoBlast. With these tools, we studied the peptides in the MimoDB database and 
claimed confidently that GETRAPL, SILPYPY, LLADTTHHRPWT, TMGFTAPRFPHY, 
SAHGTSTGVPWP and HLPTSSLFDTTH are TUPs which were not reported before (Huang, 
et al., 2012). 

2.3.4 Data cleaning tools: Challenges and suggestions 

Although the data cleaning tools described in this section complement each other, none of 
them are real classifiers but rather reminders. Without a solid statistical estimation, they can 
only tell users that a peptide in the result may be a TUP rather than a mimotope. However, 
as the entries in the MimoDB database increases rapidly, it is now practical to construct 
various TUP predictors based on machine learning methods. Secondly, the data cleaning 
procedure was ignored by most existing tools for the prediction of protein interaction sites 
based on mimotopes. This situation should be changed in the future. 

3. Conclusion 
Identification of the protein interaction site is very important for basic and applied 
research. Computational analysis on mimotopes obtained from phage display or other 
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3. Conclusion 
Identification of the protein interaction site is very important for basic and applied 
research. Computational analysis on mimotopes obtained from phage display or other 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

200 

surface display experiments is a relatively cheap, convenient and efficient strategy to 
locate a protein interaction site at the segment or residue level. Although used mostly in 
epitope prediction, this strategy can also be used to other types of protein interaction 
sites. Insights can be gained by methods based on template sequence, which find 
sequence similarities between mimotopes and template through sequence alignment, local 
alignment search and pattern search. Conformational sites can also be mapped by 
methods based on template structure. However, performances of all existing methods are 
not satisfactory enough. This is at least partly due to TUPs that crept into the biopanning 
result. Several tools are available to detect TUPs based on information theory, known TUP 
motifs or special database. With the rapid accumulation of experimental data and 
improvement of methods, an evidence-based virtual phage display platform is expected 
to be established and the performance of predicting protein interaction sites based on 
mimotopes will substantially be increased. 
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not satisfactory enough. This is at least partly due to TUPs that crept into the biopanning 
result. Several tools are available to detect TUPs based on information theory, known TUP 
motifs or special database. With the rapid accumulation of experimental data and 
improvement of methods, an evidence-based virtual phage display platform is expected 
to be established and the performance of predicting protein interaction sites based on 
mimotopes will substantially be increased. 
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1. Introduction  
Although the regulatory role of non-coding nucleic acids is currently being unraveled, the 
role of proteins is still a major issue as they mediate most biological functions. Thus, 
understanding how proteins fulfill their intricate functions is one of the most relevant 
current challenges in biology. It is well known that a protein’s function is determined by its 
three-dimensional (3D) structure known as tertiary structure, which in turn is mainly 
dictated by its sequence (Thornton and cols. reviewed this issue in detail in (Watson et al., 
2005)). Despite the exponential increase of available sequences and 3D structures, the 
number of sequences highly exceeds that of 3D structures. This difference in numbers is 
proportional to the disparity of the costs for experimentally obtaining either the sequence or 
the structure of a protein. Therefore, covering the gap between sequence and structure 
becomes a compelling requirement to achieve a molecular understanding of the protein 
function. Theoretical methods can help to bridge this gap by inferring the 3D structure from 
the sequence. These methods are classified into three different groups: comparative 
modeling, fold recognition and new fold or ab initio methods. 

Besides the tertiary structure of a protein, other contextual factors may modulate its function. 
Among these, the ability of the proteins to interact with others and the particular partners with 
which they form complexes are one of the most important. This is because proteins rarely act 
alone; they rather constitute a mingled network of physical interactions, some times to form 
large macro-complexes and sometimes to produce transient interactions. In this context, 
understanding the function of a protein implies to recognize its partners and to grasp how 
they associate, even at the atomic level. The structure of these complexes is known as 
quaternary structure. To this end, computational techniques have been developed to dock one 
protein onto another (Janin, 2010; Vajda and Kozakov, 2009), and can help to infer 3D structure 
of a protein from the knowledge of the protein interactions (Fornes et al., 2009) and vice-versa 
(Stein et al., 2005). Furthermore, the combined use of data from multiple resources allows us to 
obtain an accurate model of large molecular complexes such as nucleopore (Alber et al., 2007).  

There are two strategies for modeling the interaction between two proteins from sequence 
data. The first one is to model the unbound interactors and to dock them into the final 
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complex (i.e. solving first the tertiary structure of the proteins and afterwards the 
quaternary). The second is to model the interacting pair or complex from the scratch, using 
as template the structural knowledge of an available homologous interacting pair  
(interolog, (Matthews et al., 2001)). When the template is not available the strategy can only 
play with the docking of the unbound partners. Figure 1 summarizes these possibilities. 
Here, we will cover these strategies and methods to infer and assess the 3D structure of 
binary protein interactions, and we will review the existing techniques to model large 
cellular macro-complexes.  

 
Fig. 1. Different strategies for modeling a protein interaction: The 3D structure of a binary 
protein interaction can be inferred by modeling individual interacting partners apart and 
subsequently docking them (left side) or modeling the interaction with one template, taking 
advantage of the available information of homologous complexes. Templates can be obtained 
from structural resources of information containing the full complex, a partial complex (in 
general formed by interacting domains) or with only the interacting interface (right side).  

2. Modeling the tertiary structure of proteins   
In order to obtain a complete model of a protein interaction, the interacting partners can be 
modeled separately and then docked into a functional complex. The first step of this 
approach is to obtain the 3D structure of each of the interacting partners. Comparative 
modeling, fold recognition, and ab initio (for new folds) are computational methods that 
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may overcome the lack of experimental structural data. Models obtained using these 
approaches may be further assessed, in order to ensure that the inferred 3D structure 
contains no errors (see section 4). In case of persistence, such errors would damper the 
deduction of further biological conclusions such as the mode the modeled protein can 
interact with others. Figure 2 summarizes the different steps and strategies that can be 
exploited to achieve these objectives.  

2.1 Homology modeling 

Homology or comparative modeling techniques are those devoted to the prediction and 
construction of the 3D conformation of proteins. These methods are based on the 
assumption that structural features in proteins are more conserved than its sequences. Thus, 
two proteins with enough sequence similarity will fold in a similar way and share the same 
conformation in space. The process through which a tertiary structure is assigned to a given 
sequence is carried out in three steps, namely: template identification, template alignment, 
and model building. Finally, the produced model should be assessed (see section 4). 

Template identification is the key step in the molecular modeling process. Templates are 
defined as the set of known structures used to build the tertiary structure of the query (target 
or problem protein). Known 3D data of proteins is stored in the Protein Data Bank (PDB) 
(Berman et al., 2000). Thus, the identification of the template refers to the process of identifying 
the structure of the PDB whose sequence is the closest homolog of the target. Such sequence 
homology search can be performed using sequence alignment tools like BLAST and PSI-
BLAST (Altschul et al., 1997), or Hidden Markov Model (HMM) profile methods like HMMER 
(Eddy, 1998). While BLAST will reveal if there is any relatively close homolog to our query, 
PSI-BLAST and HMMER will also reveal the possibility of remote homologues. The homology 
threshold that can be used to define whether or not a template assignation is correct may be 
fuzzy. Those templates assigned with low percentage of identity, low homology, or in short 
parts of the sequence fall into what is known as the twilight zone (Rost, 1999). Some rules have 
been described to shed some light into that twilight region in order to better describe the 
viability of a template for a given query (Fornes et al., 2009). 

Provided that a good template has been selected, the sequence alignment between the query 
and the template can be directly extracted or easily inferred (in case of the HMM) from the 
template search. Depending on specific requirements, the alignments can be redone with 
other sequence alignment methods such as CLUSTALW (Chenna et al., 2003) or T-COFFE 
(Notredame et al., 2000). Additionally, some methods optimize the sequence alignment 
through a genetic algorithm protocol that iterates the alignment, model building and model 
evaluation in order to obtain the best possible alignment (Fernandez-Fuentes et al., 2007) . 

Model building is the process by which the three-dimensional data of the template(s) is 
applied on the query sequence. MODELLER is one of the most used and comprehensive 
pieces of modeling software (Sali et al., 1995). Provided the sequence alignment the 
modeling process is practically automatic. As many other modeling tools, it is based on 
satisfying a set of spatial constraints. Specifically it satisfies three spatial constraints being 
(1) homology-derived constraints, (2) stereochemical constraints such as bond angles, and 
(3) statistical preferences for dihedral angles and non-bonded interatomic distances. 
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Optionally, manually curated restraints from secondary structure packing to site-directed 
mutagenesis can be added to the modeling process.  

 
Fig. 2. Flowchart for single protein modeling: Scheme of the methods used for modeling, 
comprising template(s) selection, template-target alignment, model building, model 
evaluation, and model refinement steps. 
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2.2 Threading 

In the same way as homology modeling, threading is a method to determine the tertiary 
structure of a protein based on the fairly small number of different folds contained in 
nature. The main difference resides in the fact that threading does not use specific protein 
3D structures as templates but uses statistical knowledge extracted from all structures in 
PDB. Thus, threading is especially useful when no suitable template for the protein can be 
found. Basically, the prediction is made by aligning each amino acid of a given query 
sequence to a position in a set of structural templates. Once the optimal template is selected 
through this method the structural model is built according to the alignment between the 
query and the template. The threading process can be divided in four different steps: the 
template database construction, the scoring function, the threading alignment and the 
threading prediction. Among the most used programs on threading and fold prediction are 
GeneThreader (Jones, 1999) and Phyre (Kelley and Sternberg, 2009). 

Gathering representative structures for the different folds avoiding redundancy creates the 
template database. This means extracting all the structures from PDB and picking one 
representative of each known fold, eliminating redundancy and sequence homology. The 
homology filtering is key to ensure that the predictions over the query sequence are not 
going to be biased because of the database composition. 

Designing an optimal function to score the suitability of the templates for modeling the 
query protein is determinant. The scoring function should be based on the known 
relationships between structure and sequence. A good scoring function should contain as 
much information as possible such as pairwise potential, secondary structure 
compatibilities, environment fitness potential, and gap penalties. The accuracy of the 
alignment and the prediction will be directly related to the quality of the scoring function. 
During the threading alignment the query sequence is going to be tested against each given 
possible template. This part of the process is, by far, the most computationally costly as it 
takes into account pairwise contact potentials (see section 4.2) and cannot be substituted by 
the classic dynamic programming algorithm for sequence alignment. Finally the threading 
prediction uses the scoring function and all the provided alignments to select the better 
template and build the protein model by placing the backbone atoms of the query according 
to the position of their aligned counterparts in the template.  

2.3 Ab Initio methods  

Ab initio or de novo protein structure prediction tries to predict the tertiary structure of 
proteins directly from its sequence properties. The idea is that the structure of proteins can 
be determined without any explicit templates by means of applying the general principles 
that govern protein folding and the statistical tendencies of conformational features 
gathered from structural knowledge. Those predictions involve sampling the 
conformational space, which means that a large set of decoys (structural candidates) is likely 
to be generated. Scoring functions, either physics-based or knowledge based, are then used 
to select those decoys that can be identified as more native-like conformations. Optionally, 
high-resolution refinement is used to optimize those native-like structures. Few programs 
have been successful in this task, and among them the most flourishing are ROSETTA 
(Leaver-Fay et al., 2011) and TASSER (Chen and Skolnick, 2008).  
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3. Modeling the quaternary structure of proteins 
As the structural data on protein complexes keep increasing steadily, using known protein 
complex structures has become an important approach for modeling protein interactions. 
This increase of structural knowledge of protein complexes (even if it is only partial) opens a 
new window of possibilities to infer the quaternary structure of proteins. However, for a 
large quantity of protein complexes this knowledge is still limited, and alternative 
techniques are required to infer their 3D structure. Docking methods surmount this lack of 
data providing predictions of the quaternary structure of the complex based on the physical, 
chemical, and biological known properties of protein complexes. New approaches have 
introduced the possibility to integrate different sources of experimental information, such as 
high-resolution electron-microscopy, SAXS, NMR, yeast-two-hybrid, and affinity 
purifications to extract restraints that can be applied to model the quaternary structure of 
macro-complexes (Alber et al., 2007). 

3.1 Comparative modeling of protein binary complexes 

Provided that a homolog structure of an interaction is known, homology modeling can be 
used to model a protein-protein interaction of interest. Two different approaches can be taken: 
(1) direct interaction modeling or (2) protein modeling and reorientation (see Figure 1). 

When directly modeling a protein interaction, it has to be taken into account that both query 
proteins need to have a couple of acceptable templates that share the same crystal structure. 
If that is the case, MODELLER is able to directly model the protein-protein interaction. 
However, in not only each separate structure needs to be evaluated but also the interface 
created between them (see section 4.2).  

An alternative is to model each protein separately and afterwards use a known interaction 
as a guide to reposition each structure in the way the interaction is supposed to be taking 
place. To do so it is required to perform a structural alignment between the model and the 
template for the interaction. That can be done with strictly devoted tools such as STAMP 
(Russell and Barton, 1992) or through a variety of protein structure graphical interfaces such 
as PYMOL (http://www.pymol.org). This approach should be selected if the resolution of 
the structure of the templates in the interaction is largely worse than the unbound 
templates. However, it has to be taken into account the need to introduce some structural 
flexibility produced to construct the interaction. Considering the principal motions and 
intrinsic fluctuations to accommodate the unbound structures (Dobbins et al., 2008) may 
help to this purpose. The final structure needs to be refined, and additional restraints are 
applied to keep the partners on the orientation defined by the template of the binary 
complex.  

3.2 Modeling of protein binary complexes from partial structural information 

The sequence and structural homology methods described in the previous section require 
global similarity (sequence or structure). However, recent research shows that the binding 
sites of proteins are somewhat more distinguishable from the rest of the protein surface. The 
binding site of two interacting proteins is called a protein-protein interface. If the structure 
of a protein complex is available, determining the interface is fairly simple. The interface can 
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be found either by finding contacting residues (distance based) or by calculating the 
accessible surface area of the residues. Since proteins interact through interfaces, physico-
chemical properties of interfaces are important to study protein interactions. Statistical 
studies of known protein complexes have revealed general characteristics of interfaces. 
Interfaces in general have electrostatic and shape complementary. Compared to the rest of 
the protein surface, interfaces are found to be slightly more conserved (Caffrey et al., 2004). 
Depending on the interaction type, properties of interfaces display variation. Homo-
oligomeric complexes have more hydrophobic and larger interfaces than the hetero 
complexes. Homo-oligomers are usually permanent and their interfaces resemble interior of 
globular proteins. Transient interactions, on the other hand, are mediated by smaller 
interfaces (less than 1500 Å2) and have more polar and charged amino acids than the 
interfaces of permanent interactions (Nooren and Thornton, 2003). The small surface-area of 
transient interfaces are partly due to requirement of individual partners of the interaction to 
fold independently and to be soluble. The secondary structure content of interfaces shows 
differences between permanent and transient interfaces as well. For example, turns are 
observed more frequently in non-obligatory interfaces since flexibility is required to 
repeatedly associate/disassociate (De et al., 2005). Even within an interface, the properties 
and organization of residues are not uniform. The interface area may be dissected into 
regions where a set of buried residues forming a core region is surrounded by a rim of 
residues that are partially solvent accessible. The composition of residues are distinct 
between these two regions (Guharoy and Chakrabarti, 2005). Alanine scanning mutagenesis 
of interface residues has also revealed that some residues contribute more to the binding 
energy (Clackson and Wells, 1995). These areas, called hot spots, are particularly enriched in 
Trp, Tyr, and Arg residues and are structurally conserved, which can be used to 
differentiate binding sites from the rest of the surface (Ma et al., 2003).  

All these characteristics can be used to identify binding sites of proteins either from 
sequence (Ofran and Rost, 2007) or from unbound structures (Neuvirth et al., 2004), and 
potentially for modeling protein interactions. Therefore, a systematic collection and 
categorization of protein interfaces play important role. Several databases of interfaces have 
been compiled along this direction, including PiBASE (Davis and Sali, 2005), SCOWLP 
(Teyra et al., 2006), SCOPPI (Winter et al., 2006) and PRINT (Tuncbag et al., 2008). These 
databases, in general, present interfaces extracted form known protein complexes together 
with features of the interfaces such as change in accessible surface area, conservation, or 
residue composition (reviewed in (Tuncbag et al., 2009)). PRINT database presents all 
interfaces from PDB (as of 2006) clustered by structural similarity where each cluster 
represents a different interface architecture. Some interface architectures are observed to be 
more favorable and reused frequently. These interface architectures are found to be similar 
to domain folds, consistent with earlier studies indicating that the folding and binding are 
similar processes (Tsai et al., 1997).  

The analysis of protein interactions and interfaces has suggested that the number of possible 
interfaces is much smaller than the possible number of protein interactions (Aloy and 
Russell, 2004; Tuncbag et al., 2008). In addition, interfaces are observed to be reused in 
different protein interactions that are not globally similar (the same interface used by 
proteins with different fold architectures) (Keskin et al., 2004). This information can be used 
to overcome the global similarity of requirement of the homology based modeling methods. 
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That is, modeling protein interactions using only the similarity of protein interfaces. PRISM 
(Aytuna et al., 2005) is one of the first approaches that has used interface similarity along 
this direction. It was originally developed to predict protein interactions between proteins 
(target set) from a set of known protein interfaces (template set). If the two complementary 
sides of a template interface are found to be structurally similar to two target proteins (one 
side on one protein, the other on another protein), then the proteins are predicted to be 
interacting and modeled using the binding site dictated by the template interface. A 
schematic description of the method is illustrated in Figure 3. Putative interactions are then 
re-ordered by flexible refinement. PRISM protocol is a collection of scripts that performs a) 
preparing a set of template interfaces from known complexes, b) preparing surfaces of target 
proteins that interactions among them to be predicted, c) structural alignment of templates 
to targets, d) scoring with flexible refinement. The method can be used to model a protein 
interaction by selecting the two potentially interacting proteins as targets, and using all non-
redundant interfaces as the template set. Although the method is limited by the availability 
and coverage of known protein-protein interfaces from PDB, the continuous growth of the 
PDB database will increase the applicability of the method. In fact, a recent study on the 
structural coverage of known protein interfaces already points out that the coverage is close 
to complete (Gao and Skolnick, 2010).  

 
Fig. 3. Schematic representation of PRISM: Two target proteins are predicted to interact if 
the two complementary sides of a template interface are found to be structurally similar to 
them (a different side on each protein). 

3.3 Protein-protein docking 

In contrast to previously described methods (which are based on the structural 
knowledge of the interaction), protein docking is one of the computational techniques for 
elucidating the structures of binary bio-molecules (e.g. two proteins) when experimental 
data regarding the structure of the complex is lacking but the structures of the interacting 
proteins are known. Docking techniques sample the orientation of two unbound protein 
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structures to produce several predictions about their interaction, followed by a scoring 
step to rank the predictions. These methods were introduced in 1978 (Wodak and Janin, 
1978). Since then, docking algorithms have substantially improved, with a breakthrough 
in algorithm speed given by the introduction of the Fast Fourier Transform (FFT) 
(Katchalski-Katzir et al., 1992) (e.g. FTDock (Gabb et al., 1997), ZDock (Mintseris et al., 
2007), PIPER (Kozakov et al., 2006)), and by some other very successful geometry-based 
methods (e.g. FRODOCK (Garzon et al., 2009), Hex (Ritchie and Kemp, 2000), MolFit 
(Katchalski-Katzir et al., 1992)). A docking procedure usually involves several steps 
(Vajda and Kozakov, 2009). First, a rigid-docking search is performed by treating the two 
proteins as rigid bodies. One of the proteins, called the receptor, is kept fixed while the 
other protein, the ligand, is rotated and translated around the first. Next, further 
refinement of some structures takes place, allowing changes in conformation of the two 
unbound structures upon binding (Dobbins et al., 2008; Shen et al., 2008); this step may or 
may not be supported by experimental evidence. 

3.3.1 The ranking problem 

Docking methods yield a large number of output conformations (ranging from 10000 to 
more than 50000), which include a large number of false positives. Thus, a crucial point after 
a rigid-docking search is the discrimination of near-native structures for further 
consideration and refinement. The number of selected conformations typically spans from 
10 to 2000. There are two non-excluding strategies to perform such selection. The first 
strategy is to re-rank the docked conformations with a scoring function, which is supposed 
to rank near-native structures at the top (i.e. describe the molecular environment of the 
molecular interaction). Scoring functions are usually built upon different properties of 
protein-protein interactions observed in known binary complexes. These properties include 
physical and chemical characteristics of the binding site, at the level of residue or atomic 
contacts (Z-rank (Pierce and Weng, 2007), Fold X (Guerois et al., 2002)). Among these 
scoring functions, statistical potential is a term that refers to a knowledge-based scoring 
function that depends on specific properties of known protein-protein interactions stored in 
some database. Initially, statistical potentials were derived in order to distinguish a correct 
protein fold (i.e. near-native) of a model from a plethora of generated solutions (see section 
4.2). In contrast to atomistic-detailed scoring functions, statistical potentials represent a 
much faster approach to solve this problem. It has been recently shown that the 
performance of split statistical potentials to rank docking poses (see following sections) may 
surpass that of scoring functions encoding atomistic energy terms or other statistical 
potentials (Feliu et al., 2011). 

The atomistic scoring potentials of Z-rank and FoldX split the score into a linear 
combination of energetic terms and further obtained the best parameterization. In FoldX (1) 
the energy terms were split in the van der Waals (Gvdw), electrostatic (Gel), solvation 
(Gsolv) and hydrogen bonding (GHbond) contributions, and the entropy was also included. 
Some of these terms were split with different weights (i.e. the solvation of hydrophobic 
residues had a different weight than the solvation of polar residues, and the entropy of the 
main-chain had different weight than the entropy of side-chains). The parameters 
optimizing the final score were obtained using single-point mutations of nine different 
proteins and the corresponding free energies obtained with their 3D conformations.  
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That is, modeling protein interactions using only the similarity of protein interfaces. PRISM 
(Aytuna et al., 2005) is one of the first approaches that has used interface similarity along 
this direction. It was originally developed to predict protein interactions between proteins 
(target set) from a set of known protein interfaces (template set). If the two complementary 
sides of a template interface are found to be structurally similar to two target proteins (one 
side on one protein, the other on another protein), then the proteins are predicted to be 
interacting and modeled using the binding site dictated by the template interface. A 
schematic description of the method is illustrated in Figure 3. Putative interactions are then 
re-ordered by flexible refinement. PRISM protocol is a collection of scripts that performs a) 
preparing a set of template interfaces from known complexes, b) preparing surfaces of target 
proteins that interactions among them to be predicted, c) structural alignment of templates 
to targets, d) scoring with flexible refinement. The method can be used to model a protein 
interaction by selecting the two potentially interacting proteins as targets, and using all non-
redundant interfaces as the template set. Although the method is limited by the availability 
and coverage of known protein-protein interfaces from PDB, the continuous growth of the 
PDB database will increase the applicability of the method. In fact, a recent study on the 
structural coverage of known protein interfaces already points out that the coverage is close 
to complete (Gao and Skolnick, 2010).  

 
Fig. 3. Schematic representation of PRISM: Two target proteins are predicted to interact if 
the two complementary sides of a template interface are found to be structurally similar to 
them (a different side on each protein). 

3.3 Protein-protein docking 

In contrast to previously described methods (which are based on the structural 
knowledge of the interaction), protein docking is one of the computational techniques for 
elucidating the structures of binary bio-molecules (e.g. two proteins) when experimental 
data regarding the structure of the complex is lacking but the structures of the interacting 
proteins are known. Docking techniques sample the orientation of two unbound protein 
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structures to produce several predictions about their interaction, followed by a scoring 
step to rank the predictions. These methods were introduced in 1978 (Wodak and Janin, 
1978). Since then, docking algorithms have substantially improved, with a breakthrough 
in algorithm speed given by the introduction of the Fast Fourier Transform (FFT) 
(Katchalski-Katzir et al., 1992) (e.g. FTDock (Gabb et al., 1997), ZDock (Mintseris et al., 
2007), PIPER (Kozakov et al., 2006)), and by some other very successful geometry-based 
methods (e.g. FRODOCK (Garzon et al., 2009), Hex (Ritchie and Kemp, 2000), MolFit 
(Katchalski-Katzir et al., 1992)). A docking procedure usually involves several steps 
(Vajda and Kozakov, 2009). First, a rigid-docking search is performed by treating the two 
proteins as rigid bodies. One of the proteins, called the receptor, is kept fixed while the 
other protein, the ligand, is rotated and translated around the first. Next, further 
refinement of some structures takes place, allowing changes in conformation of the two 
unbound structures upon binding (Dobbins et al., 2008; Shen et al., 2008); this step may or 
may not be supported by experimental evidence. 

3.3.1 The ranking problem 

Docking methods yield a large number of output conformations (ranging from 10000 to 
more than 50000), which include a large number of false positives. Thus, a crucial point after 
a rigid-docking search is the discrimination of near-native structures for further 
consideration and refinement. The number of selected conformations typically spans from 
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contacts (Z-rank (Pierce and Weng, 2007), Fold X (Guerois et al., 2002)). Among these 
scoring functions, statistical potential is a term that refers to a knowledge-based scoring 
function that depends on specific properties of known protein-protein interactions stored in 
some database. Initially, statistical potentials were derived in order to distinguish a correct 
protein fold (i.e. near-native) of a model from a plethora of generated solutions (see section 
4.2). In contrast to atomistic-detailed scoring functions, statistical potentials represent a 
much faster approach to solve this problem. It has been recently shown that the 
performance of split statistical potentials to rank docking poses (see following sections) may 
surpass that of scoring functions encoding atomistic energy terms or other statistical 
potentials (Feliu et al., 2011). 

The atomistic scoring potentials of Z-rank and FoldX split the score into a linear 
combination of energetic terms and further obtained the best parameterization. In FoldX (1) 
the energy terms were split in the van der Waals (Gvdw), electrostatic (Gel), solvation 
(Gsolv) and hydrogen bonding (GHbond) contributions, and the entropy was also included. 
Some of these terms were split with different weights (i.e. the solvation of hydrophobic 
residues had a different weight than the solvation of polar residues, and the entropy of the 
main-chain had different weight than the entropy of side-chains). The parameters 
optimizing the final score were obtained using single-point mutations of nine different 
proteins and the corresponding free energies obtained with their 3D conformations.  
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In Z-rank the energies were also split in van der Waals, electrostatic and solvation terms, but 
the weights of van der Waals and electrostatic interactions were different for attractive (a) 
and repulsive (r) interactions, and also different for short-range (<5Å) and long-range (>5 Å) 
interactions (sr and lr, for short and long ranges, respectively): 
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The second strategy follows the rationale that near-native structures will show a broader 
and deeper well in the energy landscape compared to non–near-native structures. This 
assumption is the basis of clustering a collection of output conformations (around 1000–
2000) as a function of the number of similar structures. Clustering is performed using as the 
similarity measure either the Cα binding site root mean square deviation (named I-RMSD)  
(Comeau et al., 2004) or the ligand Cα RMSD (Ritchie and Kemp, 2000). Selection based on 
the clustering methodology has proved to be better for determining near-native 
conformations than selection based solely on scoring functions (Ritchie and Kemp, 2000; 
Vajda and Kozakov, 2009). Consequently, the clustering method has become popular, 
mainly in combination with a re-ranking given by a scoring function that guides the 
selection of structures to cluster (Comeau et al., 2004; Shen et al., 2008).  

3.3.2 Knowledge based potentials 

In knowledge-based potentials, also named statistical potentials, the interaction between 
two residues is scored by the potential of mean force (PMF) obtained from the probability of 
finding a pair of residues at a given distance (Sippl, 1990). Let kB denote the Boltzmann 
constant and let T be the standard temperature (300K). If A and B are the two interacting 
chains and a,b are two residues in chains A and B (respectively) at distance d, the potential 
of mean force is given by:  

 PMF(a,b,d)  PMFstd (d)  kBT log
P(a,b | d)
P(a)P(b)








 (3)

 
where PFMstd(d)=kBTlog(P(d)); P(a), P(b) are the individual probabilities of residues a, b; 
P(a,b|d) is the conditional probability of residues a,b at distance smaller or equal to d and 
P(d) the probability of any pairs of residues at distance smaller or equal to d. All 
probabilities correspond to the observed frequencies of the events in the reference database 
(i.e. 3DID (Stein et al., 2005)) 

The score of the interaction is then defined as the sum over all interacting pairs of the pair 
residue scores. Formally, if a1,...as is the residue sequence of chain A, b1,...,br is the residue 
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sequence of chain B,  is the set of pair position indices (i,j) of interacting residues ai,bj at 
distance dij, then the statistical potential Epair is:  

 Epair  PMF(ai,b j ,dij )
( i, j )
  (4)

 
As energy can usually be split in independent terms from which different forces are derived, 
the statistical potential can also be split in terms that would describe the different parts of 
the interaction as particular forces. Particularly, considering a residue condition  as the 
triplet formed by (secondary structure, polarity, degree of exposure), then the PMF in (3) 
can be decomposed using:  
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Finally, the split statistical potentials Epair, Elocal, E3D, E3DC, and ES3DC can be obtained by 
applying the formula (4) to the decomposed PMFs (5), with corresponding subindexes 
between E_ and PMF_. It was shown (Aloy and Oliva, 2009) that Epair admits a 
decomposition of the form:  

 Epair  ES3DC  E3DC  E3D  ELocal  Ecmp (6) 

where Ecmp is a residual energy term depending only on the conditions of the interacting 
residues and accounts for the reference state (first term in PMF equations). This equation 
was initially derived for the scoring of protein folds, but it remains valid when applied to 
the residues in the interface between two interacting proteins (Feliu et al., 2011).  

Note that the statistical potential ES3DC is a refinement of the residue-pair statistical potential 
Epair, in the sense that it takes into account not only the residues that interact but also the 
condition in which each of them sits. On the contrary, the statistical potential E3DC depends 
on the occurrence of interacting conditions, disregarding the specific interacting residues. 
The score Elocal reflects the probability of placing a residue on a specific condition. Moreover, 
it splits into two terms, each of them depending only on the probability of placing a certain 
residue in some condition for each chain separately. The energy term E3D concerns only the 
distance at which pairs of residues interact, and increases together with the number of 
interacting residue-pairs, thus being proportional to the number of residues implied in the 
interface.  
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(Comeau et al., 2004) or the ligand Cα RMSD (Ritchie and Kemp, 2000). Selection based on 
the clustering methodology has proved to be better for determining near-native 
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chains and a,b are two residues in chains A and B (respectively) at distance d, the potential 
of mean force is given by:  

 PMF(a,b,d)  PMFstd (d)  kBT log
P(a,b | d)
P(a)P(b)








 (3)

 
where PFMstd(d)=kBTlog(P(d)); P(a), P(b) are the individual probabilities of residues a, b; 
P(a,b|d) is the conditional probability of residues a,b at distance smaller or equal to d and 
P(d) the probability of any pairs of residues at distance smaller or equal to d. All 
probabilities correspond to the observed frequencies of the events in the reference database 
(i.e. 3DID (Stein et al., 2005)) 

The score of the interaction is then defined as the sum over all interacting pairs of the pair 
residue scores. Formally, if a1,...as is the residue sequence of chain A, b1,...,br is the residue 

Structural Bioinformatics of Proteins:  
Predicting  the Tertiary and Quaternary Structure of Proteins from Sequence 

 

217 

sequence of chain B,  is the set of pair position indices (i,j) of interacting residues ai,bj at 
distance dij, then the statistical potential Epair is:  

 Epair  PMF(ai,b j ,dij )
( i, j )
  (4)

 
As energy can usually be split in independent terms from which different forces are derived, 
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Finally, the split statistical potentials Epair, Elocal, E3D, E3DC, and ES3DC can be obtained by 
applying the formula (4) to the decomposed PMFs (5), with corresponding subindexes 
between E_ and PMF_. It was shown (Aloy and Oliva, 2009) that Epair admits a 
decomposition of the form:  

 Epair  ES3DC  E3DC  E3D  ELocal  Ecmp (6) 

where Ecmp is a residual energy term depending only on the conditions of the interacting 
residues and accounts for the reference state (first term in PMF equations). This equation 
was initially derived for the scoring of protein folds, but it remains valid when applied to 
the residues in the interface between two interacting proteins (Feliu et al., 2011).  

Note that the statistical potential ES3DC is a refinement of the residue-pair statistical potential 
Epair, in the sense that it takes into account not only the residues that interact but also the 
condition in which each of them sits. On the contrary, the statistical potential E3DC depends 
on the occurrence of interacting conditions, disregarding the specific interacting residues. 
The score Elocal reflects the probability of placing a residue on a specific condition. Moreover, 
it splits into two terms, each of them depending only on the probability of placing a certain 
residue in some condition for each chain separately. The energy term E3D concerns only the 
distance at which pairs of residues interact, and increases together with the number of 
interacting residue-pairs, thus being proportional to the number of residues implied in the 
interface.  
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3.3.3 Using split statistical potentials to rank docking poses 

To test the scoring functions, the benchmark decoy dataset of Weng and cols. (Hwang et al., 
2008) is widely used as gold standard. This dataset is based on a set of non-redundant real 
interactions for which both the complex 3D structure and the individual chain structures are 
available. It consists of a collection of binary complexes (124) with known structure (named 
targets) and a set of decoys for each of them (named target set). The 54,000 decoys generated 
using the rigid-body docking algorithm ZDock3.0 (Mintseris et al., 2007) from the individual 
chain structures were considered. The set of binary-complex conformations of a rigid-body 
prediction are classified according to the expected difficulties to obtain a near-native 
solution of the target. They deal with three types named: easy, medium and difficult cases. 
In total, the dataset consists of 124 cases, 88 of which are straight forward for rigid-body 
docking, 19 are medium and 17 are difficult cases for which further conformational changes 
are required upon binding. Only 97 of them (88 rigid-body and 9 medium) fit into the 
common near-native decoy criterion of structures differing from the native one at most 2.5Å 
(computed in terms of I-RMSD from the native structure). For difficult cases it is not 
possible to have near-native poses because of the deformation suffered by one or two of the 
protein partners. Thus, a different definition of a successful prediction is required in these 
cases. A selected pose was considered good if its I-RMSD differs less than 0.5Å from the 
lowest I-RMSD among all the decoys in the target set. This measure enables to determine if 
the scoring function top-ranks the best available decoys of the set. Figure 4 shows the 
success curves for the split potentials, revealing the relative importance of Elocal and E3D in 
the composition of the residue-pair statistical potential Epair. 

 
Fig. 4. Success curves for the split potentials: Success curves on the whole benchmark 
dataset are plotted for the five statistical potentials Epair (red), ES3DC (orange), Elocal (blue), E3D 
(light green) and E3DC (purple), plus the success curve expected by random (black). 

Based on the observation that Epair and ES3DC provided a fairly amount of non-overlapping 
hits, a new ranking strategy was defined: “MixRank”. This strategy consists of first 
considering the lists of decoys ranked by different scoring functions separately, and then 
alternatively selecting one decoy from each list. Then, in order to avoid repetitions, we 
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apply a removal of redundant predictions (Feliu and Oliva, 2010). That is, we do not include 
decoys that are less than 5Å of I-RMSD from an already selected decoy. This way of removal 
of redundancies was analyzed (Feliu and Oliva, 2010) and was proved to provide better 
selection of near-native decoys. This ranking strategy proved to be able to compete with 
other ranking strategies based on atomistic-detailed scoring functions if large 
conformational changes of the interacting partners are required for the interaction. These are 
the cases typically included in the medium and difficult categories of the benchmark data 
set. This is shown in Figure 5, where Epair and MixRank surpass ranking system based either 
on a reference statistical potential (RPScore (Moont et al., 1999)) or on an atomistic-detailed 
scoring function (ZRank) when predicting near-native poses within the medium and 
difficult categories of the benchmark data set.  

 
Fig. 5. Different ranking approaches compared for difficult cases of the benchmark data set: 
Success curves are plotted after removal of redundant solutions for the MixRank strategy 
(light green), Epair (red), Zrank (dark green) and RPScore (blue) scoring functions, and also 
compared with the success curve expected by random (black), only with the medium and 
difficult cases of the benchmark dataset. 

4. Errors in models 
The quality of the obtained model establishes the limits of the biological information that 
can be safely extracted from it. Although all structural models may enclose errors, these 
become less of a problem if correctly detected and assessed: once an error is identified, it is 
possible to discriminate whether it affects key structural or functional regions. Therefore an 
essential step in any structural modeling process is the detection of the wrongly modeled 
regions.  

4.1 Sources of errors 

In comparative modeling (homology modeling and threading), wrongly modeled regions 
are expected to be more frequent as the sequence identity between the query protein and the 
template decreases. Errors can be expected to occur at any step of the process, thus, they can 
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apply a removal of redundant predictions (Feliu and Oliva, 2010). That is, we do not include 
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of redundancies was analyzed (Feliu and Oliva, 2010) and was proved to provide better 
selection of near-native decoys. This ranking strategy proved to be able to compete with 
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the cases typically included in the medium and difficult categories of the benchmark data 
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The quality of the obtained model establishes the limits of the biological information that 
can be safely extracted from it. Although all structural models may enclose errors, these 
become less of a problem if correctly detected and assessed: once an error is identified, it is 
possible to discriminate whether it affects key structural or functional regions. Therefore an 
essential step in any structural modeling process is the detection of the wrongly modeled 
regions.  

4.1 Sources of errors 

In comparative modeling (homology modeling and threading), wrongly modeled regions 
are expected to be more frequent as the sequence identity between the query protein and the 
template decreases. Errors can be expected to occur at any step of the process, thus, they can 
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be catalogued according to the step in which they can be found and, therefore, the step in 
which they can be corrected or compensated. Docking techniques may incorporate similar 
errors during the step of molecular refinement.  

Wrong template selection is the most costly error that can be found in a modeling process. 
Being a key step in the process, the selection of a wrong template cannot be overcome at any 
other part of the process and will inevitable yield to a wrong model. Correcting such error 
implies going back to the beginning of the modeling process and start all over again. The 
selection of a wrong template usually derives from the lack of a sequence homologous 
enough to sequence the query protein. A lot of effort is being put into trying to describe the 
optimal thresholds of identity and similarity to decide whether or not a sequence can be 
chosen as template. 

Misalignment errors tend to appear under a 40% sequence identity. Their abundance 
rapidly increases below 30% of identity, as the occurrence of local regions with very low 
sequence identity makes wrong alignments more feasible. These errors are specially focused 
on gap misplacements in the alignment, and are one of the major sources of problems in 
homology modeling. As with the detection of the correct template, the sequence-template 
alignment is key, and correcting it requires redoing the alignment. 

Structural distortions can be found both in well-aligned and in unaligned regions. Those in 
aligned regions appear when the sequence identity is too low in a local region and the 
sequence does, in fact, acquire a different secondary structure than that of the template. This 
problem can be overcome by using several templates in low identity regions in order to 
explore the possibilities. The regions that, even with multiple templates, are not aligned to 
any template have to be predicted by energy-based methods of database searching. The 
alignments at the sequence boundaries and 3D boundaries of such regions will determine 
the accuracy of the prediction. 

Finally, side chain packing needs to be optimized especially as sequence identity decreases. 
Such optimization can be a major issue, specifically when it involves residues implicated in 
the protein‘s function and mostly in the interface of interacting proteins.  

4.2 Detecting the errors 

Automated methods for detecting errors in 3D models rely on the knowledge of previously 
solved structures in the PDB. This knowledge has lead to identify stereochemical and 
energy-related restrictions in the final 3D conformation of a protein. Considering 
stereochemical restrictions, perhaps the most obvious is that two amino-acids cannot clash 
(i.e. they cannot occupy the same spatial region). In addition, not all possible relative 
orientations of two correlative amino-acids in the protein sequence are allowed. These 
orientations are defined by the  and  angles of the amino-acidic bond and the applicable 
restrictions are summarized in the Ramachandran diagram (Ramachandran et al., 1963), 
which represents the allowed conformations as a function of the  and  angles. 
PROCHECK program (Laskowski et al., 1996) assess the overall quality of a protein model 
based on these parameters.  

Besides stereochemistry, there are other protein spatial features in the proteins that could 
be used as indicators of errors in the models: packing, creation of a hydrophobic core, 
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residue and atomic solvent accessibilities, spatial distribution of charged groups, 
distribution of atom-atom distances, and main-chain hydrogen bonding structures (Sali, 
1995). These are key features to understand the mechanisms by which a protein finds its 
native state. This mechanism is known as the folding pathway and the possibilities space 
for the folding of a protein is vast (Levinthal, 1968). Solving this problem requires an 
accurate potential describing the interactions among different amino-acid residues 
(Dinner et al., 2000).  However, the use of such atomistic-detailed potentials (Brooks et al., 
2009) is quasi-prohibitive and it does not ensure the native and biologically active 
conformation.  

An alternative approach to the full atomistic description is to construct a coarse grained 
potential. The aim of such potential would be to approximate the function: a) whose 
global minimum corresponds to the native structure (Sippl, 1990), and b) capable to drive 
the structure from incorrect folding states toward native-like conformations (i.e. the 
having a correlation with native structure similarity (Keasar and Levitt, 2003)) describing 
a funnel-like energy surface. This scoring function, termed knowledge-based or statistical 
potential, works as a coarse-grained descriptor of the environment of the protein, and can 
be used to assess the quality of a protein 3D model. Based on this approach PROSAII 
(Sippl, 1993) is probably the most widely used program to assess the quality of a protein 
3D model. Similarly, specific potentials have been derived for the interaction between 
macromolecules in order to assess protein-protein interactions (e.g., M-TASSER (Chen 
and Skolnick, 2008), MULTIPROSPECTOR (Lu et al., 2002) or InterPreTS (Aloy and 
Russell, 2003). Nevertheless, a funneling theory such as the Levinthal paradox in protein 
folding is still under development and some explanations are recently found (Wass et al., 
2011). 

5. Integrative modeling 
The previous detailed methods could be useful in small complexes, where the docking of 
few subunits can solve the quaternary structure. However, the assembly of large 
macromolecular complexes such as the nucleopore complex, which contains more than 450 
proteins, is unaffordable. In these cases, the presence of such amount of subunits forces the 
necessity to find methods that could manage the assembly problem in terms of costs and 
time. 

During the last years, the integration of the maximum amount of structural information 
available about the structurally unknown macromolecular complex has become the state of 
the art solution to this problem. The main idea of this methodology is to use particular 
characteristics of the complex that can be synergistically combined in order to restrict the 
possible solutions to only those consistent with these features.  

Electron microscopy has been established as a crucial technique for studying the structure 
of macromolecular assemblies (Alber et al., 2007). The resolution is insufficient to 
construct an atomic model but reveals insights into the shape and size of the whole 
complex. Thus, fitting atomic-resolution structures into the electron density maps is a 
suitable method for determining not only large macromolecular assemblies but also small 
ones. 
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be catalogued according to the step in which they can be found and, therefore, the step in 
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orientations are defined by the  and  angles of the amino-acidic bond and the applicable 
restrictions are summarized in the Ramachandran diagram (Ramachandran et al., 1963), 
which represents the allowed conformations as a function of the  and  angles. 
PROCHECK program (Laskowski et al., 1996) assess the overall quality of a protein model 
based on these parameters.  
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the art solution to this problem. The main idea of this methodology is to use particular 
characteristics of the complex that can be synergistically combined in order to restrict the 
possible solutions to only those consistent with these features.  

Electron microscopy has been established as a crucial technique for studying the structure 
of macromolecular assemblies (Alber et al., 2007). The resolution is insufficient to 
construct an atomic model but reveals insights into the shape and size of the whole 
complex. Thus, fitting atomic-resolution structures into the electron density maps is a 
suitable method for determining not only large macromolecular assemblies but also small 
ones. 
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Several methods have been developed for simultaneously fitting the individual protein 
subunits into the density map of their assembly. MultiFit (Lasker et al., 2010b) solve the 
position and orientation of each component within a protein structure using a function score 
that maximizes the quality of fit in the electron density map, the protrusion from the density 
map envelope, and the complementary shape between subunits. An optimizer algorithm 
DOMINO (Discrete Optimization of Multiple Interacting Objects) (Lasker et al., 2009) 
searches like a puzzle the positions of the subunits within a discrete sampling space. Each 
subunit is placed in a particular position inside the density map, conditioning the position of 
the rest of the subunits. This algorithm is used to efficiently find the global minimum in an 
affordable way.  

 
 

 
 
 

Fig. 6. Schematic representation of integrative modeling. 

Often, the electron density map or the high-resolution structure of the subunits is not 
available. In these cases, it is not possible to apply the fitting procedure mentioned above. 
However, the integrative approach is not restricted to this data. There are different 
techniques that provide different types of information that can be used to understand 
particular features of the assembled complex. Table 1 highlights a list of proteomics, 
biophysical and computational methods used to obtain this valuable data. 

In this way, Sali and collaborators developed an integrative modeling platform (IMP) 
(Lasker et al., 2010a) that collect this information and consider them simultaneously to 
generate models consistent with the data. This platform was used to describe the nuclear 
pore complex (Alber et al., 2007) and the structure of chromatin at megabase scale (Bau et 
al., 2010). Moreover, this platform can be used to solve any kind of 3D structure when 
enough data is provided. 

IMP performs its function in an iterative series of four different steps. Below, a brief 
description of each step gave us an insight into how this heterogeneous data can be 
combined to deliver such large complex models. 
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Type of Structural 
Information  

Techniques 

Composition  Mass spectrometry and quantitative immunoblotting 
Interactions Genetic interactions and bioinformatics predictions 
Connectivity Affinity purification and surface plasmon resonance (SPR) 
Interaction partners Yeast to hybrid, protein microarrays, protein-fragment 

complementation assay (PCA) and calorimetry 
Interaction distances Fluorescence resonance energy transfer (FRET), 

bioluminescence resonance energy transfer (BRET) and 
cross-linking 

Complex shape X-ray scattering (SAXS) Cryo-electron microscopy, Cryo-
electron tomography and Negative stain electron 
microscopy 

Protein positions High resolution electron microscopy, gold-labelling, green 
fluorescence protein (GFP) labelling and Docking 

Residue positions Crosslinking, hydrogen/deuterium exchange,  
Limited Proteolysis and Footprinting 

Atomic positions X-rays crystallography and nuclear magnetic resonance 
(NMR) 

Table 1. Proteomics, biophysical and computational methods used to obtain information for 
modelling macromolecular complexes.  

5.1 Data gathering 

The collection of structural information is the first requirement needed to start the assembly 
process. The techniques listed in table 1 are appropriate generators of this data. In addition, 
a large amount of biological information is available through databases. Table 2 lists some 
databases with structural relevant information. 

5.2 System representation and data translation into spatial restraints 

One of the most characteristic features of the integrative modeling process is the ability to 
use structures that are not solved in high-resolution. In those cases, it is necessary to find an 
appropriate representation of the system. For example, on one hand, an atomic-resolution 
structure can be represented with particles corresponding to atoms and, on the other hand, 
in a low-resolution structure a single particle can represent a sphere corresponding to a 
group of atoms, residues or domains. Consequently, the resolution of the final complex is 
dictated by the resolution of the available data. 

The raw data gathered in the first step must to be translated into spatial restraints, which 
specify values for the encoded data in order to decide if the model satisfies or not the 
experimental information about it. A restraint is a scoring function that reaches its minimum 
if the feature is consistent with the experimental data. A 0 indicates a model that is perfectly 
consistent with the restraint, whereas the result of the function is higher when the restraint 
is violated. In Table 3, most common types of restrains are reviewed. 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

222 

Several methods have been developed for simultaneously fitting the individual protein 
subunits into the density map of their assembly. MultiFit (Lasker et al., 2010b) solve the 
position and orientation of each component within a protein structure using a function score 
that maximizes the quality of fit in the electron density map, the protrusion from the density 
map envelope, and the complementary shape between subunits. An optimizer algorithm 
DOMINO (Discrete Optimization of Multiple Interacting Objects) (Lasker et al., 2009) 
searches like a puzzle the positions of the subunits within a discrete sampling space. Each 
subunit is placed in a particular position inside the density map, conditioning the position of 
the rest of the subunits. This algorithm is used to efficiently find the global minimum in an 
affordable way.  

 
 

 
 
 

Fig. 6. Schematic representation of integrative modeling. 

Often, the electron density map or the high-resolution structure of the subunits is not 
available. In these cases, it is not possible to apply the fitting procedure mentioned above. 
However, the integrative approach is not restricted to this data. There are different 
techniques that provide different types of information that can be used to understand 
particular features of the assembled complex. Table 1 highlights a list of proteomics, 
biophysical and computational methods used to obtain this valuable data. 

In this way, Sali and collaborators developed an integrative modeling platform (IMP) 
(Lasker et al., 2010a) that collect this information and consider them simultaneously to 
generate models consistent with the data. This platform was used to describe the nuclear 
pore complex (Alber et al., 2007) and the structure of chromatin at megabase scale (Bau et 
al., 2010). Moreover, this platform can be used to solve any kind of 3D structure when 
enough data is provided. 

IMP performs its function in an iterative series of four different steps. Below, a brief 
description of each step gave us an insight into how this heterogeneous data can be 
combined to deliver such large complex models. 

Structural Bioinformatics of Proteins:  
Predicting  the Tertiary and Quaternary Structure of Proteins from Sequence 

 

223 

Type of Structural 
Information  

Techniques 

Composition  Mass spectrometry and quantitative immunoblotting 
Interactions Genetic interactions and bioinformatics predictions 
Connectivity Affinity purification and surface plasmon resonance (SPR) 
Interaction partners Yeast to hybrid, protein microarrays, protein-fragment 

complementation assay (PCA) and calorimetry 
Interaction distances Fluorescence resonance energy transfer (FRET), 

bioluminescence resonance energy transfer (BRET) and 
cross-linking 

Complex shape X-ray scattering (SAXS) Cryo-electron microscopy, Cryo-
electron tomography and Negative stain electron 
microscopy 

Protein positions High resolution electron microscopy, gold-labelling, green 
fluorescence protein (GFP) labelling and Docking 

Residue positions Crosslinking, hydrogen/deuterium exchange,  
Limited Proteolysis and Footprinting 

Atomic positions X-rays crystallography and nuclear magnetic resonance 
(NMR) 

Table 1. Proteomics, biophysical and computational methods used to obtain information for 
modelling macromolecular complexes.  

5.1 Data gathering 

The collection of structural information is the first requirement needed to start the assembly 
process. The techniques listed in table 1 are appropriate generators of this data. In addition, 
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appropriate representation of the system. For example, on one hand, an atomic-resolution 
structure can be represented with particles corresponding to atoms and, on the other hand, 
in a low-resolution structure a single particle can represent a sphere corresponding to a 
group of atoms, residues or domains. Consequently, the resolution of the final complex is 
dictated by the resolution of the available data. 

The raw data gathered in the first step must to be translated into spatial restraints, which 
specify values for the encoded data in order to decide if the model satisfies or not the 
experimental information about it. A restraint is a scoring function that reaches its minimum 
if the feature is consistent with the experimental data. A 0 indicates a model that is perfectly 
consistent with the restraint, whereas the result of the function is higher when the restraint 
is violated. In Table 3, most common types of restrains are reviewed. 
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Database Description 
PDB PDB (Protein Data Bank) is the worldwide repository of information of 

3D biological molecules structures 
ModBase ModBase is a relational database of protein structure models calculated 

by comparative homology modelling of known structures 
SCOWLP SCOWLP (Structural Characterization Of Water, Ligands and Proteins) 

is a relational database for detailed structural analysis of PDB protein 
interfaces at atomic level. The SCOWLP includes proteins, ligands and 
water as descriptors of interfaces 

3DID 3did (3D interacting domains) is a collection of domain-domain 
interactions extracted from atomic-resolution structures. Each domain 
is associated to a Pfam domain and the database is GO term functional 
annotated 

EMdataBank EM Data Bank is a database of cryo-electron microscopy maps, models 
and associated metadata 

BioGRID BioGRID (Biological General for Interaction Datasets) is a database that 
archives genetic and proteomic interactions curated from high-
throughput datasets and individual studies 

PRISM PRISM (Protein Interactions by Structural Matching) is a web-served 
compilation of protein-protein interaction interfaces 

SCOPPI SCOPPI (Structural Classification of Protein-Protein Interactions) is a 
database of all domain-domain interactions and their interfaces derived 
from PDB structure files and SCOP domain definitions 

Table 2. Databases of structural information suitable for the integrative modelling process. 

 

Type of restraint Description of the restraint 
Distance restraints Restraints the distance between two particles 
Connectivity restraints Restraints all proteins in a set to interact or not. 
Quality of fit restraint Restraints the overlapping of the particles in an electron 

density map 
Excluded volume Restraint steric clashes 
Geometric 
complementary 

Maintains the geometric complementary between two 
particles interfaces 

Statistical potential 
restraint 

Restraint depending on the frequencies of contacts in 
previous solved complexes 

Angle restraint Restraint the angle between three particles 
Protein localization 
restraint 

Restraints a particle in a specific position 

Complex diameter 
restraint 

Restraints the maximum distance between the two most 
distance particles 

Symmetry restraint Maintains the same configuration of equivalent particles 
across multiple symmetry units 

Radial distribution 
function restraint 

Restraints the correlation between experimentally measured 
and computed radial distribution functions 

Table 3. Most common types of spatial restrains obtained from structural data.  
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5.3 Calculation of an ensemble consistent with the restraints 

At this point, the different restraints are combined into a final scoring function, which is 
commonly the sum of the singular scoring functions corresponding to each restraint. Then, 
the configuration of the constituent protein beads is determined by optimizing this scoring 
function. 

The optimization process consists of searching through the configuration space the positions 
and orientations of the structural subunits that minimizes this function. It starts from 
random positions and iteratively moves them to minimize the violation of the restraints. In 
essence, a kind of ‘force’ pulls the proteins together to the native complex configuration. For 
this task, it is possible to use methods that explore the scoring function landscape in an 
efficient manner, such as conjugate gradient, molecular dynamics with simulated annealing 
or personalized optimizers, such as DOMINO (Lasker et al., 2009).  

5.4 Analysis of the ensemble 

Assuming a unique native state of the complex, the optimization process it is supposed to 
give a single model that satisfies all restraints. However, if the data used to encode the 
restraints is insufficient, more than one solution might be obtained. This problem could be 
solved introducing new restrains and running the process again. Conversely, in case of 
incorrect restraints, it is possible that no solution is obtained because there is not a model 
that satisfies all the restraints. In conclusion, the integrative method is a very powerful tool 
but it is clearly conditioned by the quality of the gathered information. Finally, the structure 
of the complex needs to be evaluated using similar approaches as in modelling, but adding 
the quality of the accomplishment of the restraints applied to construct the macro-complex.  

6. Conclusions 
Protein sequences are totally valueless if meaningful information about their biological 
function is not reported. In the past 30 years clear relationships between proteins sequence, 
structure, and function have been proven. Thus, the knowledge of a protein’s 3D structure is 
normally required to completely understand its function. Since many proteins act in 
association with others, the knowledge of the structure of the complex formed by this 
association (named quaternary structure) is crucial to understand how proteins perform 
their functions. In this chapter we have attempted to establish the capabilities and 
limitations of currently available computational methods for predicting the tertiary and 
quaternary structure of proteins. Different strategies can be followed depending on the data 
available, and this review hopefully could serve as a practical guide for modelling the 
tertiary structures of proteins and its association into complexes.  

When known structures of homologous proteins are available, these can be used as a 
template to model the structure of a target protein or a protein complex in a process termed 
comparative modelling. Being the current knowledge on the structure of protein complexes 
much more limited than that of single proteins, several databases of protein-protein 
interfaces such as PRISM (Aytuna et al., 2005) have been developed to overcome this 
problem. In comparative modelling, the percentage of sequence identity between the 
problem proteins and the templates is crucial. Below a certain threshold of sequence identity 
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comparative modelling. Being the current knowledge on the structure of protein complexes 
much more limited than that of single proteins, several databases of protein-protein 
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problem. In comparative modelling, the percentage of sequence identity between the 
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(~30%) comparative modelling becomes a difficult task even for experts. In any case, models 
must be critically evaluated to be sure that they are correct, devoting most efforts to the 
region involved in the function (usually implying its interaction with other proteins or 
compounds). 

On the lack of experimental data of the structure of a complex of proteins, protein docking is 
one of the computational techniques for elucidating the structures of binary interactions. We 
have shown that the use of split knowledge-based statistical potentials to score and rank the 
different docking solutions can be as accurate as atomistic-detailed potentials (Feliu et al., 
2011) in any type of docking. Furthermore, these statistical poteintals surpass atomistic 
detailed scores when the complex requires large conformational changes of the interacting 
partners upon the interaction and we apply a rigid docking protocol. 

Finally, we reviewed how different sources of experimental data are synergistically used to 
model large macromolecular complexes by the Integrative Modelling Platform (Lasker et al., 
2010a). This approach has successfully been used to elucidate the structure of the 
nucleopore complex or the structure of chromatin at megabase scale. 
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(~30%) comparative modelling becomes a difficult task even for experts. In any case, models 
must be critically evaluated to be sure that they are correct, devoting most efforts to the 
region involved in the function (usually implying its interaction with other proteins or 
compounds). 

On the lack of experimental data of the structure of a complex of proteins, protein docking is 
one of the computational techniques for elucidating the structures of binary interactions. We 
have shown that the use of split knowledge-based statistical potentials to score and rank the 
different docking solutions can be as accurate as atomistic-detailed potentials (Feliu et al., 
2011) in any type of docking. Furthermore, these statistical poteintals surpass atomistic 
detailed scores when the complex requires large conformational changes of the interacting 
partners upon the interaction and we apply a rigid docking protocol. 

Finally, we reviewed how different sources of experimental data are synergistically used to 
model large macromolecular complexes by the Integrative Modelling Platform (Lasker et al., 
2010a). This approach has successfully been used to elucidate the structure of the 
nucleopore complex or the structure of chromatin at megabase scale. 

7. References 
Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., 

Karni-Schmidt, O., Williams, R., Chait, B.T., et al. (2007). Determining the 
architectures of macromolecular assemblies. Nature 450, 683-694. 

Aloy, P., and Oliva, B. (2009). Splitting statistical potentials into meaningful scoring 
functions: testing the prediction of near-native structures from decoy 
conformations. BMC Struct Biol 9, 71. 

Aloy, P., and Russell, R.B. (2003). InterPreTS: protein interaction prediction through tertiary 
structure. Bioinformatics 19, 161-162. 

Aloy, P., and Russell, R.B. (2004). Ten thousand interactions for the molecular biologist. Nat 
Biotechnol 22, 1317-1321. 

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, 
D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database 
search programs. Nucleic Acids Res 25, 3389-3402. 

Aytuna, A.S., Gursoy, A., and Keskin, O. (2005). Prediction of protein-protein interactions by 
combining structure and sequence conservation in protein interfaces. Bioinformatics 
21, 2850-2855. 

Bau, D., Sanyal, A., Lajoie, B.R., Capriotti, E., Byron, M., Lawrence, J.B., Dekker, J., and 
Marti-Renom, M.A. (2010). The three-dimensional folding of the alpha-globin gene 
domain reveals formation of chromatin globules. Nat Struct Mol Biol 18, 107-114. 

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, 
I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-242. 

Brooks, B.R., Brooks, C.L., 3rd, Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B., Won, 
Y., Archontis, G., Bartels, C., Boresch, S., et al. (2009). CHARMM: the biomolecular 
simulation program. J Comput Chem 30, 1545-1614. 

Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J., and Huang, E.S. (2004). Are protein-
protein interfaces more conserved in sequence than the rest of the protein surface? 
Protein Sci 13, 190-202. 

Structural Bioinformatics of Proteins:  
Predicting  the Tertiary and Quaternary Structure of Proteins from Sequence 

 

227 

Chen, H., and Skolnick, J. (2008). M-TASSER: an algorithm for protein quaternary structure 
prediction. Biophys J 94, 918-928. 

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., and Thompson, 
J.D. (2003). Multiple sequence alignment with the Clustal series of programs. 
Nucleic Acids Res 31, 3497-3500. 

Clackson, T., and Wells, J.A. (1995). A hot spot of binding energy in a hormone-receptor 
interface. Science 267, 383-386. 

Comeau, S.R., Gatchell, D.W., Vajda, S., and Camacho, C.J. (2004). ClusPro: an automated 
docking and discrimination method for the prediction of protein complexes. 
Bioinformatics 20, 45-50. 

Davis, F.P., and Sali, A. (2005). PIBASE: a comprehensive database of structurally defined 
protein interfaces. Bioinformatics 21, 1901-1907. 

De, S., Krishnadev, O., Srinivasan, N., and Rekha, N. (2005). Interaction preferences across 
protein-protein interfaces of obligatory and non-obligatory components are 
different. BMC Struct Biol 5, 15. 

Dinner, A.R., Sali, A., Smith, L.J., Dobson, C.M., and Karplus, M. (2000). Understanding 
protein folding via free-energy surfaces from theory and experiment. Trends 
Biochem Sci 25, 331-339. 

Dobbins, S.E., Lesk, V.I., and Sternberg, M.J. (2008). Insights into protein flexibility: The 
relationship between normal modes and conformational change upon protein-
protein docking. Proc Natl Acad Sci U S A 105, 10390-10395. 

Eddy, S.R. (1998). Profile hidden Markov models. Bioinformatics 14, 755-763. 
Feliu, E., Aloy, P., and Oliva, B. (2011). On the analysis of protein-protein interactions via 

knowledge-based potentials for the prediction of protein-protein docking. Protein 
Sci. 

Feliu, E., and Oliva, B. (2010). How different from random are docking predictions when 
ranked by scoring functions? Proteins 78, 3376-3385. 

Fernandez-Fuentes, N., Rai, B.K., Madrid-Aliste, C.J., Fajardo, J.E., and Fiser, A. (2007). 
Comparative protein structure modeling by combining multiple templates and 
optimizing sequence-to-structure alignments. Bioinformatics 23, 2558-2565. 

Fornes, O., Aragues, R., Espadaler, J., Marti-Renom, M.A., Sali, A., and Oliva, B. (2009). 
ModLink+: improving fold recognition by using protein-protein interactions. 
Bioinformatics 25, 1506-1512. 

Gabb, H.A., Jackson, R.M., and Sternberg, M.J. (1997). Modelling protein docking using 
shape complementarity, electrostatics and biochemical information. J Mol Biol 272, 
106-120. 

Gao, M., and Skolnick, J. (2010). Structural space of protein-protein interfaces is degenerate, 
close to complete, and highly connected. Proc Natl Acad Sci U S A 107, 22517-22522. 

Garzon, J.I., Lopez-Blanco, J.R., Pons, C., Kovacs, J., Abagyan, R., Fernandez-Recio, J., and 
Chacon, P. (2009). FRODOCK: a new approach for fast rotational protein-protein 
docking. Bioinformatics 25, 2544-2551. 

Guerois, R., Nielsen, J.E., and Serrano, L. (2002). Predicting changes in the stability of 
proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 
320, 369-387. 

Guharoy, M., and Chakrabarti, P. (2005). Conservation and relative importance of residues 
across protein-protein interfaces. Proc Natl Acad Sci U S A 102, 15447-15452. 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

228 

Hwang, H., Pierce, B., Mintseris, J., Janin, J., and Weng, Z. (2008). Protein-protein docking 
benchmark version 3.0. Proteins 73, 705-709. 

Janin, J. (2010). Protein-protein docking tested in blind predictions: the CAPRI experiment. 
Mol Biosyst 6, 2351-2362. 

Jones, D.T. (1999). GenTHREADER: an efficient and reliable protein fold recognition method 
for genomic sequences. J Mol Biol 287, 797-815. 

Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., and Vakser, I.A. 
(1992). Molecular surface recognition: determination of geometric fit between 
proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89, 
2195-2199. 

Keasar, C., and Levitt, M. (2003). A novel approach to decoy set generation: designing a 
physical energy function having local minima with native structure characteristics. 
J Mol Biol 329, 159-174. 

Kelley, L.A., and Sternberg, M.J. (2009). Protein structure prediction on the Web: a case 
study using the Phyre server. Nat Protoc 4, 363-371. 

Keskin, O., Tsai, C.J., Wolfson, H., and Nussinov, R. (2004). A new, structurally 
nonredundant, diverse data set of protein-protein interfaces and its implications. 
Protein Sci 13, 1043-1055. 

Kozakov, D., Brenke, R., Comeau, S.R., and Vajda, S. (2006). PIPER: an FFT-based protein 
docking program with pairwise potentials. Proteins 65, 392-406. 

Lasker, K., Phillips, J.L., Russel, D., Velazquez-Muriel, J., Schneidman-Duhovny, D., Tjioe, 
E., Webb, B., Schlessinger, A., and Sali, A. (2010a). Integrative structure modeling of 
macromolecular assemblies from proteomics data. Mol Cell Proteomics 9, 1689-1702. 

Lasker, K., Sali, A., and Wolfson, H.J. (2010b). Determining macromolecular assembly 
structures by molecular docking and fitting into an electron density map. Proteins 
78, 3205-3211. 

Lasker, K., Topf, M., Sali, A., and Wolfson, H.J. (2009). Inferential optimization for 
simultaneous fitting of multiple components into a CryoEM map of their assembly. 
J Mol Biol 388, 180-194. 

Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. (1996). 
AQUA and PROCHECK-NMR: programs for checking the quality of protein 
structures solved by NMR. J Biomol NMR 8, 477-486. 

Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K., 
Renfrew, P.D., Smith, C.A., Sheffler, W., et al. (2011). ROSETTA3: an object-oriented 
software suite for the simulation and design of macromolecules. Methods Enzymol 
487, 545-574. 

Levinthal, C. (1968). Are there pathways for protein folding? J Chem Phys, 44-45. 
Lu, L., Lu, H., and Skolnick, J. (2002). MULTIPROSPECTOR: an algorithm for the prediction 

of protein-protein interactions by multimeric threading. Proteins 49, 350-364. 
Ma, B., Elkayam, T., Wolfson, H., and Nussinov, R. (2003). Protein-protein interactions: 

structurally conserved residues distinguish between binding sites and exposed 
protein surfaces. Proc Natl Acad Sci U S A 100, 5772-5777. 

Matthews, L.R., Vaglio, P., Reboul, J., Ge, H., Davis, B.P., Garrels, J., Vincent, S., and Vidal, 
M. (2001). Identification of potential interaction networks using sequence-based 
searches for conserved protein-protein interactions or "interologs". Genome Res 11, 
2120-2126. 

Structural Bioinformatics of Proteins:  
Predicting  the Tertiary and Quaternary Structure of Proteins from Sequence 

 

229 

Mintseris, J., Pierce, B., Wiehe, K., Anderson, R., Chen, R., and Weng, Z. (2007). Integrating 
statistical pair potentials into protein complex prediction. Proteins 69, 511-520. 

Moont, G., Gabb, H.A., and Sternberg, M.J. (1999). Use of pair potentials across protein 
interfaces in screening predicted docked complexes. Proteins 35, 364-373. 

Neuvirth, H., Raz, R., and Schreiber, G. (2004). ProMate: a structure based prediction 
program to identify the location of protein-protein binding sites. J Mol Biol 338, 181-
199. 

Nooren, I.M., and Thornton, J.M. (2003). Structural characterisation and functional 
significance of transient protein-protein interactions. J Mol Biol 325, 991-1018. 

Notredame, C., Higgins, D.G., and Heringa, J. (2000). T-Coffee: A novel method for fast and 
accurate multiple sequence alignment. J Mol Biol 302, 205-217. 

Ofran, Y., and Rost, B. (2007). ISIS: interaction sites identified from sequence. Bioinformatics 
23, e13-16. 

Pierce, B., and Weng, Z. (2007). ZRANK: reranking protein docking predictions with an 
optimized energy function. Proteins 67, 1078-1086. 

Ramachandran, G.N., Ramakrishnan, C., and Sasisekharan, V. (1963). Stereochemistry of 
polypeptide chain configurations. J Mol Biol 7, 95-99. 

Ritchie, D.W., and Kemp, G.J. (2000). Protein docking using spherical polar Fourier 
correlations. Proteins 39, 178-194. 

Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Eng 12, 85-94. 
Russell, R.B., and Barton, G.J. (1992). Multiple protein sequence alignment from tertiary 

structure comparison: assignment of global and residue confidence levels. Proteins 
14, 309-323. 

Sali, A. (1995). Modeling mutations and homologous proteins. Curr Opin Biotechnol 6, 437-
451. 

Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., and Karplus, M. (1995). Evaluation of 
comparative protein modeling by MODELLER. Proteins 23, 318-326. 

Shen, Y., Paschalidis, I., Vakili, P., and Vajda, S. (2008). Protein docking by the 
underestimation of free energy funnels in the space of encounter complexes. PLoS 
Comput Biol 4, e1000191. 

Sippl, M.J. (1990). Calculation of conformational ensembles from potentials of mean force. 
An approach to the knowledge-based prediction of local structures in globular 
proteins. J Mol Biol 213, 859-883. 

Sippl, M.J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins 
17, 355-362. 

Stein, A., Russell, R.B., and Aloy, P. (2005). 3did: interacting protein domains of known 
three-dimensional structure. Nucleic Acids Res 33, D413-417. 

Teyra, J., Doms, A., Schroeder, M., and Pisabarro, M.T. (2006). SCOWLP: a web-based 
database for detailed characterization and visualization of protein interfaces. BMC 
Bioinformatics 7, 104. 

Tsai, C.J., Xu, D., and Nussinov, R. (1997). Structural motifs at protein-protein interfaces: 
protein cores versus two-state and three-state model complexes. Protein Sci 6, 1793-
1805. 

Tuncbag, N., Gursoy, A., Guney, E., Nussinov, R., and Keskin, O. (2008). Architectures and 
functional coverage of protein-protein interfaces. J Mol Biol 381, 785-802. 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

228 

Hwang, H., Pierce, B., Mintseris, J., Janin, J., and Weng, Z. (2008). Protein-protein docking 
benchmark version 3.0. Proteins 73, 705-709. 

Janin, J. (2010). Protein-protein docking tested in blind predictions: the CAPRI experiment. 
Mol Biosyst 6, 2351-2362. 

Jones, D.T. (1999). GenTHREADER: an efficient and reliable protein fold recognition method 
for genomic sequences. J Mol Biol 287, 797-815. 

Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., and Vakser, I.A. 
(1992). Molecular surface recognition: determination of geometric fit between 
proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89, 
2195-2199. 

Keasar, C., and Levitt, M. (2003). A novel approach to decoy set generation: designing a 
physical energy function having local minima with native structure characteristics. 
J Mol Biol 329, 159-174. 

Kelley, L.A., and Sternberg, M.J. (2009). Protein structure prediction on the Web: a case 
study using the Phyre server. Nat Protoc 4, 363-371. 

Keskin, O., Tsai, C.J., Wolfson, H., and Nussinov, R. (2004). A new, structurally 
nonredundant, diverse data set of protein-protein interfaces and its implications. 
Protein Sci 13, 1043-1055. 

Kozakov, D., Brenke, R., Comeau, S.R., and Vajda, S. (2006). PIPER: an FFT-based protein 
docking program with pairwise potentials. Proteins 65, 392-406. 

Lasker, K., Phillips, J.L., Russel, D., Velazquez-Muriel, J., Schneidman-Duhovny, D., Tjioe, 
E., Webb, B., Schlessinger, A., and Sali, A. (2010a). Integrative structure modeling of 
macromolecular assemblies from proteomics data. Mol Cell Proteomics 9, 1689-1702. 

Lasker, K., Sali, A., and Wolfson, H.J. (2010b). Determining macromolecular assembly 
structures by molecular docking and fitting into an electron density map. Proteins 
78, 3205-3211. 

Lasker, K., Topf, M., Sali, A., and Wolfson, H.J. (2009). Inferential optimization for 
simultaneous fitting of multiple components into a CryoEM map of their assembly. 
J Mol Biol 388, 180-194. 

Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. (1996). 
AQUA and PROCHECK-NMR: programs for checking the quality of protein 
structures solved by NMR. J Biomol NMR 8, 477-486. 

Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K., 
Renfrew, P.D., Smith, C.A., Sheffler, W., et al. (2011). ROSETTA3: an object-oriented 
software suite for the simulation and design of macromolecules. Methods Enzymol 
487, 545-574. 

Levinthal, C. (1968). Are there pathways for protein folding? J Chem Phys, 44-45. 
Lu, L., Lu, H., and Skolnick, J. (2002). MULTIPROSPECTOR: an algorithm for the prediction 

of protein-protein interactions by multimeric threading. Proteins 49, 350-364. 
Ma, B., Elkayam, T., Wolfson, H., and Nussinov, R. (2003). Protein-protein interactions: 

structurally conserved residues distinguish between binding sites and exposed 
protein surfaces. Proc Natl Acad Sci U S A 100, 5772-5777. 

Matthews, L.R., Vaglio, P., Reboul, J., Ge, H., Davis, B.P., Garrels, J., Vincent, S., and Vidal, 
M. (2001). Identification of potential interaction networks using sequence-based 
searches for conserved protein-protein interactions or "interologs". Genome Res 11, 
2120-2126. 

Structural Bioinformatics of Proteins:  
Predicting  the Tertiary and Quaternary Structure of Proteins from Sequence 

 

229 

Mintseris, J., Pierce, B., Wiehe, K., Anderson, R., Chen, R., and Weng, Z. (2007). Integrating 
statistical pair potentials into protein complex prediction. Proteins 69, 511-520. 

Moont, G., Gabb, H.A., and Sternberg, M.J. (1999). Use of pair potentials across protein 
interfaces in screening predicted docked complexes. Proteins 35, 364-373. 

Neuvirth, H., Raz, R., and Schreiber, G. (2004). ProMate: a structure based prediction 
program to identify the location of protein-protein binding sites. J Mol Biol 338, 181-
199. 

Nooren, I.M., and Thornton, J.M. (2003). Structural characterisation and functional 
significance of transient protein-protein interactions. J Mol Biol 325, 991-1018. 

Notredame, C., Higgins, D.G., and Heringa, J. (2000). T-Coffee: A novel method for fast and 
accurate multiple sequence alignment. J Mol Biol 302, 205-217. 

Ofran, Y., and Rost, B. (2007). ISIS: interaction sites identified from sequence. Bioinformatics 
23, e13-16. 

Pierce, B., and Weng, Z. (2007). ZRANK: reranking protein docking predictions with an 
optimized energy function. Proteins 67, 1078-1086. 

Ramachandran, G.N., Ramakrishnan, C., and Sasisekharan, V. (1963). Stereochemistry of 
polypeptide chain configurations. J Mol Biol 7, 95-99. 

Ritchie, D.W., and Kemp, G.J. (2000). Protein docking using spherical polar Fourier 
correlations. Proteins 39, 178-194. 

Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Eng 12, 85-94. 
Russell, R.B., and Barton, G.J. (1992). Multiple protein sequence alignment from tertiary 

structure comparison: assignment of global and residue confidence levels. Proteins 
14, 309-323. 

Sali, A. (1995). Modeling mutations and homologous proteins. Curr Opin Biotechnol 6, 437-
451. 

Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., and Karplus, M. (1995). Evaluation of 
comparative protein modeling by MODELLER. Proteins 23, 318-326. 

Shen, Y., Paschalidis, I., Vakili, P., and Vajda, S. (2008). Protein docking by the 
underestimation of free energy funnels in the space of encounter complexes. PLoS 
Comput Biol 4, e1000191. 

Sippl, M.J. (1990). Calculation of conformational ensembles from potentials of mean force. 
An approach to the knowledge-based prediction of local structures in globular 
proteins. J Mol Biol 213, 859-883. 

Sippl, M.J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins 
17, 355-362. 

Stein, A., Russell, R.B., and Aloy, P. (2005). 3did: interacting protein domains of known 
three-dimensional structure. Nucleic Acids Res 33, D413-417. 

Teyra, J., Doms, A., Schroeder, M., and Pisabarro, M.T. (2006). SCOWLP: a web-based 
database for detailed characterization and visualization of protein interfaces. BMC 
Bioinformatics 7, 104. 

Tsai, C.J., Xu, D., and Nussinov, R. (1997). Structural motifs at protein-protein interfaces: 
protein cores versus two-state and three-state model complexes. Protein Sci 6, 1793-
1805. 

Tuncbag, N., Gursoy, A., Guney, E., Nussinov, R., and Keskin, O. (2008). Architectures and 
functional coverage of protein-protein interfaces. J Mol Biol 381, 785-802. 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

230 

Tuncbag, N., Kar, G., Keskin, O., Gursoy, A., and Nussinov, R. (2009). A survey of available 
tools and web servers for analysis of protein-protein interactions and interfaces. 
Brief Bioinform 10, 217-232. 

Vajda, S., and Kozakov, D. (2009). Convergence and combination of methods in protein-
protein docking. Curr Opin Struct Biol 19, 164-170. 

Wass, M.N., Fuentes, G., Pons, C., Pazos, F., and Valencia, A. (2011). Towards the prediction 
of protein interaction partners using physical docking. Molecular systems biology 7, 
469. 

Watson, J.D., Laskowski, R.A., and Thornton, J.M. (2005). Predicting protein function from 
sequence and structural data. Curr Opin Struct Biol 15, 275-284. 

Winter, C., Henschel, A., Kim, W.K., and Schroeder, M. (2006). SCOPPI: a structural 
classification of protein-protein interfaces. Nucleic Acids Res 34, D310-314. 

Wodak, S.J., and Janin, J. (1978). Computer analysis of protein-protein interaction. J Mol Biol 
124, 323-342. 

11 

Computational Approaches to  
Predict Protein Interaction 

Darby Tien-Hao Chang 
National Cheng Kung University 

Taiwan 

1. Introduction 
Recently there have been large advances in high-throughput experimental approaches to 
identifying protein interactions. However, these experimental verified interactions still 
account for a small proportion of the complete interaction network. For example, based on 
current understanding (Stumpf, Thorne et al. 2008), less than 10% of interactions of the 
human protein interaction network (PIN) are identified and collected in the Human 
Protein Reference Database (HPRD) (Peri, Navarro et al. 2003; Stumpf, Thorne et al. 2008). 
The low coverage can be complemented by the computational approaches methods to 
predict protein interaction. This chapter describes approaches based on different 
biological observations and/or different computational techniques. Another focus of this 
chapter is to highlight the importance of creating a benchmark - especially negative 
samples since there are very limited techniques developed to confirm that two proteins do 
not interact (Doerr 2010; Smialowski, Pagel et al. 2010) - in evaluating computational 
approaches. 

Computational methods can be roughly divided into two categories. Methods in the first 
category utilize the observation that functionally related proteins have patterns of co-
occurrence, such as co-evolution or co-expression; while methods in the second category 
compile proteins into features potentially related to protein interaction, such as protein 
surface area, and resort to machine learning (ML) techniques for prediction. Different co-
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occurrence is observed and in the implementation details to record the co-occurrence. For 
example, Salgado et al. suggested that some related genes are close in genome to make the 
transcription more efficient (Salgado, Moreno-Hagelsieb et al. 2000). Methods based on this 
observation utilize co-localization in genome and could, for example, use the distance 
between two genes to record the co-occurrence. Section 2 will introduce seven categories of 
co-occurrence as follows. 

1. Genomic location—some genes producing proteins that will interact are close in 
genome to facilitate transcription; 

2. Cellular compartment—interacting proteins should appear in the same area in a cell to 
interact, another co-localization pattern which consider the cellular location; 
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1. Introduction 
Recently there have been large advances in high-throughput experimental approaches to 
identifying protein interactions. However, these experimental verified interactions still 
account for a small proportion of the complete interaction network. For example, based on 
current understanding (Stumpf, Thorne et al. 2008), less than 10% of interactions of the 
human protein interaction network (PIN) are identified and collected in the Human 
Protein Reference Database (HPRD) (Peri, Navarro et al. 2003; Stumpf, Thorne et al. 2008). 
The low coverage can be complemented by the computational approaches methods to 
predict protein interaction. This chapter describes approaches based on different 
biological observations and/or different computational techniques. Another focus of this 
chapter is to highlight the importance of creating a benchmark - especially negative 
samples since there are very limited techniques developed to confirm that two proteins do 
not interact (Doerr 2010; Smialowski, Pagel et al. 2010) - in evaluating computational 
approaches. 

Computational methods can be roughly divided into two categories. Methods in the first 
category utilize the observation that functionally related proteins have patterns of co-
occurrence, such as co-evolution or co-expression; while methods in the second category 
compile proteins into features potentially related to protein interaction, such as protein 
surface area, and resort to machine learning (ML) techniques for prediction. Different co-
occurrence-based methods are distinct in where, namely which biological properties, the co-
occurrence is observed and in the implementation details to record the co-occurrence. For 
example, Salgado et al. suggested that some related genes are close in genome to make the 
transcription more efficient (Salgado, Moreno-Hagelsieb et al. 2000). Methods based on this 
observation utilize co-localization in genome and could, for example, use the distance 
between two genes to record the co-occurrence. Section 2 will introduce seven categories of 
co-occurrence as follows. 

1. Genomic location—some genes producing proteins that will interact are close in 
genome to facilitate transcription; 

2. Cellular compartment—interacting proteins should appear in the same area in a cell to 
interact, another co-localization pattern which consider the cellular location; 
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3. Phylogenetic tree—if one protein was mutated in evolution, its cooperating protein 
should have a corresponding mutation to keep their interaction/function and thus the 
species survival, i.e. cooperating proteins should have similar phylogenetic trees; 

4. Existence in close species—if two proteins co-work for a function to a species, then the 
species will have both of them, otherwise the species will have none of them, i.e. some 
related proteins are present in/absent from species together; 

5. Interacting domains—interacting proteins usually have complementary parts of a 
interacting domain pair; 

6. Literature—related proteins, since there must be some papers describing their relations, 
are prone to be mentioned together in literature, as opposed to other proteins existing 
only in articles describing their individual characteristics; 

7. Gene fusion—some interacting proteins whose homologues form a fused protein chain, 
a special biological phenomenon named Rosetta Stone protein. 

Different ML-based (or feature-based) methods, however, may share partial features to 
previous studies but develop new features at the same time. This led to more complicated 
relations than that among co-occurrence-based methods. For example, Shen et al. (Shen, 
Zhang et al. 2007) proposed to use a composition of short sequences as protein features and 
a following work by Chang et al. (Chang, Syu et al. 2010) combined these features with 
protein surface information. In addition to the overlap of features among different ML-
based methods, they may use identical or different ML techniques. Using the two ML-based 
methods as an example, Shen et al. chose the widely used support vector machine (SVM) 
(Vapnik and Vapnik 1998), while Chang et al. used a relaxed variable kernel density 
estimator (RVKDE) (Oyang, Hwang et al. 2005) developed by their group. Thus to keep the 
description structure compact, we will focus on the features in section 3. We will provide 
only a minimum introduction to several well-known ML techniques in section 4 since they 
are beyond the scope of this chapter. Knowing the concepts of these ML techniques may 
help to understand the design of different ML-based PPI predictors and to select 
appropriate features. This chapter roughly divides features into four categories. 

1. Sequence information—many studies extracted features only from protein sequences. 
Methods using only such features are very challenging but provide much applicability. 
Some derived features such as protein polarity (by summing the polarity index of its 
amino acids) are also included in this category. 

2. Evolution information—features involving alignment with other sequences fall into 
this category. Methods using such features usually require a collection of protein 
sequences of many species. 

3. Structure information—methods of this category can perform geometry and even 
energy analyses. Many useful features such as protein surface, secondary structure and 
binding affinity can be derived. These methods are usually time-consuming, where 
researchers will expect to obtain extremely accurate predictions. 

4. Auxiliary information—some studies used auxiliary information such as function 
annotation. These studies usually used such features to analyze rather than to predict 
protein interactions, since some features were manually curated. It was hard to perform 
a fair comparison with other methods not using such features. 

After the features used in recent ML-based methods there is an introduction to three well-
known ML techniques. 
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1. Decision tree—a time-honored tool, which is less accurate than modern ML tools but 
preferred by many biologists because its learning model is more interpretable to 
human; 

2. SVM—a state-of-the-art tool that overwhelmingly prevails in the field of computational 
biology because of its accuracy; 

3. RVKDE—another modern ML tool that solves the most critical problem of SVM, 
unacceptable execution time on large data, by slightly sacrificing accuracy. 

This chapter ends up with the important issue of computational approaches - evaluation. 
Computational approaches of identifying protein interactions have a fateful difference to 
experimental approaches. That is, their results are considered as “prediction” rather than the 
answer. So it is an inevitable step for the studies of computational methods that they must 
test their algorithms and report the prediction accuracy compared to a benchmark with the 
answers already known. 

As a summary, this chapter will first introduce the concept of co-occurrence pattern and the 
implementation details of some co-occurrence-based methods. For the ML-based methods, 
this chapter focuses on the features and a little on the ML techniques. Finally, three 
contradictions are used to describe to readers the importance of evaluating these 
computational methods and explain how to interpret the accuracy they see in literature. 

2. Co-occurrence-based approaches 
This section introduces seven concepts of co-occurrence patterns that have been adopted to 
predict protein interactions. An identical concept, based on the available materials, may 
have different implementation details. In this section, the concept of each co-occurrence 
pattern is first introduced followed by the implementation details of several methods as 
examples of that co-occurrence pattern. 

2.1 Genomic location 

The advance of sequencing leads to the opportunity not only of identifying the genomic 
locations of genes, but also of analyzing genomic context to predict interactions between 
genes (Huynen and Snel 2000). The genomic location, also known as genomic context, co-
occurrence pattern relies on the fact that operons and some adjacent genes are likely to 
encode functionally related proteins (Rogozin, Makarova et al. 2002). Huynen and Snel 
proposed a method to assess the probability that two genes occur as neighbours in a 
genome only by chance (Huynen and Snel 2000). They randomized the genes in each 
genome over the loci in that genome. The expected number of the co-occurrences of two 
genes, namely those that occur as neighbours, in the randomized genomes was less than 
one. A functional interaction between genes was inferred if the observed number of co-
occurrences is significantly higher than the expectation. Rogozin et al. proposed a 
procedure to compare the orders of orthologous genes (Rogozin, Makarova et al. 2002). 
They clustered genes into orthologous groups which were then projected onto genomes to 
identify the neighborhood genes. The results show that the gene neighbours have good 
functional coherence. 
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are prone to be mentioned together in literature, as opposed to other proteins existing 
only in articles describing their individual characteristics; 

7. Gene fusion—some interacting proteins whose homologues form a fused protein chain, 
a special biological phenomenon named Rosetta Stone protein. 
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previous studies but develop new features at the same time. This led to more complicated 
relations than that among co-occurrence-based methods. For example, Shen et al. (Shen, 
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protein surface information. In addition to the overlap of features among different ML-
based methods, they may use identical or different ML techniques. Using the two ML-based 
methods as an example, Shen et al. chose the widely used support vector machine (SVM) 
(Vapnik and Vapnik 1998), while Chang et al. used a relaxed variable kernel density 
estimator (RVKDE) (Oyang, Hwang et al. 2005) developed by their group. Thus to keep the 
description structure compact, we will focus on the features in section 3. We will provide 
only a minimum introduction to several well-known ML techniques in section 4 since they 
are beyond the scope of this chapter. Knowing the concepts of these ML techniques may 
help to understand the design of different ML-based PPI predictors and to select 
appropriate features. This chapter roughly divides features into four categories. 

1. Sequence information—many studies extracted features only from protein sequences. 
Methods using only such features are very challenging but provide much applicability. 
Some derived features such as protein polarity (by summing the polarity index of its 
amino acids) are also included in this category. 

2. Evolution information—features involving alignment with other sequences fall into 
this category. Methods using such features usually require a collection of protein 
sequences of many species. 

3. Structure information—methods of this category can perform geometry and even 
energy analyses. Many useful features such as protein surface, secondary structure and 
binding affinity can be derived. These methods are usually time-consuming, where 
researchers will expect to obtain extremely accurate predictions. 

4. Auxiliary information—some studies used auxiliary information such as function 
annotation. These studies usually used such features to analyze rather than to predict 
protein interactions, since some features were manually curated. It was hard to perform 
a fair comparison with other methods not using such features. 

After the features used in recent ML-based methods there is an introduction to three well-
known ML techniques. 
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1. Decision tree—a time-honored tool, which is less accurate than modern ML tools but 
preferred by many biologists because its learning model is more interpretable to 
human; 

2. SVM—a state-of-the-art tool that overwhelmingly prevails in the field of computational 
biology because of its accuracy; 

3. RVKDE—another modern ML tool that solves the most critical problem of SVM, 
unacceptable execution time on large data, by slightly sacrificing accuracy. 

This chapter ends up with the important issue of computational approaches - evaluation. 
Computational approaches of identifying protein interactions have a fateful difference to 
experimental approaches. That is, their results are considered as “prediction” rather than the 
answer. So it is an inevitable step for the studies of computational methods that they must 
test their algorithms and report the prediction accuracy compared to a benchmark with the 
answers already known. 

As a summary, this chapter will first introduce the concept of co-occurrence pattern and the 
implementation details of some co-occurrence-based methods. For the ML-based methods, 
this chapter focuses on the features and a little on the ML techniques. Finally, three 
contradictions are used to describe to readers the importance of evaluating these 
computational methods and explain how to interpret the accuracy they see in literature. 

2. Co-occurrence-based approaches 
This section introduces seven concepts of co-occurrence patterns that have been adopted to 
predict protein interactions. An identical concept, based on the available materials, may 
have different implementation details. In this section, the concept of each co-occurrence 
pattern is first introduced followed by the implementation details of several methods as 
examples of that co-occurrence pattern. 

2.1 Genomic location 

The advance of sequencing leads to the opportunity not only of identifying the genomic 
locations of genes, but also of analyzing genomic context to predict interactions between 
genes (Huynen and Snel 2000). The genomic location, also known as genomic context, co-
occurrence pattern relies on the fact that operons and some adjacent genes are likely to 
encode functionally related proteins (Rogozin, Makarova et al. 2002). Huynen and Snel 
proposed a method to assess the probability that two genes occur as neighbours in a 
genome only by chance (Huynen and Snel 2000). They randomized the genes in each 
genome over the loci in that genome. The expected number of the co-occurrences of two 
genes, namely those that occur as neighbours, in the randomized genomes was less than 
one. A functional interaction between genes was inferred if the observed number of co-
occurrences is significantly higher than the expectation. Rogozin et al. proposed a 
procedure to compare the orders of orthologous genes (Rogozin, Makarova et al. 2002). 
They clustered genes into orthologous groups which were then projected onto genomes to 
identify the neighborhood genes. The results show that the gene neighbours have good 
functional coherence. 
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2.2 Cellular compartment 

Proteins that occur in different cellular compartments are, in principle, considered not to 
interact since they do not have the chance to meet. However, some in vitro experiments 
such as tandem affinity purification-mass spectroscopy (TAP-MS) method (Krogan, 
Cagney et al. 2006), might report such interactions of two proteins in different cellular 
compartments. It is difficult to determine if these in vitro interactions are correct. Thus, 
this co-occurrence pattern is usually used to increase the prediction reliability of another 
method or to generate a reliable benchmark rather than an individual interaction 
predictor. For example, the Eukaryotic Linear Motif (ELM) server used cellular 
compartment information as a filter to double-check gene function (Davey, Van Roey et 
al. 2011). The gene function, represented by its Gene Ontology (GO) terms (Ashburner, 
Ball et al. 2000), was required to be consistent with its cellular compartment. Guo et al. 
used cellular compartment information to build the negative data of protein interaction 
(Guo, Yu et al. 2008). They assumed that proteins that occur in different cellular 
compartments do not interact. They grouped proteins into eight subsets based on the 
eight main types of cellular compartment—cytoplasm, nucleus, mitochondrion, 
endoplasmic reticulum, golgi apparatus, peroxisome, vacuole and cytoplasm and nucleus. 
The negative samples of non-interacting pairs were generated by pairing proteins from 
different subsets. 

2.3 Phylogenetic tree 

The phylogenetic tree was proposed to reflect the evolution information. Thus, the similarity 
between phylogenetic tress provides a good measure of gene co-evolution. Interacting 
proteins usually co-evolve since mutations in one protein led to the loss of function or a 
compensation mutation of the other protein to preserve the interaction (Walhout, Sordella et 
al. 2000). Jothi et al. proposed the MORPH, an algorithm to search the best superimposition 
between evolutionary trees based on the tree automorphism group in 2005 (Jothi, Kann et al. 
2005). The search was done by Monte Carlo algorithm that probes the search space of all 
possible superimpositions, which is computationally intensive. In graph theory, two trees 
are isomorphic if there is a one-to-one mapping between their vertices (genes) and edges 
(interactions). Jothi et al. extended this definition to automorphic whereby a tree is 
isomorphic to itself. The search space was largely reduced to the automorphism group of a 
phylogenetic tree. The same group  proposed another method to assess the degree of co-
evolution of domain pairs in interacting proteins in 2006 (Jothi, Cherukuri et al. 2006). 
Multiple sequence alignments of two proteins/domains to a reference set of genomes were 
used to construct phylogenetic trees and similarity matrices. The degree of co-evolution of 
two domains was then estimated by the correlation coefficient of the two corresponding 
similarity matrices. 

2.4 Existence in close species 

The co-occurrence pattern of the existence in close species, known as phylogenetic profile, is 
based on the fact that functionally related proteins usually co-evolve and have homologues 
in the close genomes (Snitkin, Gustafson et al. 2006). A phylogenetic profile of a gene is a 
vector, representing the presence or absence of homologues to that gene across a collection 
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of reference organisms. There are two major components in a phylogenetic profile-based 
method: i) how to construct a phylogenetic profile of a given gene and ii) how to determine 
the similarity of two phylogenetic profiles. First, the presence or absence of homologues can 
be determined by sequence alignment scores, such as a BLAST (Altschul, Madden et al. 
1997) E-value, with a threshold of presence (Sun, Xu et al. 2005). Such binary vectors were 
improved as real valued vectors of normalized alignment scores without arbitrarily 
determining a score threshold (Enault, Suhre et al. 2003). Second, any similarity or distance 
function between two vectors can be used to define the similarity of two phylogenetic 
profile vectors. Enault et al. have examined two Euclidean-like distance funtions and 
another two correlation coefficient variants (Enault, Suhre et al. 2003). They concluded that 
inner product, shown as follows, is a good indicator in predicting Escherichia coli protein 
interactions. 
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2.5 Interacting domains 

Proteins usually depend on a short sequence of residues to perform interactions with other 
molecules. The functional short sequences between two interacting proteins form the contact 
interfaces, also known as interaction sites (Sheu, Lancia et al. 2005). These interaction sites are 
usually represented by domains/motifs. Li et al. proposed a method to detect interaction sites, 
which required only protein sequences (Li, Li et al. 2006). They developed an efficient itemset 
mining algorithm that can identify the most conserved motifs within two interacting protein 
groups. Here interacting protein groups indicate two groups, A and B, of proteins where all 
proteins in group A interact with all proteins in group B, denoted an all-versus-all interaction 
network. The conserved motifs within group A were considered, in principle, related to the 
conserved motifs within group B. The identified interacting motif pairs can be then used to 
predict novel interacting proteins. Tan et al. proposed a method, D-STAR to find correlated 
motifs that were overrepresented in interacting protein pairs (Tan, Hugo et al. 2006). The basic 
idea of D-STAR is to check all possible (l, d)-motif pairs, where (l, d) indicate an alignment of 
length l with at most d mismatches. Tan et al. speeded up the brute force procedure by 
transforming the problem into a clique-finding problem (Pevzner and Sze 2000). 

2.6 Literature 

Owing to the advance of Internet technologies, the scale of public accessible biomedical 
literature has increased astonishingly in the last decade. Text mining tools are critical to 
maximize the usage of such a large-scale knowledge base. Extracting protein interactions 
from literature is generally categorized as relationship mining, which aims to detect co-
occurrences of a pair of entities of specific types (such as gene, protein, drug or disease) to a 
pre-specied relationship (such as interact, regulate, activate or inhibit) in the same article 
(Cohen and Hersh 2005). Albert et al. proposed a method to retrieve abstracts reporting 
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2.2 Cellular compartment 

Proteins that occur in different cellular compartments are, in principle, considered not to 
interact since they do not have the chance to meet. However, some in vitro experiments 
such as tandem affinity purification-mass spectroscopy (TAP-MS) method (Krogan, 
Cagney et al. 2006), might report such interactions of two proteins in different cellular 
compartments. It is difficult to determine if these in vitro interactions are correct. Thus, 
this co-occurrence pattern is usually used to increase the prediction reliability of another 
method or to generate a reliable benchmark rather than an individual interaction 
predictor. For example, the Eukaryotic Linear Motif (ELM) server used cellular 
compartment information as a filter to double-check gene function (Davey, Van Roey et 
al. 2011). The gene function, represented by its Gene Ontology (GO) terms (Ashburner, 
Ball et al. 2000), was required to be consistent with its cellular compartment. Guo et al. 
used cellular compartment information to build the negative data of protein interaction 
(Guo, Yu et al. 2008). They assumed that proteins that occur in different cellular 
compartments do not interact. They grouped proteins into eight subsets based on the 
eight main types of cellular compartment—cytoplasm, nucleus, mitochondrion, 
endoplasmic reticulum, golgi apparatus, peroxisome, vacuole and cytoplasm and nucleus. 
The negative samples of non-interacting pairs were generated by pairing proteins from 
different subsets. 

2.3 Phylogenetic tree 

The phylogenetic tree was proposed to reflect the evolution information. Thus, the similarity 
between phylogenetic tress provides a good measure of gene co-evolution. Interacting 
proteins usually co-evolve since mutations in one protein led to the loss of function or a 
compensation mutation of the other protein to preserve the interaction (Walhout, Sordella et 
al. 2000). Jothi et al. proposed the MORPH, an algorithm to search the best superimposition 
between evolutionary trees based on the tree automorphism group in 2005 (Jothi, Kann et al. 
2005). The search was done by Monte Carlo algorithm that probes the search space of all 
possible superimpositions, which is computationally intensive. In graph theory, two trees 
are isomorphic if there is a one-to-one mapping between their vertices (genes) and edges 
(interactions). Jothi et al. extended this definition to automorphic whereby a tree is 
isomorphic to itself. The search space was largely reduced to the automorphism group of a 
phylogenetic tree. The same group  proposed another method to assess the degree of co-
evolution of domain pairs in interacting proteins in 2006 (Jothi, Cherukuri et al. 2006). 
Multiple sequence alignments of two proteins/domains to a reference set of genomes were 
used to construct phylogenetic trees and similarity matrices. The degree of co-evolution of 
two domains was then estimated by the correlation coefficient of the two corresponding 
similarity matrices. 

2.4 Existence in close species 

The co-occurrence pattern of the existence in close species, known as phylogenetic profile, is 
based on the fact that functionally related proteins usually co-evolve and have homologues 
in the close genomes (Snitkin, Gustafson et al. 2006). A phylogenetic profile of a gene is a 
vector, representing the presence or absence of homologues to that gene across a collection 
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of reference organisms. There are two major components in a phylogenetic profile-based 
method: i) how to construct a phylogenetic profile of a given gene and ii) how to determine 
the similarity of two phylogenetic profiles. First, the presence or absence of homologues can 
be determined by sequence alignment scores, such as a BLAST (Altschul, Madden et al. 
1997) E-value, with a threshold of presence (Sun, Xu et al. 2005). Such binary vectors were 
improved as real valued vectors of normalized alignment scores without arbitrarily 
determining a score threshold (Enault, Suhre et al. 2003). Second, any similarity or distance 
function between two vectors can be used to define the similarity of two phylogenetic 
profile vectors. Enault et al. have examined two Euclidean-like distance funtions and 
another two correlation coefficient variants (Enault, Suhre et al. 2003). They concluded that 
inner product, shown as follows, is a good indicator in predicting Escherichia coli protein 
interactions. 
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2.5 Interacting domains 

Proteins usually depend on a short sequence of residues to perform interactions with other 
molecules. The functional short sequences between two interacting proteins form the contact 
interfaces, also known as interaction sites (Sheu, Lancia et al. 2005). These interaction sites are 
usually represented by domains/motifs. Li et al. proposed a method to detect interaction sites, 
which required only protein sequences (Li, Li et al. 2006). They developed an efficient itemset 
mining algorithm that can identify the most conserved motifs within two interacting protein 
groups. Here interacting protein groups indicate two groups, A and B, of proteins where all 
proteins in group A interact with all proteins in group B, denoted an all-versus-all interaction 
network. The conserved motifs within group A were considered, in principle, related to the 
conserved motifs within group B. The identified interacting motif pairs can be then used to 
predict novel interacting proteins. Tan et al. proposed a method, D-STAR to find correlated 
motifs that were overrepresented in interacting protein pairs (Tan, Hugo et al. 2006). The basic 
idea of D-STAR is to check all possible (l, d)-motif pairs, where (l, d) indicate an alignment of 
length l with at most d mismatches. Tan et al. speeded up the brute force procedure by 
transforming the problem into a clique-finding problem (Pevzner and Sze 2000). 

2.6 Literature 

Owing to the advance of Internet technologies, the scale of public accessible biomedical 
literature has increased astonishingly in the last decade. Text mining tools are critical to 
maximize the usage of such a large-scale knowledge base. Extracting protein interactions 
from literature is generally categorized as relationship mining, which aims to detect co-
occurrences of a pair of entities of specific types (such as gene, protein, drug or disease) to a 
pre-specied relationship (such as interact, regulate, activate or inhibit) in the same article 
(Cohen and Hersh 2005). Albert et al. proposed a method to retrieve abstracts reporting 
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nuclear receptors (NRs) (Albert, Gaudan et al. 2003). The retrieved data were reviewed 
manually. Albert et al. generated a dictionary focusing on NRs, cofactors and other NR-
binding proteins of human, mouse and rat. The extraction process as follows was performed 
on MEDLINE abstracts: i) identify abstracts with at least one NR in the generated dictionary, 
ii) tag entities (proteins) and relationships (interactions) according to the generated 
dictionary and iii) extract sentences contains two tagged proteins and a tagged interaction. 
In the current genomic era, the text-minded information is widely applied in database 
annotation. Many popular protein interaction databases such the Database of Interacting 
Proteins (DIP) database (Salwinski, Miller et al. 2004) and the Search Tool for the Retrieval 
of Interacting Genes (STRING) database (Szklarczyk, Franceschini et al. 2011) included 
automatically extracted literature information as an additional line of evidence. 

2.7 Gene fusion 

Gene fusion is a special genomic organization whereby some interacting proteins have 
orthologues in the close genomes fused as a single protein (Enright, Iliopoulos et al. 1999). The 
fused protein is usually called a Rosetta Stone protein, thus this method is sometime called the 
Rosetta Stone method. This genomic organization of gene fusion is formed for efficiently 
transcribing related genes together, thus it is preserved evolutionarily. Marcotte et al. applied 
the gene fusion method on Escherichia coli (Marcotte, Pellegrini et al. 1999). They identified 
6,809 protein pairs of which both protein sequences were significantly similar to the same 
protein sequence of at least a genome. More than half of these 6,809 protein pairs have been 
shown to be related. This method, unlike previous co-occurrence patterns, is a very specific 
genomic organization rather than a concept of co-occurrence. Thus, there is very limited space 
for the algorithm development and implementation details. For any new genome, researchers 
can always search for Rosetta Stone proteins first. But other methods are required since many 
interacting proteins are not Rosetta Stone proteins. For example, in the DIP database that 
deposits experimentally confirmed protein interactions, only 6.4% interacting protein pairs 
formed Rosetta Stone proteins (Shoemaker and Panchenko 2007). 

3. Machine learning-based approaches 
This chapter roughly divides features into four categories: sequential, evolutionary, 
structural and other. Note that the power of ML tools allows researchers to submit any 
features, with or without obvious biological glues to protein interaction, into a magical black 
box and wait for the prediction without knowing how the prediction was made. For 
example, amino acid composition (20 features) and number of search results in PubMed can 
be used as features. Namely, each co-occurrence pattern can be used as a feature—the only 
thing to do is designing a rule to record the pattern with one or more real numbers. So in 
this chapter we only demonstrate several features that have been shown to help the 
prediction accuracy in published articles, but cannot list all features in a category. 

3.1 Sequence information 

One of the most widely used data to encode proteins is their primary sequence. Methods 
that only rely on protein sequences have a great advantage of the wide applicability. 
Because such methods do not rely on other information, they are sometime called de novo (ab 
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initio) predictors of protein interaction. Yu et al. proposed a method that encoded protein 
sequences as feature vectors by considering the amino acid triads observed in it (Yu, Chou 
et al. 2010). An amino acid triad regards three continuous residues as a unit. However, 
considering all 203 amino acid triads requires an 8000-dimensional feature vector to 
represent a protein, which is too large for contemporary machine learning tools. Thus, the 20 
amino acid types were clustered into seven groups based on their dipole strength and side 
chain volumes to reduce the dimensions of the feature vector (Shen, Zhang et al. 2007). The 
frequencies of the 73 = 343 triads can be used to encode a protein sequence. However, such a 
frequency is highly correlated to the distribution of amino acids. To overcome this problem, 
Yu et al. proposed a significance calculation by answering the question: how rare is the 
number of observed occurrences considering the amino acid composition of the protein? 
The significances of all triads were used to encode protein sequences. 

Methods based on sequence motifs/domains also fall into this category since sequence 
motifs are mined from protein sequences. One may notice that the co-occurrence-based 
methods mentioned in subsection 2.5 used similar features. In this regard, the co-
occurrence-based methods use domain as features with a straightforward rule: if two 
proteins have interacting domains, then they are predicted as interacting. On the other 
hand, ML-based methods use domain as features but resort to ML tools for the final 
decision/prediction. Depending on the ML tools used, the decision rules could be very 
complicated models of, for example, non-linear equations or a combination of multiple 
individual components (it could be a ‘sum’ of multiple functions). Dijk et al. proposed a ML-
based method to select relevant motifs from a set of pre-mined motifs (Van Dijk, Ter Braak 
et al. 2008). They first invoked the D-STAR (Tan, Hugo et al. 2006) algorithm to identify 
correlated motifs that overrepresented in interacting protein pairs. The vector of the 
presence or absence of the identified motif pairs were used to encode proteins. 

3.2 Evolution information 

Methods that require not only the sequences of the query protein pairs but also a collection 
of supporting sequences fall into this category. The supporting collection is usually from 
other species for calculating the conservation score. Position-specific scoring matrix (PSSM) 
is a widely used scheme to encode a protein sequence while considering its orthologues. For 
a protein sequence, PSSM describes the likelihood of a particular residue substitution at a 
specific position based on evolutionary information (Altschul, Madden et al. 1997). It is 
outputted by BLAST when aligning the query protein seuqence to a seqeucne database, e.g. 
the non-redundant (NR) database from National Center for Biotechnology Information 
(NCBI). The likelihood values are scaled to [0,1] using the following logistic function: 

1
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x
x
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where x is the raw value in PSSM profile and x’ is the value corresponding to x after scaling. 
Each position of a protein sequence is represented by a 21-dimensional vector where 20 
elements take the likelihood values of 20 amino acid types from the scaled PSSM profile and 
the last element is a terminal flag. Finally, the feature vector of a residue comprises a 
window of positions. Chang et al. proposed a method based on the assumption that protein 
interactions are more related to amino acids at the surface than those at the core (Chang, Syu 
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nuclear receptors (NRs) (Albert, Gaudan et al. 2003). The retrieved data were reviewed 
manually. Albert et al. generated a dictionary focusing on NRs, cofactors and other NR-
binding proteins of human, mouse and rat. The extraction process as follows was performed 
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ii) tag entities (proteins) and relationships (interactions) according to the generated 
dictionary and iii) extract sentences contains two tagged proteins and a tagged interaction. 
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shown to be related. This method, unlike previous co-occurrence patterns, is a very specific 
genomic organization rather than a concept of co-occurrence. Thus, there is very limited space 
for the algorithm development and implementation details. For any new genome, researchers 
can always search for Rosetta Stone proteins first. But other methods are required since many 
interacting proteins are not Rosetta Stone proteins. For example, in the DIP database that 
deposits experimentally confirmed protein interactions, only 6.4% interacting protein pairs 
formed Rosetta Stone proteins (Shoemaker and Panchenko 2007). 

3. Machine learning-based approaches 
This chapter roughly divides features into four categories: sequential, evolutionary, 
structural and other. Note that the power of ML tools allows researchers to submit any 
features, with or without obvious biological glues to protein interaction, into a magical black 
box and wait for the prediction without knowing how the prediction was made. For 
example, amino acid composition (20 features) and number of search results in PubMed can 
be used as features. Namely, each co-occurrence pattern can be used as a feature—the only 
thing to do is designing a rule to record the pattern with one or more real numbers. So in 
this chapter we only demonstrate several features that have been shown to help the 
prediction accuracy in published articles, but cannot list all features in a category. 

3.1 Sequence information 

One of the most widely used data to encode proteins is their primary sequence. Methods 
that only rely on protein sequences have a great advantage of the wide applicability. 
Because such methods do not rely on other information, they are sometime called de novo (ab 
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initio) predictors of protein interaction. Yu et al. proposed a method that encoded protein 
sequences as feature vectors by considering the amino acid triads observed in it (Yu, Chou 
et al. 2010). An amino acid triad regards three continuous residues as a unit. However, 
considering all 203 amino acid triads requires an 8000-dimensional feature vector to 
represent a protein, which is too large for contemporary machine learning tools. Thus, the 20 
amino acid types were clustered into seven groups based on their dipole strength and side 
chain volumes to reduce the dimensions of the feature vector (Shen, Zhang et al. 2007). The 
frequencies of the 73 = 343 triads can be used to encode a protein sequence. However, such a 
frequency is highly correlated to the distribution of amino acids. To overcome this problem, 
Yu et al. proposed a significance calculation by answering the question: how rare is the 
number of observed occurrences considering the amino acid composition of the protein? 
The significances of all triads were used to encode protein sequences. 

Methods based on sequence motifs/domains also fall into this category since sequence 
motifs are mined from protein sequences. One may notice that the co-occurrence-based 
methods mentioned in subsection 2.5 used similar features. In this regard, the co-
occurrence-based methods use domain as features with a straightforward rule: if two 
proteins have interacting domains, then they are predicted as interacting. On the other 
hand, ML-based methods use domain as features but resort to ML tools for the final 
decision/prediction. Depending on the ML tools used, the decision rules could be very 
complicated models of, for example, non-linear equations or a combination of multiple 
individual components (it could be a ‘sum’ of multiple functions). Dijk et al. proposed a ML-
based method to select relevant motifs from a set of pre-mined motifs (Van Dijk, Ter Braak 
et al. 2008). They first invoked the D-STAR (Tan, Hugo et al. 2006) algorithm to identify 
correlated motifs that overrepresented in interacting protein pairs. The vector of the 
presence or absence of the identified motif pairs were used to encode proteins. 

3.2 Evolution information 

Methods that require not only the sequences of the query protein pairs but also a collection 
of supporting sequences fall into this category. The supporting collection is usually from 
other species for calculating the conservation score. Position-specific scoring matrix (PSSM) 
is a widely used scheme to encode a protein sequence while considering its orthologues. For 
a protein sequence, PSSM describes the likelihood of a particular residue substitution at a 
specific position based on evolutionary information (Altschul, Madden et al. 1997). It is 
outputted by BLAST when aligning the query protein seuqence to a seqeucne database, e.g. 
the non-redundant (NR) database from National Center for Biotechnology Information 
(NCBI). The likelihood values are scaled to [0,1] using the following logistic function: 
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where x is the raw value in PSSM profile and x’ is the value corresponding to x after scaling. 
Each position of a protein sequence is represented by a 21-dimensional vector where 20 
elements take the likelihood values of 20 amino acid types from the scaled PSSM profile and 
the last element is a terminal flag. Finally, the feature vector of a residue comprises a 
window of positions. Chang et al. proposed a method based on the assumption that protein 
interactions are more related to amino acids at the surface than those at the core (Chang, Syu 
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et al.). They first used PSSM to encode protein sequences for surface prediction and then 
used the surface sequence for interaction prediction. 

Espadaler et al. proposed a method that made use of conservation of protein pairs 
(Espadaler, Romero-Isart et al. 2005). They first collected 855 protein complexes with known 
three-dimensional structure with <80% sequence identity. The 855 complexes were further 
classified into 16 groups. In a protein complex, the distance between a residue pair from two 
proteins was defined as the distance of the nearest heavy atoms of the two residues. Via 
setting a cut-off of the contact distance, one can identify the interface of two proteins in 
these complexes. These identified interfaces were actually unordered sequence fragments, 
among which Espadaler et al. dened more than five contiguous residues a patch. The 
conservation of the patches obtained by multiple sequence alignment was considered to 
select the final patches. These conserved structural patch pairs can be used to predict novel 
protein interactions. Notice that this method proposed by Espadaler et al. also used the 
structure information which will be introduced in the next subsection. This also reveals that 
with the ML tools, combining multiple resources becomes relatively easy since it is no 
longer dependent on a single co-occurrence pattern. 

3.3 Structure information 

The most critical problem of sequence-based methods is the reliability. Conversely, 
researchers usually resort to structure-based methods for verification since the results 
delivered by structure-based methods can be visualized. Aloy and Russell proposed a 
method to detect interactions based on protein tertiary structures. They used empirical 
potentials to compute the fitness between two protein structures. Thus, success of such a 
method is highly dependent on the performance of the underlying potential function. The 
adopted potential function did not rely on model proteins, which enlarges its applicability. 
Aloy and Russell defined interacting residues as those having at least one i) hydrogen bonds 
(N—O distances ≤ 3.5 Å), salt bridges (N—O distances ≤ 5.5 Å), or van de Waals interactions 
(C—C distances ≤ 5 Å). Buried side-chains were excluded by filtering out residues with 
relative accessibility ≥10%. The identified interacting residues were used to train the 
empirical potentials based on a molar-fraction random state model as follows: 
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where a and b are amino acid types, Oab and Eab are the number of observed/expected 
contacts, N is the number of analyzed residue pairs and na and nb are number of residues of 
the corresponding types. The method of Aloy and Russell provided ranks of analyzed 
protein pairs so that researchers can pick the most promising prediction for further 
biological experiments. 

3.4 Auxiliary information 

Important data that is not mentioned above is microarray data, which has been broadly 
utilized in various biomedical problems. The Gene Expression Omnibus (GEO) database 
(Barrett, Troup et al. 2006) of NCBI holds more than 20 thousands microarray experiments. 
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A problem of microarray data is that they are usually full of noises. Soong et al. used 
principal component analysis (PCA) to reduce such noises (Soong, Wrzeszczynski et al. 
2008). PCA is a statistical technique used to find hidden factors from observed factors, 
expression values in this case. Lee and Batzoglou have shown that proteins with extreme 
principal components are prone to participate in relevant biological processes (Lee and 
Batzoglou 2003). The transformation of expression values to principal components can be 
represented as follows: 

PX Y= , 

where P is a l × m transformation matrix obtained by PCA, X is a m × n matrix of the raw 
expression values from m microarrays and n samples while Y is a l × n matrix containing 
every sample’s l principal components. The final feature vector of two proteins a and b was 
the concatenation of a’s principal components, b’s principal components and the Pearson 
correlation of both. 

This section ends with a method based on literature data, which has been discussed in 
subsection 2.6. Demonstrating literature data in a ML-based method is to reinforce the 
impression that in principle any data can be used as features with appropriate encoding 
schemes. Thus, one can consider combining any of the features discussed in section 2 with 
ML-based tools. Donaldson et al. proposed an extraction procedure for identifying protein 
interactions in literature (Donaldson, Martin et al. 2003). They first used a parser to collect 
synonyms for proteins and their encoding loci. The collected protein names were then used 
to search the title and abstract of articles in the PubMed literature database. An article was 
encoded by terms it contained. The weight of each term was the tf-idf score (term frequency-
inverse document frequency), where term frequency is the number of occurrences of the 
term in the document and inverse document frequency is the inverse of the number of 
documents having the term. Here a term was a word or two adjacent words (usually called 
2-gram) that appear in at least three documents. 

4. Machine learning techniques 
After encoding proteins into feature vectors, the next step is to choose a ML tool to generate 
a model describing these feature vectors. The generated model can be used to predict novel 
protein interactions. Most ML tools provide a user-friendly interface, where all that 
researchers need to do is encode their data. The remaining task is very trivial: i) a command 
to train the model and ii) a command to predict with the trained model. In this regard, 
researchers who want to adopt ML-based methods can focus on features without caring 
about the ML algorithms. This section briefly lists three ML algorithms that have been used 
in recent studies of protein interaction, which can be considered as a basic introduction for 
researchers who have no idea how to choose an appropriate ML tool. 

4.1 Decision tree 

Decision trees are usually constructed recursively (Witten, Frank et al. 2011). The first step is 
to select a feature to split samples (branch the decision tree) based on the selected feature. 
This step divides the original dataset into several disjointed subsets, each of them can be 
considered as another dataset. Thus, the same procedure can be applied recursively to each 
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et al.). They first used PSSM to encode protein sequences for surface prediction and then 
used the surface sequence for interaction prediction. 

Espadaler et al. proposed a method that made use of conservation of protein pairs 
(Espadaler, Romero-Isart et al. 2005). They first collected 855 protein complexes with known 
three-dimensional structure with <80% sequence identity. The 855 complexes were further 
classified into 16 groups. In a protein complex, the distance between a residue pair from two 
proteins was defined as the distance of the nearest heavy atoms of the two residues. Via 
setting a cut-off of the contact distance, one can identify the interface of two proteins in 
these complexes. These identified interfaces were actually unordered sequence fragments, 
among which Espadaler et al. dened more than five contiguous residues a patch. The 
conservation of the patches obtained by multiple sequence alignment was considered to 
select the final patches. These conserved structural patch pairs can be used to predict novel 
protein interactions. Notice that this method proposed by Espadaler et al. also used the 
structure information which will be introduced in the next subsection. This also reveals that 
with the ML tools, combining multiple resources becomes relatively easy since it is no 
longer dependent on a single co-occurrence pattern. 

3.3 Structure information 

The most critical problem of sequence-based methods is the reliability. Conversely, 
researchers usually resort to structure-based methods for verification since the results 
delivered by structure-based methods can be visualized. Aloy and Russell proposed a 
method to detect interactions based on protein tertiary structures. They used empirical 
potentials to compute the fitness between two protein structures. Thus, success of such a 
method is highly dependent on the performance of the underlying potential function. The 
adopted potential function did not rely on model proteins, which enlarges its applicability. 
Aloy and Russell defined interacting residues as those having at least one i) hydrogen bonds 
(N—O distances ≤ 3.5 Å), salt bridges (N—O distances ≤ 5.5 Å), or van de Waals interactions 
(C—C distances ≤ 5 Å). Buried side-chains were excluded by filtering out residues with 
relative accessibility ≥10%. The identified interacting residues were used to train the 
empirical potentials based on a molar-fraction random state model as follows: 
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where a and b are amino acid types, Oab and Eab are the number of observed/expected 
contacts, N is the number of analyzed residue pairs and na and nb are number of residues of 
the corresponding types. The method of Aloy and Russell provided ranks of analyzed 
protein pairs so that researchers can pick the most promising prediction for further 
biological experiments. 

3.4 Auxiliary information 

Important data that is not mentioned above is microarray data, which has been broadly 
utilized in various biomedical problems. The Gene Expression Omnibus (GEO) database 
(Barrett, Troup et al. 2006) of NCBI holds more than 20 thousands microarray experiments. 
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A problem of microarray data is that they are usually full of noises. Soong et al. used 
principal component analysis (PCA) to reduce such noises (Soong, Wrzeszczynski et al. 
2008). PCA is a statistical technique used to find hidden factors from observed factors, 
expression values in this case. Lee and Batzoglou have shown that proteins with extreme 
principal components are prone to participate in relevant biological processes (Lee and 
Batzoglou 2003). The transformation of expression values to principal components can be 
represented as follows: 

PX Y= , 

where P is a l × m transformation matrix obtained by PCA, X is a m × n matrix of the raw 
expression values from m microarrays and n samples while Y is a l × n matrix containing 
every sample’s l principal components. The final feature vector of two proteins a and b was 
the concatenation of a’s principal components, b’s principal components and the Pearson 
correlation of both. 

This section ends with a method based on literature data, which has been discussed in 
subsection 2.6. Demonstrating literature data in a ML-based method is to reinforce the 
impression that in principle any data can be used as features with appropriate encoding 
schemes. Thus, one can consider combining any of the features discussed in section 2 with 
ML-based tools. Donaldson et al. proposed an extraction procedure for identifying protein 
interactions in literature (Donaldson, Martin et al. 2003). They first used a parser to collect 
synonyms for proteins and their encoding loci. The collected protein names were then used 
to search the title and abstract of articles in the PubMed literature database. An article was 
encoded by terms it contained. The weight of each term was the tf-idf score (term frequency-
inverse document frequency), where term frequency is the number of occurrences of the 
term in the document and inverse document frequency is the inverse of the number of 
documents having the term. Here a term was a word or two adjacent words (usually called 
2-gram) that appear in at least three documents. 

4. Machine learning techniques 
After encoding proteins into feature vectors, the next step is to choose a ML tool to generate 
a model describing these feature vectors. The generated model can be used to predict novel 
protein interactions. Most ML tools provide a user-friendly interface, where all that 
researchers need to do is encode their data. The remaining task is very trivial: i) a command 
to train the model and ii) a command to predict with the trained model. In this regard, 
researchers who want to adopt ML-based methods can focus on features without caring 
about the ML algorithms. This section briefly lists three ML algorithms that have been used 
in recent studies of protein interaction, which can be considered as a basic introduction for 
researchers who have no idea how to choose an appropriate ML tool. 

4.1 Decision tree 

Decision trees are usually constructed recursively (Witten, Frank et al. 2011). The first step is 
to select a feature to split samples (branch the decision tree) based on the selected feature. 
This step divides the original dataset into several disjointed subsets, each of them can be 
considered as another dataset. Thus, the same procedure can be applied recursively to each 
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subset and the further sub-subsets. Such a recursive fashion stops at several conditions of, 
for example, all samples in a branch belonging to the same class or all features have been 
examined. The above descriptions, however, missed an important detail in decision trees: 
how to select a feature to branch. A trivial strategy is to select the feature that can result in 
the purest subsets, namely most samples in the same subset belong to the same class. Thus, 
a measure of set purity is required. 

So far, there have been many purity measurements proposed. This subsection introduces the 
most fundamental one, entropy, as follows. Indeed, larger entropy indicates the less purity. 
Thus, negative entropy, in definition, is a measurement of purity. Many mature decision 
tree algorithms use variants of entropy. 

1 2 1 1 2 2entropy( , , , ) log log logn n np p p p p p p p p= − − −  , 

where pi is the fraction of class-i samples in the subset and n is the number of total classes. 
For example, suppose that a dataset has nine positive samples and five negative samples. 
Before any branching, the entropy of the original dataset is –(9/14)log(9/14)-(5/14)log(5/14) 
= 0.940, where p1 is 9/14, p2 is 5/14 and n is 2 (positive and negative). If after a branch, the 
14 samples are split into three nodes that contain 2-3, 4-0, 3-2 positive-negative samples, 
respectively. The entropies of the three nodes are –(2/5)log(2/5)-(3/5)log(3/5) = 0.971, –
(4/4)log(4/4)-0 = 0 and –(3/5)log(3/5)-(2/5)log(2/5) = 0.971, respectively. The total entropy 
of the branched tree became (5/14)×0.971+(4/14)×0+(5/14)×0.971 = 0.693, a weighted sum 
of the three entropies corresponding to the subset size. It is observed that the entropy 
decreased from 0.940 to 0.693, revealing that this operation of branch did increase the purity 
of the dataset. For a purity measurement, the following three conditions must be satisfied: 

1. when a subset is pure (all samples belong to the same class), the measurement is zero; 
2. when all possible classes appear equally, the measurement is maximized; 
3. the measurements must be the same without depending on the order of branches. 

The third condition requires that if a dataset is first split into two nodes of a-b and c-d, 
positive-negative samples and then the second node is further split into two more sub-nodes 
of e-f and g-h, the entropy should be the same as split into three nodes of a-b, e-f and g-h in a 
single branch while using another feature. Entropy is the only one function that fits all these 
conditions (Witten, Frank et al. 2011). This explains the high popularity of entropy and its 
variants in decision trees. 

4.2 Support Vector Machine (SVM) 

Currently, SVM is the state-of-the-art ML tool. It prevails in biomedical data because of its 
high accuracy. SVM first transforms the original data to a higher dimensional space with a 
non-linear transformation and then finds the maximum margin hyperplane to separate 
samples of different classes in the transformed space (Witten, Frank et al. 2011). This 
strategy has two advantages: i) it can generate non-linear model and ii) it prevent 
overfitting as the decision boundary is still linear in the transformed space. Overfitting is a 
critical issue in ML. It indicates that the constructed model overfit the training dataset, so 
that which cannot be used to predict novel data. This problem becomes more serious 
when using more complicated model. However, some complex data do need complicated 
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models to describe. Thus most advanced ML algorithms still favor complicated models 
and then try to solve the overfitting issue. In this regard, SVM finds an excellent balance, 
which can generate very complicated models depending on the adopted transformation 
while choosing a very simple decision, a hyperplane, which equals to a one stage decision 
tree of two branches. 

Mathematically, SVM uses support vectors to model the transformation and hyperplane. 
That is the reason for the name. Transforming the original data from the sample space with 
a non-linear function to a new space means that a linear model (a straight line in a two 
dimensional space, a plane in a three dimensional space and a hyperplane in a higher 
dimensional space) in the new space becomes non-linear in the original sample space. For 
example, for a two dimensional sample x = (a, b), a non-linear transformation to a three 
dimensional space could be x’ = (a2, ab, b2). If any ML tool finds a decision boundary in the 
new space, it does not look like a straight line in the original space. Notice that, in principle, 
any tool, such as a decision tree, could be used to make the decision in the transformed 
space. SVM advances in already developing a robust mathematical system with efficient 
optimization algorithms to find good hyperplanes. 

4.3 Relaxed Variable Kernel Density Estimation (RVKDE) 

The biggest drawback of SVM is the computational cost. Yu et al. reported that using SVM 
to perform a complete interaction analysis on human genome may take years (Yu, Chou et 
al. 2010). In this regard, efficient ML algorithms with acceptable accuracy are reasonable 
alternatives to SVM. The relaxed variable kernel density estimation (RVKDE) algorithm 
(Oyang, Hwang et al. 2005) has been practically used in recent interaction studies (Chang, 
Syu et al. 2010; Yu, Chou et al. 2010). The time complexity of RVKDE is an order faster than 
SVM. Furthermore, unlike other fast ML algorithms, such as decision trees, the descriptive 
capability of the constructed model of RVKDE is comparable to SVM. 

The kernel of RVKDE is an approximate probability density function. Let { }1 2, , , ns s s  be a 
set of samples randomly and independently taken from the distribution governed by fx in a 
m-dimensional vector space. RVKDE estimates the value of fx at point v as follows: 
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2. R(si) is the maximum distance between si and its ks-th nearest training sample; 
3. Γ(·) is the Gamma function (Artin 1964); 
4. β and ks are parameters to be set either through cross-validation or by the user. 

For prediction, a kernel density estimators is constructed to approximate the distribution of 
each class. Then, a query sample located at v is predicted to the class that gives the 
maximum value among the likelihood functions defined as follows: 
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subset and the further sub-subsets. Such a recursive fashion stops at several conditions of, 
for example, all samples in a branch belonging to the same class or all features have been 
examined. The above descriptions, however, missed an important detail in decision trees: 
how to select a feature to branch. A trivial strategy is to select the feature that can result in 
the purest subsets, namely most samples in the same subset belong to the same class. Thus, 
a measure of set purity is required. 

So far, there have been many purity measurements proposed. This subsection introduces the 
most fundamental one, entropy, as follows. Indeed, larger entropy indicates the less purity. 
Thus, negative entropy, in definition, is a measurement of purity. Many mature decision 
tree algorithms use variants of entropy. 

1 2 1 1 2 2entropy( , , , ) log log logn n np p p p p p p p p= − − −  , 

where pi is the fraction of class-i samples in the subset and n is the number of total classes. 
For example, suppose that a dataset has nine positive samples and five negative samples. 
Before any branching, the entropy of the original dataset is –(9/14)log(9/14)-(5/14)log(5/14) 
= 0.940, where p1 is 9/14, p2 is 5/14 and n is 2 (positive and negative). If after a branch, the 
14 samples are split into three nodes that contain 2-3, 4-0, 3-2 positive-negative samples, 
respectively. The entropies of the three nodes are –(2/5)log(2/5)-(3/5)log(3/5) = 0.971, –
(4/4)log(4/4)-0 = 0 and –(3/5)log(3/5)-(2/5)log(2/5) = 0.971, respectively. The total entropy 
of the branched tree became (5/14)×0.971+(4/14)×0+(5/14)×0.971 = 0.693, a weighted sum 
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conditions (Witten, Frank et al. 2011). This explains the high popularity of entropy and its 
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4.2 Support Vector Machine (SVM) 

Currently, SVM is the state-of-the-art ML tool. It prevails in biomedical data because of its 
high accuracy. SVM first transforms the original data to a higher dimensional space with a 
non-linear transformation and then finds the maximum margin hyperplane to separate 
samples of different classes in the transformed space (Witten, Frank et al. 2011). This 
strategy has two advantages: i) it can generate non-linear model and ii) it prevent 
overfitting as the decision boundary is still linear in the transformed space. Overfitting is a 
critical issue in ML. It indicates that the constructed model overfit the training dataset, so 
that which cannot be used to predict novel data. This problem becomes more serious 
when using more complicated model. However, some complex data do need complicated 
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models to describe. Thus most advanced ML algorithms still favor complicated models 
and then try to solve the overfitting issue. In this regard, SVM finds an excellent balance, 
which can generate very complicated models depending on the adopted transformation 
while choosing a very simple decision, a hyperplane, which equals to a one stage decision 
tree of two branches. 

Mathematically, SVM uses support vectors to model the transformation and hyperplane. 
That is the reason for the name. Transforming the original data from the sample space with 
a non-linear function to a new space means that a linear model (a straight line in a two 
dimensional space, a plane in a three dimensional space and a hyperplane in a higher 
dimensional space) in the new space becomes non-linear in the original sample space. For 
example, for a two dimensional sample x = (a, b), a non-linear transformation to a three 
dimensional space could be x’ = (a2, ab, b2). If any ML tool finds a decision boundary in the 
new space, it does not look like a straight line in the original space. Notice that, in principle, 
any tool, such as a decision tree, could be used to make the decision in the transformed 
space. SVM advances in already developing a robust mathematical system with efficient 
optimization algorithms to find good hyperplanes. 

4.3 Relaxed Variable Kernel Density Estimation (RVKDE) 

The biggest drawback of SVM is the computational cost. Yu et al. reported that using SVM 
to perform a complete interaction analysis on human genome may take years (Yu, Chou et 
al. 2010). In this regard, efficient ML algorithms with acceptable accuracy are reasonable 
alternatives to SVM. The relaxed variable kernel density estimation (RVKDE) algorithm 
(Oyang, Hwang et al. 2005) has been practically used in recent interaction studies (Chang, 
Syu et al. 2010; Yu, Chou et al. 2010). The time complexity of RVKDE is an order faster than 
SVM. Furthermore, unlike other fast ML algorithms, such as decision trees, the descriptive 
capability of the constructed model of RVKDE is comparable to SVM. 

The kernel of RVKDE is an approximate probability density function. Let { }1 2, , , ns s s  be a 
set of samples randomly and independently taken from the distribution governed by fx in a 
m-dimensional vector space. RVKDE estimates the value of fx at point v as follows: 
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2. R(si) is the maximum distance between si and its ks-th nearest training sample; 
3. Γ(·) is the Gamma function (Artin 1964); 
4. β and ks are parameters to be set either through cross-validation or by the user. 

For prediction, a kernel density estimators is constructed to approximate the distribution of 
each class. Then, a query sample located at v is predicted to the class that gives the 
maximum value among the likelihood functions defined as follows: 
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where |Sj| is the number of class-j training samples and ˆ ( )jf ⋅  is the kernel density estimator 
corresponding to class-j training samples. 

RVKDE belongs to the radial basis function network (RBFN), a special type of neural 
networks with several distinctive features (Mitchell 1997; Kecman 2001). The decision 
function of two-class RVKDE can be simplified as follows: 
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where v is a testing sample, yi is the class value as either +1 (positive) or -1 (negative) of a 
training sample si, and σi is the local density of the proximity of si, estimated by the kernel 
density estimation algorithm. The testing sample v is classified as positive if fRVKDE(v) ≥ 0, 
and as negative otherwise. Interestingly, the decision function of RVKDE is very similar to 
that of SVM using the radial basis function (RBF) kernel: 
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where αi (corresponds to the inverse of σi in fRVKDE) and γ (corresponds to 21 / 2
i

σ  in fRVKDE) 
are user-specified parameters. Thus, the mathematical models of RVKDE and SVM are 
analogous. The main difference between RVKDE and SVM is the criteria used to determine 
σi and αi. 

5. Evaluation 
A paradoxical situation is that a benchmark requires negative samples - proteins known 
not to interact. A benchmark that contains only interacting protein pairs is useless, since a 
trivial predictor predicting any protein pairs as interacting can achieve a perfect accuracy. 
However, there are very limited techniques developed to confirm that two proteins do not 
interact. Recently, several studies have addressed this problem in evaluating 
computational methods of identifying protein interactions (Yu, Chou et al. 2010; Yu, Guo 
et al. 2010). This issue is still in a chaos stage and there is no perfect solution that fit 
everyone’s requirements. Instead, this chapter demonstrates this issue via three major 
contradictions in this area. 

1. Sampled vs. entire data (also efficiency issue)—most ML-based methods adopted 
SVM and have to reduce the data size because of its high time complexity. However, 
sampled data must lose some information and may bias the evaluation. This 
contradiction is especially important when comparing co-occurrence- and ML-based 
methods, where the former usually can be applied on entire data. Using more 
computing power or switching more efficient ML tool is a compromising solution. 
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2. Balanced vs. unbalanced—once sampled data is adopted, (most studies of ML-based 
methods adopted using sampled data even without carefully considering the previous 
contradiction), how to sample is another serious problem. Random sampling can 
preserve the data distribution (ratio of positive and negative samples) but loss too many 
positive samples. However, balanced sampling, which forces the inclusion of all 
positive samples and thus change the data distribution, has also been shown bias the 
evaluation accuracy (Yu, Chou et al. 2010). 

3. Distinct vs. similar—one philosophy of creating negative data is to choose the samples 
which can never be positive. For example, proteins appear in different cellular 
compartments are possible negative samples. An opposite philosophy is that if a 
method can discriminate between the negative samples that are very similar to the 
positive ones, then this method can discriminate those dissimilar ones. The first 
philosophy prevents collecting negative samples that are actually positive but somehow 
makes the problem easier while the second philosophy has opposite advantage and 
disadvantage. 

6. Conclusions 
In this chapter, various computational methods of protein interaction are reviewed. These 
methods used various data sources, including localization data, structural data, 
expression data and/or interactions from orthologs. As a result, all of them are limited to 
the experimental technologies that generate such data and the incompleteness of verified 
data. Based on current understanding, the size of protein interaction network (PIN) of 
human comprises ~650,000 interactions (Stumpf, Thorne et al. 2008). However, the 
Human Protein Reference Database (HPRD) deposits less than 3% of them (Peri, Navarro 
et al. 2003; Mishra, Suresh et al. 2006). Even under such a challenging circumstance, 
computational methods have shown to achieve satisfying performance. This encourages 
more effort in developing computational methods of protein interaction to complement 
experimental technologies. 
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1. Introduction 
Guanine Nucleotide binding protein coupled receptors (GPCRs) are among the most 
important targets in the treatment of cancer, endocrine, neural and many other types of 
disorders. (Katritch, V. & Abagyan, R. 2011) It is believed that activation of some GPCRs is 
involved in conditions such as immunosupression and response to ischemia of the brain and 
heart. Therefore, antagonists and agonists of GPCRs are potential therapeutic agents in 
treatment of inflammatory and ischemic diseases. (Moro, S., Spalluto, G., & Jacobson, K. A. 
2005) 

The superfamily of GPCRs consists of about 800 receptors which can be divided into 
different families regarding the similarities in the protein sequence. (Marshall, F. H. & 
Foord, S. M. 2010) 

1. Family A, including rhodopsin and adrenoreceptor  
2. Family B, Secretin vasointestinal peptide (VIP), the members of this family bind to 

hormones and neuropeptides 
3. Family C, which include at least eight subtypes of glutamate receptors, the major 

excitatory receptor in the CNS. 
4. Family D, the fungal pheromone p family 
5. Family E, the fungal pheromone A family 
6. Family F, CAMP receptors of Dictyostelium discoideum 

The family A receptors is the best studied family of GPCRs in terms of functional and 
structural viewpoints and is therefore the most important target of GPCRs in drug 
discovery. (Moro, S. et al. 2005) It was reported that about 30% of the market prescription 
drugs act on these targets. (Marshall, F. H. et al. 2010)  

2. Features and functions of GPCRs 
A common feature in class A GPCRs is a core consisting of seven transmembrane domains 
(TM) connected by three intracellular loops (IL1, IL2 and IL3) and three extracellular loops 
(EL1, EL2, EL3).(Fig 1) Another feature observed in this class is the two cysteine residues, 
one in TM3 and the other in EL2. These two cysteines form a disulfide bridge which is 
responsible for the packing and stabilization of a restricted number of conformations for the 
seven TM domains (Fig 1).  
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Fig. 1. The seven transmembrane structure of GPCRs. A disulfide bridge between TM3 and 
EL2 is conserved in most class A GPCRs. 

GPCRs differ in the length and function of their N-terminal extracellular domains, C-
terminal domain and intracellular loops. (Moro, S. et al. 2005) As an instance, glycoprotein 
hormone receptor (GPHR) family tether large amino terminal extracellular extensions which 
are responsible for the recognition and binding of dimeric agonists. Some studies in the area 
of GPCRs focused on interaction of ligands with GPCRs. There is strong evidence that in 
case of small molecules like the biogenic amines, the agonists of GPCRs interact directly 
with specific residues of TM helices of the receptor. On the other hand, for neuropeptides 
and small protein agonists like neurokinin the interactions involve both exoloops and amino 
portion of the receptor in association with the residues in TM helices. (Gilbert Vassart & 
Sabine Costagliola 2003)  

2.1 Receptor activation in GPCRs 

Many physiological procedures in the body are controlled by the GTPase including signal 
transduction, control of cellular growth, vesicle and protein transport and cytoskeletal 
assembly.(Smith, B., Hill, C., Godfrey, E. L., Rand, D., van den Berg, H., Thornton, S. et al. 
2009). (Kobilka, B. K. 2007) Activation of a GPCR leads to nucleotide exchange on the Gα 
subunit and cause dissociation of the heterodimer and effector activation. GPCRs are mostly 
activated by diverse set of signals including small molecules, peptides and light. (Schneider, 
M., Wolf, S., Schlitter, J., & Gerwert, K. 2011) Members of GPCRs transduce signals by 
activation of at least one member of homologous hetrotrimeric G proteins. For example in 
FSH (Follicle Stimulating Hormone), receptor is activated by adrenaline which binds to the 
TM regions.  
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It should be noticed that in GPCRs, the ligand binds from the extracellular side and blocks 
the receptor. The activation or reduction in the basal activity of the heterotrimeric G-protein 
complex is dependent to the nature of the ligand such as agonists, antagonists and reverse 
agonists. The activation of G protein is in such a way that an exchange of guanosine 
diphosphate takes place in α subunit of G-protein. This exchange causes a conformational 
change in α subunit and leads to dissociation of α subunit from βγ subunits. (Fig 2) The two 
subunits introduce transduction systems in different ways. (Jaakola, V. P. & Ijzerman, A. P. 
2010) 

 
Fig. 2. a) Activation of GPCRs upon agonist binding b) conformational changes in 
hetrotrimeric G c) dissociation in G protein subunits proteins. d) A common feature 
observed in most GPCRs is the formation of dimers.  

Some evidence verified that GPCRs exist as ensembles of conformations and two factors 
including binding of agonist and intracellular signaling proteins stabilize the active site of 
the receptor and accounts for the basal activity of GPCRs in the absence of agonists. The 
crystal structures of β2AR bound to an agonist and G-protein shows a large conformational 
change in the intracellular region of the receptor. It is likely that upon agonist binding 
reshuffling of short range intracellular contact cause large scale domain motions in the 
receptor. (Vaidehi, N. & Bhattacharya, S. 2011) 

With the exception of rhodopsin, most family A GPCRs have considerable basal activity and 
both modeling and crystallographic data suggest that agonist dependent activation can vary 
between GPCRs. (Ahuja, S. & Smith, S. O. 2009;Deupi, X. & Kobilka, B. 2007;Katritch, V. et 
al. 2011) In contrast to rhodopsin where more information is present for the activation state 
of the molecule, in case of the other GPCRs much less is known about agonist induced 
conformational changes that occur during the activation of the receptor. (Wess, J., Han, S. J., 
Kim, S. K., Jacobson, K. A., & Li, J. H. 2008) The most similar parts for the GPCRs are the 
cytoplasmic ends of the TM segments adjacent to the second and third cytoplasmic domains 
which interact with G protein. 

2.2 Dimerization of GPCRs 

An important feature in GPCRs is formation of dimer which affects the receptors in terms of 
signal trafficking and pharmacology.(Marshall, F. H. et al. 2010). In many cases, the GPCR 
dimer can alter or regulate coupling or potency of other receptors. As an instance, 
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dimerization of κ-opioid receptor was shown to be in close relation with δ-opioid receptor 
dimerization. Another consequence of such dimerization is the augmented selectivity of 
some agonists such as 6-guanidinonal for the dimer with respect to any of the monomers. In 
addition, it was postulated that the binding of some drugs to more than one type of receptor 
is the result of dimerization. (Panetta, R. & Greenwood, M. T. 2008) 

2.3 GPCRs and drug discovery 

Most researches in the area of GPCRs focused on development of more selective or potent 
compounds of the orthostatic sites, which are apart from the binding sites of endogenous 
ligands. The allosteric modulators are also considered as promising therapeutic Agents. 
(Moro, S. et al. 2005) 

While, the binding site for most small organic agonists is within TM segments, in case of 
peptide hormones and proteins the binding site is laid in the extracellular domain.(Kobilka, 
B. K. 2007) The intrinsic plasticity of GPCRs is a major problem in using their inactive state 
for agonist design in drug discovery. (Katritch, V. et al. 2011)  

3. The role of experimental techniques in structural elucidation of GPCRs 
The 3D structures of GPCRs have been identified using different techniques such as electron 
paramagnetic resonance spectroscopy (EPR), site directed mutagenesis, Fluorescence 
spectroscopy, cysteine cross-linking studies, Atomic Force Microscopy (AFM) and X-ray 
crystallography. 

The first structure for GPCRs originated from cryoelectron microscopy of 2 dimensional 
crystals of bovine rhodopsin. Meanwhile, EPR has provided complementary evidence about 
photoactivation of rhodopsin including rotation and tilting of TM6 with respect to TM3. 

It was clarified through electron paramagnetic resonance spectroscopy that photo activation 
of rhodopsin includes rotation and tilting of TM6 with respect to TM3.  

By using some experimental techniques such as site directed mutagenesis data and cysteine 
scanning mutagenesis, it was possible to detect conformational changes in GPCRs.(Kobilka, 
B. K. 2007) As an instance, through site directed mutagenesis studies, it was proposed that 
the rotamer positions of the three residues including Cys 282, Trp 286 and Phe 290 of β2AR 
modulate the binding of TM6 around the highly conserved proline kink and lead to 
movement of cytoplasmic end of TM6 (Ahuja, S. et al. 2009;Deupi, X. et al. 2007) (Fig3). 

 
Fig. 3. Movement of TM6 (blue) in β2AR upon binding of an endogenous agonist 
(Norepinephrine) (Kobilka, B. K. 2007) with permission. 
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By using site directed mutagenesis data, binding sites of many receptors such as melatonin 
have also been discovered. (Panetta, R. et al. 2008) 

Fluorescence spectroscopy and cross linking studies of some receptors such as muscarine 
(M3) has also revealed this fact that upon agonist binding, rotation or tilting of cytoplasmic 
end of transmembrane domains can take place in GPCRs. In cysteine cross-linking studies of 
M3 muscarinic receptor, it was suggested that the movements of TM5 and TM6 occurs upon 
agonist binding. (Kobilka, B. K. 2007) Through fluorescence spectroscopy and by tagging 
fluorophore to the intracellular end of TM6 in β2AR, the receptor revealed a single 
population of fluoroscence life time. Although, in the presence of antagonists the peak was 
reinforced, agonists showed an additional peak in the fluorescence life time. (Vaidehi, N. et 
al. 2011). Documents for the movements of TM6 in rhodopsin have been also provided by 
chemical reactivity measurements and fluorescence spectroscopy and Zinc cross linking 
studies of histidines. (Kobilka, B. K. 2007) 

The most direct evidence for the structure of a GPCR oligomer comes from AFM (Atomic 
Force Microscopy). An advantage of AFM is that it provides a 3D profile of the protein. 
(Simpson, L. M., Taddese, B., Wall, I. D., & Reynolds, C. A. 2010) 

Despite the great applicability of the described methods, X-ray crystal structures are 
normally the starting points in the studies of GPCRs. Since 2000 the high resolution X-ray 
structures of GPCRs began to emerge among which bovine rhodopsin was the first case 
study. (Topiol, S. & Sabio, M. 2009) 

Crystallography of GPCRs has encountered some limitations due to low level of 
expression and instability of the proteins outside the membrane. Other problems are also 
attributed to the folding of the protein and homogeneity during purification. Another 
limitation in crystallography of the proteins is using detergents for dissociation of the 
protein from the membrane which might lead to some modifications in 3D structure of the 
protein. During the procedure for the preparation of crystal structures, a cost effective and 
straight forward to use system of protein expression is bacteria. The most important 
problem in this issue is the post translational limitations in the bacteria such as 
glycosylation which is required for the correct folding of GPCRs. To solve this problem 
many researchers have focused on using yeasts for the expression of GPCRs. The main 
problem with using yeasts is the differences observed in yeasts membranes in comparison 
with those observed in human. The most efficient system for the expression of the GPCRs 
includes the baculovirus expression system in the insects’ cells. This method has been 
successfully adopted for the receptors including the β-adrenoceptors, the adenosine A2A 
receptor and the chemokine receptor CXCR4. (Congreve, M., Langmead, C., & Marshall, 
F. H. 2011) 

In crystallography of GPCRs a solution for obtaining the crystal structure in single 
conformation is addition of the ligand with the prefential affinity to one conformation of the 
receptor. (Congreve, M. et al. 2011) 

Although by X-ray crystallographic data, it is possible to obtain static of the protein complex 
at near atomistic resolutions biophysical and structural studies are still needed to complete 
the data of crystallography. (Jaakola, V. P. et al. 2010) 



 
Protein-Protein Interactions – Computational and Experimental Tools 250 

dimerization of κ-opioid receptor was shown to be in close relation with δ-opioid receptor 
dimerization. Another consequence of such dimerization is the augmented selectivity of 
some agonists such as 6-guanidinonal for the dimer with respect to any of the monomers. In 
addition, it was postulated that the binding of some drugs to more than one type of receptor 
is the result of dimerization. (Panetta, R. & Greenwood, M. T. 2008) 

2.3 GPCRs and drug discovery 

Most researches in the area of GPCRs focused on development of more selective or potent 
compounds of the orthostatic sites, which are apart from the binding sites of endogenous 
ligands. The allosteric modulators are also considered as promising therapeutic Agents. 
(Moro, S. et al. 2005) 

While, the binding site for most small organic agonists is within TM segments, in case of 
peptide hormones and proteins the binding site is laid in the extracellular domain.(Kobilka, 
B. K. 2007) The intrinsic plasticity of GPCRs is a major problem in using their inactive state 
for agonist design in drug discovery. (Katritch, V. et al. 2011)  

3. The role of experimental techniques in structural elucidation of GPCRs 
The 3D structures of GPCRs have been identified using different techniques such as electron 
paramagnetic resonance spectroscopy (EPR), site directed mutagenesis, Fluorescence 
spectroscopy, cysteine cross-linking studies, Atomic Force Microscopy (AFM) and X-ray 
crystallography. 

The first structure for GPCRs originated from cryoelectron microscopy of 2 dimensional 
crystals of bovine rhodopsin. Meanwhile, EPR has provided complementary evidence about 
photoactivation of rhodopsin including rotation and tilting of TM6 with respect to TM3. 

It was clarified through electron paramagnetic resonance spectroscopy that photo activation 
of rhodopsin includes rotation and tilting of TM6 with respect to TM3.  

By using some experimental techniques such as site directed mutagenesis data and cysteine 
scanning mutagenesis, it was possible to detect conformational changes in GPCRs.(Kobilka, 
B. K. 2007) As an instance, through site directed mutagenesis studies, it was proposed that 
the rotamer positions of the three residues including Cys 282, Trp 286 and Phe 290 of β2AR 
modulate the binding of TM6 around the highly conserved proline kink and lead to 
movement of cytoplasmic end of TM6 (Ahuja, S. et al. 2009;Deupi, X. et al. 2007) (Fig3). 

 
Fig. 3. Movement of TM6 (blue) in β2AR upon binding of an endogenous agonist 
(Norepinephrine) (Kobilka, B. K. 2007) with permission. 

 
G-Protein Coupled Receptors: Experimental and Computational Approaches 251 

By using site directed mutagenesis data, binding sites of many receptors such as melatonin 
have also been discovered. (Panetta, R. et al. 2008) 

Fluorescence spectroscopy and cross linking studies of some receptors such as muscarine 
(M3) has also revealed this fact that upon agonist binding, rotation or tilting of cytoplasmic 
end of transmembrane domains can take place in GPCRs. In cysteine cross-linking studies of 
M3 muscarinic receptor, it was suggested that the movements of TM5 and TM6 occurs upon 
agonist binding. (Kobilka, B. K. 2007) Through fluorescence spectroscopy and by tagging 
fluorophore to the intracellular end of TM6 in β2AR, the receptor revealed a single 
population of fluoroscence life time. Although, in the presence of antagonists the peak was 
reinforced, agonists showed an additional peak in the fluorescence life time. (Vaidehi, N. et 
al. 2011). Documents for the movements of TM6 in rhodopsin have been also provided by 
chemical reactivity measurements and fluorescence spectroscopy and Zinc cross linking 
studies of histidines. (Kobilka, B. K. 2007) 

The most direct evidence for the structure of a GPCR oligomer comes from AFM (Atomic 
Force Microscopy). An advantage of AFM is that it provides a 3D profile of the protein. 
(Simpson, L. M., Taddese, B., Wall, I. D., & Reynolds, C. A. 2010) 

Despite the great applicability of the described methods, X-ray crystal structures are 
normally the starting points in the studies of GPCRs. Since 2000 the high resolution X-ray 
structures of GPCRs began to emerge among which bovine rhodopsin was the first case 
study. (Topiol, S. & Sabio, M. 2009) 

Crystallography of GPCRs has encountered some limitations due to low level of 
expression and instability of the proteins outside the membrane. Other problems are also 
attributed to the folding of the protein and homogeneity during purification. Another 
limitation in crystallography of the proteins is using detergents for dissociation of the 
protein from the membrane which might lead to some modifications in 3D structure of the 
protein. During the procedure for the preparation of crystal structures, a cost effective and 
straight forward to use system of protein expression is bacteria. The most important 
problem in this issue is the post translational limitations in the bacteria such as 
glycosylation which is required for the correct folding of GPCRs. To solve this problem 
many researchers have focused on using yeasts for the expression of GPCRs. The main 
problem with using yeasts is the differences observed in yeasts membranes in comparison 
with those observed in human. The most efficient system for the expression of the GPCRs 
includes the baculovirus expression system in the insects’ cells. This method has been 
successfully adopted for the receptors including the β-adrenoceptors, the adenosine A2A 
receptor and the chemokine receptor CXCR4. (Congreve, M., Langmead, C., & Marshall, 
F. H. 2011) 

In crystallography of GPCRs a solution for obtaining the crystal structure in single 
conformation is addition of the ligand with the prefential affinity to one conformation of the 
receptor. (Congreve, M. et al. 2011) 

Although by X-ray crystallographic data, it is possible to obtain static of the protein complex 
at near atomistic resolutions biophysical and structural studies are still needed to complete 
the data of crystallography. (Jaakola, V. P. et al. 2010) 



 
Protein-Protein Interactions – Computational and Experimental Tools 252 

4. Homology modeling studies of GPCRs 
Regarding the limitations for using X-ray crystallography in case of GPCRs, molecular 
modeling techniques such as homology modeling and docking studies are needed to fill the 
gaps between the primary sequence and secondary structures for drug design studies. There 
are two major types of drug design including ligand based drug design and structure based 
drug design. In structure based drug design, the 3D structure of the target molecules is 
necessary for the study. (Ostopovici-Halip, L., Curpan, R., Mracec, M., & Bologa, C. G. 2011) 
An important goal of molecular modeling is to provide a microscopic details of the 
membrane proteins where there is no way to obtain enough information through 
experimental approaches. (Henin, J., Maigret, B., Tarek, M., Escrieut, C., Fourmy, D., & 
Chipot, C. 2006) 

The crystal structures for seven GPCRs have been represented so far. Most GPCRs are 
representing the inactive state of the receptor and are therefore suitable for the discovery of 
antagonists and reverse agonists. (Schneider, M. et al. 2011) 

Homology modeling is a knowledge based approach relying upon the crystallographic 
structure of related receptor and experimental information. This method has limitations 
when targeting active receptors. (Henin, J. et al. 2006)  

Homology modeling made it possible to align the protein of interest with the homologous 
structure and to subsequently evaluate the model with different scoring functions. Since the 
most important part of a homology modeling study is the alignment procedure, errors in 
predicting the structure protein with low homology are normally common. The alignment 
procedure is usually done by different methods such as cluatalW or T-cofee servers. In order 
to refine homology based models energy minimization or limited conformational sampling 
using molecular dynamic simulations are used. (Harterich, S., Koschatzky, S., Einsiedel, J., & 
Gmeiner, P. 2008) 

Due to diversity in loop area of the proteins, a loop refinement is usually necessary in most 
homology modeling studies. The available loop modeling algorithms are limited to up to 13 
residues long. Therefore in loop refinement step considerations must be taken with loops of 
the long size. (Ostopovici-Halip, L. et al. 2011) 

By the emergence of 3D structure for bovine rhodopsin, this receptor was widely used as 
template structure homology modeling studies of GPCRs. For example, 3D structure of 
neurotensin, a neuropeptide distributed in the CNS was modeled based on Rhodopsin as 
template.(Harterich, S. et al. 2008) Two other GPCRs namely, the principal canabinoid 
receptors CB1 and CB2 are the components of endogenous endocanabinoid systems. The 3D 
structures of CB1 and CB2 have also been modeled using Rhodopsin as template. (Pei, Y., 
Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D. et al. 2008)  

Another GPCR which has been characterized by homology modeling techniques was 
melatonin receptor. This receptor is responsible for the effects of melatonin, a compound 
taking part in resynchronization of biological rhythms such as sleep. In case of MT1 and 
MT2 receptors, the helices of the receptor were supposed to be superposable with the 
experimentally known helices of bovine rhodopsin. It was also reported that the identity of 
MT1 towards rhodopsin is more in respect to MT2 (23% vs 19%). 
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In other studies the active state of opsin has been used as template to model active 
structures of β2-adrenergic receptor. Interaction fingerprint studies have been used for 
dynamic ligand binding study of the interaction of ligands in the active and inactive states. 
It was concluded that the active structure of opsin is suitable for modeling GPCR agonists. 
(Schneider, M. et al. 2011) 

In spite of the many reports for the usefulness of rhodopsin in homology modeling studies, 
rhodopsin is merely suitable for antagonist design. The reason can be explained by the fact 
that rhodopsin is merely crystallized in its inactive state. Therefore, in order to design 
agonists of GPCRs, it is important to obtain information about the active states of the 
receptor.(Topiol, S. et al. 2009). There are some other limitations for using rhodopsin as 
template in homology modeling of GPCRs. One is that it has low homology (less than 25%) 
with family A GPCRs and no homology with other families of GPCRs such as secretin, 
adhesion and metabotropic receptors. The other limitation is the very complicated 
mechanism of activation in rhodopsin in comparison with the other GPCRs. The binding of 
the ligand to rhodopsin is covalent and signaling is conducted through activation of the 
ligand by photoisomerism. (Congreve, M. et al. 2011) 

Another problem with using rhodopsin is that the binding domains are arranged clockwise 
in this receptor while sequentially oriented anticlockwise in case of others.(Claude Nofre 
2001) Therefore, it is very difficult to obtain a reasonable overview for the activation of the 
GPCRs from rhodopsin antagonist binding.(Congreve, M. et al. 2011) Based on the findings 
it was claimed that rhodopsin might not be a suitable template for some GPCRs such as the 
cholecystokinin CCK1 receptor. (Kobilka, B. K. 2007) A revolution in the field of GPCRs has 
occurred after publication of the crystal structure of β1 and β2- adrenoceptor.(Congreve, M. 
et al. 2011) Afterwards, the crystal structures of adenosine A2A (A2AR), Chemokine CXCR4, 
dopamine D3 and histamine H1 in complex with antagonists have been reported which 
made a reasonable framework for the studies of GPCR functions and drug discovery. 
(Katritch, V. et al. 2011) 

The β2AR is almost a good model for the studies of agonist binding since much information 
is obtained about the site of interaction between the receptor and catechol amine ligands. 
(Kobilka, B. K. 2007)  

The crystal structures of ß1 and ß2 have been used for homology modeling of 5-HT2C 
receptor. They showed similar homology rates of 41% and 62% with the regions of 5-HT2C. 
(Renault, N., Gohier, A., Chavatte, P., & Farce, A. 2010) 

Another successful example of homology modeling studies using β2-AR as template was in 
Alpha 2 adrenoreceptor (α2ARs) receptors. These receptors with wide distributions are 
responsible for many activities such as the control of nervous system and cardiovascular 
systems. In this study, the resulted models have been minimized using the OPLS2005 force 
field implemented in schrodinger package. (Ostopovici-Halip, L. et al. 2011) 

In many cases of homology modeling, the validity of the structures was verified by 
ramachandran plot. A common method for docking the homology based models is 
WHATIF algorithm which generates ramachandran plots to identify outliers in terms of 
torsion angles and also compares the quality of the model with reliable structures presented 
in the form of Z-scores. It is also possible to get consensus votes through WHATIF to select 
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4. Homology modeling studies of GPCRs 
Regarding the limitations for using X-ray crystallography in case of GPCRs, molecular 
modeling techniques such as homology modeling and docking studies are needed to fill the 
gaps between the primary sequence and secondary structures for drug design studies. There 
are two major types of drug design including ligand based drug design and structure based 
drug design. In structure based drug design, the 3D structure of the target molecules is 
necessary for the study. (Ostopovici-Halip, L., Curpan, R., Mracec, M., & Bologa, C. G. 2011) 
An important goal of molecular modeling is to provide a microscopic details of the 
membrane proteins where there is no way to obtain enough information through 
experimental approaches. (Henin, J., Maigret, B., Tarek, M., Escrieut, C., Fourmy, D., & 
Chipot, C. 2006) 

The crystal structures for seven GPCRs have been represented so far. Most GPCRs are 
representing the inactive state of the receptor and are therefore suitable for the discovery of 
antagonists and reverse agonists. (Schneider, M. et al. 2011) 

Homology modeling is a knowledge based approach relying upon the crystallographic 
structure of related receptor and experimental information. This method has limitations 
when targeting active receptors. (Henin, J. et al. 2006)  

Homology modeling made it possible to align the protein of interest with the homologous 
structure and to subsequently evaluate the model with different scoring functions. Since the 
most important part of a homology modeling study is the alignment procedure, errors in 
predicting the structure protein with low homology are normally common. The alignment 
procedure is usually done by different methods such as cluatalW or T-cofee servers. In order 
to refine homology based models energy minimization or limited conformational sampling 
using molecular dynamic simulations are used. (Harterich, S., Koschatzky, S., Einsiedel, J., & 
Gmeiner, P. 2008) 

Due to diversity in loop area of the proteins, a loop refinement is usually necessary in most 
homology modeling studies. The available loop modeling algorithms are limited to up to 13 
residues long. Therefore in loop refinement step considerations must be taken with loops of 
the long size. (Ostopovici-Halip, L. et al. 2011) 

By the emergence of 3D structure for bovine rhodopsin, this receptor was widely used as 
template structure homology modeling studies of GPCRs. For example, 3D structure of 
neurotensin, a neuropeptide distributed in the CNS was modeled based on Rhodopsin as 
template.(Harterich, S. et al. 2008) Two other GPCRs namely, the principal canabinoid 
receptors CB1 and CB2 are the components of endogenous endocanabinoid systems. The 3D 
structures of CB1 and CB2 have also been modeled using Rhodopsin as template. (Pei, Y., 
Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D. et al. 2008)  

Another GPCR which has been characterized by homology modeling techniques was 
melatonin receptor. This receptor is responsible for the effects of melatonin, a compound 
taking part in resynchronization of biological rhythms such as sleep. In case of MT1 and 
MT2 receptors, the helices of the receptor were supposed to be superposable with the 
experimentally known helices of bovine rhodopsin. It was also reported that the identity of 
MT1 towards rhodopsin is more in respect to MT2 (23% vs 19%). 
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In other studies the active state of opsin has been used as template to model active 
structures of β2-adrenergic receptor. Interaction fingerprint studies have been used for 
dynamic ligand binding study of the interaction of ligands in the active and inactive states. 
It was concluded that the active structure of opsin is suitable for modeling GPCR agonists. 
(Schneider, M. et al. 2011) 

In spite of the many reports for the usefulness of rhodopsin in homology modeling studies, 
rhodopsin is merely suitable for antagonist design. The reason can be explained by the fact 
that rhodopsin is merely crystallized in its inactive state. Therefore, in order to design 
agonists of GPCRs, it is important to obtain information about the active states of the 
receptor.(Topiol, S. et al. 2009). There are some other limitations for using rhodopsin as 
template in homology modeling of GPCRs. One is that it has low homology (less than 25%) 
with family A GPCRs and no homology with other families of GPCRs such as secretin, 
adhesion and metabotropic receptors. The other limitation is the very complicated 
mechanism of activation in rhodopsin in comparison with the other GPCRs. The binding of 
the ligand to rhodopsin is covalent and signaling is conducted through activation of the 
ligand by photoisomerism. (Congreve, M. et al. 2011) 

Another problem with using rhodopsin is that the binding domains are arranged clockwise 
in this receptor while sequentially oriented anticlockwise in case of others.(Claude Nofre 
2001) Therefore, it is very difficult to obtain a reasonable overview for the activation of the 
GPCRs from rhodopsin antagonist binding.(Congreve, M. et al. 2011) Based on the findings 
it was claimed that rhodopsin might not be a suitable template for some GPCRs such as the 
cholecystokinin CCK1 receptor. (Kobilka, B. K. 2007) A revolution in the field of GPCRs has 
occurred after publication of the crystal structure of β1 and β2- adrenoceptor.(Congreve, M. 
et al. 2011) Afterwards, the crystal structures of adenosine A2A (A2AR), Chemokine CXCR4, 
dopamine D3 and histamine H1 in complex with antagonists have been reported which 
made a reasonable framework for the studies of GPCR functions and drug discovery. 
(Katritch, V. et al. 2011) 

The β2AR is almost a good model for the studies of agonist binding since much information 
is obtained about the site of interaction between the receptor and catechol amine ligands. 
(Kobilka, B. K. 2007)  

The crystal structures of ß1 and ß2 have been used for homology modeling of 5-HT2C 
receptor. They showed similar homology rates of 41% and 62% with the regions of 5-HT2C. 
(Renault, N., Gohier, A., Chavatte, P., & Farce, A. 2010) 

Another successful example of homology modeling studies using β2-AR as template was in 
Alpha 2 adrenoreceptor (α2ARs) receptors. These receptors with wide distributions are 
responsible for many activities such as the control of nervous system and cardiovascular 
systems. In this study, the resulted models have been minimized using the OPLS2005 force 
field implemented in schrodinger package. (Ostopovici-Halip, L. et al. 2011) 

In many cases of homology modeling, the validity of the structures was verified by 
ramachandran plot. A common method for docking the homology based models is 
WHATIF algorithm which generates ramachandran plots to identify outliers in terms of 
torsion angles and also compares the quality of the model with reliable structures presented 
in the form of Z-scores. It is also possible to get consensus votes through WHATIF to select 
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between homologous structures. (Abu-Hammad, A., Zalloum, W. A., Zalloum, H., Abu-
Sheikha, G., & Taha, M. O. 2009) 

Another tool to assess the structural validity of the models is to use hydrophobic moments 
of the helices. By this method, it is possible to obtain the orientation of hydrophobic moment 
in transmembrane domains. (Panetta, R. et al. 2008) 

5. Simulation studies of GPCRs 
In modeling studies for keeping the receptors electrochemically sealed the interaction of the 
lipids and proteins are needed. (Escriba, P. V., Wedegaertner, P. B., Goni, F. M., & Vogler, O. 
2007) 

Different molecular dynamic (MD) simulation methods have been used to study GPCRs. 
While all atom MD simulations in lipid bilayer and water is used to study the dynamics of 
the membrane proteins, By using targeted MD simulation such as metadynamics, it was 
possible to study the process of activation in the receptors. In metadynamics a Gaussian 
term is added to the free energy which disallows the system from returning to previous 
state. A pitfall of this method is the bias used for forcing the system change its state. The 
requirement of this method is the primary knowledge needed about the active and inactive 
states of the receptor. By using this method it is possible to obtain the intermediates in the 
activation process of the receptor. (Vaidehi, N. et al. 2011) 

Since the ligand induced conformational change in GPCRs happen in the range of 
microseconds, all atom MD simulations are not able to predict large scale simulations such 
as conformational change in GPCRs. (Vaidehi, N. et al. 2011) 

Another simulation method is elastic network model (ENM) in which the protein is 
represented as a collection of beads connected by springs, where beads refer to protein 
residues and springs refer to connections. By using this method it is possible to study the 
micro second simulations. (Vaidehi, N. et al. 2011) 

LITicon is a method in which the receptor conformations are permitted to have coarse grain 
degree of freedom to avoid the built in bias observed in targeted MD simulations. In this 
method the TMs are considered as rigid bodies connected to each other by flexible loops. 
The TM helices are rotated in a desired range of rotation angles and the side chain 
conformations are optimized for each backbone conformation using a rotamer library. 
Subsequently, the potential energy is minimized using all atom force field function. By this 
method it is possible to obtain an energy landscape for the GPCRs in the rotational span of 
the TM helices. After identifying the local minima in the landscape, the global minima state 
of energy landscape is chosen on the most stable state of the protein. In LITicon, the coarse 
grain simulation is used to forecast the ensemble of active and inactive states from the 
inactive crystal structure of the protein. A problem with coarse grain method is some 
significant barriers which might be missing during the activation pathway. 

Monte Carlo (MC) simulations have been also used to calculate the pathway for the 
activation of some receptors. By MC simulation, it was possible to search the minimum 
energy from the inactive state towards the ligand stabilized states. An important note to be 
considered in the computational studies of GPCRs, is the role of water molecules in the 

 
G-Protein Coupled Receptors: Experimental and Computational Approaches 255 

activation procedure which has been proposed by many researches to take role in 
conformational changes of GPCRs. It must be denoted that some water molecules in the 
crystal structure of the GPCRs might be either absent or not well resolved. It is known that 
multiscale methods with a combination of coarse grain and fine grain all atom methods are 
required for understanding the conformational changes of GPCRs. (Vaidehi, N. et al. 2011) 

Although some studies have reported the usefulness of MD simulations in studying the 
changes during dimerization, it was normally difficult to study the GPCRs in dimer form 
by molecular dynamic simulation methods. (Simpson, L. M. et al. 2010) Recent 
developments in protein-protein docking made it possible to perform studies on dimer 
formation.  

As an instance, the 5HT4 receptor was subjected to docking approach using GRAMM 
wherein the interface for dimerization was TM2.4- TM2.4. (Simpson, L. M. et al. 2010) 

Docking simulation studies have also been taken to predict the binding mode in GPCRs and 
estimate the ligand- receptor affinities in case of many receptors such as cholecystokinin 
(CCK). (Henin, J. et al. 2006) 

A further step in modeling based discovery of drugs for GPCRs is to identify potential 
binding sites in the receptors. The binding site for some GPCRs such as human sweet 
receptor (HSR) was modeled using ligand based approach. (Claude Nofre 2001) 

A successful example for using computational methods was in melanin concentrating 
hormone (MCH1R). The 3D structure of melanin concentrating hormone which belongs to 
rhodopsin superfamily was predicted using homology based modeling studies. During the 
procedure the models were built by the web based model suit SWISS MODEL and scanned 
for the ligands binding site. The model was then subjected to docking studies of ligands 
with known activities. The result of the docking step was used for making comparative 
molecular force field analysis. The combinations of docking/scoring/COMFA were 
previously reported to be successful in predicting docked conformer/pose closed to that of 
cocrystalized ligand. In these types of studies, the validity of COMFA models can be 
verified using ligand based approaches. (Abu-Hammad, A., Zalloum, W. A., Zalloum, H., 
Abu-Sheikha, G., & Taha, M. O. 2009) 

6. Conclusion 
Different experimental and computational approaches proposed the role of molecular 
switches on structural and conformational changes of GPCRs. 

By using experimental techniques such as site directed spin labeling, it was observed that in 
case of receptors such as rhodopsin, a well conserved salt bridge between TM3 and TM6 
known as ionic lock is broken during activation. This cleavage leads to flexibility of TM 6 
and its movement towards TM3.  

Based on molecular modeling studies, it was suggested that in case of some receptors such 
as MCH, the binding site is a cleft inside the helical domain of the receptor including three 
hydrophobic regions and a hydrogen bonding polar region.(Abu-Hammad, A. et al. 2009) 
Other studies revealed that polar interactions of serines with agonists and the movement of 
TM5 in B2AR pocket is resulted by shift of TM7 towards TM3 upon agonist binding. An 
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between homologous structures. (Abu-Hammad, A., Zalloum, W. A., Zalloum, H., Abu-
Sheikha, G., & Taha, M. O. 2009) 

Another tool to assess the structural validity of the models is to use hydrophobic moments 
of the helices. By this method, it is possible to obtain the orientation of hydrophobic moment 
in transmembrane domains. (Panetta, R. et al. 2008) 

5. Simulation studies of GPCRs 
In modeling studies for keeping the receptors electrochemically sealed the interaction of the 
lipids and proteins are needed. (Escriba, P. V., Wedegaertner, P. B., Goni, F. M., & Vogler, O. 
2007) 

Different molecular dynamic (MD) simulation methods have been used to study GPCRs. 
While all atom MD simulations in lipid bilayer and water is used to study the dynamics of 
the membrane proteins, By using targeted MD simulation such as metadynamics, it was 
possible to study the process of activation in the receptors. In metadynamics a Gaussian 
term is added to the free energy which disallows the system from returning to previous 
state. A pitfall of this method is the bias used for forcing the system change its state. The 
requirement of this method is the primary knowledge needed about the active and inactive 
states of the receptor. By using this method it is possible to obtain the intermediates in the 
activation process of the receptor. (Vaidehi, N. et al. 2011) 

Since the ligand induced conformational change in GPCRs happen in the range of 
microseconds, all atom MD simulations are not able to predict large scale simulations such 
as conformational change in GPCRs. (Vaidehi, N. et al. 2011) 

Another simulation method is elastic network model (ENM) in which the protein is 
represented as a collection of beads connected by springs, where beads refer to protein 
residues and springs refer to connections. By using this method it is possible to study the 
micro second simulations. (Vaidehi, N. et al. 2011) 

LITicon is a method in which the receptor conformations are permitted to have coarse grain 
degree of freedom to avoid the built in bias observed in targeted MD simulations. In this 
method the TMs are considered as rigid bodies connected to each other by flexible loops. 
The TM helices are rotated in a desired range of rotation angles and the side chain 
conformations are optimized for each backbone conformation using a rotamer library. 
Subsequently, the potential energy is minimized using all atom force field function. By this 
method it is possible to obtain an energy landscape for the GPCRs in the rotational span of 
the TM helices. After identifying the local minima in the landscape, the global minima state 
of energy landscape is chosen on the most stable state of the protein. In LITicon, the coarse 
grain simulation is used to forecast the ensemble of active and inactive states from the 
inactive crystal structure of the protein. A problem with coarse grain method is some 
significant barriers which might be missing during the activation pathway. 

Monte Carlo (MC) simulations have been also used to calculate the pathway for the 
activation of some receptors. By MC simulation, it was possible to search the minimum 
energy from the inactive state towards the ligand stabilized states. An important note to be 
considered in the computational studies of GPCRs, is the role of water molecules in the 
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activation procedure which has been proposed by many researches to take role in 
conformational changes of GPCRs. It must be denoted that some water molecules in the 
crystal structure of the GPCRs might be either absent or not well resolved. It is known that 
multiscale methods with a combination of coarse grain and fine grain all atom methods are 
required for understanding the conformational changes of GPCRs. (Vaidehi, N. et al. 2011) 

Although some studies have reported the usefulness of MD simulations in studying the 
changes during dimerization, it was normally difficult to study the GPCRs in dimer form 
by molecular dynamic simulation methods. (Simpson, L. M. et al. 2010) Recent 
developments in protein-protein docking made it possible to perform studies on dimer 
formation.  

As an instance, the 5HT4 receptor was subjected to docking approach using GRAMM 
wherein the interface for dimerization was TM2.4- TM2.4. (Simpson, L. M. et al. 2010) 

Docking simulation studies have also been taken to predict the binding mode in GPCRs and 
estimate the ligand- receptor affinities in case of many receptors such as cholecystokinin 
(CCK). (Henin, J. et al. 2006) 

A further step in modeling based discovery of drugs for GPCRs is to identify potential 
binding sites in the receptors. The binding site for some GPCRs such as human sweet 
receptor (HSR) was modeled using ligand based approach. (Claude Nofre 2001) 

A successful example for using computational methods was in melanin concentrating 
hormone (MCH1R). The 3D structure of melanin concentrating hormone which belongs to 
rhodopsin superfamily was predicted using homology based modeling studies. During the 
procedure the models were built by the web based model suit SWISS MODEL and scanned 
for the ligands binding site. The model was then subjected to docking studies of ligands 
with known activities. The result of the docking step was used for making comparative 
molecular force field analysis. The combinations of docking/scoring/COMFA were 
previously reported to be successful in predicting docked conformer/pose closed to that of 
cocrystalized ligand. In these types of studies, the validity of COMFA models can be 
verified using ligand based approaches. (Abu-Hammad, A., Zalloum, W. A., Zalloum, H., 
Abu-Sheikha, G., & Taha, M. O. 2009) 

6. Conclusion 
Different experimental and computational approaches proposed the role of molecular 
switches on structural and conformational changes of GPCRs. 

By using experimental techniques such as site directed spin labeling, it was observed that in 
case of receptors such as rhodopsin, a well conserved salt bridge between TM3 and TM6 
known as ionic lock is broken during activation. This cleavage leads to flexibility of TM 6 
and its movement towards TM3.  

Based on molecular modeling studies, it was suggested that in case of some receptors such 
as MCH, the binding site is a cleft inside the helical domain of the receptor including three 
hydrophobic regions and a hydrogen bonding polar region.(Abu-Hammad, A. et al. 2009) 
Other studies revealed that polar interactions of serines with agonists and the movement of 
TM5 in B2AR pocket is resulted by shift of TM7 towards TM3 upon agonist binding. An 
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optimal confrontation for this was made based on virtual ligand screening of known 
ligands. (Katritch, V. et al. 2011) 

Biochemical and mutagenesis of B2AR established two major interactions for full agonists in 
which the amine group forms a salt bridge in Aspll3 while the hydrogen groups of catechol 
interact with serine in TM5. Analysis of B2AR demonstrated that an inward shift (~2 A) of 
TM5 is needed for binding of full agonists. The same results have been observed in induced 
fit docking studies with flexible TM helices. The TM5 shift was caused by conformational 
freedom in this domain and strong H-binding between catechol OH and Ser 207. The 
modeling studies based on Adenosine A2A receptor was another example for modeling of 
agonists. In this case some interactions were revealed to be common for agonists and 
antagonists such as aromatic ring and amine core contacts. It was seen that adjustment of 
ligand in an optimal position and engagement of all polar interactions is needed for the shift 
of the conserved Trp 6.48. (Katritch, V. et al. 2011) 

In case of M3 receptor it was predicted that the binding of Ach to M3 triggers conformational 
changes within the TM receptor core. Agonist binding causes the disruption of the existing 
interhelical interactions and promotes a set of interactions that leads to a new favorable 
conformational state for the receptor. (Wess, J. et al. 2008) 

An important molecular switch is the ionic lock bottom highly conserved D/E motif found 
in all class A GPCRs. This ionic interaction holds together the cytoplasmic ends of TM3 and 
TM6 in many amine receptors. Another example for the role of ionic lock is in Angiotensin 1 
receptors. The evidence shows that Asn111 interacts with Asn295 in TM7 to stabilize the 
inactive state of the receptor. (Ahuja, S. et al. 2009;Deupi, X. et al. 2007) In another study it 
was postulated that reduction of conserved disulfide bridge might be a molecular switch for 
the activation of the receptor. This study was based on molecular dynamic simulation and 
virtual screening of dopamine D2 receptor. It was observed that a predictive model for the 
catechol binding cavity of D2 had reduced disulfide bridge. The movement of TM6 towards 
TM5 was supposed to be the result of cleavage in the conserved disulfide bridge (Fig 4) 
(Sakhteman, A., Lahtela-Kakkonen, M., & Poso, A. 2011) 

 
Fig. 4. Movement of TM6 towards TM5 in D2 model with reduced disulfide bridge. 
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optimal confrontation for this was made based on virtual ligand screening of known 
ligands. (Katritch, V. et al. 2011) 

Biochemical and mutagenesis of B2AR established two major interactions for full agonists in 
which the amine group forms a salt bridge in Aspll3 while the hydrogen groups of catechol 
interact with serine in TM5. Analysis of B2AR demonstrated that an inward shift (~2 A) of 
TM5 is needed for binding of full agonists. The same results have been observed in induced 
fit docking studies with flexible TM helices. The TM5 shift was caused by conformational 
freedom in this domain and strong H-binding between catechol OH and Ser 207. The 
modeling studies based on Adenosine A2A receptor was another example for modeling of 
agonists. In this case some interactions were revealed to be common for agonists and 
antagonists such as aromatic ring and amine core contacts. It was seen that adjustment of 
ligand in an optimal position and engagement of all polar interactions is needed for the shift 
of the conserved Trp 6.48. (Katritch, V. et al. 2011) 

In case of M3 receptor it was predicted that the binding of Ach to M3 triggers conformational 
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Fig. 4. Movement of TM6 towards TM5 in D2 model with reduced disulfide bridge. 
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1. Introduction  
Protein-protein interactions (PPI) are one of the most important biological events which 
occur in the cell. As PPIs regulate almost all biological processes in the cell, aberrations in 
PPI may cause severe health problems. One specific area of PPI is receptor-ligand 
interactions. These interactions are transient yet account for a large part of cell-to-cell 
communication. As PPI is an important area of research, many groups have proposed 
methods to make computational predictions of PPI. 

The basis of the majority of these methods rely largely on the phylogenetic profile analysis 
of candidate interactors. These methods determine the similarity of the phylogenetic history 
of a protein A and its putative protein partner B, examining the most accurate measure of 
similarity between the phylogenetic histories of A and B in order to predict interaction. As 
interacting proteins should co-adapt as they are under the same evolutionary pressures, it is 
self-evident that interacting receptors and ligands should be identifiable by application of 
the same methodology.  

While several methods, described below, make use of phylogenetic information to predict 
protein-protein interaction (PPI), more contemporary work has been conducted in the area 
of data fusion and kernel learning. We describe one method [Iacucci et al. 2011] in detail 
which does both. In this work, the existing line of phylogenetic research is extended by 
using phylogenetic data to construct a kernel to train a least square support vector machines 
(LS-SVM) in order to classify candidate receptors and ligands as interacting or non-
interacting.  

In this chapter, we discuss the plethora of various methods for determining protein-protein 
interactions. In addition, we evaluate the application of LS-SVMs to the sub-problem of 
receptor-ligand interaction prediction.  
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Fig. 1. The Receptor Ligand Schematic. Schematic of receptor-ligand and protein-protein 
interaction model. Top image is a representation of in-vivo interaction of proteins, receptors, 
and ligands while bottom image is the graph representation from which a PPI adjacency 
matrix may be derived. (Figure published in Iacucci et al. 2010) 

2. Current computational approaches for predicting protein-protein 
interaction 
During the past decade, many methods for prediction of interaction between proteins have 
been studied due to the crucial role that these interactions have in the understanding of the 
diverse cellular mechanisms of life forms. Many of these methods involve experimental 
analysis of specific protein pairs in a smaller scale or, in current high throughput methods 
[Uetz et al. 2000, Giot et al. 2003], a large amount of protein interactions. The later can be 
used to detect many interactions with reasonable sensitivity but rather low specificity. 
Another, relatively inexpensive, way to predict protein-protein interactions does not include 
wet lab analysis, using instead a variety of computational approaches. These approaches can 
complement experimental wet lab techniques and are often supported by either the 
hypothesis of protein co-evolution [Tan et al. 2004, Tillier et al. 2006, Izarzugaza et al. 2006], 
structural similarities [Gong et al. 2005, Ogmen et al. 2005] or amino-acids sequence 
conservation [Pitre et al. 2006].  

While the entire genomes of many species are already completely sequenced, the interactone 
of these life forms is often many orders of magnitude larger and yet far from being fully 
mapped [Claverie et al. 2001, Rubin et al. 2001]. High throughput experimental techniques will 
certainly help to create this mapping and computational approaches can complement their 
results identifying false positive interactions, and therefore improving the specificity of these 
experimental techniques. Apart from the experimental techniques, computational methods are 
themselves a powerful and affordable alternative to contribute to interactome mapping. 
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Several computational approaches have been developed in recent years. Many of them are 
freely available as web tools offering a variety of services to biologists and bioinformatics 
that range from prediction of interactions between of proteins in pairs or in batch mode, 
through browsing of consolidated large scale analysis, up to visualization of binding sites 
and physical interactions in 3-dimensional images. 

The methodologies of these many different approaches vary, but they all seem to be supported 
by the following findings: (a) evidences in favor of the hypothesis of protein co-evolution and 
the similarities observed in the phylogenetic trees of these proteins; and (b) datasets of already 
known protein-protein interactions verified by experimental techniques. Co-evolutionary 
methods find protein pairs with the highest co-evolutionary signal. This information is 
powerful to predict which members of interacting protein families are associated structurally 
or functionally although it is not specific enough to predict whether or not two protein families 
interact. On the other hand, methods supported by verified protein-protein interactions make 
use of the structural or amino-acid sequence similarities of interacting proteins partners to 
predict interaction between query protein pairs. This makes such methods more suitable to 
predict physical interactions rather than functional relationships. 

We have reviewed 6 methods and their web tools for predicting protein-protein interactions. 
Three of them, supported by the protein co-evolution hypothesis, are: TSEMA [Izarzugaza 
et al. 2006], ADVICE [Tan et al. 2004], Codep [Tillier et al. 2006]. The other three, supported 
by datasets of verified interactions, are: PIPE [Pitre et al. 2006], PSIbase [Gong et al. 2005], 
and PRISM [Ogmen et al. 2005]. In the next Sections, we describe each one of these two 
types of methods. 

2.1 Current co-evolutionary methods  

Many studies of the problem of predicting protein-protein interactions investigate the 
similarity of the phylogenetic history of the interaction partners. Many examples of 
interaction between proteins have presented signs of co-evolution in such a way that 
members of different interacting protein families present similarity between their 
phylogenetic trees [Fryxell 1996, Goh et al. 2000, van Kesteren et al. 1996, Moyle et al. 1994, 
Pazos and Valencia 2001]. The core of co-evolutionary methods is based on measures of 
similarity for the phylogenetic trees of interacting protein partners. 

There are several measures for similarity between phylogenetic trees. The trees can be 
compared directly [Goh et al. 2000], via distance matrices [Moyle et al. 1994, Goh and Cohen 
2002, Ramani and Marcotte 2003, Gertz et al. 2003], or using multiple sequence alignments 
[Tillier et al. 2006]. In the following Sections, we present three co-evolutionary methods: 
TSEMA and ADVICE, which uses distance to compare the phylogeneitc trees, and Codep, 
which computes the correlation between co-evolving partners from their multiple sequence 
alignments. 

2.1.1 Interactive prediction of protein pairing between interacting families TSEMA  

TSEMA is a method and web tool to predict mappings between two families of homologous 
proteins. The probed protein families can either be inputted using the Newick format or in a 
format comparable with ClustalW, which is used to build the trees. The distances for all 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

260 

 

Fig. 1. The Receptor Ligand Schematic. Schematic of receptor-ligand and protein-protein 
interaction model. Top image is a representation of in-vivo interaction of proteins, receptors, 
and ligands while bottom image is the graph representation from which a PPI adjacency 
matrix may be derived. (Figure published in Iacucci et al. 2010) 

2. Current computational approaches for predicting protein-protein 
interaction 
During the past decade, many methods for prediction of interaction between proteins have 
been studied due to the crucial role that these interactions have in the understanding of the 
diverse cellular mechanisms of life forms. Many of these methods involve experimental 
analysis of specific protein pairs in a smaller scale or, in current high throughput methods 
[Uetz et al. 2000, Giot et al. 2003], a large amount of protein interactions. The later can be 
used to detect many interactions with reasonable sensitivity but rather low specificity. 
Another, relatively inexpensive, way to predict protein-protein interactions does not include 
wet lab analysis, using instead a variety of computational approaches. These approaches can 
complement experimental wet lab techniques and are often supported by either the 
hypothesis of protein co-evolution [Tan et al. 2004, Tillier et al. 2006, Izarzugaza et al. 2006], 
structural similarities [Gong et al. 2005, Ogmen et al. 2005] or amino-acids sequence 
conservation [Pitre et al. 2006].  

While the entire genomes of many species are already completely sequenced, the interactone 
of these life forms is often many orders of magnitude larger and yet far from being fully 
mapped [Claverie et al. 2001, Rubin et al. 2001]. High throughput experimental techniques will 
certainly help to create this mapping and computational approaches can complement their 
results identifying false positive interactions, and therefore improving the specificity of these 
experimental techniques. Apart from the experimental techniques, computational methods are 
themselves a powerful and affordable alternative to contribute to interactome mapping. 

Computational Approaches to Elucidating Transient  
Protein-Protein Interactions, Predicting Receptor-Ligand Pairings 

 

261 

Several computational approaches have been developed in recent years. Many of them are 
freely available as web tools offering a variety of services to biologists and bioinformatics 
that range from prediction of interactions between of proteins in pairs or in batch mode, 
through browsing of consolidated large scale analysis, up to visualization of binding sites 
and physical interactions in 3-dimensional images. 

The methodologies of these many different approaches vary, but they all seem to be supported 
by the following findings: (a) evidences in favor of the hypothesis of protein co-evolution and 
the similarities observed in the phylogenetic trees of these proteins; and (b) datasets of already 
known protein-protein interactions verified by experimental techniques. Co-evolutionary 
methods find protein pairs with the highest co-evolutionary signal. This information is 
powerful to predict which members of interacting protein families are associated structurally 
or functionally although it is not specific enough to predict whether or not two protein families 
interact. On the other hand, methods supported by verified protein-protein interactions make 
use of the structural or amino-acid sequence similarities of interacting proteins partners to 
predict interaction between query protein pairs. This makes such methods more suitable to 
predict physical interactions rather than functional relationships. 

We have reviewed 6 methods and their web tools for predicting protein-protein interactions. 
Three of them, supported by the protein co-evolution hypothesis, are: TSEMA [Izarzugaza 
et al. 2006], ADVICE [Tan et al. 2004], Codep [Tillier et al. 2006]. The other three, supported 
by datasets of verified interactions, are: PIPE [Pitre et al. 2006], PSIbase [Gong et al. 2005], 
and PRISM [Ogmen et al. 2005]. In the next Sections, we describe each one of these two 
types of methods. 

2.1 Current co-evolutionary methods  

Many studies of the problem of predicting protein-protein interactions investigate the 
similarity of the phylogenetic history of the interaction partners. Many examples of 
interaction between proteins have presented signs of co-evolution in such a way that 
members of different interacting protein families present similarity between their 
phylogenetic trees [Fryxell 1996, Goh et al. 2000, van Kesteren et al. 1996, Moyle et al. 1994, 
Pazos and Valencia 2001]. The core of co-evolutionary methods is based on measures of 
similarity for the phylogenetic trees of interacting protein partners. 

There are several measures for similarity between phylogenetic trees. The trees can be 
compared directly [Goh et al. 2000], via distance matrices [Moyle et al. 1994, Goh and Cohen 
2002, Ramani and Marcotte 2003, Gertz et al. 2003], or using multiple sequence alignments 
[Tillier et al. 2006]. In the following Sections, we present three co-evolutionary methods: 
TSEMA and ADVICE, which uses distance to compare the phylogeneitc trees, and Codep, 
which computes the correlation between co-evolving partners from their multiple sequence 
alignments. 

2.1.1 Interactive prediction of protein pairing between interacting families TSEMA  

TSEMA is a method and web tool to predict mappings between two families of homologous 
proteins. The probed protein families can either be inputted using the Newick format or in a 
format comparable with ClustalW, which is used to build the trees. The distances for all 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

262 

pairs of proteins within both families are extracted from their phylogenetic trees by 
summing the length of the branches separating each pair of proteins in the trees. The 
algorithm of TSEMA finds the mapping between the two sets proteins which maximizes the 
matching between the sets of distances using a modified implementation of the Ramani and 
Marcotte's Monte Carlo Metropolis method [Ramani and Marcotte 2003]. 

Availability: http://tsema.bioinfo.cnio.es/ 

2.1.2 Automated Detection and Validation of Interaction by Co-Evolution – ADVICE  

ADVICE predicts and validate protein-protein interactions using observed co-evolution 
between proteins. The web tool retrieves orthologous sequences of a list of input protein 
sequences and compute the similarities among the proteins evolutionary histories. The tool 
also provides visualization for the resulting network of co-evolved proteins. 

The ADVICE algorithm infers interaction based on the correlation between distance matrices 
constructed from the evolutionary history using orthologous sequences of top 10 species. The 
tool uses BLAST [Altschul et al. 1990] to search the orthologous sequences from Swiss-Prot 
and TrEMBL databases [Boeckmann 2003]. The distance matrices are constructed using only 
pairs of orthologous sequences occurring together in the same species. By default, only the 
orthologous sequences of the top 10 species, based on the BLAST E-value, are used to 
construct the matrices, excluding those species where more than one orthologous sequence of 
the input sequence is found. The actual distance matrices are build from the respective 
multiple sequence alignments using ClustalW [Thompson et al. 1994]. The algorithm then 
calculates the correlation between pairs of matrices measuring the Pearson's correlation 
coefficients, which has values between -1, implying 100% anti-correlation, and 1,which 
representing 100% evolutionary history similarity, being velues above 0.8 good indicators of 
interaction and values below 0.3 a good cut-off value to detect potential spurious interaction. 

Availability: http://advice.i2r.a-star.edu.sg 

2.1.3 Maximizing co-evolutionary interdependencies to discover interacting proteins – 
Codep  

Codep and the other co-evolutionary methods find proteins with the highest co-
evolutionary signals, independent of physical or functional interaction. The main difference 
of Codep is that it uses multiple sequence alignments directly rather than distances obtained 
from the sequences. The user inputs two phylogenetic trees with orthologous sequences. 
The algorithm maximizes interdependency based on the maximal mutual information. It 
does this by fixing one of the multiple sequence alignments and varying the order of the 
other via exhaustive search or via simulated annealing. 

The rationale to use directly multiple sequence alignments instead of the distance matrices, 
which provides a faster way to calculate correlation, is that character-state methods in the 
field of phylogenetic analysis are more powerful than distance method and some 
information can be lost in transforming character-state data into distance matrices. 

Availability: http://www.uhnresearch.ca/labs/tillier/ 
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2.2 Methods based on verified interactions 

Another promising computational approach to predict new protein-protein interactions is to 
look at the physical structure and the conservation of amino-acid sequences in partners of 
interactions that are already reliably known to exist. Then, use the gathered information to 
find correlation with query protein partners of a probed interaction. Many methods apply 
this approach, which have delivered powerful tools for finding new interactions [Pitre et al. 
2006] and even to corroborate with the protein co-evolution hypothesis [Kim et al. 2004]. In 
the next three Sections we describe three of these methods: PIPE, which compares amino-
acid subsequences between probed protein partners and partners of verified protein 
interactions from a database; and PSIbase and PRISM, both which compare structural 
characteristics of probed and verified interactions. 

2.2.1 Protein-Protein Interaction Prediction Engine – PIPE 

PIPE is a computational tool that can effectively identify protein-protein interactions among 
S. cerevisiae protein pairs. It relies on previously determined S. cerevisiae protein interactions 
compiled from the DIP [Salwinski et al. 2004] and MIPS [Mewes et al. 2002] databases to 
construct a graph where the nodes are proteins and the edges represent the relationship of 
interacting proteins. 

The working principle of the PIPE algorithm to probe interaction between the pair of 
proteins A-B is to compare sliding subsequences of amino-acids of size w from A to 
subsequences of the same size of all proteins in the graph of known interactions; then 
compare sliding subsequences of B to the neighbors of all matches of A. If protein pair C-D 
are connected in the graph, representing a verified interaction, and if A has subsequence 
matches with C and B has matches with D, then the pair A-B is more likely to present 
interaction. The accumulation of all matches of subsequence comparisons presented in form 
of a matrix indicates a predicted interaction when the higher values in this matrix is above a 
given threshold of M matches. 

The algorithm has three tuning parameters: w, M, and SPAM, which is the threshold value 
that indicates a match between two subsequences of amino-acids. The author of PIPE chose 
to fix w in 20, and tune the other two parameter either by trial and error or by statistical 
evaluation. 

PIPE is reported to have success rate comparable to biochemical techniques, with a 
sensitivity of 61% , specificity of 89%, and overall accuracy of 75%. The main disadvantages 
of PIPE is its heavy computational burden and its limitation to yeast proteins. 

Availability: http://pipe.cgmlab.org 

2.2.2 Protein Structural Interactome Map – PSIMAP  

PSIMAP is a map that describes the information about domain-domain and protein-protein 
interactions known to exist in the Protein Data Bank of structures. It is based on the 
principle that interaction between protein structures is conserved as closely as protein 
structures themselves [Park et al. 2001, Aloy and Rossell, 2002; Aloy et al. 2003]. It that 
predicts if domains or proteins structures interact calculating if every possible pair of 
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pairs of proteins within both families are extracted from their phylogenetic trees by 
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2.2 Methods based on verified interactions 
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structures has an Euclidean distance below a certain threshold. There are three different 
methods to do this: Full Atom Contact (FAC); Sample Atom Contact (SAC); and Bounding 
Box Contact (BBC). FAC is the most accurate, whereas SAC and BBC [Dafas et al. 2004] are 
faster methods. 

PSIMAP extract the molecular interaction information of proteins from the PDB. It 
associates this information to domains using the Structural Classification of Proteins (SCOP) 
to assign the domains to the structures.  

Availability: http://psimap.org and http://psibase.kaist.ac.kr/ 

2.2.3 Protein Interactions by Structural Matching – PRISM  

The PRISM tool allows the user to explore protein interfaces and predict protein-protein 
interactions by comparing the structure of query proteins to those of a structurally and 
evolutionarily subset of biological and crystal interactions present in the Protein Data Bank 
(PDB) [Berman 2000]. Interfaces are defined as the set of residues forming the region of the 
structure through which two different protein chains bind to each other. This set consists the 
contacting residues between the chains and the neighboring residues up to a certain distance 
threshold.  

The interfaces in PRISM were obtained from all higher complexes of proteins available in the 
PDB [Keskin et al. 2004]. From the 49512 interfaces extracted form the PDB, 8205 clusters were 
obtained using a sequence order-independent computer vision-based algorithm to structurally 
compare the interfaces. From these 8205 clusters, PRISM considers only 158 template interfaces 
(Oct/2011) that were found to have evolutionary hotspots [Keskin et al. 2005]. 

 
Fig. 2. Phylogenetic Analysis of Proteins  

As proteins A and B are interacting proteins, they share a similar phylogenetic history and 
thus their phylogenetic profiles are highly correlated (R=0.97). Proteins A and C are non-
interacting and are thus not strongly correlated (R=0.30).  
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PRISM algorithm compares the 158 template interfaces to a target dataset of 18698 structures 
obtained from passing the structures extracted form the PDB through a 50% sequence identity 
filter, splitting multimeric proteins into constituent chains, and counting homologous chains 
only once. The user can also probe a protein structure that is originally not present in the target 
dataset. To compare target proteins to template interfaces PRISM algorithm do as follow: (a) 
extract target protein surfaces; (b) compare the target surface with all interface complementary 
partners from the template dataset using MULTIPROT [Shatsky et al. 2004] in order to detect 
common geometrical cores in a sequence-order-independent way; (c) check for the presence of 
hotspots in the target structure. The final prediction score is calculated weighting the structural 
match ratio and the hotspot match ratio.  

Availability: http://prism.ccbb.ku.edu.tr/prism/ 

3. Phylogenetics and beyond, how multiple kernel learning can improve 
predictions of receptor-ligand pairings 
As seen in the sections above, there are several groups which have used phylogenetic 
analysis to predict PPI. Here we examine the use of multiple kernel learning in the task of 
PPI prediction. Kernel learning provides the ability to utilize directly and indirectly related 
data (such as expression measures, domain content, etc.) and perform classification in high 
dimensional space. When different data sources are used, separate kernel classifiers can be 
built and the combined output used to provide a final result.  

One of the first groups to look at predicting PPI using multiple data sources was Bhardwaj 
et al. (2003). They use both phylogenetic information as well as expression data to make 
their predictions. The use of both data sources were proved, in their work, to provide results 
with greater accuracy than with using phylogenetic analysis alone. Co-expression is a logical 
source of information for use in this setting as proteins which interact for the purpose of 
performing a common function are likely to be co-expressed as they will need to be present 
at the same time in the cell [Bhardwaj et al. 2003, Grigoriev et al. 2001]. 

The idea of combining expression and phylogenetic information to predict PPI is clearly a step 
on a path which leads one to consider a wider variety of data integration. Other data sources 
include domain information as domains are known to interact and it is clear that this data 
would provide additional insight into the task of protein-protein interaction. Combining the 
above mentioned data sources can be carried out by using multiple kernel learning.  

To examine the utility of multiple kernel learning with respect to this task, it is necessary to 
cite an example in which it performs better than other settings. One such example exists 
when one looks at the work of Gertz et al. (2003) and compare it with the work presented in 
Iacucci et al. (2011). Both groups look at the receptor-ligand prediction task and apply 
computational methods to the same dataset. The datasets consist of members of the 
chemokine and tgfβ ligand families with their respective receptor families. In the case of 
Gertz et al (2003), distances matrices are created for the families and are matched according 
to their similarity. Using a Metropolis Monte Carlo optimization algorithm, the Gertz et al. 
(2003) group explored and scored possible matches between the two matrices, until they 
reached optimal solutions. A limitation of this approach is that it relied on phylogenetic 
distance information alone. 
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reached optimal solutions. A limitation of this approach is that it relied on phylogenetic 
distance information alone. 
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Contrary to the work of Gertz et al (2003), the work presented by Iacucci et al 2011 proposes 
that the integration of multiple data sources results in more accurate matches. This work 
involved the creating of a combined kernel classifier to carry out the learning task. While 
other kernel-based works have been applied to the PPI task [Kim et al. 2010, Miwa et al. 
2009], the work of Iacucci et al (2011) is unique as they apply multiple kernel learning to the 
receptor-ligand problem. More specifically, they apply the least-squares support vector 
machines (LS-SVM) method based on the conclusions by Suykens et al. (2001) which shows 
this implementation to be robust.  

The ability of Iacucci et al. (2011) to predict candidate receptor-ligand pairs has been show to 
outpace that of Gertz et al. (2003) on the same dataset. This work involves using multiple data 
sources (expression, phylogenetic, and protein-domain content information), computing 
separate kernels for each data type, creating LS-SVM classifiers and combining the results to 
predict receptor-ligand pairs. The specifics of these steps will be discussed below. 

3.1 Data sources  

Several choices for data sources can be considered when addressing the PPI prediction task. 
While the studies, mentioned above, which use phylogenetic information rely on sequence 
data, other sources are available. Such sources include domain content data and expression 
data. 

The phylogenetic data used in the Iacucci et al. (2011) study was derived through several steps. 
First, candidate receptor and ligand sequences were retrieved for seven species (Rattus 
norvegicus, Mus musculus, Homo sapiens, Pan troglodytes, Canis familiaris, Cavia porcellus, and Bos 
taurus) from ensemble build 51 [Hubbard et al. 2009]. Following this, the sequences were 
aligned using ClustalW [Thompson et al. 1994] Once aligned, the sequences were edited so as 
to eliminate the positions which were not conserved across the seven orthologous sequences. 
Finally, the pair-wise alignment score was then taken for each possible species to species 
comparison between the edited orthologous sequences (as seven species are used, a total of 21 
pair-wise comparisons for each candidate are created). The distance scores form a 
phylogenetic vector which was then used to create the phylogenetic kernel. 

The expression data used in the Iacucci et al. (2011) work was taken from the well-known 
GNF human expression atlas (79 tissues) [Su et al. 2004], the data was normalized (values 
were mean-zeroed and the standard deviation was set to one) and was further transformed 
into the expression kernel.  

For the Iacucci et al. (2011) work, the domain content of each candidate protein (receptor or 
ligand) was taken from the Interpro Database [Hunter et al. 2009]. A vector for each 
candidate protein was created where the presence of a protein domain was indicated with 
a ’1’ and the absence of a domain was indicated by a ‘0’. This data was then transformed to 
create the domain content kernel. 

The “Golden Standard” for the verification of the Gertz et al (2003) and the Iacucci (2011) et 
al. work is based on the Database of Ligand-Receptor Partners (DLRP) [Graeber et al. 2001]. 
This dataset is an experimentally derived dataset where known receptor-ligand pairs are 
stored. The information found here was used to train the LS-SVM described below. In 
addition, it was also used as the “Golden Standard” to determine which predictions, by both 
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groups, were true positives and false positive as well as false negatives and true negatives. 
These values were then used to calculate specificity and sensitivity of each groups’ 
predictions to ultimately determine which approach provided better results. 

3.2 Kernel creation and the LS-SVM 

The creation of the kernels and the training of the least-squares support vector machine (LS-
SVM) in the work presented by Iacucci et al. (2011) required multiples steps. First, the data 
sources, discussed above, were used to create data matrices (phylogenetic, expression, and 
domain content) which were then used to create three kernels for each receptor-ligand 
family. Following this, the LS-SVMs were trained using the three kernels to predict 
outcomes for receptor-ligand pairs known from the DLRP “Golden Standard”. 

 
Fig. 3. Work flow of the combined kernel classifier 

Data was partitioned into training and validation sets and parameters were tuned using a five 
fold validation strategy. The final output of the classifiers was achieved by a leave one out 
strategy. The classifier values were combined for a final result and a threshold was applied to 
determine which values are predicted edges (Figure published in Iacucci et al. 2011). 

The kernel function used by Iacucci et al. (2011) measures the similarity between two 
proteins A and B (K(A,B)), one a candidate receptor A and the other a candidate ligand B. 
The LS-SVM classifier produced by Iacucci et al. (2011) is a binary predictor which assigns 
new examples in “interacting” or “non-interacting” classes. Creating the kernels from the 
various data matrices involved trials with different kernel functions, with linear functions 
ultimately being found to give the best performance in all cases. Data was partitioned into 
training and validation sets and parameters were tuned using a five fold validation strategy 
The final output of the classifiers was achieved by a leave-one-out strategy. The classifier 
values were scaled (minimum set to zero, maximum set to one). The values were then 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

266 

Contrary to the work of Gertz et al (2003), the work presented by Iacucci et al 2011 proposes 
that the integration of multiple data sources results in more accurate matches. This work 
involved the creating of a combined kernel classifier to carry out the learning task. While 
other kernel-based works have been applied to the PPI task [Kim et al. 2010, Miwa et al. 
2009], the work of Iacucci et al (2011) is unique as they apply multiple kernel learning to the 
receptor-ligand problem. More specifically, they apply the least-squares support vector 
machines (LS-SVM) method based on the conclusions by Suykens et al. (2001) which shows 
this implementation to be robust.  

The ability of Iacucci et al. (2011) to predict candidate receptor-ligand pairs has been show to 
outpace that of Gertz et al. (2003) on the same dataset. This work involves using multiple data 
sources (expression, phylogenetic, and protein-domain content information), computing 
separate kernels for each data type, creating LS-SVM classifiers and combining the results to 
predict receptor-ligand pairs. The specifics of these steps will be discussed below. 

3.1 Data sources  

Several choices for data sources can be considered when addressing the PPI prediction task. 
While the studies, mentioned above, which use phylogenetic information rely on sequence 
data, other sources are available. Such sources include domain content data and expression 
data. 

The phylogenetic data used in the Iacucci et al. (2011) study was derived through several steps. 
First, candidate receptor and ligand sequences were retrieved for seven species (Rattus 
norvegicus, Mus musculus, Homo sapiens, Pan troglodytes, Canis familiaris, Cavia porcellus, and Bos 
taurus) from ensemble build 51 [Hubbard et al. 2009]. Following this, the sequences were 
aligned using ClustalW [Thompson et al. 1994] Once aligned, the sequences were edited so as 
to eliminate the positions which were not conserved across the seven orthologous sequences. 
Finally, the pair-wise alignment score was then taken for each possible species to species 
comparison between the edited orthologous sequences (as seven species are used, a total of 21 
pair-wise comparisons for each candidate are created). The distance scores form a 
phylogenetic vector which was then used to create the phylogenetic kernel. 

The expression data used in the Iacucci et al. (2011) work was taken from the well-known 
GNF human expression atlas (79 tissues) [Su et al. 2004], the data was normalized (values 
were mean-zeroed and the standard deviation was set to one) and was further transformed 
into the expression kernel.  

For the Iacucci et al. (2011) work, the domain content of each candidate protein (receptor or 
ligand) was taken from the Interpro Database [Hunter et al. 2009]. A vector for each 
candidate protein was created where the presence of a protein domain was indicated with 
a ’1’ and the absence of a domain was indicated by a ‘0’. This data was then transformed to 
create the domain content kernel. 

The “Golden Standard” for the verification of the Gertz et al (2003) and the Iacucci (2011) et 
al. work is based on the Database of Ligand-Receptor Partners (DLRP) [Graeber et al. 2001]. 
This dataset is an experimentally derived dataset where known receptor-ligand pairs are 
stored. The information found here was used to train the LS-SVM described below. In 
addition, it was also used as the “Golden Standard” to determine which predictions, by both 

Computational Approaches to Elucidating Transient  
Protein-Protein Interactions, Predicting Receptor-Ligand Pairings 

 

267 

groups, were true positives and false positive as well as false negatives and true negatives. 
These values were then used to calculate specificity and sensitivity of each groups’ 
predictions to ultimately determine which approach provided better results. 

3.2 Kernel creation and the LS-SVM 

The creation of the kernels and the training of the least-squares support vector machine (LS-
SVM) in the work presented by Iacucci et al. (2011) required multiples steps. First, the data 
sources, discussed above, were used to create data matrices (phylogenetic, expression, and 
domain content) which were then used to create three kernels for each receptor-ligand 
family. Following this, the LS-SVMs were trained using the three kernels to predict 
outcomes for receptor-ligand pairs known from the DLRP “Golden Standard”. 

 
Fig. 3. Work flow of the combined kernel classifier 

Data was partitioned into training and validation sets and parameters were tuned using a five 
fold validation strategy. The final output of the classifiers was achieved by a leave one out 
strategy. The classifier values were combined for a final result and a threshold was applied to 
determine which values are predicted edges (Figure published in Iacucci et al. 2011). 

The kernel function used by Iacucci et al. (2011) measures the similarity between two 
proteins A and B (K(A,B)), one a candidate receptor A and the other a candidate ligand B. 
The LS-SVM classifier produced by Iacucci et al. (2011) is a binary predictor which assigns 
new examples in “interacting” or “non-interacting” classes. Creating the kernels from the 
various data matrices involved trials with different kernel functions, with linear functions 
ultimately being found to give the best performance in all cases. Data was partitioned into 
training and validation sets and parameters were tuned using a five fold validation strategy 
The final output of the classifiers was achieved by a leave-one-out strategy. The classifier 
values were scaled (minimum set to zero, maximum set to one). The values were then 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

268 

combined, as defined in (1), for a final result. Figure 3 provides an overview of the workflow 
as described above. 
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3.3 Results and discussion 

The comparison of the phylgenetic based method of Gertz et al. (2003) and the combined 
kernel classifer method of Iacucci et al. (2011) provides a clear perspective on the advantages 
of multiple kernel learning in the PPI prediction task. As both groups use the same dataset 
and have results which can be summarized and contrasted using recall, precision, and the F-
measures. 

The Iacucci et al. (2011) predictions for the tgfβ family accurately reconstructed over 76% of 
the supported edges (0.76 recall and 0.67 precision) of the know DLRP receptor-ligand pairs. 
In this case, the combined kernel classifier was able to relatively improved upon the Gertz et 
al. (2003) work by a factor of approximately two as the Gertz et al. (2003) work reconstructs 
44% of the supported edges (0.44 recall and 0.53 precision) of the know DLRP receptor-
ligand pairs. Comparing F-measures, we see that the combined kernel classifer method 
improved upon that of Gertz et al. (2003) significantly as the Iacucci et al. (2011) method has 
an F-measure of 0.71 while that of Gertz et al. (2003) has a value of 0.48. 

The Iacucci et al. (20011) predictions for the chemokine family accurately reconstructed over 
65% of the supported edges (0.65 recall and 0.23 precision) of the know DLRP receptor-
ligand pairs. In this case, the combined kernel classifier was able to relatively improved 
upon the Gertz et al. (2003) work by a factor of approximately three as the Gertz et al. (2003) 
work reconstructs 22% of the supported edges (0.22 recall and 0.37 precision) of the know 
DLRP receptor-ligand pairs. Comparing F-measures, we see that the combined kernel 
classifer method improved upon that of Gertz et al. (2003) significantly as the Iacucci et al 
(2011) method has an F-measure of 0.33 while that of Gertz et al. (2003) has a value of 0.27. 

Qualitatively, the performance of the Iacucci et al (2011) method also seems to be matching 
the performance of Gertz et al. (2003), as the novel interaction of CCR1 with SCY11 [Gao et 
al. 1996] reported in their work is also discovered using Iacucci et al (2011) method. 

The comparison of the results of the two methods discussed here support the notion that 
kernel learning presents a useful methodology for elucidating receptor-ligand pairings. The 
benefits of the combined kernel classifier method over the Gertz et al. (2003) method are 
clear. Foremost in the advantages are the ability to predict multiple ligands for one receptor, 
which represents an necessary feature for receptor-ligand research. Also, as the classifier 
output is continuous, the results can be considered to be prioritized, this presents a major 
convenience to researchers as often the set of candidate ligands are large and financial and 
time resources to validate few.  

4. Conclusion 
The task of PPI prediction is a difficult and important area of bioinformatics research. As the 
number of possible interacting protein pairs in the cell is huge, wet-lab experimentation 
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validation of all of them is essentially impossible. In addition to being time consuming, in-
vivo validation costs are also a consideration. Having a computational method for 
predicting PPI is therefore a necessary tool for researchers. 

Several groups have addressed the PPI prediction task. While several have used 
phylogenetics to solve the problem, others have used physical protein structures and amino-
acid sequence information to assist in making the predictions. We have reviewed these 
methods and discussed the key differences among them.   

Methods, which rely on the physical structure and the conservation of amino-acid sequences 
in partners of interactions that are already reliably known to exist, also give researchers 
additional insight to function prediction as the methods are based on known examples. The 
drawback of these methods is that one has to have a known example for a comparison, 
which is not always the case when researching candidate receptor-ligand pairs. 

Methods which rely on phylogenetic histories to determine PPI are based on a well-establish 
rational which holds that as interacting proteins co-evolve, there phylogenetic histories should 
be similar. This explains why the methods which rely on phylogenetic information are largely 
based on measures of similarity for the phylogenetic trees of interacting protein partners.  

The advantage of using multiple kernel learning to predict PPI is apparent when using 
multiple sources of data. Many of the methods, mentioned above, rely on an ever growing 
amount of publicly available data. The ever expanding amount of high throughput data which 
continues to become available to the bioinformatics community represents an excellent 
opportunity to enhance the kernel classifier method presented in Iacucci et al. (2011).  

A practical advantage of using multiple data sources allows one to extend the method as 
new and higher quality sources become available. For example, if better micro-array dataset 
becomes available in the future, it is an advantage to be able remove the existing expression-
based kernel with one derived from the new dataset without having to the retrain a global 
classifier. Likewise, if additional data sources become available, adding an additional sub-
classifier based on the new data source would take less time to train than adding the data 
source and retraining the global classifier. 

Looking forward many exciting challenges remain to be addressed in this field. While the 
task of PPI is daunting and complex, the work reviewed above demonstrates that it is also 
rich with opportunities for improvement and further development. 
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combined, as defined in (1), for a final result. Figure 3 provides an overview of the workflow 
as described above. 
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3.3 Results and discussion 
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the performance of Gertz et al. (2003), as the novel interaction of CCR1 with SCY11 [Gao et 
al. 1996] reported in their work is also discovered using Iacucci et al (2011) method. 

The comparison of the results of the two methods discussed here support the notion that 
kernel learning presents a useful methodology for elucidating receptor-ligand pairings. The 
benefits of the combined kernel classifier method over the Gertz et al. (2003) method are 
clear. Foremost in the advantages are the ability to predict multiple ligands for one receptor, 
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validation of all of them is essentially impossible. In addition to being time consuming, in-
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Several groups have addressed the PPI prediction task. While several have used 
phylogenetics to solve the problem, others have used physical protein structures and amino-
acid sequence information to assist in making the predictions. We have reviewed these 
methods and discussed the key differences among them.   

Methods, which rely on the physical structure and the conservation of amino-acid sequences 
in partners of interactions that are already reliably known to exist, also give researchers 
additional insight to function prediction as the methods are based on known examples. The 
drawback of these methods is that one has to have a known example for a comparison, 
which is not always the case when researching candidate receptor-ligand pairs. 

Methods which rely on phylogenetic histories to determine PPI are based on a well-establish 
rational which holds that as interacting proteins co-evolve, there phylogenetic histories should 
be similar. This explains why the methods which rely on phylogenetic information are largely 
based on measures of similarity for the phylogenetic trees of interacting protein partners.  

The advantage of using multiple kernel learning to predict PPI is apparent when using 
multiple sources of data. Many of the methods, mentioned above, rely on an ever growing 
amount of publicly available data. The ever expanding amount of high throughput data which 
continues to become available to the bioinformatics community represents an excellent 
opportunity to enhance the kernel classifier method presented in Iacucci et al. (2011).  

A practical advantage of using multiple data sources allows one to extend the method as 
new and higher quality sources become available. For example, if better micro-array dataset 
becomes available in the future, it is an advantage to be able remove the existing expression-
based kernel with one derived from the new dataset without having to the retrain a global 
classifier. Likewise, if additional data sources become available, adding an additional sub-
classifier based on the new data source would take less time to train than adding the data 
source and retraining the global classifier. 

Looking forward many exciting challenges remain to be addressed in this field. While the 
task of PPI is daunting and complex, the work reviewed above demonstrates that it is also 
rich with opportunities for improvement and further development. 
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cell. PPI has most important roles in cells such as post-translational regulation of protein 
activity, which is occurred by transient protein-protein interactions and participating in 
enzymatic complexes ensures substrate channelling which drastically increases fluxes 
through metabolic pathway (Lin et al., 2006). Metabolic pathways, for instance, consist of 
several proteins, called enzymes, organize a series of chemical reactions with the intent of 
altering a variety of chemical substance into the other forms, namely products. Proteins 
interactions happen in signalling pathways where a set of proteins, by an ordered sequence 
of reactions, try to convert a type of chemical signal to other form, enabling a cell to obtain 
environmental information quickly. Proteins interactions can be found in any sort of 
biological processes within cells. Indeed, existence of these interactions makes a cell 
function, to grow and more importantly survive (Bader & Hogue, a2003).  

The objective in PPI network analysis is the discovering dense highly-connected subgraphs 
that represent functional modules and protein complexes. For understanding the cell 
function, it is essential first to find all functional modules in protein interaction networks 
(Bader & Hogue, b2003). Protein complexes are a group of proteins which have more 
interactions with each other at the same time and place (Chua et al. , 2008). On the other 
hand, the functional module consists of proteins that participate in a particular cellular 
process while interacting with each other at different time and place (Mirny & Spirin, 2003) . 
In order to simplify the terms, we used protein complex and functional modules as same. 
Since each protein could be involved in several protein complexes, the partitioning of PPI 
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In recently years, advances in the high-throughput PPI detection have produced a high 
volume of PPI datasets freely available to researchers. Therefore many methods and 
approaches have emerged to analyze experimental PPI data in various organisms. The 
experimental approaches for discovering protein complexes are more time consuming and 
expensive. Instead, computational methods which use PPI data are faster and cheaper (Ito et 
al., 2001).  

The most common method of modelling PPI network is using graph theory, which in such a 
graph G=(V,E) where the nodes correspond to proteins and the edges correspond to 
interactions. Since the number of proteins and interactions between them in some organism 
such as yeast or human is remarkably high, the graph modelling PPI is called a complex 
graph. Partitioning of a complex graph to some disjoint subgraphs is called the graph 
clustering.  

Clustering is the process of grouping data into sets (clusters) which shows more similarity 
between the objects in the same clusters than they are in different clusters (Schaeffer, 2007). 
Clustering analysis seeks a set of clusters based on similarity between pairs of elements. 
Graph clustering is the practice of distribution the vertices of the graph into the clusters 
taking into consideration the edge connectivity in the graph in such a way that many edges 
exist within each cluster and relatively few between the clusters. The result of this clustering 
can define the PPI network’s structure and imply functions of proteins in the cluster which 
were previously uncharacterized (Lin et al., 2006).  

Each complex graph modelling a system such as biological systems or social networks has 
specific properties and characteristics. The properties of graph could be fall into broad 
categories as the local properties and global properties (Przulj, 2005). The scale-free for 
distribution of degree and small world properties could be more affective on the result of 
graph clustering. A scale-free network has a vertex connectivity distribution that follows a 
power law, with relatively few highly connected vertices and many vertices having a low 
degree. Most biological networks such as PPI networks have the scale-free property (Pizzuti 
& Rombo, 2007). In this paper, we convert the normal scale-free PPI network to a non-scale 
free network by using line graph transformation. In the graph theory, line graph is 
produced by substituting edges and nodes in the graph. Each interaction is condensed into a 
node that includes the two interacting proteins. These nodes are then linked by shared 
protein content.  

Important of results of the clustering in PPI network is illustration of structure of the PPI 
network which can be used to predict the functionality of uncharacterized protein based on 
other known proteins functions in the same cluster's elements. These clusters correspond to 
meaningful biological units such as protein complexes and functional modules.  

Many clustering approaches (Gao, 2009; Bader & Hogue, b2003; Adamcsek, 2006; Wu et al., 
2008 ;Vlasblom, 2009) could not place elements in multiple clusters, which can be unrealistic 
for biological systems, where proteins may participate in multiple cellular processes and 
pathways. Since each protein could participate in more than one protein complexes, in the 
clustering PPI graph, each protein probably have membership to more than one cluster. So 
in this paper, we present a clustering method that allows to having overlapping founded 
clusters. Disjoint clusters and overlapping clusters are illustrated in figure 1. 
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Fig. 1. Illustration of the concept of modules. (a) Disjoint modules; (b) Overlapping modules. 

K-means (c-means) clustering (Hartigan, 1975) is applied on unlabeled data by partitioning 
them on predefined number of groups (k) based on the specifying the centers of groups. 
After each iteration in the k-means algorithm, the distances between each center of group 
and other data points are calculated and the center points are updated. Learning Vector 
Quantization uses k-means idea by defining some codebook vectors each of which 
represents a cluster for n-dimensional input data. The fuzzy clustering based on fuzzy set 
theory (Zadeh, 1965) is used to deal with indistinct boundaries between clusters. The most 
widely used fuzzy clustering method is the fuzzy c-means (FCM) algorithm (Bezdek, 1973) 
which is generalized from hard c-means algorithm. In this paper, extended FLVQ (Bezdek, 
1995) as an intelligent computational method has been used for clustering PPIs. The results 
of this algorithm can be verified by biological and non-biological criteria and we showed 
that FLVQ technique is more effective and accurate for finding protein complexes in PPI 
network. 

2. Primary definitions 
The problem of clustering of PPIs starts with a mathematical representation of PPI 
networks. A conventional way for representing PPI network is using graph theory 
concepts. PPI network could be illustrated by a graph G=(V,E) with a set of vertices V and 
a set of edges E in which each vertex is corresponded by a protein in PPI network and 
each edge connects to two vertices whose corresponding proteins have physical 
interaction with each other. 

Clusters in the graph could be interpreted as dense subgraphs the number of edges within 
each subgraph is the maximum number and the number of edges between clusters is the 
minimum one. Therefore, the PPI clustering is an optimization problem and like other 
optimization problems, there is a need to an objective function to get optimum point.  

PPI networks have scale-free property and finding the dense subgraphs is most difficult task 
in these networks. So using line graph we eliminate the scale-free property. In each node in 
the line graph is an edge in original network and every two nodes with common proteins 
are connected to each other. Figure 2 shows a scale free network and the generated line 
graph based on original graph. 
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(a) 

(b) 

Fig. 2. a. Orginal scale-free graph b. converted graph by line graph. 

2.1 Learning Vector Quantization 

Learning Vector Quantization (LVQ) is placed in the competitive learning category and it is 
closely related to Self-Organizing Map (SOM) (Kohonen, 1990). SOM is a well-developed 
neural network technique for data clustering and visualization. It can be used for projecting 
a large data set of a high dimension into a low dimension (usually one or two dimensions) 
while retaining the initial pattern of data samples. Indeed, SOM has two main principles: 
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vector quantization and vector projection. Vector quantization makes up a delegate set of 
vectors called output vectors (codebook vectors) from the input vectors. Let’s denote the set 
of output vectors (codebook vectors) as Y={y1,y2,..,yc} with the same dimension as input 
vectors. In general, vector quantization reduces the number of vectors, and this can be 
considered as a clustering process. The maximum number of clusters in a network is defined 
by user specified value, c. After learning process, it may be possible for some codebook 
vectors to correspond to empty clusters. 

 
Fig. 3. The red points (y1,y2,y3) corresponded to output vectors indicating a dense subgraph 
in the sample network. 

The LVQ algorithm represents a set of input vectors n
ix X∈ ⊂ ℜ by a set of c prototypes 

1 2{ , ,.., } n
cY y y y= ⊂ ℜ .. The LVQ is associated with a competitive network which consists of 

an input layer and an output layer. Each node in the input layer is connected directly to the 
cells, or units, in the output layer. A weight vector, also referred to as prototype, is assigned 
to each cell in the output layer (Ravuri & Karayiannis, 1995). The codebook vector having 
minimum distance with input vector xi is called winner vector, k, and is defined as: 

 arg min l il
k y x= −  (1) 

Update equation of LVQ algorithm is:  

 1 ,( ) ( ) ( )j j t ij k i jy t y t h x y tα+ = + −  (2) 

Here αt is the scalar-valued learning rate, 0<αt<1, and decreases monotonically with time t. 
The neighborhood function hij,k denotes the interaction between codebook vector i and j and 
winner vector k. The simple definition of hij,k is:  
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In the LVQ algorithm, neighborhood radius is one and only the winner vector could be 
updated. 

2.2 Fuzzy Learning Vector Quantization 

While most typical clustering algorithms assigns each data point to exactly one cluster, 
fuzzy clustering allows for the extent of membership, to which a data point belongs to 
different clusters. The FLVQ may be seen as a learning fuzzy c-means using a fuzzification 
index m. Karayiannis et al (Ravuri & Karayiannis, 1995) presented a broad family of FLVQ 
algorithms, which were initially introduced on the basis of perceptive arguments. This 
derivation was based on the minimization of the average generalized distance between the 
input vectors and the prototype vectors. The fuzzy partitioning algorithm, FCM is run into 
by minimization problem that is solved by reformation of FCM algorithm to FLVQ 
algorithm (Bezdek, 1995). 

The updated equation for the FLVQ involves the membership functions which are used to 
determine the strength adjacency between each prototype and input vectors.  
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 (4) 

 

12
1

1
( )

c
ij m

ij
ljl

D
u

D

−

−

=

 
 =
  
  (5) 

 ij i jD x y= −   (6) 

Where 0tm m m mt= = − Δ and 0( ) /fm m m MaxItrΔ = −  and Dij is the distance and m0 is some 
constant value greater than the final value (mf) of the fuzzification parameter m. MaxItr is 
the constant parameter for limitation of iterations. 

3. The FLVQ algorithm 
The calculation of distances between network vertices and prototype vectors in the FLVQ is 
critically challenging. In the following algorithm, we used a new definition of vertices based 
on n-dimensional vectors and; we representing new scalar distance between input vectors 
and codebooks (output) vectors. Each vertex in PPI graph is modeled by a vector called 
input vector. Given G=(V,E) represents a PPI network including |V| vertices and |E| 
edges. An input vector is defined as : 
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Where n=|V|, eij is element (i,j) in adjacency matrix corresponding the graph G and ε is a 
real small value between (0,1).  

This definition makes possible to use scalar distance measure such as the dot product is 
possible. There are some distance criteria in vector space to measure similarity (distance) 
between two vectors. Correlation is a simple way for measuring distance between two 
vectors in the same dimension. If xi and xj are two vectors with the dimension of n, the 
equation (8) is the inner product of two vectors:  
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n
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Where Dij is the distance and Sij is the inner product between Xi and Xj. 

The FLVQ algorithm performs clustering of the input graph by training process. Training 
process consists of some iterations. The number of iteration depends on convergence criteria 
and can be limited by a user specified constant. Each iteration consists some epochs. The 
number of epochs is equal by c (number of prototype vectors and the maximum number of 
clusters). In each epoch, an input vector xi is selected randomly. A selected input vector is 
not being selected in a same epoch again. The selected input vector xi is compared with all 
the prototype vectors with a similarity measure (ex. dot product) and the prototype vector yj 
with most similarity with xi known as winner vector.  

The implementation of the FLVQ algorithm is described as follows: 

• Step 1. Initialization 
Initialize the c codebook’s vectors y={y1,y2,..,yc} by randomly assigning each element of codebook 
vectors by a real number between (ε,1-ε). Set iteration counter t=1. Give 0≤ε<1. tmax is the 
iteration limit.  

• Step 2. Learning 
Repeat until stopping criterion is satisfied: 

• Step 2.1 While there is a unselected input vector 
• Randomly pick an input xi 
• Compute winner vector based on distance measure of xi and every codebook vectors yj : j=1..k 
• update winner vector yj based on input vector xi and learning ratio α 

• Step 2.2 update learning ratio α 

4. Data set 
The PPI network is derived from the yeast subset in the Database of Interacting Proteins 
(DIP) (Xenarios et al., 2002). The dataset of yeast is composed of 4963 proteins and 17570 
interactions. Most of these interactions have been derived by yeast two-hybrid screen. For 
evaluation of finding clusters, we use protein complex data from the MIPS database (Mewes 
et al., 2004). In the currated complex dataset, there are 404 protein complexes. The protein 
complex having most proteins is "cytoplasmic ribosomal large subunit" with 88 proteins and 
there are 169 protein complexes with just two proteins. 
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Where n=|V|, eij is element (i,j) in adjacency matrix corresponding the graph G and ε is a 
real small value between (0,1).  

This definition makes possible to use scalar distance measure such as the dot product is 
possible. There are some distance criteria in vector space to measure similarity (distance) 
between two vectors. Correlation is a simple way for measuring distance between two 
vectors in the same dimension. If xi and xj are two vectors with the dimension of n, the 
equation (8) is the inner product of two vectors:  
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Where Dij is the distance and Sij is the inner product between Xi and Xj. 

The FLVQ algorithm performs clustering of the input graph by training process. Training 
process consists of some iterations. The number of iteration depends on convergence criteria 
and can be limited by a user specified constant. Each iteration consists some epochs. The 
number of epochs is equal by c (number of prototype vectors and the maximum number of 
clusters). In each epoch, an input vector xi is selected randomly. A selected input vector is 
not being selected in a same epoch again. The selected input vector xi is compared with all 
the prototype vectors with a similarity measure (ex. dot product) and the prototype vector yj 
with most similarity with xi known as winner vector.  

The implementation of the FLVQ algorithm is described as follows: 

• Step 1. Initialization 
Initialize the c codebook’s vectors y={y1,y2,..,yc} by randomly assigning each element of codebook 
vectors by a real number between (ε,1-ε). Set iteration counter t=1. Give 0≤ε<1. tmax is the 
iteration limit.  

• Step 2. Learning 
Repeat until stopping criterion is satisfied: 

• Step 2.1 While there is a unselected input vector 
• Randomly pick an input xi 
• Compute winner vector based on distance measure of xi and every codebook vectors yj : j=1..k 
• update winner vector yj based on input vector xi and learning ratio α 

• Step 2.2 update learning ratio α 

4. Data set 
The PPI network is derived from the yeast subset in the Database of Interacting Proteins 
(DIP) (Xenarios et al., 2002). The dataset of yeast is composed of 4963 proteins and 17570 
interactions. Most of these interactions have been derived by yeast two-hybrid screen. For 
evaluation of finding clusters, we use protein complex data from the MIPS database (Mewes 
et al., 2004). In the currated complex dataset, there are 404 protein complexes. The protein 
complex having most proteins is "cytoplasmic ribosomal large subunit" with 88 proteins and 
there are 169 protein complexes with just two proteins. 
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5. Experimental result 
The FLVQ algorithm is applied on the PPI network of the Saccharomyces Cerevisiae (yeast) 
dataset downloaded from the DIP (Guldener, 2005). After using FLVQ on DIP protein-
protein interaction, over than 300 clusters obtained frequency of each based on the number 
of vertices in is shown in figure (4). As the figure (4) shows most obtained clusters 
approximately include 9 and 12 vertices. In addition, the number of clusters with size of 
over 20 are also considerable. This means that the FLVQ algorithm could find larger dense 
subgraphs in the PPI network. When the cluster size became larger, few graph clustering 
methods could find these clusters with proper efficiency. 

 
 

 
 

Fig. 4. Number of obtained clusters by FLVQ algorithm based on the cluster size. 

The results of the FLVQ algorithm are evaluated by the clustering score used by (Bader & 
Hogue, a2003; Newman, M. & Girvan. M., 2004). The clustering score for each cluster is 
defined by the product of size and density of the cluster. The density of cluster is the ratio 
between number of edges in cluster |E| and maximum number of possible edges in it 
|Emax|. The following equation (10) shows clustering score definition. 

 σ(Γ)=δ(Γ).|V| (10) 

Where Γ is a cluster in the clustering result and δ(Γ) is the density of given subgraph Γ and 
is declared by equation (11) and |V| shows the number of vertices in Γ subgraph.  

 δ(Γ)=2|Ε|/(|V|(|V|−1)) (11) 

Where E is the set of edges that connects the existing vertices in V in given subgraph of Γ. 
The clustering score for each clusters is shown in figure (5). The cluster score for bigger 
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clusters is more elevated than smaller clusters proving that FLVQ is rather successful to find 
subgraphs with more higher number of vertices and with most density. Highest clustering 
score shows that the obtained clusters are more compact and larger. 

 
 

 
 

Fig. 5. Amount of clustering score for each obtained cluster in FLVQ algorithm. 

The clustering results can be validated by ground truth with Precision and Recall. Assume a 
module (cluster) X is mapped to a functional module Fi. Recall, also termed the true positive 
rate or sensitivity, is the proportion of proteins common in both X and Fi to the size of Fi. 
Precision, which is also termed the positive predictive value, is the proportion of proteins 
common in both X and Fi to the size of X.  
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The accuracy of clusters is assessed by f-measure. The f-measure is defined as the harmonic 
mean of recall and precision: 

 
2( . )precision recallf measure
precision recall

− =
+  (14) 

Figure (6) shows the average of f-measure based of protein complex size for the FLVQ 
algorithm. In figure (6), the f-measure of each obtained cluster is measured based on 
experimental protein complexes MIPS. The value of f-measure could be between 0 and 1. 
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The highest f-measure value indicates the most conformity between experimental protein 
complex and obtained complex by the algorithm. 
 
 

 
 

Fig. 6. f-measure between finding subgraphs and experimental protein complexes based on 
its size. 

6. Conclusion 
In this paper, we presented a FLVQ algorithm as a robust tolerable method to find dense 
subgraphs in PPI networks as protein complexes. The algorithm identifies more than 200 
dense subgraphs having more overlap among experimentally known protein complexes. By 
clarifying the structure of protein interactions network, uncharacterized proteins could be 
predicted by the functions of other known proteins which belong to same clusters. By using 
line graph transformation, we eliminated the scale-free degree distribution in PPI network 
which caused larger number of dense highly connected subgraph revealed. There is 
overlapping between found subgraphs that express the results are more conforming with 
the reality nature of protein complexes.  
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1. Introduction 
Protein-protein interaction (PPI) plays a pivotal role in a wide variety of cellular events and 
physiological functions, such as enzymatic activity, signal transduction, immunological 
recognition, DNA repair/replication, among others (Valdar and Thornton, 2001). In 
addition, biological events that regulate proliferation, differentiation, and inflammation are 
also commonly mediated through PPI (Villalobos et al., 2007). Various techniques in 
molecular biology have been developed to understand the mechanism of these ubiquitous 
interactions, including qualitative methods such as yeast-two-hybrid screen (Fields and 
Song, 1989), immunoprecipitation (Williams, 2000), gel-filtration chromatography (Phizicky 
and Fields, 1995), etc. Meanwhile, quantitative biophysical methods have also been 
designed which include analytical ultracentrifugation (Hansen et al., 1994), calorimetry 
(Doyle, 1997), optical spectroscopy (Lakey and Raggett, 1998), etc. A decade ago, an assay 
for PPI based on β-galactosidase (gal) complementation was designed and successfully 
applied in cells (Wehrman et al., 2002).  

Despite the success achieved by these techniques, none of them can be employed for 
interrogating PPI in living subjects due to several major limitations. First, traditional assays 
for measuring protein interactions require cell lysis, where the experimental conditions are 
inconsistent with the natural intracellular milieu. Second, these techniques may not be able 
to detect transient interactions that may have potent effects on cell signalling and 
intracellular processes. Lastly, the degree of false positives and false negatives vary from 
method to method, which significantly compromises the reproducibility and reliability of 
the data. With the tremendous expansion and evolution of the interdisciplinary field of 
molecular imaging over the last decade, many of these disadvantages have been or can be 
overcome.  

Molecular imaging, “the visualization, characterization and measurement of biological 
processes at the molecular and cellular levels in humans and other living systems” 
(Mankoff, 2007), is an extremely powerful tool for imaging of PPI. The major molecular 
imaging modalities that have been applied for investigating PPI include bioluminescence, 
fluorescence, and positron emission tomography (PET) imaging. Quantitative and real-time 
molecular imaging of PPI can not only complement the already existing methodologies, 
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which are mostly used in vitro or in cell culture, but also provide invaluable insights on PPI 
that were unavailable or impossible to investigate previously. For example, non-invasive 
imaging of PPI can dramatically accelerate the evaluation of new drugs in living subjects 
that promote or inhibit homodimeric/heterodimeric protein assembly (Massoud et al., 2007; 
Villalobos et al., 2007).  

In this chapter, we will summarize the current status of in vivo imaging of PPI with various 
techniques, including fluorescence, bioluminescence, and PET imaging. A schematic 
summary of the most commonly used strategies for imaging of PPI are shown in Figure 1. 
To the best of our knowledge, there is no literature available on fluorescence imaging of PPI 
in animal models. However, since this is an indispensible component of imaging PPI in cell 
culture, herein we will give a few representative examples on fluorescence imaging of PPI to 
provide a complete overview of this dynamic research area.  
 
 

 
 

Fig. 1. Commonly used strategies for imaging of PPI. A. Fluorescence resonance energy 
transfer (FRET). B. Bioluminescence resonance energy transfer (BRET). C. Self-splicing split 
inteins (DnaE) can splice the two fragments of a reporter protein together into an intact and 
active reporter protein when they are brought within close proximity of each other.  
D. Protein fragment complementation. Brown fragments are proteins of interest and the 
yellow star represents an inducer of PPI. Adapted from (Villalobos et al., 2007). 
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2. Fluorescence imaging of PPI 
The (imaging) techniques used to detect or quantify PPI need to be sensitive within the 
concentration ranges at which proteins are present in cells or tissues, where sometimes 
fewer than 104 protein molecules may be present. Furthermore, these techniques should be 
capable of identifying interactions of specific proteins against a background of more than 
30,000 other proteins within a living cell. As a technology that has had an impact on almost 
all areas of biology, fluorescent imaging can meet these criteria under certain scenarios and 
has been widely used for imaging of PPI in vitro.  

Fluorescence spectroscopy and fluorescence imaging have been demonstrated to be versatile 
tools for imaging of PPI. Fluorescent proteins (FPs), specifically variants of the green FP 
(GFP), are among the most frequently used for imaging of PPI (Giepmans et al., 2006; van 
Roessel and Brand, 2002). In a typical fluorescence process, an electron in the fluorophore 
within the FP absorbs photons from suitable excitation light (in the UV or visible range), 
which raises the energy level of the electron to an excited state. During this short excitation 
period, some of the energy is dissipated through molecular collisions or transferred to a 
proximal molecule, and the remaining energy is emitted as a photon to relax the electron 
back to the ground state (van Roessel and Brand, 2002). Since the energy is lower for the 
emission photon than the excitation photon, the emission wavelength is longer than the 
excitation wavelength which can be readily separated by applying a filter of specific 
wavelength range.  

Fluorescence imaging of PPI in cell culture has the potential to provide information on the 
cellular and sub-cellular distribution of FPs with sub-second time resolution. Fluorescence 
microscopy techniques, primarily including fluorescence resonance energy transfer (FRET) 
and fluorescence correlation spectroscopy (FCS), are commonly used to quantify the activity, 
interaction, and dynamics of protein molecules within living cells (Yan and Marriott, 2003). 
Many protein interactions are transient, or energetically weak, thereby precluding their 
identification and analysis through traditional biochemical methods such as co-
immunoprecipitation. In this regard, the genetically encodable FPs (GFP, yellow FP [YFP], 
cyan FP [CFP], red PP [RFP], etc.) and their associated overlapping fluorescence spectra have 
granted researchers the ability to monitor weak interactions in live cells using FRET.  

2.1 Imaging of PPI with FRET  

FRET requires the measurement of the relative intensity of the emission signal from a pair of 
fluorophores (Tsien, 2009). The underlying physics is attributed to a quantum mechanical 
effect between a given pair of fluorophores (i.e. a fluorescent donor and an acceptor) where, 
upon excitation of the donor, energy is transferred from the donor to the acceptor in a non-
radiative manner by means of dipole-dipole coupling (Jares-Erijman and Jovin, 2003). Upon 
energy transfer, donor fluorescence is quenched and acceptor fluorescence is increased 
(sensitized), resulting in a decrease in donor excitation lifetime. The FRET efficiency is the 
quantum yield of the energy transfer transition, i.e. the fraction of energy transfer event 
occurring per donor excitation event, which is dependent upon several factors including the 
distance between the donor and the acceptor, the spectral overlap of the donor emission 
spectrum and the acceptor absorption spectrum, as well as the relative orientation of the 
donor emission dipole moment and the acceptor absorption dipole moment. 



 
Protein-Protein Interactions – Computational and Experimental Tools 288 

which are mostly used in vitro or in cell culture, but also provide invaluable insights on PPI 
that were unavailable or impossible to investigate previously. For example, non-invasive 
imaging of PPI can dramatically accelerate the evaluation of new drugs in living subjects 
that promote or inhibit homodimeric/heterodimeric protein assembly (Massoud et al., 2007; 
Villalobos et al., 2007).  

In this chapter, we will summarize the current status of in vivo imaging of PPI with various 
techniques, including fluorescence, bioluminescence, and PET imaging. A schematic 
summary of the most commonly used strategies for imaging of PPI are shown in Figure 1. 
To the best of our knowledge, there is no literature available on fluorescence imaging of PPI 
in animal models. However, since this is an indispensible component of imaging PPI in cell 
culture, herein we will give a few representative examples on fluorescence imaging of PPI to 
provide a complete overview of this dynamic research area.  
 
 

 
 

Fig. 1. Commonly used strategies for imaging of PPI. A. Fluorescence resonance energy 
transfer (FRET). B. Bioluminescence resonance energy transfer (BRET). C. Self-splicing split 
inteins (DnaE) can splice the two fragments of a reporter protein together into an intact and 
active reporter protein when they are brought within close proximity of each other.  
D. Protein fragment complementation. Brown fragments are proteins of interest and the 
yellow star represents an inducer of PPI. Adapted from (Villalobos et al., 2007). 
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2. Fluorescence imaging of PPI 
The (imaging) techniques used to detect or quantify PPI need to be sensitive within the 
concentration ranges at which proteins are present in cells or tissues, where sometimes 
fewer than 104 protein molecules may be present. Furthermore, these techniques should be 
capable of identifying interactions of specific proteins against a background of more than 
30,000 other proteins within a living cell. As a technology that has had an impact on almost 
all areas of biology, fluorescent imaging can meet these criteria under certain scenarios and 
has been widely used for imaging of PPI in vitro.  

Fluorescence spectroscopy and fluorescence imaging have been demonstrated to be versatile 
tools for imaging of PPI. Fluorescent proteins (FPs), specifically variants of the green FP 
(GFP), are among the most frequently used for imaging of PPI (Giepmans et al., 2006; van 
Roessel and Brand, 2002). In a typical fluorescence process, an electron in the fluorophore 
within the FP absorbs photons from suitable excitation light (in the UV or visible range), 
which raises the energy level of the electron to an excited state. During this short excitation 
period, some of the energy is dissipated through molecular collisions or transferred to a 
proximal molecule, and the remaining energy is emitted as a photon to relax the electron 
back to the ground state (van Roessel and Brand, 2002). Since the energy is lower for the 
emission photon than the excitation photon, the emission wavelength is longer than the 
excitation wavelength which can be readily separated by applying a filter of specific 
wavelength range.  

Fluorescence imaging of PPI in cell culture has the potential to provide information on the 
cellular and sub-cellular distribution of FPs with sub-second time resolution. Fluorescence 
microscopy techniques, primarily including fluorescence resonance energy transfer (FRET) 
and fluorescence correlation spectroscopy (FCS), are commonly used to quantify the activity, 
interaction, and dynamics of protein molecules within living cells (Yan and Marriott, 2003). 
Many protein interactions are transient, or energetically weak, thereby precluding their 
identification and analysis through traditional biochemical methods such as co-
immunoprecipitation. In this regard, the genetically encodable FPs (GFP, yellow FP [YFP], 
cyan FP [CFP], red PP [RFP], etc.) and their associated overlapping fluorescence spectra have 
granted researchers the ability to monitor weak interactions in live cells using FRET.  

2.1 Imaging of PPI with FRET  

FRET requires the measurement of the relative intensity of the emission signal from a pair of 
fluorophores (Tsien, 2009). The underlying physics is attributed to a quantum mechanical 
effect between a given pair of fluorophores (i.e. a fluorescent donor and an acceptor) where, 
upon excitation of the donor, energy is transferred from the donor to the acceptor in a non-
radiative manner by means of dipole-dipole coupling (Jares-Erijman and Jovin, 2003). Upon 
energy transfer, donor fluorescence is quenched and acceptor fluorescence is increased 
(sensitized), resulting in a decrease in donor excitation lifetime. The FRET efficiency is the 
quantum yield of the energy transfer transition, i.e. the fraction of energy transfer event 
occurring per donor excitation event, which is dependent upon several factors including the 
distance between the donor and the acceptor, the spectral overlap of the donor emission 
spectrum and the acceptor absorption spectrum, as well as the relative orientation of the 
donor emission dipole moment and the acceptor absorption dipole moment. 
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Since FRET is critically dependent upon molecular proximity, it has been described as a 
molecular ruler. FRET typically operates in a range of 1-10 nm, a distance that is relevant for 
most molecules engaged in complex formation or conformational changes. FRET from CFP 
to YFP is a commonly used strategy for monitoring protein interactions or conformational 
changes of individual proteins. For example, FRET-based assays involving CFP and YFP 
were designed and employed to monitor receptor interactions on endothelial cells in one 
report (Seegar and Barton, 2010). However, one disadvantage of FP-based FRET is that 
protein functions may be perturbed by fusion of FPs since they are quite large in size. In one 
study, G protein-coupled receptor (GPCR) activation in living cells was used as a model 
system to compare YFP with a small fluorescent agent (FlAsH), which was targeted to a 
short tetracysteine sequence (Hoffmann et al., 2005). It was found that FRET from CFP to 
FlAsH reports GPCR activation in living cells without disturbing receptor function, which is 
more advantageous than the use of YFP as the FRET acceptor.  

FRET has also been employed to visualize the interaction between two FPs, enhanced GFP 
(EGFP) and mCherry (Albertazzi et al., 2009). One- and two-photon fluorescence lifetime 
imaging microscopy (FLIM) were used to determine the FRET efficiency values. It was 
found that this FP pair can be used for effective and quantitative FRET imaging of PPI. Since 
FLIM can produce images based on the differences in the exponential decay rate of the 
fluorescence signal from different fluorophores, advances in FRET and FLIM have enabled 
studies of PPI at the microscopic level. FLIM provides a promising and robust method of 
detecting molecular interactions via FRET by monitoring the variation of donor fluorescence 
lifetime, which is insensitive to many factors that can influence the conventional intensity-
based measurements, such as fluorophore concentration, photobleaching, spectral bleed-
through, donor-acceptor stoichiometry, light path length etc. (Pelet et al., 2006; Zhong et al., 
2007). The fact that FRET can deplete the excited state population of the donor and cause a 
reduction in both its fluorescence intensity and lifetime makes this technique well suited for 
studies in intact cells. 

Interrogating PPI deep inside living tissues requires precise fluorescence lifetime 
measurements to derive the FRET between two tagged fluorescent markers. In a recent 
study, FLIM was used in combination with a clinically licensed remote endoscopic cellular 
resolution imaging modality to map PPI in live cells embedded in a 3D matrix, which served 
as a model of a diseased organ structure in a patient (Fruhwirth et al., 2010). This strategy 
allowed accurate measurement of fluorescence lifetime changes on the order of 100 ps, 
which not only demonstrated the feasibility of studying PPI by FRET in cultured living cells 
within 3D matrices, but also provided potential instrumentation for other FRET-based 
assays.  

The FRET/FLIM technique can also provide invaluable information for the mechanistic 
study of PPI in different types of diseases. In one study which investigated the mechanism 
of metastasis induction by the S100A4 protein, interactions of S100A4 with C-terminal 
recombinant fragment of non-muscle myosin heavy chain in living HeLa cells were mapped 
using confocal microscopy, FLIM, and time-correlated single-photon counting (Zhang et al., 
2005). The findings indicated that not only there is direct interaction between S100A4 and its 
target in live mammalian cells, but also that such an interaction contributes to metastasis 
induction, thus shedding new light onto the mechanism of cancer metastasis. In another 
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report, FRET/FLIM enabled the study of the interaction between hypoxia-inducible factor-
1α (HIF-1α) and HIF-2α with the aryl hydrocarbon receptor nuclear translocator in a 
hypoxia model, which provided new information about specific gene expression controlled 
by PPI in hypoxia (Konietzny et al., 2009). FRET/FLIM has also been employed to image 
dynamic PPI in neurons (Figure 2), which enhanced the understanding of nervous system 
development and function (Timm et al., 2011). Protein kinases of the microtubule affinity 
regulating kinase (MARK)/Par-1 family play important roles in the establishment of cellular 
polarity, cell cycle control, and intracellular signal transduction. Disturbance of their 
function is linked to cancer and various brain diseases. In this recent study, transfected Teal 
FP (TFP) and YFP were used as FRET donor and acceptor pairs in neurons and imaged by 
FLIM, which revealed that MARK was particularly active in the axons and growth cones of 
differentiating neurons (Timm et al., 2011).  

 
Fig. 2. The upper panel shows both channels of the fluorescence intensity image (A, B) of a 
cell transfected with a construct composed of ECFP (i.e. enhanced CFP) linked to Citrine (i.e. 
a stable variant of YFP), which does not exhibit FRET in the absence of fluorescently labeled 
MARK2 (i.e. the inducer of FRET) as indicated by a lack of fluorescence signal in C. The 
pseudo-colored FLIM image is shown in D, which has a long fluorescence lifetime of 2.43 ns. 
FRET between the two FPs (E, F) occurs when MARK2 is present, as indicated by the 
fluorescence signal in G. The short fluorescence lifetime of 2.18 ns is shown as red in H (high 
FRET). The graph I displays the averaged histograms of cells showing FRET (red dots) or no 
FRET (green dots) and gaussian fits of the data. Reprinted with permission from (Timm et 
al., 2011).  

Not limited to the imaging of PPI, FRET can also be employed for imaging protein-DNA 
interactions, such as through the use of near-infrared fluorescent oligodeoxyribonucleotide 
reporters that can sense transcription factor NF-κB p50 protein binding (Zhang et al., 2008). 
Recently, a similar approach using hairpin-based FRET probes for the detection of human 
recombinant NF-κB p50/p65 heterodimer binding to DNA was reported (Metelev et al., 
2011). Both of these studies demonstrated that FRET-based technique can give signal 
changes that are simple to interpret and stoichiometrically correct for detecting transcription 
factor-DNA interactions. 
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Since FRET is critically dependent upon molecular proximity, it has been described as a 
molecular ruler. FRET typically operates in a range of 1-10 nm, a distance that is relevant for 
most molecules engaged in complex formation or conformational changes. FRET from CFP 
to YFP is a commonly used strategy for monitoring protein interactions or conformational 
changes of individual proteins. For example, FRET-based assays involving CFP and YFP 
were designed and employed to monitor receptor interactions on endothelial cells in one 
report (Seegar and Barton, 2010). However, one disadvantage of FP-based FRET is that 
protein functions may be perturbed by fusion of FPs since they are quite large in size. In one 
study, G protein-coupled receptor (GPCR) activation in living cells was used as a model 
system to compare YFP with a small fluorescent agent (FlAsH), which was targeted to a 
short tetracysteine sequence (Hoffmann et al., 2005). It was found that FRET from CFP to 
FlAsH reports GPCR activation in living cells without disturbing receptor function, which is 
more advantageous than the use of YFP as the FRET acceptor.  

FRET has also been employed to visualize the interaction between two FPs, enhanced GFP 
(EGFP) and mCherry (Albertazzi et al., 2009). One- and two-photon fluorescence lifetime 
imaging microscopy (FLIM) were used to determine the FRET efficiency values. It was 
found that this FP pair can be used for effective and quantitative FRET imaging of PPI. Since 
FLIM can produce images based on the differences in the exponential decay rate of the 
fluorescence signal from different fluorophores, advances in FRET and FLIM have enabled 
studies of PPI at the microscopic level. FLIM provides a promising and robust method of 
detecting molecular interactions via FRET by monitoring the variation of donor fluorescence 
lifetime, which is insensitive to many factors that can influence the conventional intensity-
based measurements, such as fluorophore concentration, photobleaching, spectral bleed-
through, donor-acceptor stoichiometry, light path length etc. (Pelet et al., 2006; Zhong et al., 
2007). The fact that FRET can deplete the excited state population of the donor and cause a 
reduction in both its fluorescence intensity and lifetime makes this technique well suited for 
studies in intact cells. 

Interrogating PPI deep inside living tissues requires precise fluorescence lifetime 
measurements to derive the FRET between two tagged fluorescent markers. In a recent 
study, FLIM was used in combination with a clinically licensed remote endoscopic cellular 
resolution imaging modality to map PPI in live cells embedded in a 3D matrix, which served 
as a model of a diseased organ structure in a patient (Fruhwirth et al., 2010). This strategy 
allowed accurate measurement of fluorescence lifetime changes on the order of 100 ps, 
which not only demonstrated the feasibility of studying PPI by FRET in cultured living cells 
within 3D matrices, but also provided potential instrumentation for other FRET-based 
assays.  

The FRET/FLIM technique can also provide invaluable information for the mechanistic 
study of PPI in different types of diseases. In one study which investigated the mechanism 
of metastasis induction by the S100A4 protein, interactions of S100A4 with C-terminal 
recombinant fragment of non-muscle myosin heavy chain in living HeLa cells were mapped 
using confocal microscopy, FLIM, and time-correlated single-photon counting (Zhang et al., 
2005). The findings indicated that not only there is direct interaction between S100A4 and its 
target in live mammalian cells, but also that such an interaction contributes to metastasis 
induction, thus shedding new light onto the mechanism of cancer metastasis. In another 
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report, FRET/FLIM enabled the study of the interaction between hypoxia-inducible factor-
1α (HIF-1α) and HIF-2α with the aryl hydrocarbon receptor nuclear translocator in a 
hypoxia model, which provided new information about specific gene expression controlled 
by PPI in hypoxia (Konietzny et al., 2009). FRET/FLIM has also been employed to image 
dynamic PPI in neurons (Figure 2), which enhanced the understanding of nervous system 
development and function (Timm et al., 2011). Protein kinases of the microtubule affinity 
regulating kinase (MARK)/Par-1 family play important roles in the establishment of cellular 
polarity, cell cycle control, and intracellular signal transduction. Disturbance of their 
function is linked to cancer and various brain diseases. In this recent study, transfected Teal 
FP (TFP) and YFP were used as FRET donor and acceptor pairs in neurons and imaged by 
FLIM, which revealed that MARK was particularly active in the axons and growth cones of 
differentiating neurons (Timm et al., 2011).  

 
Fig. 2. The upper panel shows both channels of the fluorescence intensity image (A, B) of a 
cell transfected with a construct composed of ECFP (i.e. enhanced CFP) linked to Citrine (i.e. 
a stable variant of YFP), which does not exhibit FRET in the absence of fluorescently labeled 
MARK2 (i.e. the inducer of FRET) as indicated by a lack of fluorescence signal in C. The 
pseudo-colored FLIM image is shown in D, which has a long fluorescence lifetime of 2.43 ns. 
FRET between the two FPs (E, F) occurs when MARK2 is present, as indicated by the 
fluorescence signal in G. The short fluorescence lifetime of 2.18 ns is shown as red in H (high 
FRET). The graph I displays the averaged histograms of cells showing FRET (red dots) or no 
FRET (green dots) and gaussian fits of the data. Reprinted with permission from (Timm et 
al., 2011).  

Not limited to the imaging of PPI, FRET can also be employed for imaging protein-DNA 
interactions, such as through the use of near-infrared fluorescent oligodeoxyribonucleotide 
reporters that can sense transcription factor NF-κB p50 protein binding (Zhang et al., 2008). 
Recently, a similar approach using hairpin-based FRET probes for the detection of human 
recombinant NF-κB p50/p65 heterodimer binding to DNA was reported (Metelev et al., 
2011). Both of these studies demonstrated that FRET-based technique can give signal 
changes that are simple to interpret and stoichiometrically correct for detecting transcription 
factor-DNA interactions. 
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2.2 Imaging of PPI with FCS 

Different from FRET, FCS detects the diffusion rate of single molecules which can give 
insights regarding whether a protein is part of a larger complex or not (Elson, 2004; 
Haustein and Schwille, 2007). Based on the analysis of intensity uctuation of one or a few 
labeled protein conjugates at nanomolar concentration in a femtoliter volume, which 
depends on several factors such as the number of fluorescent species in the excitation 
volume, the diffusion constant of the conjugate, etc., FCS has been used to study PPI, 
protein-lipid/ligand-receptor interactions, dimerization of membrane receptors and 
proteins involved in the downstream signalling, DNA dynamics, among others (Elson, 2004; 
Haustein and Schwille, 2007). The high sensitivity and the possibility to monitor these 
dynamic interactions makes FCS a powerful tool to study signal transduction in cellular or 
even tissue environment at physiologically relevant conditions (Hink et al., 2002). 

FCS is relatively insensitive to molecular mass. Therefore, species with similar molecular 
weight cannot be differentiated. Dual color fluorescence cross-correlation spectroscopy 
(FCCS) measures interactions by cross-correlating two or more fluorescent channels (one 
channel for each molecule/protein of interest), which can distinguish interactions and 
dynamics of biomolecules more sensitively than FCS, particularly when the mass change in 
the reaction/interaction is small. However, the inherent drawback of FCCS is that it suffers 
from non-ideal confocal volume overlap and spectral cross-talk which severely limits its 
applications. Fluorescence lifetime correlation/cross-correlation spectroscopy has the 
potential to resolve this issue, as demonstrated in a recent study (Chen and Irudayaraj, 
2010). Interaction of a fluorescently-labeled antagonist antibody with the epidermal growth 
factor receptor (EGFR)-GFP construct in live HEK293 cells were monitored by both 
fluorescence lifetime cross-correlation measurements and FLIM, which not only opens up 
new opportunities in studying PPI in solutions and in live cells but also provides new 
biological insights in understanding how an antagonist influences EGFR through live cell 
imaging and quantification. 

The field of plant sciences has also benefited from these techniques mentioned above. For 
example, FRET/FLIM was used to investigate CDC48A, a member of the AAA ATPases (i.e. 
ATPases associated with diverse cellular activities) family which has various functions in 
cell division, membrane fusion, as well as proteasome- and ER-associated degradation of 
proteins (Aker et al., 2007). With the use of FCS, it was shown that CDC48A hexamers are 
part of even larger complexes.  

2.3 Imaging of PPI with other fluorescence techniques 

Besides FRET/FLIM and FCS, enzyme complementation was also adopted for fluorescence 
imaging of PPI a decade ago (Spotts et al., 2002). A reporter technology based on the 
differential induction of β-lactamase (Bla) enzymatic activity was developed to function as a 
sensor for the interaction state of two target proteins within single neurons. Bla was split 
into two separate, complementary protein fragments which can be brought together by 
phosphorylation-dependent association of the kinase inducible domain of the cyclic 
adenosine monophosphate (cAMP) response element binding (CREB) protein and the KIX 
domain of the CREB binding protein (Spotts et al., 2002). Using an intracellular substrate 
whose fluorescence spectrum changes upon hydrolysis by Bla, time-lapse ratiometric 
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imaging measurements were achieved after association of CREB and CREB binding protein, 
which permits direct imaging of PPI in single cells with high signal discrimination. 

To investigate the conformational changes of proteins in living cells when external force is 
applied, a genetically encoded fluorescent sensor was constructed and tested in a myosin-
actin model system using the proximity imaging (PRIM) technique, which detects spectral 
changes of two GFP molecules that are in direct contact (Iwai and Uyeda, 2008). The 
developed PRIM-based strain sensor module (PriSSM), consisted of the tandem fusion of a 
normal and circularly permuted GFP, was inserted between two motor domains of 
dictyostelium myosin II to study the effect of strain. It was suggested that this technology 
may provide a general approach for studying force-induced protein conformational changes 
in cells. 

2.4 A brief summary of fluorescence imaging of PPI  

The FRET/FLIM technique can be used as a versatile tool to characterize the spatial 
distribution of various proteins and detect/quantify PPI in a living cell, which can measure 
intermolecular FRET through quite sophisticated mathematical algorithms. However, no in 
vivo fluorescence imaging of PPI has been reported so far since these techniques (in 
particular FP-based) cannot be readily used for in vivo imaging applications due to several 
major limitations.  

First, FRET-based techniques require the use of incident light to activate the donor protein. 
Given that the excitation wavelength is typically in the green range, little excitation light will 
travel through tissue since most tissues have strong light absorption/attenuation below a 
wavelength of 600 nm (Frangioni, 2003). Therefore these techniques are intrinsically not 
suitable for non-invasive imaging studies in live animals. Second, there is strong auto-
fluorescence signal from animal tissue which confounds the interpretation of the imaging 
data. Third, the sensitivity of fluorescence imaging is not very high. Fourth, the relative 
molar ratios of the FRET donor/acceptor pair are not always 1:1, which can cause significant 
problems in calibration, detection, and quantification, especially when the situation is 
exacerbated in vivo when compared to cell-based studies. Lastly, there is significant 
photobleaching when the FPs are exposed to excitation light for a prolonged period. 

3. Bioluminescence imaging (BLI) of PPI  
Because of very low background signal and high sensitivity, BLI can be a more suitable 
technique for in vivo imaging of PPI than fluorescence imaging. The fact that no additional 
excitation light will be needed in BLI is highly advantageous for reducing the background 
signal. Two major strategies have been adopted for BLI of PPI: bioluminescence resonance 
energy transfer (BRET) and enzyme complementation. 

3.1 Imaging of PPI with BRET 

BRET displays similar characteristics as FRET except the donor is a bioluminescent protein, 
typically a luciferase, which requires the presence of small molecule substrates but not 
incident light. Similar to FRET, BRET is also a quantum process in which energy is 
transferred over a distance, usually < 10 nm, from the donor (e.g. luciferase) to a FP 
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2.2 Imaging of PPI with FCS 

Different from FRET, FCS detects the diffusion rate of single molecules which can give 
insights regarding whether a protein is part of a larger complex or not (Elson, 2004; 
Haustein and Schwille, 2007). Based on the analysis of intensity uctuation of one or a few 
labeled protein conjugates at nanomolar concentration in a femtoliter volume, which 
depends on several factors such as the number of fluorescent species in the excitation 
volume, the diffusion constant of the conjugate, etc., FCS has been used to study PPI, 
protein-lipid/ligand-receptor interactions, dimerization of membrane receptors and 
proteins involved in the downstream signalling, DNA dynamics, among others (Elson, 2004; 
Haustein and Schwille, 2007). The high sensitivity and the possibility to monitor these 
dynamic interactions makes FCS a powerful tool to study signal transduction in cellular or 
even tissue environment at physiologically relevant conditions (Hink et al., 2002). 

FCS is relatively insensitive to molecular mass. Therefore, species with similar molecular 
weight cannot be differentiated. Dual color fluorescence cross-correlation spectroscopy 
(FCCS) measures interactions by cross-correlating two or more fluorescent channels (one 
channel for each molecule/protein of interest), which can distinguish interactions and 
dynamics of biomolecules more sensitively than FCS, particularly when the mass change in 
the reaction/interaction is small. However, the inherent drawback of FCCS is that it suffers 
from non-ideal confocal volume overlap and spectral cross-talk which severely limits its 
applications. Fluorescence lifetime correlation/cross-correlation spectroscopy has the 
potential to resolve this issue, as demonstrated in a recent study (Chen and Irudayaraj, 
2010). Interaction of a fluorescently-labeled antagonist antibody with the epidermal growth 
factor receptor (EGFR)-GFP construct in live HEK293 cells were monitored by both 
fluorescence lifetime cross-correlation measurements and FLIM, which not only opens up 
new opportunities in studying PPI in solutions and in live cells but also provides new 
biological insights in understanding how an antagonist influences EGFR through live cell 
imaging and quantification. 

The field of plant sciences has also benefited from these techniques mentioned above. For 
example, FRET/FLIM was used to investigate CDC48A, a member of the AAA ATPases (i.e. 
ATPases associated with diverse cellular activities) family which has various functions in 
cell division, membrane fusion, as well as proteasome- and ER-associated degradation of 
proteins (Aker et al., 2007). With the use of FCS, it was shown that CDC48A hexamers are 
part of even larger complexes.  

2.3 Imaging of PPI with other fluorescence techniques 

Besides FRET/FLIM and FCS, enzyme complementation was also adopted for fluorescence 
imaging of PPI a decade ago (Spotts et al., 2002). A reporter technology based on the 
differential induction of β-lactamase (Bla) enzymatic activity was developed to function as a 
sensor for the interaction state of two target proteins within single neurons. Bla was split 
into two separate, complementary protein fragments which can be brought together by 
phosphorylation-dependent association of the kinase inducible domain of the cyclic 
adenosine monophosphate (cAMP) response element binding (CREB) protein and the KIX 
domain of the CREB binding protein (Spotts et al., 2002). Using an intracellular substrate 
whose fluorescence spectrum changes upon hydrolysis by Bla, time-lapse ratiometric 
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imaging measurements were achieved after association of CREB and CREB binding protein, 
which permits direct imaging of PPI in single cells with high signal discrimination. 

To investigate the conformational changes of proteins in living cells when external force is 
applied, a genetically encoded fluorescent sensor was constructed and tested in a myosin-
actin model system using the proximity imaging (PRIM) technique, which detects spectral 
changes of two GFP molecules that are in direct contact (Iwai and Uyeda, 2008). The 
developed PRIM-based strain sensor module (PriSSM), consisted of the tandem fusion of a 
normal and circularly permuted GFP, was inserted between two motor domains of 
dictyostelium myosin II to study the effect of strain. It was suggested that this technology 
may provide a general approach for studying force-induced protein conformational changes 
in cells. 

2.4 A brief summary of fluorescence imaging of PPI  

The FRET/FLIM technique can be used as a versatile tool to characterize the spatial 
distribution of various proteins and detect/quantify PPI in a living cell, which can measure 
intermolecular FRET through quite sophisticated mathematical algorithms. However, no in 
vivo fluorescence imaging of PPI has been reported so far since these techniques (in 
particular FP-based) cannot be readily used for in vivo imaging applications due to several 
major limitations.  

First, FRET-based techniques require the use of incident light to activate the donor protein. 
Given that the excitation wavelength is typically in the green range, little excitation light will 
travel through tissue since most tissues have strong light absorption/attenuation below a 
wavelength of 600 nm (Frangioni, 2003). Therefore these techniques are intrinsically not 
suitable for non-invasive imaging studies in live animals. Second, there is strong auto-
fluorescence signal from animal tissue which confounds the interpretation of the imaging 
data. Third, the sensitivity of fluorescence imaging is not very high. Fourth, the relative 
molar ratios of the FRET donor/acceptor pair are not always 1:1, which can cause significant 
problems in calibration, detection, and quantification, especially when the situation is 
exacerbated in vivo when compared to cell-based studies. Lastly, there is significant 
photobleaching when the FPs are exposed to excitation light for a prolonged period. 

3. Bioluminescence imaging (BLI) of PPI  
Because of very low background signal and high sensitivity, BLI can be a more suitable 
technique for in vivo imaging of PPI than fluorescence imaging. The fact that no additional 
excitation light will be needed in BLI is highly advantageous for reducing the background 
signal. Two major strategies have been adopted for BLI of PPI: bioluminescence resonance 
energy transfer (BRET) and enzyme complementation. 

3.1 Imaging of PPI with BRET 

BRET displays similar characteristics as FRET except the donor is a bioluminescent protein, 
typically a luciferase, which requires the presence of small molecule substrates but not 
incident light. Similar to FRET, BRET is also a quantum process in which energy is 
transferred over a distance, usually < 10 nm, from the donor (e.g. luciferase) to a FP 
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(Villalobos et al., 2007). However, BRET offers many distinct advantages over FRET because 
of its higher quantum yield and better detection sensitivity.  

As a popular technique for studying PPI in live cells, BRET is particularly suitable for real-
time monitoring of such interactions. For example, many cellular signal transduction can be 
visualized by this technique, such as agonist-induced GPCR/β-arrestin interaction (Pfleger 
et al., 2006), calcium sensing receptor homodimer formation (Jensen et al., 2002), β2-
adrenergic receptor dimerization (Angers et al., 2000), interaction of circadian clock proteins 
(Xu et al., 1999), etc. Since the potential for studying the modulation of such interactions by 
agonists, antagonists, inhibitors, dominant negative mutants, and co-expressed accessory 
proteins is tremendous, high-throughput BRET-based screening system is an ever-
expanding area of interest for the pharmaceutical industry. However, imaging PPI with 
BRET in animal models is very challenging and only a few successful examples are available 
in the literature (Massoud et al., 2007; Villalobos et al., 2007). 

In one early study, a cooled charge-coupled device (CCD) camera-based spectral imaging 
strategy enabled simultaneous visualization and quantitation of BRET signal from live cells 
and cells implanted in living mice, where renilla luciferase (RLuc) and its substrate were 
used as an energy donor and a mutant GFP was used as the acceptor (De and Gambhir, 
2005). As a proof-of-principle, the donor and acceptor proteins were fused to FKBP12 and 
FRB respectively, which are known to interact only in the presence of the small molecule 
mediator rapamycin (Banaszynski et al., 2005; Choi et al., 1996). Mammalian cells expressing 
these fusion constructs were imaged using a cooled-CCD camera either directly from culture 
dishes or after implanting them into mice, where the specific BRET signal was determined 
by comparing the emission photon yields in the presence and absence of rapamycin. Such 
CCD camera-based imaging of BRET signal is very appealing since it can seamlessly bridge 
the gap between in vitro and in vivo studies, thus validating BRET as a powerful tool for 
interrogating and detecting PPI directly at limited depths in living mice. 

Subsequently, a highly photon-efficient and self-illuminating fusion protein, which 
combines a mutant RFP (mOrange) and a mutant RLuc (RLuc8), was constructed to improve 
the BRET efficiency/signal (De et al., 2009). This new BRET fusion protein, termed as 
“BRET3”, exhibited several-fold improvement in light intensity when compared with the 
previous BRET fusion proteins. In addition, BRET3 also exhibits red-shifted light output, 
which can allow for deeper tissue imaging in small animals. At single cell level, the BRET3 
construct (which contains FKBP12 and FRB) was demonstrated to only exhibit BRET signal 
in the presence of rapamycin. With increased photon intensity, red-shifted light output and 
good spectral resolution (approximately 85 nm), it was suggested that BRET3-based assays 
will allow imaging of PPI using a single assay that is directly scalable from living cells to 
small animals.  

Recently, further improvement on the BRET3 construct was reported, which was termed 
“BRET6” (Dragulescu-Andrasi et al., 2011). Red light-emitting BRET-based reporter systems 
were developed to allow for assaying PPI both in cell culture and in deep tissues of small 
animals (Figure 3). These BRET systems consist of the newly developed RLuc variants 
(RLuc8 and RLuc8.6, which serve as BRET donors) and two RFPs (TagRFP and TurboFP635, 
which serve as BRET acceptors). In addition to the native coelenterazine substrate for RLuc, 
a synthetic derivative (coelenterazine-v) was also used which further red-shifted the 
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emission maxima of RLuc by 35 nm. Ratiometric imaging of PPI in the presence of 
rapamycin-induced FKBP12-FRB association was demonstrated in both cultured cells and 
small animal tumor models. 

 
Fig. 3. Imaging of PPI with BRET6. A. Schematic illustration of the BRET6 construct for 
monitoring rapamycin-induced FRB-FKBP12 association. B. Schematic representation of the 
BRET6 fusion construct, the emission spectrum of the RLuc mutant, and the absorption 
spectrum of the acceptor protein. CLZ denotes coelenterazine (a substrate for RLuc).  
C. Bioluminescence images of cells stably expressing the BRET6 construct, accumulated in 
the lungs of nude mice after intravenous injection. Mice were also injected with both 
rapamycin (or control carrier which does not contain rapamycin) and CLZ before imaging. 
Adapted from (Dragulescu-Andrasi et al., 2011). 

Currently, the number of BRET probes reported for the imaging of PPI is significantly 
lower when compared to FRET-based approaches. Much future work needs to be devoted 
to BRET-based imaging of PPI. The strategy of combining a fluorescent and a 
bioluminescent reporter to generate self-illuminated reporter proteins is advantageous to 
overcome the common problems associated with in vivo fluorescent imaging of PPI. As a 
genetically encodable approach for ratiometric imaging of PPI in cells and living subjects, 
light attenuation by tissue is the major challenge for ratiometric analysis of PPI with a 
BRET system. Since light attenuation varies with the wavelength of the emitted photons 
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which can allow for deeper tissue imaging in small animals. At single cell level, the BRET3 
construct (which contains FKBP12 and FRB) was demonstrated to only exhibit BRET signal 
in the presence of rapamycin. With increased photon intensity, red-shifted light output and 
good spectral resolution (approximately 85 nm), it was suggested that BRET3-based assays 
will allow imaging of PPI using a single assay that is directly scalable from living cells to 
small animals.  

Recently, further improvement on the BRET3 construct was reported, which was termed 
“BRET6” (Dragulescu-Andrasi et al., 2011). Red light-emitting BRET-based reporter systems 
were developed to allow for assaying PPI both in cell culture and in deep tissues of small 
animals (Figure 3). These BRET systems consist of the newly developed RLuc variants 
(RLuc8 and RLuc8.6, which serve as BRET donors) and two RFPs (TagRFP and TurboFP635, 
which serve as BRET acceptors). In addition to the native coelenterazine substrate for RLuc, 
a synthetic derivative (coelenterazine-v) was also used which further red-shifted the 
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emission maxima of RLuc by 35 nm. Ratiometric imaging of PPI in the presence of 
rapamycin-induced FKBP12-FRB association was demonstrated in both cultured cells and 
small animal tumor models. 

 
Fig. 3. Imaging of PPI with BRET6. A. Schematic illustration of the BRET6 construct for 
monitoring rapamycin-induced FRB-FKBP12 association. B. Schematic representation of the 
BRET6 fusion construct, the emission spectrum of the RLuc mutant, and the absorption 
spectrum of the acceptor protein. CLZ denotes coelenterazine (a substrate for RLuc).  
C. Bioluminescence images of cells stably expressing the BRET6 construct, accumulated in 
the lungs of nude mice after intravenous injection. Mice were also injected with both 
rapamycin (or control carrier which does not contain rapamycin) and CLZ before imaging. 
Adapted from (Dragulescu-Andrasi et al., 2011). 
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overcome the common problems associated with in vivo fluorescent imaging of PPI. As a 
genetically encodable approach for ratiometric imaging of PPI in cells and living subjects, 
light attenuation by tissue is the major challenge for ratiometric analysis of PPI with a 
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and the tissue depth, red-shifted luciferases and FPs are clearly preferred choices. 
Meanwhile, consistency of the BRET ratio in different mice should also be monitored 
carefully to ensure sufficient spatial control to retain the ratiometric characteristics of a 
BRET sensor. 

3.2 Imaging of PPI with complementation of split enzyme 

Enzyme complementation assay depends on the division of a reporter enzyme (e.g. 
luciferase) into two separate inactive components that can regain function upon association 
(Massoud et al., 2007). When the two enzyme fragments are each fused to two interacting 
proteins, the enzyme can be reactivated upon PPI. For in vivo BLI applications, the split 
rey luciferase (fLuc) with small overlapping sequences is a suitable choice because it 
consistently yields strong signal and excellent inducible complementation by a variety of 
PPIs. The reaction kinetics and ease of delivery of the substrate, D-luciferin, also allows for 
facile application of this technique in BLI assays. Besides fLuc, RLuc has also been 
investigated for BLI of PPI. However, although the split RLuc system functions quite 
efficiently, one major limitation of RLuc-based assay is its substrate, coelenterazine, which 
exhibits poor reaction prole for long-term kinetic experiments. In addition, the 
hydrophobicity of the molecule also makes it difficult to use for in vivo applications.  

The first report on non-invasive BLI of PPI in living subjects based on a split luciferase was 
achieved a decade ago (Paulmurugan et al., 2002). In this study, split fLuc was designed and 
constructed for both intein-mediated reconstitution and complementation, where the two 
fLuc fragments could be brought together by the strong interaction between two proteins, 
MyoD and Id, both of which are members of the helix-loop-helix family of nuclear proteins. 
As a demonstration of the proof-of-principle, cells transiently transfected with the split 
reporter gene construct were used for imaging MyoD-Id interactions, both in cell culture 
and in cells implanted into living mice.  

In a subsequent study, the split fLuc strategy was employed for imaging of PPI in hypoxia 
(Choi et al., 2008). HIF-1α is well known to regulate the activation of genes that promote 
malignant progression (Koh et al., 2010). HIF-1α is hydroxylated on prolines 402 and 564 
under normoxia, which is targeted for ubiquitin-mediated degradation by interacting with 
the von Hippel-Lindau protein complex (pVHL). To study the interaction between HIF-1α 
and pVHL, the split fLuc-based system was used where HIF-1α and pVHL were fused to the 
amino-terminal and carboxy-terminal fragments of fLuc, respectively. Hydroxylation-
dependent interaction between HIF-1α and pVHL led to complementation of the two fLuc 
fragments, resulting in bioluminescence in vitro and in vivo. Complementation-based 
bioluminescence was diminished when mutant pVHL with decreased binding affinity for 
HIF-1α was used. This strategy represents a useful approach for studying PPI involved in 
the regulation of protein degradation. In another study, split fLuc was also used for 
investigating epidermal growth factor (EGF)-induced Ras/Raf-1 interaction in mammalian 
cells (Kanno et al., 2006). 

Similar strategy has been adopted to develop an inducible split RLuc-based 
bioluminescence assay for quantitative measurement of real time PPI in mammalian cells 
(Paulmurugan and Gambhir, 2003). In a follow-up study, the split RLuc construct was 
used to evaluate drug-modulated PPI in a cancer model in living mice (Figure 4) 
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(Paulmurugan et al., 2004). The heterodimerization of FRB and FKBP12, mediated by 
rapamycin, was also utilized in this study. The concentration of rapamycin needed for 
efficient dimerization, as well as the amount of ascomycin (a competitive binder of 
rapamycin) required for dimerization inhibition, were investigated. These studies 
demonstrated that such split reporter-based strategies can be used to efficiently screen 
small molecule drugs that modulate PPI, and further evaluate the effect of the drugs in 
living animals.  

 
 

 
 
Fig. 4. In vivo imaging of drug-modulated PPI. A. Schematic diagram of rapamycin-
mediated complementation of the two fragments of synthetic renilla luciferase (hRLUC).  
B. Non-invasive imaging of PPI in living mice, intravenously injected with human 293T 
embryonic kidney cancer cells that were transiently co-transfected with both split 
constructs. Mice not receiving rapamycin (left) showed only background signal, whereas the 
animals receiving repeated injections of rapamycin emitted higher signals originating from 
the 293T cells in the liver (right). Adapted from (Paulmurugan et al., 2004). 

Homodimeric PPI, potent regulators of cellular functions and particularly challenging to 
study in vivo, can also be visualized by the split RLuc strategy. Split RLuc 
complementation-based bioluminescence assay was used to study the homodimerization of 
herpes simplex virus type 1 thymidine kinase (HSV1-TK) in mammalian cells and in living 
mice (Massoud et al., 2004). Homodimerization of HSV1-TK chimeras containing the N-
terminal or C-terminal fragments of RLuc in the upstream and downstream positions, 
respectively, was visualized and quantified. A mutant of HSV1-TK was used to confirm the 
specificity of the RLuc complementation signal from HSV1-TK homodimerization. This 
generalizable assay to screen for molecules that promote or disrupt ubiquitous homodimeric 
PPI can not only serve as an invaluable tool to understand the biological signaling networks, 
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and the tissue depth, red-shifted luciferases and FPs are clearly preferred choices. 
Meanwhile, consistency of the BRET ratio in different mice should also be monitored 
carefully to ensure sufficient spatial control to retain the ratiometric characteristics of a 
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proteins, the enzyme can be reactivated upon PPI. For in vivo BLI applications, the split 
rey luciferase (fLuc) with small overlapping sequences is a suitable choice because it 
consistently yields strong signal and excellent inducible complementation by a variety of 
PPIs. The reaction kinetics and ease of delivery of the substrate, D-luciferin, also allows for 
facile application of this technique in BLI assays. Besides fLuc, RLuc has also been 
investigated for BLI of PPI. However, although the split RLuc system functions quite 
efficiently, one major limitation of RLuc-based assay is its substrate, coelenterazine, which 
exhibits poor reaction prole for long-term kinetic experiments. In addition, the 
hydrophobicity of the molecule also makes it difficult to use for in vivo applications.  

The first report on non-invasive BLI of PPI in living subjects based on a split luciferase was 
achieved a decade ago (Paulmurugan et al., 2002). In this study, split fLuc was designed and 
constructed for both intein-mediated reconstitution and complementation, where the two 
fLuc fragments could be brought together by the strong interaction between two proteins, 
MyoD and Id, both of which are members of the helix-loop-helix family of nuclear proteins. 
As a demonstration of the proof-of-principle, cells transiently transfected with the split 
reporter gene construct were used for imaging MyoD-Id interactions, both in cell culture 
and in cells implanted into living mice.  

In a subsequent study, the split fLuc strategy was employed for imaging of PPI in hypoxia 
(Choi et al., 2008). HIF-1α is well known to regulate the activation of genes that promote 
malignant progression (Koh et al., 2010). HIF-1α is hydroxylated on prolines 402 and 564 
under normoxia, which is targeted for ubiquitin-mediated degradation by interacting with 
the von Hippel-Lindau protein complex (pVHL). To study the interaction between HIF-1α 
and pVHL, the split fLuc-based system was used where HIF-1α and pVHL were fused to the 
amino-terminal and carboxy-terminal fragments of fLuc, respectively. Hydroxylation-
dependent interaction between HIF-1α and pVHL led to complementation of the two fLuc 
fragments, resulting in bioluminescence in vitro and in vivo. Complementation-based 
bioluminescence was diminished when mutant pVHL with decreased binding affinity for 
HIF-1α was used. This strategy represents a useful approach for studying PPI involved in 
the regulation of protein degradation. In another study, split fLuc was also used for 
investigating epidermal growth factor (EGF)-induced Ras/Raf-1 interaction in mammalian 
cells (Kanno et al., 2006). 

Similar strategy has been adopted to develop an inducible split RLuc-based 
bioluminescence assay for quantitative measurement of real time PPI in mammalian cells 
(Paulmurugan and Gambhir, 2003). In a follow-up study, the split RLuc construct was 
used to evaluate drug-modulated PPI in a cancer model in living mice (Figure 4) 
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(Paulmurugan et al., 2004). The heterodimerization of FRB and FKBP12, mediated by 
rapamycin, was also utilized in this study. The concentration of rapamycin needed for 
efficient dimerization, as well as the amount of ascomycin (a competitive binder of 
rapamycin) required for dimerization inhibition, were investigated. These studies 
demonstrated that such split reporter-based strategies can be used to efficiently screen 
small molecule drugs that modulate PPI, and further evaluate the effect of the drugs in 
living animals.  

 
 

 
 
Fig. 4. In vivo imaging of drug-modulated PPI. A. Schematic diagram of rapamycin-
mediated complementation of the two fragments of synthetic renilla luciferase (hRLUC).  
B. Non-invasive imaging of PPI in living mice, intravenously injected with human 293T 
embryonic kidney cancer cells that were transiently co-transfected with both split 
constructs. Mice not receiving rapamycin (left) showed only background signal, whereas the 
animals receiving repeated injections of rapamycin emitted higher signals originating from 
the 293T cells in the liver (right). Adapted from (Paulmurugan et al., 2004). 

Homodimeric PPI, potent regulators of cellular functions and particularly challenging to 
study in vivo, can also be visualized by the split RLuc strategy. Split RLuc 
complementation-based bioluminescence assay was used to study the homodimerization of 
herpes simplex virus type 1 thymidine kinase (HSV1-TK) in mammalian cells and in living 
mice (Massoud et al., 2004). Homodimerization of HSV1-TK chimeras containing the N-
terminal or C-terminal fragments of RLuc in the upstream and downstream positions, 
respectively, was visualized and quantified. A mutant of HSV1-TK was used to confirm the 
specificity of the RLuc complementation signal from HSV1-TK homodimerization. This 
generalizable assay to screen for molecules that promote or disrupt ubiquitous homodimeric 
PPI can not only serve as an invaluable tool to understand the biological signaling networks, 
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but will also be useful in drug discovery/validation in live animal disease models. In a cell-
based study, the split RLuc strategy was shown to be useful beyond the visualization and 
confirmation of the existence of PPI. It also helped in identifying the critical amino acid 
residues involved in a specific PPI (Jiang et al., 2010). 

Besides fLuc and RLuc complementation, split click beetle luciferase has been used to study 
the interaction between GPCR and β-arrestin (Misawa et al., 2010), whereas split Gaussia 
luciferase has been employed to image the interaction between calmodulin and other 
proteins (Kim et al., 2009). However, neither of these split luciferases has been demonstrated 
for in vivo visualization of PPI. Other split enzymes have also been explored for the imaging 
of PPI, such as the use of split β-gal for BLI of GPCR interactions in vivo (von Degenfeld et 
al., 2007). Currently, there is a paucity of sensitive and specific methods for quantitative 
comparison of the pharmacological properties of GPCRs in physiological and/or 
pathological settings in live animals. In this study, low affinity and reversible β-gal 
complementation was developed to quantify GPCR activation via interaction with β-
arrestin, which enabled real time BLI of GPCR activity in live animals with high sensitivity 
and specicity (von Degenfeld et al., 2007). Imaging was achieved by using a recently 
developed luminescent β-gal substrate, which is a caged luciferin molecule that can be 
recognized by fLuc to generate light only after it has been cleaved by β-gal (Wehrman et al., 
2006). Following implantation of the cells into mice, it was possible to monitor 
pharmacological GPCR activation and inhibition in their physiological context by non-
invasive BLI, suggesting that this technology may have unique advantages to enable novel 
applications in the functional investigation of GPCR modulation in biological research and 
drug discovery. 

4. PET imaging of PPI 
Typically, PPI represents a low-level biological event and is therefore very challenging to 
detect, locate, and image in intact living subjects. When compared with BLI and fluorescence 
imaging, PET possesses very high sensitivity, while being quantitative and tomographic 
(Massoud and Gambhir, 2003). In addition, it is one of the few non-invasive imaging 
techniques that can be applied in humans for non-invasive monitoring of reporter gene 
expression (Kang and Chung, 2008). Although PET has enormous potential in imaging 
complex biological events such as PPI, to date only one example of PET imaging of PPI has 
been reported (Massoud et al., 2010). 

The PET reported gene HSV1-TK was molecularly engineered and cleaved between Thr265 
and Ala266, where the fragments were used in a protein-fragment complementation assay 
to quantify as well as to non-invasively image PPI in mammalian cells and living mice 
(Massoud et al., 2010). It was found that a point mutation (V119C) could be introduced to 
markedly enhance the HSV1-TK complementation modulated by several different PPIs such 
as the rapamycin-mediated FKBP12- FRB, HIF-1α-pVHL, etc. In vivo PET imaging of the 
FKBP12-FRB interaction modulated through rapamycin was successfully achieved (Figure 
5). Future applications of this unique split HSV1-TK strategy are potentially far reaching, 
including accurate monitoring of immune and stem cell therapies, as well as allowing for 
fully quantitative and tomographic PET localization of PPI in preclinical small and large 
animal models of various diseases. 
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Fig. 5. Non-invasive PET imaging of PPI. A. Schematic diagram showing the use of split 
HSV1-TK to monitor the hypothetical X-Y heterodimeric PPI. B. Transaxial PET images of a 
mouse implanted subcutaneously with mock-transfected 293T cells (left) and 293T cells 
stably expressing both split constructs of HSV1-TK each fused to FRB and FKBP12 
respectively (right). The serial images at different days were acquired after injection of the 
PET reporter probe for HSV1-TK (i.e. 18F-FHBG). A BLI image of the mouse is also shown to 
delineate the two tumors. Adapted from (Massoud et al., 2010). 

5. Conclusion 
The interactions of specific cellular proteins form the basis of a wide variety of biological 
processes, including many signal transduction and hormone activation pathways involved 
in maintaining important biological functions. Accurate measurement of PPI can 
significantly help in deciphering the genetic and proteomic code. The tremendous 
complexity of cellular events requires assays that can measure different types of PPIs using 
an array of different methods. Molecular imaging, an extremely powerful tool to study 
molecular events in living subjects, can provide invaluable information and insight in 
elucidating the process of various PPIs.  
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but will also be useful in drug discovery/validation in live animal disease models. In a cell-
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residues involved in a specific PPI (Jiang et al., 2010). 

Besides fLuc and RLuc complementation, split click beetle luciferase has been used to study 
the interaction between GPCR and β-arrestin (Misawa et al., 2010), whereas split Gaussia 
luciferase has been employed to image the interaction between calmodulin and other 
proteins (Kim et al., 2009). However, neither of these split luciferases has been demonstrated 
for in vivo visualization of PPI. Other split enzymes have also been explored for the imaging 
of PPI, such as the use of split β-gal for BLI of GPCR interactions in vivo (von Degenfeld et 
al., 2007). Currently, there is a paucity of sensitive and specific methods for quantitative 
comparison of the pharmacological properties of GPCRs in physiological and/or 
pathological settings in live animals. In this study, low affinity and reversible β-gal 
complementation was developed to quantify GPCR activation via interaction with β-
arrestin, which enabled real time BLI of GPCR activity in live animals with high sensitivity 
and specicity (von Degenfeld et al., 2007). Imaging was achieved by using a recently 
developed luminescent β-gal substrate, which is a caged luciferin molecule that can be 
recognized by fLuc to generate light only after it has been cleaved by β-gal (Wehrman et al., 
2006). Following implantation of the cells into mice, it was possible to monitor 
pharmacological GPCR activation and inhibition in their physiological context by non-
invasive BLI, suggesting that this technology may have unique advantages to enable novel 
applications in the functional investigation of GPCR modulation in biological research and 
drug discovery. 

4. PET imaging of PPI 
Typically, PPI represents a low-level biological event and is therefore very challenging to 
detect, locate, and image in intact living subjects. When compared with BLI and fluorescence 
imaging, PET possesses very high sensitivity, while being quantitative and tomographic 
(Massoud and Gambhir, 2003). In addition, it is one of the few non-invasive imaging 
techniques that can be applied in humans for non-invasive monitoring of reporter gene 
expression (Kang and Chung, 2008). Although PET has enormous potential in imaging 
complex biological events such as PPI, to date only one example of PET imaging of PPI has 
been reported (Massoud et al., 2010). 

The PET reported gene HSV1-TK was molecularly engineered and cleaved between Thr265 
and Ala266, where the fragments were used in a protein-fragment complementation assay 
to quantify as well as to non-invasively image PPI in mammalian cells and living mice 
(Massoud et al., 2010). It was found that a point mutation (V119C) could be introduced to 
markedly enhance the HSV1-TK complementation modulated by several different PPIs such 
as the rapamycin-mediated FKBP12- FRB, HIF-1α-pVHL, etc. In vivo PET imaging of the 
FKBP12-FRB interaction modulated through rapamycin was successfully achieved (Figure 
5). Future applications of this unique split HSV1-TK strategy are potentially far reaching, 
including accurate monitoring of immune and stem cell therapies, as well as allowing for 
fully quantitative and tomographic PET localization of PPI in preclinical small and large 
animal models of various diseases. 
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The interactions of specific cellular proteins form the basis of a wide variety of biological 
processes, including many signal transduction and hormone activation pathways involved 
in maintaining important biological functions. Accurate measurement of PPI can 
significantly help in deciphering the genetic and proteomic code. The tremendous 
complexity of cellular events requires assays that can measure different types of PPIs using 
an array of different methods. Molecular imaging, an extremely powerful tool to study 
molecular events in living subjects, can provide invaluable information and insight in 
elucidating the process of various PPIs.  
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To date, the major molecular imaging modalities used for visualization of PPI include 
fluorescence imaging (not suitable for in vivo studies), BLI, and PET imaging. All these 
techniques require extensive efforts in protein engineering due to the complex and 
challenging nature of imaging PPI in living cells and animals. Particularly for split reporter-
based strategies, intensive efforts are needed to obtain better functioning split reporters that 
exhibit efficient PPI-induced complementation but not self-complementation. At the same 
time, sufficiently high reporter activity needs to be maintained upon PPI-induced 
complementation. For in vivo imaging of PPI, PET serves as a better choice over BLI and 
fluorescence due to its superb sensitivity, excellent tissue penetration, high quantification 
accuracy, and potential for clinical translation.  

Future work on the imaging of PPI may include the design of second-generation 
complementation reporters with improved signal-to-noise ratios, inducibility, and red-
shifted spectral properties for more wide spread use in vivo. The ideal reporter for imaging 
of PPI should not only serve as an “on/off” signal, but also give a graduated and 
quantitative response with minimal background signal and excellent induced signal output. 
Lastly, since no single imaging modality is perfect, combination of different imaging 
techniques to study the same PPI may provide complementary information. 
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fluorescence imaging (not suitable for in vivo studies), BLI, and PET imaging. All these 
techniques require extensive efforts in protein engineering due to the complex and 
challenging nature of imaging PPI in living cells and animals. Particularly for split reporter-
based strategies, intensive efforts are needed to obtain better functioning split reporters that 
exhibit efficient PPI-induced complementation but not self-complementation. At the same 
time, sufficiently high reporter activity needs to be maintained upon PPI-induced 
complementation. For in vivo imaging of PPI, PET serves as a better choice over BLI and 
fluorescence due to its superb sensitivity, excellent tissue penetration, high quantification 
accuracy, and potential for clinical translation.  

Future work on the imaging of PPI may include the design of second-generation 
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1. Introduction 
The ability of proteins to adopt their functional, highly structured states in the intracellular 
environment during and after its synthesis is one of the most remarkable evolutionary 
achievements of biology. Deciphering the code of protein self-organization process has been 
an intellectual challenge for scientists over the past few decades. Although the structure-
function paradigm about folded structures and functions remains valid, the role of internal 
dynamics and conformational fluctuations in protein function is becoming increasingly 
evident (Bhabha et al  2011; Boehr et al  2006; Eisenmesser et al  2005; Fraser et al  2009; 
Mittermaier and Kay 2006; Parak 2003b; Popovych et al  2006; Tzeng and Kalodimos 2009; 
Whitten et al  2005). Further, recent structural and genomic data have clearly shown that not 
all proteins have unique folded structures under normal physiological conditions. Hence, 
the way a protein exists, is bound to have a profound effect on its function. 

A complete understanding of protein folding process requires characterization of all the 
species populating along the folding coordinate, these include the unfolded state, the 
partially folded intermediate states, low energy excited states and the fully folded native 
state. The most recent and widely accepted model is the ‘funnel view’ of protein folding 
(Bryngelson et al  1995; Dill and Chan 1997; Onuchic et al  1997; Shoemaker et al  1999; 
Wolynes 2005) also known as the ‘Energy landscape model’ (Fig. 1), which is inclusive of the 
earlier concepts of ‘folding pathways’. According to this model protein folding is a parallel, 
diffusion-like motion of conformational ensemble on the energy landscape biased towards 
the native state. This model is free from the Levinthal paradox (Dill and Chan 1997; 
Levinthal C 1969) as it envisages the process of reaching a global minimum in free energy as 
a rapid process occurring by multiple routes on a funnel like energy landscape (Fig. 1). This 
view focuses on the rapid decrease of the conformational heterogeneity in the course of the 
folding reaction and is based on a statistical description of a protein's potential surface 
(Wolynes et al  1995; Wolynes 2005). The depth in the funnel represents the free energy of 
the polypeptide chain in fixed conformations and the width indicates the chain entropy (Fig. 
1). The funnel becomes narrower in the lower energy region because of the low chain 
entropy. The broad end of the funnel reflects the heterogeneous unfolded state, while the 
narrow end represents the supposedly homogeneous native state (Dill and Chan 1997; 
Dobson and Karplus 1999; Dyson and Wright 2005).  Different members of the ensemble 
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(Bryngelson et al  1995; Dill and Chan 1997; Onuchic et al  1997; Shoemaker et al  1999; 
Wolynes 2005) also known as the ‘Energy landscape model’ (Fig. 1), which is inclusive of the 
earlier concepts of ‘folding pathways’. According to this model protein folding is a parallel, 
diffusion-like motion of conformational ensemble on the energy landscape biased towards 
the native state. This model is free from the Levinthal paradox (Dill and Chan 1997; 
Levinthal C 1969) as it envisages the process of reaching a global minimum in free energy as 
a rapid process occurring by multiple routes on a funnel like energy landscape (Fig. 1). This 
view focuses on the rapid decrease of the conformational heterogeneity in the course of the 
folding reaction and is based on a statistical description of a protein's potential surface 
(Wolynes et al  1995; Wolynes 2005). The depth in the funnel represents the free energy of 
the polypeptide chain in fixed conformations and the width indicates the chain entropy (Fig. 
1). The funnel becomes narrower in the lower energy region because of the low chain 
entropy. The broad end of the funnel reflects the heterogeneous unfolded state, while the 
narrow end represents the supposedly homogeneous native state (Dill and Chan 1997; 
Dobson and Karplus 1999; Dyson and Wright 2005).  Different members of the ensemble 
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may fold/unfold along independent pathways and their energy profiles could be different. 
Protein folding theories start from the unfolded state (Fig. 1) and encompass a range of 
topologies like the pre-molten globule, the molten globule and various other ordered or 
disordered forms as the protein folds down the funnel (Dunker et al  2002; Uversky 2002; 
Uversky 2003).  

 
Fig. 1. A schematic energy landscape view of protein folding: The surface of the funnel 
represents a whole range from the multitude of denatured conformations to the unique 
native structure (Dill and Chan 1997). The ordered state is the natively folded structure of a 
protein that has a well defined secondary and tertiary structure. Alternative conformations 
are higher energy native state conformations and contain all the secondary and tertiary 
structural characteristics of folded state. Molten globule states are intermediates in the 
protein folding pathway with compact structures that exhibit a high content of secondary 
structure, nonspecific tertiary structure, and significant structural flexibility. Random coils 
are highly unstructured protein denatured states. 

In a living cell, a polypeptide chain chooses between three potential fates - functional 
folding, potentially deadly misfolding and mysterious non-folding (Dobson 2003). This 
choice is dictated by the peculiarities of amino acid sequence and/or by the pressure of 
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environmental factors. The biological function  of a protein arises as a result of interplay 
between specific conformational forms, namely, native state (ordered forms), low energy 
excited states, molten globules, pre-molten globules, and denatured state (random coils). In 
view of this, it will not be an exaggeration to assume an ensemble existence of all these 
states at any particular time, their relative abundance being governed by basic 
thermodynamics. Upon ligand binding or some signaling modification, concentration of one 
state may increase at the expense of the others. This can explain the fast regulatory steps 
involved in various biological functions.  

Much of structural biology of proteins is so focused on studies of native state, providing 
detailed atomic descriptions and coordinates of static three-dimensional (3D) structures.  A 
large body of evidence using a diverse spectrum of biophysical methods clearly establishes 
that proteins are dynamic over a broad range of timescales and such dynamics play critical 
roles in various biological processes, such as: initial formation of encounter complexes in 
macromolecular association, target searching in specific protein-protein/protein-DNA 
recognition, conformational preferences in ligand binding, conformational transitions 
associated with allostery, the course of enzyme catalysis, intermediates along the protein 
folding pathway, and early events in self-assembly processes (Bai et al  1995; Boehr et al  
2006; Clore 2011; Dunker et al  2002; Eisenmesser et al  2005; Feher and Cavanagh 1999; 
Fraser et al  2009; Kitahara et al  2005; Korzhnev et al  2003; Kumar et al  2007; Lambers et al  
2006; Mohan et al  2006; Piana et al  2002; Popovych et al  2006; Tang et al  2008; Villali and 
Kern 2010). The amplitudes and the timescales of motion that characterize the dynamics of a 
protein under a given set of conditions can be understood in terms of an ‘energy landscape’ 
as described above. Ground-state conformers that occupy the bottom of the energy 
landscape funnel and are separated from other conformational states by very small kinetic 
barriers that are easily overcome by thermal energy form the basis of structural studies by 
NMR (Nuclear Magnetic Resonance Spectroscopy) and X-ray diffraction for last few 
decades. 

In general, the dynamic phenomenon involves the inter-conversion between ground state 
conformers with higher energy structures known as ‘excited states’.  The populations of 
these low-energy excited states/near native states/alternative conformations at equilibrium 
are very sparse and their lifetimes are short. Moreover, these transient states arising from 
rare but rapid excursions between the global free energy minimum and higher free energy 
local minima are extremely challenging to study at atomic resolution under equilibrium 
conditions since they are effectively invisible to most structural and biophysical techniques 
including crystallography and conventional NMR spectroscopy (Bhabha et al  2011; Boehr et 
al  2006; Eisenmesser et al  2005; Fraser et al  2009; Mittermaier and Kay 2006; Popovych et al  
2006; Tzeng and Kalodimos 2009; Whitten et al  2005; Clore and Iwahara 2009; Clore 2011).  
However, a complete understanding of the conformational fluctuations these bio-molecules 
undergo is essential to gain an insight into their biochemical and biophysical properties. 
Hence, it is critical to characterize the structural ensembles that describe these functionally 
important states and the mechanisms by which they interconvert with the ground-state 
conformers. 

Recent developments in NMR, however, have rendered short-lived, sparsely populated 
states accessible to spectroscopic analysis, yielding considerable insights into their kinetics, 
thermodynamics, and structures. Over the past decade, new and powerful NMR approaches 
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such as paramagnetic relaxation enhancement (PRE) (Clore and Iwahara 2009; Clore 2011), 
relaxation dispersion (RD) (Boehr et al  2006; Mittermaier and Kay 2006; Tzeng and 
Kalodimos 2009) and non-linear temperature dependence of amide proton chemical shifts 
(Krishna Mohan et al  2008; Mohan et al  2008b; Tunnicliffe et al  2005; Williamson 2003) have 
emerged and significantly contributed to our understanding of the relationship between 
structure, dynamics and function of proteins with respect to the excited-state conformers 
that are sparsely populated and often exist transiently.  

In the present chapter the theoretical basis of NMR approach for the curved temperature 
dependence of amide proton chemical shifts will be discussed in detail. Theoretical 
simulations will be presented to understand the nature and extent of curvature of the 
chemical shifts. Further, experimental studies performed till date on different protein 
systems will be reviewed to demonstrate the curved temperature dependence of amide 
proton chemical shifts as a tool to detect the low populated near native states/ alternative 
conformations of the protein residues. Moreover, the significance of these conformational 
fluctuations will be evaluated with regard to protein function and folding. 

2. Theory of curved temperature dependence of amide proton chemical shifts 
NMR chemical shift is a sensitive indicator of the environment and molecular 
conformation. In proteins 1H, 13C and 15N chemical shifts are sensitive to protein 
secondary structures and are used to deduce the preliminary structural information 
(Schwarzinger et al  2000; Schwarzinger et al  2001; Wishart and Sykes 1994; Wishart et al  
1995; Wüthrich K 1986).  The temperature dependence of amide proton chemical shifts in 
globular proteins has been investigated for over more than three decades by many 
researchers and continues to be investigated even today (Anderson et al  1997; Baxter and 
Williamson 1997; Cierpicki and Otlewski 2001; Krishna Mohan et al  2008). The amide 
proton chemical shifts are directly proportional to bond magnetic anisotropy (σ ani) and 
this is crucially dependent on H-bonding, either intramolecular or intermolecular. In the 
former case, the carbonyl groups, the H-bond acceptors play a crucial role. The bond 
magnetic anisotropy is proportional to r-3 where r is the distance between the affected 
amide proton and the centre of the bond magnetic anisotropy, which lies close to the 
oxygen atom in the carbonyl groups (Krishna Mohan et al  2008). In case of solvent 
accessible groups, H-bonding with solvent molecules influences the amide proton 
chemical shifts. Thus the amide proton chemical shift is critically dependent on the length 
of the H-bond the proton is engaged in.  

When the temperature of the solution is raised, thermal fluctuations increase which results 
in an increase in the average distance between atoms; X-ray crystallographic studies at 
several temperatures (98 – 320 K) on ribonuclease-A indicated that the protein volume 
increases linearly with temperature to an extent of about 0.4% per 100 K (Tilton, Jr. et al  
1992). Such an increase in the distance between the atoms participating in a H-bond results 
in weakening of the H-bond. Consequently, chemical shifts of most amide protons move up 
field when the temperature is increased. Since bond magnetic anisotropy (σ ani) is 
proportional to r-3 and molecular volume (V) is proportional to r3, there is an inverse 
relationship of their variation with temperature ((σ ani) α 1/V). However, over a small 
temperature range, (σ ani) may appear to decrease linearly with temperature, and  
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Fig. 2. Simulations of the dependence of HN chemical shift variation with temperature  
(290 K – 315 K). In all the calculations shown chemical shifts are calculated and fitted to a 
straight line. Then the deviations from linearity are used to derive the residual curvatures 
(Krishna Mohan et al  2008; Williamson 2003). (A) Different curves show the dependence on 
free energy difference between the native and the higher energy alternate state: ΔG = 1 
kcal/mol (dashed), ΔG = 2 kcal/mol (solid), ΔG = 3 kcal/mol (dotted) and ΔG = 4 kcal/mol 
(dash double dot dash); for these TΔS at 298 K was fixed at 5.1 kcal/mol and ΔH varied as 
6.1, 7.1, 8.1, and 9.1 kcal/mol respectively. The chemical shift and gradient parameters are: 
δ1 = 8.5 ppm, δ2 = 8.0 ppm, and g1 = -2 ppb/K, g2 = -7 ppb/K for convex shapes and δ1 = 8.0 
ppm, δ2 = 8.5 ppm, and g1 = -7 ppb/K, g2 = - 2 ppb/K for concave shapes. (B) The solid 
curve is the same as in ‘A’ (ΔG = 2 kcal/mol); Dashed curve, δ1 = 8.1 ppm, δ2 = 8.0 ppm,  
g1 = -2 ppb/K, g2 = -7 ppb/K, ΔG = 2 kcal/mol;  dotted curve, δ1 = 9.0 ppm, δ2 = 8.0 ppm,  
g1 = -2 ppb/K, g2 = -7 ppb/K, ΔG = 2 kcal/mol (C) The solid curve is the same as in ‘A’  
(ΔG = 2 kcal/mol); dashed curve,  δ1 = 8.5 ppm, δ2 = 8.0 ppm, g1 = -2 ppb/K, g2 = - 4 ppb/K, 
ΔG = 2 kcal/mol; dotted curve, δ1 = 8.5 ppm, δ2 = 8.0 ppm, g1 = -4 ppb/K, g2 = - 7 ppb/K, 
ΔG = 2 kcal/mol.  (D) The solid black curve (ΔG = 2 kcal/mol) and the dotted curve 
 (ΔG = 3 kcal/mol) are the same as in ‘A’; solid grey curve is for δ1=8.1 ppm, δ2=8.0 ppm,  
g1 = -2 ppb/K, g2 = -4 ppb/K with ΔG = 2 kcal/mol. 
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accessible groups, H-bonding with solvent molecules influences the amide proton 
chemical shifts. Thus the amide proton chemical shift is critically dependent on the length 
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When the temperature of the solution is raised, thermal fluctuations increase which results 
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consequently amide proton chemical shifts would appear to vary linearly with temperature. 
In BPTI (basic pancreatic trypsin inhibitor) and lysozyme which are known to be extremely 
stable under a variety of extreme conditions, including temperature, it was indeed observed 
that the amide proton chemical shifts change linearly with temperature over the ranges, 279-
359 K for BPTI and 278 – 328 K for Lysozyme (Baxter and Williamson 1997). Such 
measurements have been carried out on many other proteins (Cierpicki and Otlewski 2001; 
Cierpicki et al  2002) and the temperature coefficients or the gradients of temperature 
dependence of the amide protons have been found to span a wide range, -16 to + 4 ppb/K. 
For a strongly H-bonded amide this value is more positive than -4.5 ppb /K (Baxter and 
Williamson 1997). This is because the lengthening of the average H-bond distance will be 
greater for the intermolecular H-bond, such as those with bulk water, than for the intra-
molecular H-bonds. 

However, if the protein structure is not very rigid, as would be the case for many systems, 
the chemical shifts would also be influenced by local structural and dynamics changes, and 
then the temperature dependence of chemical shifts may deviate from linearity. Indeed, in 
certain situations the amide proton chemical shifts have been seen to be non linearly 
dependent on temperature, and this has been interpreted to indicate existence of alternative 
conformations the residues can access (Baxter et al  1998; Williamson 2003). Identification of 
such residues provides a description of the energy landscape of the protein in the native 
state. The observed curvatures can be theoretically deduced as described in the following 
paragraphs. 

Consider a residue having two conformational states accessible to it i.e., a native state and a 
higher energy state. Following the discussion in the above paragraphs, each of them can be 
assumed to have a linear variation of chemical shift with temperature as, δ1 = δο

1+g1T and δ2 
= δο

2+g2T, where g1 and g2 are the gradients of temperature dependence, δ1 and δ2 are the 
chemical shifts of the native and the excited states respectively, and T is the temperature. If 
P1 and P2 are the corresponding populations of the native and the excited states, the 
observed chemical shift, δobs, of the amide proton will be given by, 

 1 21 2P Pobsδ δ δ= +  (1) 

These populations depend on the free energy difference between the two states. If there are 
more states contributing, then the observed shift will be a weighted average over all the 
accessible states. It is this complex dependence of chemical shifts on many thermodynamic 
and other factors, which leads to non linear dependence of chemical shifts on temperature. 
To understand the influence of these factors, simulations of HN chemical shift variation are 
performed with temperature in the range, 290 K – 315 K, using a two state model (Krishna 
Mohan et al  2008; Williamson 2003) 
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where, ΔG is the free-energy difference between the two states, and ΔG = ΔH - TΔS, where, 
ΔH  and ΔS are the enthalpy difference and the entropy difference respectively. The results 
of the simulations are shown in Fig. 2. Fig. 2A shows the curves for ΔG ranging from 1 - 4 
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kcal/mol keeping the gradients and chemical shifts of the native and the excited states 
constant. Here, it is worthwhile to note that in the chosen temperature range (290 K – 315 K) 
the curvature almost disappears above ΔG = 3 kcal/mol. Fig. 2B and Fig. 2C show the 
dependence of curvature on chemical shift differences and gradient differences respectively, 
between the native and the excited states, when ΔG is held constant (ΔG = 2 kcal/mol). In 
Fig. 2B, three values of δ1: 8.5 (reference), 8.1 and 9.0 are considered, keeping the other 
parameters the same as in Fig. 2A for convex shape of curvature. Similarly, in Fig. 2C, three 
combinations of gradients: (g1,g2) (ppb/K) = (-2, -7) (reference), (-2, -4) and (-4, -7) are 
considered keeping the other parameters same as in Fig. 2A for convex shape of curvature. 
From these it is evident that neither the chemical shift difference nor the difference in 
gradients, by itself changes the curvature to a noticeable extent. A simulation carried out for 
a combination of changes in ‘chemical shift difference’ and ‘gradient difference’ (δ1=8.1 
ppm,  δ2=8.0 ppm, g1 = -2 ppb/K, g2 = -4 ppb/K) keeping the free energy constant (ΔG = 2 
kcal/mol).  This is shown by solid grey line in Fig 2D. Interestingly, this curve almost 
exactly overlaps with the curve for which ΔG = 3 kcal/mol in Fig. 2A which has a lower 
curvature compared to that of the curve with ΔG = 2 kcal/mol; for ease of comparison, the 
corresponding curve from Fig. 2A is redrawn in Fig. 2D as a dotted line. This clearly 
suggests that although the appearance of curvature confirms the presence of alternative 
states, the lack of curvature does not necessarily imply the absence of low energy excited 
states. These theoretical simulations will be of great help for interpreting the experimental 
results on temperature dependence of amide proton chemical shifts. 

3. Investigations on native state ruggedness of complex protein systems 
A deep well, the bottom of which corresponds to the native state would imply high stability of 
the native state (Fig. 1). In contrast, a potential well with low lying excited states for the native 
state would be shallow, and this would have significant influence on the dynamics, structural 
adaptability, or susceptibility of the protein to various functions (Agarwal 2005; Boehr et al  
2010; Eisenmesser et al  2005; Feher and Cavanagh 1999; Kitahara et al  2005; Korzhnev et al  
2003; Parak 2003a; Piana et al  2002; Tobi and Bahar 2005). Application of small environmental 
perturbations such as small concentrations of chemical denaturants, change in pressure, pH 
change etc., is often useful to investigate the preferential sensitivities of different residues to 
external perturbations, while the protein itself remains entirely in the native state ensemble 
(Akasaka 2006; Baxter et al  1998; Chatterjee et al  2007; Kumar et al  2007; Mohan et al  2006; 
Piana et al  2002). In fact, these environment sensitive residues of polypeptide chains adopt 
unique 3D structures, they access various near native states which are structurally similar and 
energetically closer to the native state. These low populated alternative conformations dictate 
the ruggedness of the native structure and its biological function. 

3.1 Differential native state conformational fluctuations in calcium sensor proteins  

Calcium ion plays a crucial role in the regulation of various biological processes.  To 
perform several of its functional activities, Ca2+ binds to different protein molecules, which 
are called as calcium binding proteins (CaBPs) (Heizmann and Schafer 1990). CaBPs with 
EF-hand motif (EF-CaBPs) belong to a growing sub family of CaBPs (Ababou and Desjarlais 
2001; Bhattacharya et al  2004; Heizmann 1992; Nelson and Chazin 1998). The EF-hand motif 
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1+g1T and δ2 
= δο

2+g2T, where g1 and g2 are the gradients of temperature dependence, δ1 and δ2 are the 
chemical shifts of the native and the excited states respectively, and T is the temperature. If 
P1 and P2 are the corresponding populations of the native and the excited states, the 
observed chemical shift, δobs, of the amide proton will be given by, 

 1 21 2P Pobsδ δ δ= +  (1) 

These populations depend on the free energy difference between the two states. If there are 
more states contributing, then the observed shift will be a weighted average over all the 
accessible states. It is this complex dependence of chemical shifts on many thermodynamic 
and other factors, which leads to non linear dependence of chemical shifts on temperature. 
To understand the influence of these factors, simulations of HN chemical shift variation are 
performed with temperature in the range, 290 K – 315 K, using a two state model (Krishna 
Mohan et al  2008; Williamson 2003) 
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where, ΔG is the free-energy difference between the two states, and ΔG = ΔH - TΔS, where, 
ΔH  and ΔS are the enthalpy difference and the entropy difference respectively. The results 
of the simulations are shown in Fig. 2. Fig. 2A shows the curves for ΔG ranging from 1 - 4 
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kcal/mol keeping the gradients and chemical shifts of the native and the excited states 
constant. Here, it is worthwhile to note that in the chosen temperature range (290 K – 315 K) 
the curvature almost disappears above ΔG = 3 kcal/mol. Fig. 2B and Fig. 2C show the 
dependence of curvature on chemical shift differences and gradient differences respectively, 
between the native and the excited states, when ΔG is held constant (ΔG = 2 kcal/mol). In 
Fig. 2B, three values of δ1: 8.5 (reference), 8.1 and 9.0 are considered, keeping the other 
parameters the same as in Fig. 2A for convex shape of curvature. Similarly, in Fig. 2C, three 
combinations of gradients: (g1,g2) (ppb/K) = (-2, -7) (reference), (-2, -4) and (-4, -7) are 
considered keeping the other parameters same as in Fig. 2A for convex shape of curvature. 
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ppm,  δ2=8.0 ppm, g1 = -2 ppb/K, g2 = -4 ppb/K) keeping the free energy constant (ΔG = 2 
kcal/mol).  This is shown by solid grey line in Fig 2D. Interestingly, this curve almost 
exactly overlaps with the curve for which ΔG = 3 kcal/mol in Fig. 2A which has a lower 
curvature compared to that of the curve with ΔG = 2 kcal/mol; for ease of comparison, the 
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suggests that although the appearance of curvature confirms the presence of alternative 
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3. Investigations on native state ruggedness of complex protein systems 
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2010; Eisenmesser et al  2005; Feher and Cavanagh 1999; Kitahara et al  2005; Korzhnev et al  
2003; Parak 2003a; Piana et al  2002; Tobi and Bahar 2005). Application of small environmental 
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perform several of its functional activities, Ca2+ binds to different protein molecules, which 
are called as calcium binding proteins (CaBPs) (Heizmann and Schafer 1990). CaBPs with 
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2001; Bhattacharya et al  2004; Heizmann 1992; Nelson and Chazin 1998). The EF-hand motif 
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represents the canonical Ca2+ binding motif that consists of a contiguous 12 amino-acid 
residue long loop flanked by two helices (Kretsinger and Nockolds 1973; Strynadka and 
James 1989). The EF-CaBPs are broadly classified as Ca2+ sensors and Ca2+ buffers. Ca2+ 
sensors (Finn et al  1995; Hanley and Henley 2005; Hilge et al  2006; Shaw et al  1990; 
Vinogradova et al  2005) such as Calmodulin (CaM), Troponin C (TnC) etc., undergo huge 
conformational change upon binding to Ca2+ whereas, the Ca2+ buffers (Hackney et al  2005; 
Lambers et al  2006; Rosenbaum et al  2006; Vinogradova et al  2005) such as  Calbindin D9k,  

 
Fig. 3. Illustrative examples for the residues showing nonlinear temperature dependence of 
backbone 1HN chemical shifts in EhCaBP as measured in native state and at different 
concentrations of GdmCl. The measured chemical shifts were fitted to a linear equation. The 
residuals (observed value – calculated value according to the linear fit) have been plotted 
against temperature; total scale of y-axis is 0.06 ppm: +0.03 to -0.03 centered at zero, and the 
temperature range is 280 K – 335 K.  The error bars give an indication of the approximate 
error in measured chemical shifts (±0.004 ppm).  
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undergo modest conformational changes upon  Ca2+ binding. In the current section the 
experimental evidence for the native state ruggedness on a Ca2+ sensor protein from the 
protozoan Entamoeba histolytica (EhCaBP), an etiologic agent of amoebiasis has been 
demonstrated (Atreya et al  2001; Bhattacharya et al  2006).  

As an illustration, Fig 3 shows the experimentally measured temperature dependence of 
backbone proton (1HN) chemical shifts for few residues in the protein carried out in the 
temperature range 280 K – 335 K by recording temperature dependent HSQC spectra 
(Mohan et al  2008b).  As evident from Fig. 3, the observed curvatures are different for 
different residues. These convex and the concave shapes (Mohan et al  2008b; Krishna 
Mohan et al  2008; Williamson 2003) reflect on different kinds of structural perturbations in 
the excited state compared to the native state as described above in theoretical simulations 
and illustrated in Fig 2. A summary of all the non-linear temperature dependences observed 
in EhCaBP at different concentrations of GdmCl is given in Fig. 4. 

 
Fig. 4. Residues showing nonlinear temperature dependence of amide proton chemical shifts 
(black) in the native protein and at different concentrations of GdmCl were shown on the 
primary sequence of the polypeptide chain. The native secondary structures are shown by 
arrows (β strands) and cylinders (α helix). Residues accessing alternative conformations at 
least 3 out of 5 measured GdmCl concentrations are marked with asterisks along the 
polypeptide chain. 
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The number of residues accessing alternative states at different concentrations of GdmCl in 
EhCaBP is (0 M (holo) – 41; 0.25 M – 35; 0.5 M – 50; 0.75 M – 39 and 1.0 M – 42) (Fig 4). The 
total number of residues which access alternative conformations at least 3 out of 5 measured 
GdmCl concentrations turned out to be 39 (residues shown with asterisks in Fig. 3), 
implying that ~ 30 % (39 out of 134) of the residues are accessing alternative conformations. 
The theoretical simulations described above suggest that the observed curvatures are ~ 2-3 
kcal/mol. All these residues are shown in Fig. 5 on the 3D structure of the protein. Further, 
the extent of curvatures of individual residues increases or decreases with change in 
concentration of GdmCl (Fig.3) (Williamson 2003). The residues that become more curved 
with the increasing concentrations of GdmCl are most likely due to the presence of alternate 
states which are more similar in energy, or more different in shift or gradient to the 
corresponding native state. This is primarily an off-shoot of contracted unfolding energy 
landscape in the presence of GdmCl since the GdmCl is not expected to change the nature of 
the alternative state. Whereas the decrease of curvature can be explained by considering 
more than one alternative states within 5 kcal/mol, or have an alternative state that becomes 
very close to native state as GdmCl is increased.  

 
Fig. 5. Residues exhibiting curved temperature dependence at least three out of five 
concentrations of GdmCl measured in EhCaBP are marked with red color on the 3D 
structure of the protein (PDB Id: 1JFK). 

It is interesting to note that the low energy excited states detected in EhCaBP are not 
uniformly distributed along the polypeptide chain; different segments of the protein have 
their own intrinsic preferences to access the alternative conformations. Out of the 39 
residues which access low energy excited states, 7 residues belong to EF-hand I; 5 to EF-
hand II; 11 to EF-hand III; 13 to EF-hand IV and 3 to the interconnecting loops (Fig.4). It is 
evident from the data that the density of the conformational fluctuations in the C-terminal 
domain (24 residues) are twofold compared to the N-terminal counterpart (12 residues) 
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(Fig. 4). This suggests that the C-terminal domain is more flexible and susceptible to 
structural rearrangements. Further some novel features have been observed in the locations 
of alternative conformations. The residue at the 5th position of the calcium binding loop 
(Asp/Asn) that coordinates with Ca2+ shows alternative conformations consistently in all 
the EF-hands. The Gly-6 (the residue at 6th position in the calcium binding loop), which 
acts as a hinge in the calcium binding loop accesses alternative states in both EF III (Gly-
90) and EF IV (Gly-122) hands. Among the calcium binding loops, the IV EF-loop is found 
to be the most dynamic with maximum number of residues (6 residues out of 12 residue 
loop) access low energy excited states. This loop has relatively low affinity towards Ca2+ 
compared to the other three loops as demonstrated earlier by the EGTA titration 
(Mukherjee et al  2005), though highly specific for Ca2+. Moreover, recently it has been 
observed that IV EF-loop also differs with the remaining three EF-loops in the case of 
Mg2+ binding as evidenced by the Mn2+ titration (Mukherjee et al  2007a). Thus from all 
the discussion, it can be established that the native state of EhCaBP is rugged due to 
accessing of various alternative states and the ruggedness is more in the C-terminal 
domain compared to that in the N-terminal domain. It is interesting to note that among 
the four EF hands, EF-hands I and II belonging to the N-terminal domain show different 
conformational dynamics from that of EF-hands III and IV belonging to the C-terminal 
domain (Mohan et al  2008b; Mukherjee et al  2007b).  

Recently Chandra et al (Chandra et al  2011) measuring nonlinear temperature dependence 
of the backbone amide proton chemical shifts on non-myristoylated (non-myr) and 
myristoylated (myr) neuronal calcium sensor-1 (NCS-1).  The authors reported that ~20% of 
the residues in the protein access alternative conformations in non-myr case, which 
increases to ~28% for myr NCS-1. These residues are spread over the entire polypeptide 
stretch and include the edges of α-helices and β-strands, exible loop regions, and the Ca 2+ -
binding loops. Besides, residues responsible for the absence of Ca–myristoyl switch are also 
found accessing alternative states. The C-terminal domain is more populated with these 
residues compared to its N-terminal counterpart. Individual EF-hands in NCS-1 differ 
significantly in number of alternate states. Such differences in the conformational dynamics 
between the two domains and among the EF-loops have significant influence on the 
specificity and affinity of the metal binding properties and also have implications to domain 
dependent calcium signaling pathways of calcium sensor proteins (Mohan et al  2008b; 
Mukherjee et al  2007b). 

3.2 Near native states and structure adaptability of dynein light chain protein 

Dynein light chain protein (DLC8), a 10.3 kDa protein (89 residues) is the smallest subunit of 
the Dynein motor complex.  DLC8 is a dimer at physiological pH and a stable monomer 
below pH 4.0 (Barbar and Hare 2004; Mohan et al  2006; Nyarko et al  2005). The differences 
between the monomeric and dimeric structures are, (i) the β3 strand in the dimer loses its 
secondary structure on dissociation to the monomer, and (ii) the helices α1 and α2 and the 
strands β1 and β2 get shortened by two residues (Liang et al  1999; Makokha et al  2004). 
DLC8 dimer acts as a cargo adapter and recognized as interactive "protein hub" (Barbar 
2008). The dimer binds the target molecules in an anti-parallel β-strand fashion through its 
β3-strand, whereas the monomer form of DLC8 is not capable of binding to target proteins 
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found accessing alternative states. The C-terminal domain is more populated with these 
residues compared to its N-terminal counterpart. Individual EF-hands in NCS-1 differ 
significantly in number of alternate states. Such differences in the conformational dynamics 
between the two domains and among the EF-loops have significant influence on the 
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2008). The dimer binds the target molecules in an anti-parallel β-strand fashion through its 
β3-strand, whereas the monomer form of DLC8 is not capable of binding to target proteins 
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(Alonso et al  2001; Fan et al  2001; Fan et al  1998; Fuhrmann et al  2002; Jaffrey and Snyder 
1996; Lo et al  2001; Naisbitt et al  2000; Puthalakath et al  1999). This property is expected to 
have a regulatory role in the protein function.  

 
Fig. 6. Residues showing non linear temperature dependence of amide proton chemical 
shifts (black) in the temperature range is 290 K – 315 K along the polypeptide chain. The 
results are shown for pH 7.0 and 6.0 (A) and for pH 3.5 and 3.0 (B). The arrows (β strands) 
and cylinders (α helix) indicate native secondary structures. 

Temperature dependence of the amide proton chemical shifts in the DLC8 dimer (pH 7) and 
in the monomer (pH 3) has been measured in the temperature range 290-315 K (Krishna 
Mohan et al  2008). Among the above mentioned environment perturbations, pH variation is 
a mild perturbation and in general it changes the protonation states of the various residues 
depending on the chosen pH range. In order to identify the pH sensitive conformational 
dynamics in DLC8 protein the temperature dependence of the amide proton chemical shifts 
in both the dimer and the monomer were measured at slightly different pH conditions i.e., 
dimer at pH 6 and monomer at pH 3.5. A summary of all these results at various pH values 
i.e., pH 7 and 6 for the dimer and pH 3.5 and 3 for the monomer are shown in Fig. 6. 
Comparison of Figs. 6A and 6B reveals that the residues accessing alternative conformations 

 
NMR Investigations on Ruggedness of Native State Energy Landscape in Folded Proteins 

 

317 

have many differences between the dimer and the monomer. The number of residues 
accessing alternative conformations in the dimer at pH 7 and 6 are 13 and 21 respectively 
(Fig.6A). Figs. 7A and 7B display the locations of these residues on the native structures of 
the protein. Likewise, the number of residues accessing alternative conformations in the 
monomer at pH 3.5 is 15 and that at pH 3 is 11 (Fig.6B). The locations of these residues are 
marked with red color on the native structure of the monomeric protein in Figs. 7C and 7D 
respectively.  

The differences observed in the positions of the residues accessing alternative conformations 
in the dimer and in the monomer due to small pH perturbations provide insights into the 
sensitivity of the conformational fluctuations due to environment perturbations in the two 
cases. In fact, the perturbation of the dimer landscape would have functional significance 
since small pH differences are known to exist in different parts of a cell (Spitzer and 
Poolman 2005; Stewart et al  1999; Swietach and Vaughan-Jones 2004; Swietach et al  2005; 
Vaughan-Jones et al  2002; Willoughby and Schwiening 2002; Zaniboni et al  2003). It is 
evident from Figs. 7A and 7B that several of the residues that access low energy excited 
states are surrounding the dimer interface of the molecule which is also the cargo binding 
site (Krishna Mohan et al  2008; Liang et al  1999). It can be envisaged that the observed 
sensitivity of conformational dynamics at the dimer interface due to small environmental 
perturbations can significantly influence the cargo binding nature of the protein. Likewise, 
in the monomer (Figs. 7C and 7D) (Krishna Mohan et al  2008; Liang et al  1999), noticeable 
differences have been observed in both α1 and α2 helices. Interestingly, the α2 helix 
participates in several inter-monomer contacts once the dimer is formed and hence its 
sensitivity to small perturbations may have a crucial role for the proper formation/folding 
of the functional dimer.  

3.2.1 Relationship between sequence, structure and pH sensitivity of DLC8 
landscapes 

The roughness of the energy landscape and the consequent fluctuations in the native state of 
a protein is a reflection on the nature of the interactions between the side chains of the 
different amino acid residues in the three dimensional structure of the protein. While this is 
not generally predictable, some insights may be obtained in some cases by closely 
examining the structure and the properties of the amino acids along the sequence. For 
example, the behaviors of residues with titratable groups, which are likely to be affected by 
a pH perturbation, can provide useful clues. An observed perturbation at such locations 
would indicate that conformational fluctuations could be arising due to existence of species 
with different protonation states; a change in the protonation state of a side–chain causes a 
local change in the electrostatic potential, and thereby results in some population of an 
alternative conformation on energetic considerations. Inter-conversion between the major 
population and the minor population so created leads to the so-called conformational 
fluctuations.  

In the above background it is interesting to note that most of the residues with titratable 
groups in the side chains in DLC8 (Fig.7E) are located in the regions which are exhibiting 
conformational fluctuations, and hence, their perturbation by small pH changes provides 
useful mechanistic insights. In the case of the dimer, the sensitivity of conformational  
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dimer at pH 6 and monomer at pH 3.5. A summary of all these results at various pH values 
i.e., pH 7 and 6 for the dimer and pH 3.5 and 3 for the monomer are shown in Fig. 6. 
Comparison of Figs. 6A and 6B reveals that the residues accessing alternative conformations 
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have many differences between the dimer and the monomer. The number of residues 
accessing alternative conformations in the dimer at pH 7 and 6 are 13 and 21 respectively 
(Fig.6A). Figs. 7A and 7B display the locations of these residues on the native structures of 
the protein. Likewise, the number of residues accessing alternative conformations in the 
monomer at pH 3.5 is 15 and that at pH 3 is 11 (Fig.6B). The locations of these residues are 
marked with red color on the native structure of the monomeric protein in Figs. 7C and 7D 
respectively.  

The differences observed in the positions of the residues accessing alternative conformations 
in the dimer and in the monomer due to small pH perturbations provide insights into the 
sensitivity of the conformational fluctuations due to environment perturbations in the two 
cases. In fact, the perturbation of the dimer landscape would have functional significance 
since small pH differences are known to exist in different parts of a cell (Spitzer and 
Poolman 2005; Stewart et al  1999; Swietach and Vaughan-Jones 2004; Swietach et al  2005; 
Vaughan-Jones et al  2002; Willoughby and Schwiening 2002; Zaniboni et al  2003). It is 
evident from Figs. 7A and 7B that several of the residues that access low energy excited 
states are surrounding the dimer interface of the molecule which is also the cargo binding 
site (Krishna Mohan et al  2008; Liang et al  1999). It can be envisaged that the observed 
sensitivity of conformational dynamics at the dimer interface due to small environmental 
perturbations can significantly influence the cargo binding nature of the protein. Likewise, 
in the monomer (Figs. 7C and 7D) (Krishna Mohan et al  2008; Liang et al  1999), noticeable 
differences have been observed in both α1 and α2 helices. Interestingly, the α2 helix 
participates in several inter-monomer contacts once the dimer is formed and hence its 
sensitivity to small perturbations may have a crucial role for the proper formation/folding 
of the functional dimer.  

3.2.1 Relationship between sequence, structure and pH sensitivity of DLC8 
landscapes 

The roughness of the energy landscape and the consequent fluctuations in the native state of 
a protein is a reflection on the nature of the interactions between the side chains of the 
different amino acid residues in the three dimensional structure of the protein. While this is 
not generally predictable, some insights may be obtained in some cases by closely 
examining the structure and the properties of the amino acids along the sequence. For 
example, the behaviors of residues with titratable groups, which are likely to be affected by 
a pH perturbation, can provide useful clues. An observed perturbation at such locations 
would indicate that conformational fluctuations could be arising due to existence of species 
with different protonation states; a change in the protonation state of a side–chain causes a 
local change in the electrostatic potential, and thereby results in some population of an 
alternative conformation on energetic considerations. Inter-conversion between the major 
population and the minor population so created leads to the so-called conformational 
fluctuations.  

In the above background it is interesting to note that most of the residues with titratable 
groups in the side chains in DLC8 (Fig.7E) are located in the regions which are exhibiting 
conformational fluctuations, and hence, their perturbation by small pH changes provides 
useful mechanistic insights. In the case of the dimer, the sensitivity of conformational  
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Fig. 7. Residues exhibiting curved temperature dependence in DLC8 dimer (A) pH 7.0, (B) pH 
6.0 (PDB Id: 1f3c) and in monomer (C) pH 3.0, (D) pH 3.5 (PDB Id: 1hrw), are coloured red on 
the three dimensional structure of the protein. (E) Positions of all the titratable groups in the 
pH range 7.0 to 3.0 (Aspartates, Glutamates and Histidines) are marked with pink color on the 
monomer structure (PDB Id: 1rw). (F) Zooming in on a particular region surrounding β2 
strand in the NMR structure of the monomer (PDB Id: 1rhw) to show the side chain 
interactions. Only a few residues in α1, α2 and β5 are shown for the sake of clarity. 
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dynamics can be readily traced to partial protonation of the His side chains as described 
earlier (Mohan et al  2006; Nyarko et al  2005). There will be inter-conversions between 
charged and neutral His and there will also be charge-charge repulsions. These will cause 
fluctuations in local electrostatic potentials and consequently in local side chain packing, 
which in turn will affect the main chain conformations. Among the three histidines, His 55 
(pK 4.5,), His 68 and His 72 (both have pK of 6.0, (Mohan et al  2006; Nyarko et al  2005), the 
latter two would be the major contributors to the observed differences in the fluctuations of 
the native state in the pH range of 6-7.   

In the case of DLC8 monomer His 68 and His 72 do not have any effect on the observed 
differences as they are completely protonated below pH 4.0. On the other hand His 55 (pK 4.5, 
(Mohan et al  2006; Nyarko et al  2005)), would have a significant effect. At pH 3.5 the side 
chain of His 55 will be protonated to the extent of 90 % and exchange between protonated and 
free His will contribute to a local dynamics. The environmental perturbation due to this 
dynamics would get relayed through the β2 strand and the α1, α2 helices and the β5 strand 
due to the close packing of the side chains in the protein structure (Fig. 7F). The side chains for 
a few residues of α1, α2 and β5 are shown in the figure and all of these residues are seen to 
exhibit curved temperature dependence. At pH 3.0, the population of protonated His will 
increase and this results in the observed perturbation differences. Similarly, the perturbations 
at the other titratable groups such as aspartates and glutamates in the α1 and α2 helices (see 
Fig. 7E) would also cause local relays and contribute to the accessibility of different low energy 
excited states. All these influence the native energy landscape of the protein.   

3.3 Conformational fluctuations at the phosphorylation site of dynein light chain 
protein 

Recent studies on p21-activated kinase 1 (Pak1), revealed DLC8 as its physiological interacting 
substrate (binding sites aa 61-89) and the phosphorylation site at Ser 88 (Vadlamudi et al  2004). 
Pak1 phosphorylation of DLC8 on Ser 88 controls vesicle formation and trafficking functions, 
whereas mutation of Ser 88 to Ala (S88A) prevents macropinocytosis (Song et al  2008; Song et 
al  2007; Vadlamudi et al  2004; Yang et al  2005). Further, DLC8 phosphorylation by Pak1 
prevents the interaction with apoptotic protein Bim and plays an essential role in cell survival 
(Vadlamudi et al  2004) and also promotes the dissociation from Intermediate chain (IC74) and 
hence regulates the assembly of the motor complex (Song et al  2007). All these results 
highlight any perturbation at or near the interface is likely to affect the biological function. 
Intuitively, the remote effects of any perturbation in a protein must be a consequence of a 
strong network of interactions which may cause rapid relay of perturbations from any one 
particular site on the protein structure.  However, specific knowledge of how the perturbations 
travel will be essential in each case to understand the specificities of interactions. In general, 
perturbations are often introduced deliberately in the form of specific mutations in an attempt 
to understand the regulatory roles of specific residues involved in target recognition, structural 
architecture, stability, aggregation and folding features of the wild type protein (Buck et al  
2007; Frankel et al  2007; Grant et al  2007; Ishibashi et al  2007; Piana et al  2008; Riley et al  2007; 
Stollar et al  2003). 

The phosphorylation site Ser 88 represents an unusual behavior. To understand the 
conformational behavior phosphorylation site, the amide proton temperature coefficients of 
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dynamics can be readily traced to partial protonation of the His side chains as described 
earlier (Mohan et al  2006; Nyarko et al  2005). There will be inter-conversions between 
charged and neutral His and there will also be charge-charge repulsions. These will cause 
fluctuations in local electrostatic potentials and consequently in local side chain packing, 
which in turn will affect the main chain conformations. Among the three histidines, His 55 
(pK 4.5,), His 68 and His 72 (both have pK of 6.0, (Mohan et al  2006; Nyarko et al  2005), the 
latter two would be the major contributors to the observed differences in the fluctuations of 
the native state in the pH range of 6-7.   

In the case of DLC8 monomer His 68 and His 72 do not have any effect on the observed 
differences as they are completely protonated below pH 4.0. On the other hand His 55 (pK 4.5, 
(Mohan et al  2006; Nyarko et al  2005)), would have a significant effect. At pH 3.5 the side 
chain of His 55 will be protonated to the extent of 90 % and exchange between protonated and 
free His will contribute to a local dynamics. The environmental perturbation due to this 
dynamics would get relayed through the β2 strand and the α1, α2 helices and the β5 strand 
due to the close packing of the side chains in the protein structure (Fig. 7F). The side chains for 
a few residues of α1, α2 and β5 are shown in the figure and all of these residues are seen to 
exhibit curved temperature dependence. At pH 3.0, the population of protonated His will 
increase and this results in the observed perturbation differences. Similarly, the perturbations 
at the other titratable groups such as aspartates and glutamates in the α1 and α2 helices (see 
Fig. 7E) would also cause local relays and contribute to the accessibility of different low energy 
excited states. All these influence the native energy landscape of the protein.   

3.3 Conformational fluctuations at the phosphorylation site of dynein light chain 
protein 

Recent studies on p21-activated kinase 1 (Pak1), revealed DLC8 as its physiological interacting 
substrate (binding sites aa 61-89) and the phosphorylation site at Ser 88 (Vadlamudi et al  2004). 
Pak1 phosphorylation of DLC8 on Ser 88 controls vesicle formation and trafficking functions, 
whereas mutation of Ser 88 to Ala (S88A) prevents macropinocytosis (Song et al  2008; Song et 
al  2007; Vadlamudi et al  2004; Yang et al  2005). Further, DLC8 phosphorylation by Pak1 
prevents the interaction with apoptotic protein Bim and plays an essential role in cell survival 
(Vadlamudi et al  2004) and also promotes the dissociation from Intermediate chain (IC74) and 
hence regulates the assembly of the motor complex (Song et al  2007). All these results 
highlight any perturbation at or near the interface is likely to affect the biological function. 
Intuitively, the remote effects of any perturbation in a protein must be a consequence of a 
strong network of interactions which may cause rapid relay of perturbations from any one 
particular site on the protein structure.  However, specific knowledge of how the perturbations 
travel will be essential in each case to understand the specificities of interactions. In general, 
perturbations are often introduced deliberately in the form of specific mutations in an attempt 
to understand the regulatory roles of specific residues involved in target recognition, structural 
architecture, stability, aggregation and folding features of the wild type protein (Buck et al  
2007; Frankel et al  2007; Grant et al  2007; Ishibashi et al  2007; Piana et al  2008; Riley et al  2007; 
Stollar et al  2003). 

The phosphorylation site Ser 88 represents an unusual behavior. To understand the 
conformational behavior phosphorylation site, the amide proton temperature coefficients of 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

320 

Ser 88 in the WT dimer with those of Ala 88 in the S88A mutant and of Ser 88 in the DLC8 
monomer (at pH 3) are measured (Mohan and Hosur 2008). The plots of temperature 
dependence for these residues are shown in Fig. 8A. The measured temperature coefficients 
are -19.8 ± 0.3, -9.3 ± 0.2 and -5.6 ± 0.1 ppb/oC for Ser 88 in WT dimer, Ala 88 in S88A mutant 
and Ser 88 in DLC8 monomer respectively. In general the temperature coefficients range 
between (-2 to -4) ppb/K for a strongly H-bonded amide protons and between (-5 to -10) 
ppb/K for an exposed solvent accessible (random coil) amide protons (Baxter and 
Williamson 1997). The values obtained in the case of S88A mutant and DLC8 monomer 
clearly indicate that the aa 88 is solvent exposed and not strongly hydrogen bonded. On the 
other hand, a large value of -19.8 ± 0.3 ppb/oC suggests that the environment of Ser 88 in 
WT dimer is highly susceptible to perturbation. None of the other residues, either in WT 
monomer or in S88A mutant, showed such a huge temperature coefficient value (Baxter and 
Williamson 1997; Mohan and Hosur 2008). Williamson et al reported such a large value of 
temperature coefficient in the herpes simplex virus glycoprotein D-1 antigenic domain 
(Williamson et al  1986)  and the experiments demonstrated by Andersen et al (Andersen et 
al  1992) suggested that this amide proton was in fact involved in a transient hydrogen-
bonded structure, and thus the large temperature coefficient could be attributed to a loss of 
secondary/tertiary structure on heating. If the large temperature coefficient of Ser 88 is a 
consequence of transient hydrogen-bonding and due to loss of secondary/tertiary structure, 
then Ser 88 should exhibit conformational fluctuations (alternative states).  The presence of 
alternative states for Ser 88 has been tested on Ala 88 residue of S88A mutant and Ser 88 in 
DLC8 monomer and dimer (Fig. 8B). It is evident that Ser 88 in WT dimer does show a 
curved temperature dependence of amide proton chemical shifts. Thus, it can be concluded 
that the amide proton in Ser 88 in WT DLC8 dimer is transiently H-bonded; that it is not a 
stable H-bond was independently inferred from deuterium exchange studies (Mohan and 
Hosur 2008; Mohan et al  2008a). Moreover, the dimeric structure suggests that the amide 
group of Gly 89 is very close (~ 2.6 Ǻ) to the backbone nitrogen of Ser 88 suggesting a 
possibility of potential transient H-bonding. 

The mechanism for the relay of perturbations from the Ser 88 site can be envisaged by 
understanding the close side chain packing. The side chain packing of perturbed residues 
and Ser 88 are shown in Fig. 8C. The crystal structure shows that Ser 88 OG atom is packed 
against the imidazole ring of His 55 and in addition forms a hydrogen bond with the 
backbone carbonyl of Ser 88’ (Ser 88 of other monomer) (Liang et al  1999). From Fig. 8C it is 
evident that Ser 88 is buried inside and packed over side chains of crucial residues at the 
dimer interface. A closer look at Ser 88 environment in Fig. 8C depicts that Ser 88 is closely 
packed against the side chains of Thr 67, His 68 and Glu 69 of both the monomers in the 
dimer. Furthermore, the distance measurements between the back bone and side chain 
atoms of Ser 88 and those of Thr 67, His 68, Glu 69 and Thr 70 indicated that several atoms 
of Glu 69 are very close (~ 2 – 4 Ǻ), whereas, for residues Thr 67, His 68, Thr 70 there is at 
least one atom in the distance range of 4 -6 Ǻ. All of these residues are perturbed by the 
S88A mutation as seen from the chemical shift data. The other perturbed residues are 
slightly farther (> 6 Ǻ). All these are shown in a color coded manner in Fig. 8C. This 
qualitative analysis provides a mechanistic insight into the relay of perturbation from the 
phopshorylation site; Glu 69 is most easily perturbed and the disturbance then runs on both 
sides at the dimer interface. Then, from Tyr 65 the relay spreads to Lys 44 which is engaged 
in a side chain H-bond.  
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Fig. 8. (A) Graph depicting the temperature dependence of amide proton chemical shifts for 
Ser 88 in DLC8 WT-dimer (Circles, Red), Ala 88 in S88A mutant at pH 7 (Triangles, Green),  
and Ser 88 in DLC8 monomer at pH 3 (Diamonds, Blue). The solid lines line represents the 
best linear fit. (B) Comparison of non linear/linear temperature dependence of amide 
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Ser 88 in the WT dimer with those of Ala 88 in the S88A mutant and of Ser 88 in the DLC8 
monomer (at pH 3) are measured (Mohan and Hosur 2008). The plots of temperature 
dependence for these residues are shown in Fig. 8A. The measured temperature coefficients 
are -19.8 ± 0.3, -9.3 ± 0.2 and -5.6 ± 0.1 ppb/oC for Ser 88 in WT dimer, Ala 88 in S88A mutant 
and Ser 88 in DLC8 monomer respectively. In general the temperature coefficients range 
between (-2 to -4) ppb/K for a strongly H-bonded amide protons and between (-5 to -10) 
ppb/K for an exposed solvent accessible (random coil) amide protons (Baxter and 
Williamson 1997). The values obtained in the case of S88A mutant and DLC8 monomer 
clearly indicate that the aa 88 is solvent exposed and not strongly hydrogen bonded. On the 
other hand, a large value of -19.8 ± 0.3 ppb/oC suggests that the environment of Ser 88 in 
WT dimer is highly susceptible to perturbation. None of the other residues, either in WT 
monomer or in S88A mutant, showed such a huge temperature coefficient value (Baxter and 
Williamson 1997; Mohan and Hosur 2008). Williamson et al reported such a large value of 
temperature coefficient in the herpes simplex virus glycoprotein D-1 antigenic domain 
(Williamson et al  1986)  and the experiments demonstrated by Andersen et al (Andersen et 
al  1992) suggested that this amide proton was in fact involved in a transient hydrogen-
bonded structure, and thus the large temperature coefficient could be attributed to a loss of 
secondary/tertiary structure on heating. If the large temperature coefficient of Ser 88 is a 
consequence of transient hydrogen-bonding and due to loss of secondary/tertiary structure, 
then Ser 88 should exhibit conformational fluctuations (alternative states).  The presence of 
alternative states for Ser 88 has been tested on Ala 88 residue of S88A mutant and Ser 88 in 
DLC8 monomer and dimer (Fig. 8B). It is evident that Ser 88 in WT dimer does show a 
curved temperature dependence of amide proton chemical shifts. Thus, it can be concluded 
that the amide proton in Ser 88 in WT DLC8 dimer is transiently H-bonded; that it is not a 
stable H-bond was independently inferred from deuterium exchange studies (Mohan and 
Hosur 2008; Mohan et al  2008a). Moreover, the dimeric structure suggests that the amide 
group of Gly 89 is very close (~ 2.6 Ǻ) to the backbone nitrogen of Ser 88 suggesting a 
possibility of potential transient H-bonding. 

The mechanism for the relay of perturbations from the Ser 88 site can be envisaged by 
understanding the close side chain packing. The side chain packing of perturbed residues 
and Ser 88 are shown in Fig. 8C. The crystal structure shows that Ser 88 OG atom is packed 
against the imidazole ring of His 55 and in addition forms a hydrogen bond with the 
backbone carbonyl of Ser 88’ (Ser 88 of other monomer) (Liang et al  1999). From Fig. 8C it is 
evident that Ser 88 is buried inside and packed over side chains of crucial residues at the 
dimer interface. A closer look at Ser 88 environment in Fig. 8C depicts that Ser 88 is closely 
packed against the side chains of Thr 67, His 68 and Glu 69 of both the monomers in the 
dimer. Furthermore, the distance measurements between the back bone and side chain 
atoms of Ser 88 and those of Thr 67, His 68, Glu 69 and Thr 70 indicated that several atoms 
of Glu 69 are very close (~ 2 – 4 Ǻ), whereas, for residues Thr 67, His 68, Thr 70 there is at 
least one atom in the distance range of 4 -6 Ǻ. All of these residues are perturbed by the 
S88A mutation as seen from the chemical shift data. The other perturbed residues are 
slightly farther (> 6 Ǻ). All these are shown in a color coded manner in Fig. 8C. This 
qualitative analysis provides a mechanistic insight into the relay of perturbation from the 
phopshorylation site; Glu 69 is most easily perturbed and the disturbance then runs on both 
sides at the dimer interface. Then, from Tyr 65 the relay spreads to Lys 44 which is engaged 
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Fig. 8. (A) Graph depicting the temperature dependence of amide proton chemical shifts for 
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proton chemical shifts at amino acid position 88 in DLC8 protein: Ser 88 in DLC8 WT-dimer 
[S88-(D)], Ala 88 in S88A mutant [A88-(D)] at pH 7 and Ser 88 in DLC8 monomer [S88-(M)] 
at pH 3.  The measured chemical shifts were fitted to a linear equation. The residuals 
(observed value – calculated value according to the linear fit) have been plotted against 
temperature; total scale of y-axis is 0.06 ppm: +0.03 to -0.03 centered at zero, and the 
temperature range is 18 oC – 40 oC. (C) Zooming in on a particular region of the dimer 
interface around Ser 88 in the crystal structure (PDB Id: 1cmi), to show accessibility of the 
phosphorylation site (side chain –OH of Ser 88) and the interactions of side chains various 
other residues with Ser 88. Side chains of the residues which are perturbed due to S88A are 
only shown. The different residues are color coded to indicate the proximity of the side 
chain atoms of the residue to backbone NH of ser 88; Blue: at least one atom of the side 
chain is within 2-4 Ǻ, Green: at least one atom of the side chain is within the range 4-6 Ǻ, 
Red: all atoms are beyond 6 Ǻ. 

3.4 Alternative conformations in small globular proteins: Sources of fluctuations and 
implications to function/folding 

Experiments have been performed by various research groups to detect the alternative 
conformations on different monomeric proteins in order to throw light either on the 
functional implications or on the folding trajectories. Investigations by Kumar et al 
(Kumar et al  2007) on SUMO-1 suggested that the alternative conformations span the 
length of the protein chain but are located at particular regions on the protein structure. 
The authors observed that several of the regions of the protein structure that exhibit such 
fluctuations coincide with the protein's binding surfaces with different substrate like 
GTPase effector domain (GED) of dynamin, SUMO binding motifs (SBM), E1 (activating 
enzyme, SAE1/SAE2) and E2 (conjugating enzyme, UBC9) enzymes of sumoylation 
machinery and speculated that these conformational fluctuations have significant 
implications for the binding of diversity of targets by SUMO-1. Another report by 
Srivastava et al (Srivastava and Chary 2011) on hahellin (a βγ-crystallin domain) in its 
Ca2+-bound form depicted a large conformational heterogeneity with nearly 40% of the 
residues, some of which are part of Ca2+-binding loops. Further, they observed that out of 
the two Greek key motifs, the second Greek key motif is floppy as compared to its 
counterpart. 

Extensive research investigations on theoretical and experimental aspects of different 
protein systems regarding low-energy excited states have been performed by Williamson 
and co-workers (Baxter et al  1998; Tunnicliffe et al  2005; Williamson 2003). Studies on 
conformational ensemble of cytochrome c revealed high structural entropy (Williamson 
2003). The density of alternative states is particularly high near the heme ligand Met80, 
which is of interest because both redox change and the first identified stage in unfolding are 
associated with change in Met80 ligation. By combining theoretical and experimental 
approaches, it is concluded that the alternative states each comprise approximately five 
residues, have in general less structure than the native state and are therefore locally 
unfolded structures. The locations of the alternative states the global unfolding pathway of 
cytochrome c, hinted that they may determine the pathway. Similar experiments on B1 
domains of streptococcal proteins G and L (Tunnicliffe et al  2005), which are structurally 
similar, but have different sequences and folding established that several of the residues 
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have curved amide proton temperature and indicated approximately 4–6 local minima for 
each protein. Further, reports on N-terminal domain of phosphoglycerate kinase, hen egg-
white lysozyme, SUMO1 and BPTI (Baxter et al  1998; Kumar et al  2007) established that 
conformational heterogeneity arises from a number of independent sources such as, 
aromatic ring current effects, a minor conformer generated through disulphide bond 
isomerisation; an alternative hydrogen bond network associated with buried water 
molecules; alternative hydrogen bonds involving backbone amides and surface-exposed 
side-chain hydrogen bond acceptors; and the disruption of loops, ends of secondary 
structural elements and chain termini.  

In conclusion, on one hand the ruggedness of the native energy landscape of the protein 
systems provide rationales for the adaptability of the protein structure to bind various 
target molecules in order to carry out the biological functions efficient manner. On the 
other hand, it throws light on many potential unfolding initiation sites in the protein. 
Furthermore, the origins of these conformational fluctuations provide mechanistic 
insights into the protein network of hydrophobic/H-bond interactions that dictate the 
protein stability. 

4. Abbreviations 
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length of the protein chain but are located at particular regions on the protein structure. 
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enzyme, SAE1/SAE2) and E2 (conjugating enzyme, UBC9) enzymes of sumoylation 
machinery and speculated that these conformational fluctuations have significant 
implications for the binding of diversity of targets by SUMO-1. Another report by 
Srivastava et al (Srivastava and Chary 2011) on hahellin (a βγ-crystallin domain) in its 
Ca2+-bound form depicted a large conformational heterogeneity with nearly 40% of the 
residues, some of which are part of Ca2+-binding loops. Further, they observed that out of 
the two Greek key motifs, the second Greek key motif is floppy as compared to its 
counterpart. 

Extensive research investigations on theoretical and experimental aspects of different 
protein systems regarding low-energy excited states have been performed by Williamson 
and co-workers (Baxter et al  1998; Tunnicliffe et al  2005; Williamson 2003). Studies on 
conformational ensemble of cytochrome c revealed high structural entropy (Williamson 
2003). The density of alternative states is particularly high near the heme ligand Met80, 
which is of interest because both redox change and the first identified stage in unfolding are 
associated with change in Met80 ligation. By combining theoretical and experimental 
approaches, it is concluded that the alternative states each comprise approximately five 
residues, have in general less structure than the native state and are therefore locally 
unfolded structures. The locations of the alternative states the global unfolding pathway of 
cytochrome c, hinted that they may determine the pathway. Similar experiments on B1 
domains of streptococcal proteins G and L (Tunnicliffe et al  2005), which are structurally 
similar, but have different sequences and folding established that several of the residues 
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have curved amide proton temperature and indicated approximately 4–6 local minima for 
each protein. Further, reports on N-terminal domain of phosphoglycerate kinase, hen egg-
white lysozyme, SUMO1 and BPTI (Baxter et al  1998; Kumar et al  2007) established that 
conformational heterogeneity arises from a number of independent sources such as, 
aromatic ring current effects, a minor conformer generated through disulphide bond 
isomerisation; an alternative hydrogen bond network associated with buried water 
molecules; alternative hydrogen bonds involving backbone amides and surface-exposed 
side-chain hydrogen bond acceptors; and the disruption of loops, ends of secondary 
structural elements and chain termini.  

In conclusion, on one hand the ruggedness of the native energy landscape of the protein 
systems provide rationales for the adaptability of the protein structure to bind various 
target molecules in order to carry out the biological functions efficient manner. On the 
other hand, it throws light on many potential unfolding initiation sites in the protein. 
Furthermore, the origins of these conformational fluctuations provide mechanistic 
insights into the protein network of hydrophobic/H-bond interactions that dictate the 
protein stability. 

4. Abbreviations 
NMR - Nuclear magnetic resonance spectroscopy; HSQC - Hetero nuclear single quantum 
correlation spectroscopy; DLC8 - Dynein light chain protein; EhCaBP - Entamoeba histolytica 
calcium binding protein; Gdmcl - Guanidine Hydrochloride; NCS - Neuronal calcium sensor 
protein; Myr - Myristoylated; Non-myr - Non-Myristoylated; Pak-1 - P21 activated kinease; 
SUMO - Small Ubiquitin-like Modifier; BPTI - Bovine pancreatic trypsin inhibitor; UBC9 - 
Ubiquitin carrier protein 9 . 
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1. Introduction  
The concept of protein folding is directly related with the process of reversible disorder-to-
order transitions, by which an unfolded polypeptide chain folds into a specific functional 
native structure (Eaton et al., 2000; Rose et al., 2006). For folding into a native state, unfolded 
polypeptide chains require the intervention of weak interactions. Driven by hydrophobic 
interactions, a polypeptide chain begins to fold when placed in an aqueous medium, and 
rapidly becomes a molten globule followed by an important release of latent heat. 
Stabilization of the molten globule is achieved mainly through the distribution of 
hydrophobic residues away from the water matrix. On the other hand, because the polar 
residues contained in a protein develop hydrogen bonds with the water network as well as 
with each other, α-helices and β-sheets can be formed when bonds switch between 
molecules. It has been calculated that such bonds might be in the order of 10-12 s, very 
similar to those we find in water itself. The random equilibrium can be shifted toward one 
of these conformations by means of two stages: a fast stage, during which the unfolded 
polypeptide becomes a molten globule; and a slow stage, in which the molten globule 
slowly transforms into a fully folded form or native state (Huang, 2005). These two stages in 
protein folding can be illustrated by a ‘‘folding funnel’’, during which due to a small change 
in entropy with a large loss of energy, a molten globule evolves into the native state (Fig. 1a) 
(Dobson, 2003; Gsponer & Vendruscolo, 2006).  

Although the process is extremely efficient, there is always the possibility that this accurate 
mechanism might fail, and the possibility of finding a protein folded into a non-native state 
becomes a reality (Dobson, 1999). Proteins that follow this pathway might present 
transiently stable conformations, promoting their interaction with other molecules and 
facilitating the fact that they might form amorphous oligomers and end in a state of 
aggregation. Aggregation does not arise from a random coil state, but rather from a series of 
intermediates that—based on the type of secondary structure acquired during folding—
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might or might not resemble the native state (Fig. 1b) (D. Eisenberg et al., 2006, Gsponer & 
Vendruscolo, 2006). It is well known now that primary polypeptide sequences become the 
key factor during this process, while the environment surrounding the protein is an 
important factor for explaining the folding process (Fink, 1998). On the other hand, natively 
unfolded proteins, known to lack the presence of permanent secondary and tertiary 
structures, have been recognized at least in the absence of other proteins, to present the 
tendency to organize themselves into amyloidogenic structures. Considering that the native 
state is located at the lowest minimum of the ‘‘folding funnel’’, it indicates that this region is 
the most thermodynamically stable configuration of the polypeptide chain under 
physiological conditions. For proteins, whose functional state is a tightly packed globular 
fold, a key step in fibril formation related to partial or complete unfolding is less likely to 
occur and therefore remains protected against aggregation (Dobson, 2004). In this respect, it 
has been proposed that the more transient structures thus formed in proteins, the better 
probability for key determinants in amyloid fibril formation to be found (Ohnishi & Takano, 
2004). Thus, many of the known forms of amyloid diseases associated with genetic 
mutations that decrease protein stability and promote unfolding (Ohnishi & Takano, 2004), 
are both related to disorder-to-order conformational transitions.  

The first experimental evidence about a specific disorder-to-order transition was presented 
over 30 years ago with the mechanism description for the conversion of trypsinogen to 
trypsin (Bode & Huber, 1976). This mechanism is characterized by the enzymatic removal of 
a hexapeptide from the N-terminal region of trypsinogen in order to form trypsin. This basic 
change promotes the transition from a disordered state of the “specificity pocket’’ in 
trypsinogen to an ordered state in trypsin (Huber & Bode, 1978). Since it is known that 
several amino acids that make up a protein strongly favor a disordered state, at present this 
‘‘new view’’ of folding is beginning to be further studied, in which the influence of external 
or environmental conditions sustains well-tested transitions between disordered and 
ordered states. Specific polypeptide chains contained in proteins or complete proteins  

 
Fig. 1. a) Folding funnel energy landscape b) Protein aggregation energy landscape. 
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lacking defined tertiary structures are known to have the capacity to undergo disorder-to-
order transitions upon binding to specific (Tompa, 2002) or multiple partners (James & 
Tawfik, 2003). It is precisely this ability that allows the concept of ‘‘protein disorder’’ to be 
proposed as an important feature in the capability of proteins to present regions with 
switching properties (Bustos & Iglesias, 2006; Dalal & Regan, 2000; Kriwacki et al., 1996). 

From an evolutionary point of view, it appears that intrinsic disorder in proteins might have 
been the driving force behind many of the adaptability processes found in proteins (Dobson, 
1999; Dunker et al., 1998). Taking into account that the number of proteins presenting 
disordered regions directly related with function and therefore with disease is increasingly 
growing, an interest to also generate accessible data banks for improving information 
management has increased. Therefore, the database of disordered proteins (DisProt) was 
created and released in August 2006 by the group of Dunker (Sickmeier et al., 2007) with 
extremely good results at present (Cortese et al., 2008). Since then, other systems for 
studying disorder in proteins have been released, such as the Integrated Protein Disorder 
Analyzer, which aims at identifying and predicting disordered region in proteins (Su et al., 
2007), or algorithms for predicting and evaluating aggregation ‘‘hot spots’’ (AGGRESCAN) 
(Conchillo-Sole´ et al., 2007). According to Dunker’s group and as predicted by the Predictor 
of Natural Disordered Regions (PONDR) server (Romero et al., 2001), a large percentage of 
all proteins involved with some sort of a disease have been identified as directly related 
with disordered regions in proteins closely associated with signaling. From a general point 
of view, disordered regions in proteins have been divided into the following two classes: the 
class in which proteins retain a low percentage of secondary structure together with 
unstable tertiary structures during a molten globule state, recognized as the collapsed class; 
and second, the extended class in which proteins with a highly extended backbone resemble 
a β-sheet conformation (Dunker et al., 2001; Uversky, 2002).  

In general, proteins containing disordered regions have been recognized as associated with 
several human diseases, including cardiovascular disease, cancer, degenerative diseases, 
and diabetes. Interestingly, because in many of these cases cell signaling function has been 
involved, there is a strong possibility that disorder-to-order transitions in proteins playing 
normal switching roles in the cell might become distorted and therefore abolish or transform 
the normal protein–protein language into an aberrant one. Therefore, the basic properties of 
a switching mechanism must be based on the equilibrium between high specificity and 
weak affinities accompanied by a large conformational entropy decrease. This phenomenon 
is based principally on the fact that upon binding, disorder-to-order transitions can 
overcome steric restrictions and thereby enable larger interaction surfaces in protein–protein 
complexes than those that could be obtained for rigid partners. Despite the extraordinary 
importance of this type of transition, we continue to lack detailed biophysical studies that 
might demonstrate a close relationship between this type of disorder-to-order organization 
and protein function.  

In an attempt to define the possibility that folding key features in proteins could provide us 
with the manner in which to explain basic issues such as receptor recognition, lipid transfer 
activity, and self-exchangeability carried out by several lipid transfer proteins including 
Apolipoproteins (Apos), our group has attempted to address these points by directly 
measuring molecular conformational changes of Apos at air/water and lipid/water 
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Fig. 1. a) Folding funnel energy landscape b) Protein aggregation energy landscape. 
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lacking defined tertiary structures are known to have the capacity to undergo disorder-to-
order transitions upon binding to specific (Tompa, 2002) or multiple partners (James & 
Tawfik, 2003). It is precisely this ability that allows the concept of ‘‘protein disorder’’ to be 
proposed as an important feature in the capability of proteins to present regions with 
switching properties (Bustos & Iglesias, 2006; Dalal & Regan, 2000; Kriwacki et al., 1996). 
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unstable tertiary structures during a molten globule state, recognized as the collapsed class; 
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In general, proteins containing disordered regions have been recognized as associated with 
several human diseases, including cardiovascular disease, cancer, degenerative diseases, 
and diabetes. Interestingly, because in many of these cases cell signaling function has been 
involved, there is a strong possibility that disorder-to-order transitions in proteins playing 
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the normal protein–protein language into an aberrant one. Therefore, the basic properties of 
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is based principally on the fact that upon binding, disorder-to-order transitions can 
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importance of this type of transition, we continue to lack detailed biophysical studies that 
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In an attempt to define the possibility that folding key features in proteins could provide us 
with the manner in which to explain basic issues such as receptor recognition, lipid transfer 
activity, and self-exchangeability carried out by several lipid transfer proteins including 
Apolipoproteins (Apos), our group has attempted to address these points by directly 
measuring molecular conformational changes of Apos at air/water and lipid/water 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

334 

interfaces, in order to approach the possible mechanisms that might explain these 
phenomena (Xicohtencatl-Cortes et al., 2004a, 2004b). As described below, this has been 
achieved employing Langmuir monolayers in conjunction with Brewster angle microscopy 
(BAM), atomic force microscopy (AFM) of Apos LB films (Bolaños-García et al., 1999, 2001; 
Mas-Oliva et al., 2003; Xicohtencatl-Cortes et al., 2004a), grazing incidence X-ray diffraction 
on protein monolayers (Ruíz-García et al., 2003), and surface force measurements (SFA) 
(Campos-Terán et al., 2004; Ramos et al., 2008). Because at that time, we were unable to 
define whether the secondary structure of specific segments of Apolipoprotein CI (ApoCI) 
and AII (Apo AII) remained stable independently of their position at air/water and 
lipid/water interfaces, recently we have addressed the possibility that these segments 
responding to specific environmental changes and following disorder-to-order transitions 
might function as molecular switches that trigger function (Mendoza-Espinosa et al., 2008, 
2009). Moreover, following the same approach with specific peptides synthesized from the 
reported structure of Apolipoprotein AI (Apo AI), we have found that when left in water at 
4°C a very slow disorder-to-order transition develops over the course of days, from a fully 
disordered state to a well-developed β-sheet secondary structure. This behavior further 
supports the fact that the physicochemical characteristics of the environment must be 
considered as a key factor in the equilibrium displacement within the secondary structure of 
a protein or specific segments toward α-helices or β-sheets (Andreola et al., 2003). Here, the 
result that specific segments of Apo AI slowly develop fibril-like structures indicates the 
possibility that pathological processes such as atherogenesis might be also considered as an 
amyloidotic-related process (Fig. 2) (Mendoza-Espinosa et al., 2009; Westermark et al., 1995). 
New results related to these studies are also described in this chapter. 

 
Fig. 2. Atomic force microscopy image (12 x 12 m) of apolipoprotein AI-peptide DRV fibrils 
(amino acids 9–24). Fibrils show an average length of 300 nm and 25 nm in height. 
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2. Structural characteristics of Apolipoproteins CI, AII and AI 
Apolipoproteins (Apos) are membrane active proteins that are constituents of high-
density lipoproteins (HDL), which are related to the reverse cholesterol transport (Despres 
et al., 2000). These proteins have an amphiphilic character, since a polar protein face is 
formed by charged amino acid residues clustered on one side of the α-helices, whereas a 
hydrophobic surface composed of non-polar residues is formed at the opposite face 
(Bolaños-García et al., 1997). When Apos are in contact with a polar/non-polar media, 
their natural tendency is to anchor the hydrophilic and hydrophobic regions in the polar 
and in the non-polar media, respectively. Thus, a hydrophobic/hydrophilic interface 
tends to induce a specific orientation on the adsorbed molecules. Some lipoprotein-bound 
Apos are able to dissociate from the lipoprotein surface in a lipid-poor form, and then 
transferred through the plasma serum to other lipoproteins (Castro & Fielding, 1984; Clay 
et al., 1999; Liang et al., 1995; Wang, 2002; Weinberg & Spector, 1985). Although, this 
mechanism is poorly understood, it is known to be conducted by interactions between 
Apolipoproteins located at the lipid surface. Apo CI, AII and AI are members of this 
family of proteins that apparently give lipoproteins directionality and the ability to 
interact with receptors at the surface of cells.  

Apo CI is composed of 57 amino acid residues in length, with a molecular mass of 6.63 KDa. 
This protein plays a key role in the chylomicron uptake (S. Eisenberg, 1990) and in the 
regulation of apolipoprotein-E/-VLDL (very low-density lipoproteins) particle interaction 
(Swaney & Weisgraber, 1994). Secondary structure predictions, nuclear magnetic resonance, 
and circular dichroism studies made on Apo CI have revealed a high α-helix content, 
distributed in two α-helices (Bolaños-García et al., 1999). The first α-helix (residues 4-30) 
presents approximately 7.5 periods, while the second one (residues 35-53) consists of 5.2 
periods (see Fig. 3). In addition both α-helices present important hydrophobic moments 
(μH) (Bolaños-García et al., 1999). Apo AII is the second major apolipoprotein of high-
density lipoproteins (HDL) and it is synthesized in the liver (Eggerman et al., 1991). This 
protein has been suggested as a modulator of reverse cholesterol transport rather than a 
strong determinant of lipid metabolism (Tailleux et al., 2002). Apo AII is formed by two 
identical polypeptide chains connected by a disulfide bridge at position 6, where each chain 
corresponds to 77 amino acid residues in length and a molecular mass of 8.708 kDa (Brewer 
et al., 1972, 1986). Predictive and circular dichroism studies (Bolaños-García et al., 1997, 
2001), as well as high-resolution crystal structure studies (Kumar et al., 2002) have shown 
that each chain of the Apo AII presents two α-helix motifs (segments encompassing 7-27 and 
32-67) as its main secondary structure (see Fig. 3). These α-helices present an important 
hydrophobic moment, have approximately 31.5 and 54 Å in length and they are connected 
by a short peptide chain as a loose hinge (Bolaños-García et al., 2001). Correlation between 
protein stability to thermal denaturation and secondary structure content has also been 
investigated (Bolaños-García et al., 2001).  

Apo AI has been studied in its free state and membrane models due to the importance that 
involves understanding the processes that give rise to nascent HDL, as well as the precise 
mechanisms that support these phenomena in relationship with the process of reverse 
cholesterol transport. The 243 amino acid polypeptide chain of the Apo AI is organized in 
blocks of 22 and 11 residues, which are predicted to form helix-type amphipathic   
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reported structure of Apolipoprotein AI (Apo AI), we have found that when left in water at 
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disordered state to a well-developed β-sheet secondary structure. This behavior further 
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Fig. 2. Atomic force microscopy image (12 x 12 m) of apolipoprotein AI-peptide DRV fibrils 
(amino acids 9–24). Fibrils show an average length of 300 nm and 25 nm in height. 
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family of proteins that apparently give lipoproteins directionality and the ability to 
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This protein plays a key role in the chylomicron uptake (S. Eisenberg, 1990) and in the 
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by a short peptide chain as a loose hinge (Bolaños-García et al., 2001). Correlation between 
protein stability to thermal denaturation and secondary structure content has also been 
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Fig. 3. Secondary structure images of Apolipoproteins showing their α-helical conformation. 
The color code for the residues is as follows: aromatic-magenta, aliphatic-yellow, polar non 
charged-green, positively charged-blue, negatively charged-red. 

segments (see Fig. 3). The helices that make up the Apo AI, have been classified as follows: (1-
45 aa) G*, (44-65,66-87,121-142,143-164,165-186,187-208 aa) A1, (88-98,99 - 120,209-219,220-241) 
Y. Helices classified as type G correspond to amphipathic helices that form the interior of 
globular proteins, reason why amino acids they contain correspond to a hydrophobic type 
character. Amphipathic helices of the A1 type have as a characteristic the presence of positively 
charged amino acids at the hydrophobic/hydrophilic interface, while the negative residues 
are in the center of the polar face. On the other hand, Y-type helices present the 
characteristic of having positive charged aminoacids separated by negative ones (Segrest et 
al., 1992). Currently, there are two crystal structures of the lipid-free Apo AI in different 
conformations. In the crystal structure obtained by Borhani et al. (∆1-43) (Borhani et al., 
1997), the N-terminal segment is truncated. This structure is unique in presenting a 
conformation similar to the one that would be in the presence of lipids. Also, the Apo AI (1-
243) structure obtained by Ajees et al. (Ajees et al., 2006), presents two domains formed by 
four α-helices in the N-terminal and 2 α-helices in the C-terminus. Spectroscopic techniques 
have shown that the lipid-free Apo AI in solution presents a three-dimensional arrangement 
in two domains similar to that observed in the crystal structure, but with much less 
organization (Tanaka et al., 2008).  

3. Monolayer behavior of Apolipoproteins 
When Apolipoproteins are in contact with a polar/non-polar media, they will anchor the 
hydrophilic and hydrophobic regions in the polar and in the non-polar media, respectively. 
Thus, a hydrophobic/hydrophilic interface tends to induce a specific orientation on the 
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adsorbed proteins. As mentioned, Apo CI, AII and AI are associated with lipoproteins 
particles that are modeled (Borhani et al., 1997) as spheres with a shell of a phospholipid 
monolayer, with the polar head groups oriented towards the aqueous phase, and the core 
consists of triglycerides and cholesterol esters (hydrophobic region). In these models, Apos 
are usually oriented parallel to the surface of the lipoprotein particles. A way to understand 
the behavior of Apos on the lipoprotein surface is to deposit them on an interface that 
models the lipoprotein surface, which could be increasingly complex as needed. 

The first attempts in this direction have used Apo CI and AII Langmuir monolayers 
deposited at the air/water interface (Bolaños-García et al., 1999, 2001). For both proteins the 
compression isotherm showed two first-order phase transitions (see Fig. 4). The first one 
corresponds to the coexistence between a liquid (L) and a gaseous (G) phase where the 
proteins have low interaction. The second transition involves two condensed phases; the 
liquid phase, L, and a condensed phase denoted by LC. For the case of Apo CI, this second 
transition occurs at a surface pressure (Π) of approximately 33 mNm-1 and at an area (A) 
between 350 and 600 Å2 /molecule. For Apo AII it was found at Π~30-35 mNm-1 and  

 
Fig. 4. Langmuir monolayer isotherms of Apo CI (upper panel) and Apo AII (lower panel) at 
25.1 oC. Both proteins were dispersed over a phosphate buffer subphase (pH=8.0) containing 
3.5 M KCl. Insets show BAM images at the L-LC coexistence. Adapted from (Xicohtencatl-
Cortes et al., 2004a). 
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Fig. 4. Langmuir monolayer isotherms of Apo CI (upper panel) and Apo AII (lower panel) at 
25.1 oC. Both proteins were dispersed over a phosphate buffer subphase (pH=8.0) containing 
3.5 M KCl. Insets show BAM images at the L-LC coexistence. Adapted from (Xicohtencatl-
Cortes et al., 2004a). 
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A~1000-2500 Å2/molecule. Brewster angle microscopy (BAM) images taken at this transition 
showed the L phase as dark regions while the LC phase was clearly observed as very bright 
domains. In the liquid phase, the protein configurations are restricted to a horizontal 
orientation at the interface due to the amphiphilic character of these proteins. As the surface 
area is decreased on isothermal compression, one of the α-helix segments for the case of Apo 
CI and two for Apo AII are expelled from the interface. Direct evidence of this conformational 
change, as well as of the α-helix structure of Apo CI and AII, have been shown using grazing 
incidence X-ray diffraction and atomic force microscopy (AFM) of Langmuir-Blodgett (LB) 
films of transferred protein monolayers (Ruíz-García et al., 2003). It is important to mention 
that a similar behavior was observed for Apo AI (Bolaños-García et al., 2001). 

Experiments on more complex interfaces that are closer to the lipoprotein surface have been 
prepared adsorbing Apo CI and AII on rac-1,2-dipalmitoyl-sn-glycero-3-phosphocholine 
(DPPC) monolayers, which indicate that Apolipoproteins can penetrate the DPPC monolayer 
to form part of the monolayer at the air/water interface (Xicohtencatl-Cortes et al., 2004a). 
These monolayers also present two clear phase transitions between condensed phases, as well 
as one between a condensed phase and a gas phase. In this case, the Langmuir monolayer and 
BAM observations revealed that below surface pressures of 10 mN/m it was possible to have a 
2D isotropic mixture where the surface area of the monolayer was approximately the sum of 
the area occupied respectively by the protein and DPPC molecules as if they were pure 
components. As the surface pressure is increased and it reaches the condensed phase 
transition at Π~24-31 mNm-1 there is a important loss of monolayer area with an increasing 
brightness in one of the condensed phases, as seen with BAM images (see Fig. 5). Taking into 
account this observations and that the Π values for this condensed transition of the  

 
Fig. 5. Langmuir isotherms for Apo CI/DPPC (left, nominal protein mole fraction, from left 
to right x=0.04, 0.05, 0.12) and Apo AII/DPPC (right, nominal protein mole fraction, from 
left to right x=0.01, 0.02, 0.03). Insets shows BAM images at different lateral pressures. 
Adapted from (Xicohtencatl-Cortes et al., 2004a). 
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binary system are similar to the ones found for the proteins as single components, it was 
proposed that here there was also a conformational change of the Apo where α-helix 
segments desorb from the interface, aligning and following the DPPC tails inclination 
(Xicohtencatl-Cortes et al., 2004a). 

4. Forces between adsorbed layers of Apolipoproteins 
4.1 The surface force apparatus technique 

Forces that control the interaction between proteins, proteins and surfaces and surfaces with 
adsorbed proteins, are the result of different contributions as hydrophobic interaction, 
entropy gain due to counterion release, van der Waals force, and to a large extent 
electrostatic interactions, where the latter is governed by variables like pH and salt 
concentration. All these interactions depend on the kind of surface and solution where the 
proteins are immersed, as well as on their charge, shape, and conformation. The surface 
force apparatus (SFA) (Israelachvili, 1973; Parker et al., 1989) offers the possibility of 
measuring long-range and contact forces between two mica surfaces covered with adsorbed 
proteins (Claesson et al., 1995), as well as, measuring the absorbed layer thickness and its 
compressibility. The latter parameter can give information about the conformational 
structure and size of the adsorbed protein.  

The SFA instrument and experimental procedures have been described by Israelachvili 
(Israelachvili & McGuiggan, 1990) and Parker (Parker et al., 1989). In general, the force is 
measured between two curved molecularly smooth mica surfaces (typically 1 cm2 of area 
with 2-5 µm constant thickness) where a silver layer of about 520 Å thick was deposited 
through evaporation on one side of each surface. After that the mica pieces are glued with 
an epoxy resin, with the silver side down, onto optically polished half-cylindrical silica disks 
(mean radius of curvature, R, ~ 1-2 cm) that are finally mounted in a crossed cylinder 
configuration on the SFA. Here, one of the disks is mounted on a double cantilever spring 
(spring constant, k, ~105 N/m) and the second one on a piezoelectric crystal. This setup 
produces an optical interferometer. The separation between the two surfaces, d, is controlled 
by the piezoelectric crystal and the absolute distance is measured interferometrically using 
fringes of equal chromatic order (FECO) with an accuracy of 2 Å. The magnitude of the 
force, F, as a function of the surface separation, normalized with respect to the mean radius 
of curvature, can be determined from the spring deflection measured down to ca. 10–7 N. 
Usually, a SFA experiment starts with the measurement of a standard force curve of water 
or a buffer solution. If the surfaces contact position is clean and the force curve measured is 
consistent with the theoretical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory 
predictions, a known amount of protein is added to the SFA chamber to allow a slow 
adsorption to the surfaces from the surrounding solution. Then the force curves are usually 
measured at different times to evaluate this protein adsorption process. 

With the SFA, as with other force measurement techniques, one has to consider that the 
comparison between theoretical and experimental force curves is not straightforward, since 
the measured force is the sum of different contributions, which are interrelated and 
therefore not easy to separate. In general, the electrostatic-double layer and the van der 
Waals forces are considered the most important contributions. However, an absolute 
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(DPPC) monolayers, which indicate that Apolipoproteins can penetrate the DPPC monolayer 
to form part of the monolayer at the air/water interface (Xicohtencatl-Cortes et al., 2004a). 
These monolayers also present two clear phase transitions between condensed phases, as well 
as one between a condensed phase and a gas phase. In this case, the Langmuir monolayer and 
BAM observations revealed that below surface pressures of 10 mN/m it was possible to have a 
2D isotropic mixture where the surface area of the monolayer was approximately the sum of 
the area occupied respectively by the protein and DPPC molecules as if they were pure 
components. As the surface pressure is increased and it reaches the condensed phase 
transition at Π~24-31 mNm-1 there is a important loss of monolayer area with an increasing 
brightness in one of the condensed phases, as seen with BAM images (see Fig. 5). Taking into 
account this observations and that the Π values for this condensed transition of the  

 
Fig. 5. Langmuir isotherms for Apo CI/DPPC (left, nominal protein mole fraction, from left 
to right x=0.04, 0.05, 0.12) and Apo AII/DPPC (right, nominal protein mole fraction, from 
left to right x=0.01, 0.02, 0.03). Insets shows BAM images at different lateral pressures. 
Adapted from (Xicohtencatl-Cortes et al., 2004a). 
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binary system are similar to the ones found for the proteins as single components, it was 
proposed that here there was also a conformational change of the Apo where α-helix 
segments desorb from the interface, aligning and following the DPPC tails inclination 
(Xicohtencatl-Cortes et al., 2004a). 

4. Forces between adsorbed layers of Apolipoproteins 
4.1 The surface force apparatus technique 

Forces that control the interaction between proteins, proteins and surfaces and surfaces with 
adsorbed proteins, are the result of different contributions as hydrophobic interaction, 
entropy gain due to counterion release, van der Waals force, and to a large extent 
electrostatic interactions, where the latter is governed by variables like pH and salt 
concentration. All these interactions depend on the kind of surface and solution where the 
proteins are immersed, as well as on their charge, shape, and conformation. The surface 
force apparatus (SFA) (Israelachvili, 1973; Parker et al., 1989) offers the possibility of 
measuring long-range and contact forces between two mica surfaces covered with adsorbed 
proteins (Claesson et al., 1995), as well as, measuring the absorbed layer thickness and its 
compressibility. The latter parameter can give information about the conformational 
structure and size of the adsorbed protein.  

The SFA instrument and experimental procedures have been described by Israelachvili 
(Israelachvili & McGuiggan, 1990) and Parker (Parker et al., 1989). In general, the force is 
measured between two curved molecularly smooth mica surfaces (typically 1 cm2 of area 
with 2-5 µm constant thickness) where a silver layer of about 520 Å thick was deposited 
through evaporation on one side of each surface. After that the mica pieces are glued with 
an epoxy resin, with the silver side down, onto optically polished half-cylindrical silica disks 
(mean radius of curvature, R, ~ 1-2 cm) that are finally mounted in a crossed cylinder 
configuration on the SFA. Here, one of the disks is mounted on a double cantilever spring 
(spring constant, k, ~105 N/m) and the second one on a piezoelectric crystal. This setup 
produces an optical interferometer. The separation between the two surfaces, d, is controlled 
by the piezoelectric crystal and the absolute distance is measured interferometrically using 
fringes of equal chromatic order (FECO) with an accuracy of 2 Å. The magnitude of the 
force, F, as a function of the surface separation, normalized with respect to the mean radius 
of curvature, can be determined from the spring deflection measured down to ca. 10–7 N. 
Usually, a SFA experiment starts with the measurement of a standard force curve of water 
or a buffer solution. If the surfaces contact position is clean and the force curve measured is 
consistent with the theoretical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory 
predictions, a known amount of protein is added to the SFA chamber to allow a slow 
adsorption to the surfaces from the surrounding solution. Then the force curves are usually 
measured at different times to evaluate this protein adsorption process. 

With the SFA, as with other force measurement techniques, one has to consider that the 
comparison between theoretical and experimental force curves is not straightforward, since 
the measured force is the sum of different contributions, which are interrelated and 
therefore not easy to separate. In general, the electrostatic-double layer and the van der 
Waals forces are considered the most important contributions. However, an absolute 
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determination of the magnitude of each of these forces is complex, due to factors as protein 
and surface charge density, protein concentration and solution ionic strength, contribution 
from steric interactions at short distances, etc. In addition, the location of the plane of charge 
and the dielectric properties of the adsorbed protein layer usually cannot be determined 
unambiguously. Nevertheless, the results from SFA studies of the interaction between layers 
of globular proteins, like insulin and lysozyme, and of proteins with disordered structures 
have increased our knowledge on the proteins adsorbed layer structure (Claesson et al., 
1995). This also includes our SFA studies with proteins formed mainly by α-helices, which 
will be described below.  

4.2 Force measurements with Apolipoproteins deposited on hydrophilic surfaces 

In general, the force curves measured between hydrophilic surfaces with adsorbed layers of 
Apos are mainly composed of electrostatic double layer forces at large surface separations 
and of steric repulsive forces at small distances. These steric forces are quite interesting since 
they give some insights of the preferred Apos conformations and the interaction produced 
by them. Apos amphiphatic structure produces a directional adsorption where the 
hydrophilic faces of the protein α-helices prefer to be adsorbed onto the mica leaving the 
hydrophobic faces of the α-helices in contact with water. As an example, figure 6 shows the 
force curves measured, using a SFA, between two mica surfaces adsorbed with Apo AII. In 
this case, the adsorption was produced from the protein buffer solution (acetic acid-sodium 
acetate, pH=4) that surrounds the surfaces. Also, a sequential increment of the protein 
concentration from 0.002 to 0.004 mg/mL was produced to observe the effect in the surface 
adsorption (Ramos et al., 2008). 

As it can be observed, no forces were found until a surface separation of 700 Å was reached. 
From there, if the surfaces are brought together, a long-range repulsive force is observed 
until it is overcome by an attractive force (inward jump), which brings the surfaces from a 
surface separation of about 130-200 Å into a closer contact. The surface separation where the 
attractive force drives the surfaces close together decreases with adsorption time and it 
disappears if the protein concentration is increased (see the force curves with 0.004 mg/mL 
after 8 hrs of adsorption). In some cases, a small repulsive force was found before reaching a 
repulsive hard wall. The hard wall at the lower concentration was found to be at a surface 
separation, d, of 11 Å. Interestingly, when the protein concentration was increased (to 0.004 
mg/mL) the surface separation value for the hard wall increases with protein adsorption 
time with approximately 10 Å increments. Also, an adhesive pull-force was found when the 
surfaces are taken apart, which decreases with protein adsorption. It was also observed that 
the force curves were the same on compression and on separation if the surfaces are not 
brought closer than the inward jump. Similar force curves were found for Apo CI (Campos-
Terán et al., 2004). 

In this case, the long-range repulsive force and the attractive force can be fitted using DLVO 
theory including additive contributions of non-retarded van der Waals forces and the 
electrostatic double layer force (see Fig. 6). Calculations of double layer force were 
performed with the algorithm of Chan et al. (Chan et al., 1980) bringing into play both 
constant surface potential and constant surface charge. In practice, it is most likely that both 
potential and surface charge vary as the surfaces approach, where the actual double layer 
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force, as it is in this case, falls between these two limits due to the proteins charge 
regulation. Although DLVO theory does not take into account additional forces occurring 
between the surfaces, e. g., hydration forces, hydrophobic forces, and steric forces, etc., the 
fitting is quite good, and the attractive force measured is close to what theory suggests, at 
constant surface potential. 

 
Fig. 6. Force normalized by the radius of curvature, F/R, as a function of surface separation 
and total adsorption time between mica surfaces adsorbed with Apo AII. The total protein 
concentration was increased at two times during the experiment and it is: 0.002 mg/mL at 5 
h (□), 0.004 mg/ml: at 6 ½ h (), at 8 h (Δ), and 25 h (■), 29 h (○). Lines indicate DLVO 
fitting (0.004 mg/ml) with constant surface charge and dashed lines with constant surface 
potential. Arrows indicate attractive jumps. Adapted from (Ramos et al., 2008). 

4.2.1 Short-range forces probe the orientation of the adsorbed protein  

As mention before, the analysis of the measured force curves can give an insight of the 
protein conformation at the surfaces. For the case described above it was seen that the 
average distance where attractive force appears, d~150 Å, is close to double of the maximum 
length of this proteins (~85 Å), which suggests that entire protein is oriented perpendicular 
to the surface or that individual protein segments, i. e, α-helices, protrudes from them. 
These protein segments could take part in bridging between the two surfaces and thus be 
responsible for the attractive force. This kind of attractive force was also observed in 
adsorbed surfaces with Apo CI (Campos-Terán et al., 2004). In addition, studies of Apo AII 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

340 

determination of the magnitude of each of these forces is complex, due to factors as protein 
and surface charge density, protein concentration and solution ionic strength, contribution 
from steric interactions at short distances, etc. In addition, the location of the plane of charge 
and the dielectric properties of the adsorbed protein layer usually cannot be determined 
unambiguously. Nevertheless, the results from SFA studies of the interaction between layers 
of globular proteins, like insulin and lysozyme, and of proteins with disordered structures 
have increased our knowledge on the proteins adsorbed layer structure (Claesson et al., 
1995). This also includes our SFA studies with proteins formed mainly by α-helices, which 
will be described below.  

4.2 Force measurements with Apolipoproteins deposited on hydrophilic surfaces 

In general, the force curves measured between hydrophilic surfaces with adsorbed layers of 
Apos are mainly composed of electrostatic double layer forces at large surface separations 
and of steric repulsive forces at small distances. These steric forces are quite interesting since 
they give some insights of the preferred Apos conformations and the interaction produced 
by them. Apos amphiphatic structure produces a directional adsorption where the 
hydrophilic faces of the protein α-helices prefer to be adsorbed onto the mica leaving the 
hydrophobic faces of the α-helices in contact with water. As an example, figure 6 shows the 
force curves measured, using a SFA, between two mica surfaces adsorbed with Apo AII. In 
this case, the adsorption was produced from the protein buffer solution (acetic acid-sodium 
acetate, pH=4) that surrounds the surfaces. Also, a sequential increment of the protein 
concentration from 0.002 to 0.004 mg/mL was produced to observe the effect in the surface 
adsorption (Ramos et al., 2008). 

As it can be observed, no forces were found until a surface separation of 700 Å was reached. 
From there, if the surfaces are brought together, a long-range repulsive force is observed 
until it is overcome by an attractive force (inward jump), which brings the surfaces from a 
surface separation of about 130-200 Å into a closer contact. The surface separation where the 
attractive force drives the surfaces close together decreases with adsorption time and it 
disappears if the protein concentration is increased (see the force curves with 0.004 mg/mL 
after 8 hrs of adsorption). In some cases, a small repulsive force was found before reaching a 
repulsive hard wall. The hard wall at the lower concentration was found to be at a surface 
separation, d, of 11 Å. Interestingly, when the protein concentration was increased (to 0.004 
mg/mL) the surface separation value for the hard wall increases with protein adsorption 
time with approximately 10 Å increments. Also, an adhesive pull-force was found when the 
surfaces are taken apart, which decreases with protein adsorption. It was also observed that 
the force curves were the same on compression and on separation if the surfaces are not 
brought closer than the inward jump. Similar force curves were found for Apo CI (Campos-
Terán et al., 2004). 

In this case, the long-range repulsive force and the attractive force can be fitted using DLVO 
theory including additive contributions of non-retarded van der Waals forces and the 
electrostatic double layer force (see Fig. 6). Calculations of double layer force were 
performed with the algorithm of Chan et al. (Chan et al., 1980) bringing into play both 
constant surface potential and constant surface charge. In practice, it is most likely that both 
potential and surface charge vary as the surfaces approach, where the actual double layer 
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force, as it is in this case, falls between these two limits due to the proteins charge 
regulation. Although DLVO theory does not take into account additional forces occurring 
between the surfaces, e. g., hydration forces, hydrophobic forces, and steric forces, etc., the 
fitting is quite good, and the attractive force measured is close to what theory suggests, at 
constant surface potential. 

 
Fig. 6. Force normalized by the radius of curvature, F/R, as a function of surface separation 
and total adsorption time between mica surfaces adsorbed with Apo AII. The total protein 
concentration was increased at two times during the experiment and it is: 0.002 mg/mL at 5 
h (□), 0.004 mg/ml: at 6 ½ h (), at 8 h (Δ), and 25 h (■), 29 h (○). Lines indicate DLVO 
fitting (0.004 mg/ml) with constant surface charge and dashed lines with constant surface 
potential. Arrows indicate attractive jumps. Adapted from (Ramos et al., 2008). 

4.2.1 Short-range forces probe the orientation of the adsorbed protein  

As mention before, the analysis of the measured force curves can give an insight of the 
protein conformation at the surfaces. For the case described above it was seen that the 
average distance where attractive force appears, d~150 Å, is close to double of the maximum 
length of this proteins (~85 Å), which suggests that entire protein is oriented perpendicular 
to the surface or that individual protein segments, i. e, α-helices, protrudes from them. 
These protein segments could take part in bridging between the two surfaces and thus be 
responsible for the attractive force. This kind of attractive force was also observed in 
adsorbed surfaces with Apo CI (Campos-Terán et al., 2004). In addition, studies of Apo AII 
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and Apo CI monolayers have shown that it is possible to form a layer with protruding 
segments at an interface (Bolaños-García et al., 2001; Ruíz-García et al., 2003). The fact that at 
short adsorption time, it was observed a weak repulsive force, suggests a more extended 
conformation of the adsorbed proteins. Such protruding segments could be compressed, 
bearing in mind the relative flexibility of the polypeptide chains connecting the α-helices. 
Given enough time for adsorption, the protein molecule preferentially will be oriented 
parallel to the surface and hence, this repulsive force disappears. The driving force for 
protein reorientation is to avoid the exposure of hydrophobic segments to the aqueous 
environment, as well as to promote the electrostatic attractive interactions between the 
protein and the surface. At low concentrations, the attractive interaction is reduced with 
time, which implies a higher protein surface coverage confined in a thin layer. This thin 
protein layer was found experimentally since it was found a surface separation of just 11 Å 
at the hard wall position. This final layer thickness value is between 5 to 6 Å on each surface, 
which is similar to the estimated value for α-helices diameter. Previously, it has been shown 
that structural changes on adsorption are not enough to disturb the α-helix structure 
(Burkett & Read, 2001). 

4.2.2 Sequential addition of Apos builds up protein multilayers  

Experiments conducted at higher concentrations suggest the build up of more than one 
layer on each surface since each curve shown in figure 5 represents an increase in hard-wall 
separation of ~10 Å or approximately 5 Å of thickness on each surface (see Fig. 6). 
Confirmation of this process was obtained by ellipsometry measurements done by our 
group (Ramos et al., 2008), which showed that sequential addition of protein (at least at high 
ionic strength) leads to an increase in the adsorbed amount of protein, as well as the protein 
layer thickness. However, for the case of Apo AII, the presence of a repulsive interaction 
showed that protein adsorption do not lead to charge neutralization of the mica surface 
charge as it was found for Apo CI (Campos-Terán et al., 2004). This is most likely due to the 
structural difference between both proteins, where the Apo CI monomer can more 
efficiently arrange so that it better match the surface charge compare to the Apo AII dimer. 
However, since the apparent surface potential has a small change when the protein 
concentration is increased from 0.002 mg/ml to 0.004 mg/ml, a charge regulation 
mechanism involving small ions during the adsorption of the proteins cannot be discarded. 
This mechanism has been observed to occur in the surface adsorption of other proteins 
(Claesson et al., 1995). Protein multilayer adsorption has been observed in proteins with 
amphiphilic or flexible segments, as observed at SFA experiments with cytochrome c 
(Kekicheff et al., 1990) and β-casein (Nylander & Wahlgren, 1997). A multilayer protein 
adsorption requires attractive protein-protein interaction, which often is weaker than the 
protein-surface interactions. Confirmation of this statement was obtained by diluting the 
solution surrounding the surfaces. Here, the hard wall separation decreased from d ≈ 58 Å 
to d ≈ 26 Å and the apparent surface potential has increased from ~37 mV to ~53 mV 1 ½ h 
after dilution, which indicates protein desorption. Even more protein has desorbed after 18 
h, and the hard-wall separation reaches d ≈ 11 Å, corresponding to one monolayer on each 
surface. In addition, an attractive jump appears. No further desorption occurs, which is 
mostly likely due to the strong interaction between the negatively charged mica and the 
cationic protein as well as the entropy gain due to counter ion release. This experiment 
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showed the reversibility of Apo AII adsorption process that produces in each stage different 
protein conformations. Also, it is noteworthy that quite similar force curves were observed 
in Apo CI (Campos-Terán et al., 2004), which also has a similar secondary structure but with 
a different peptide sequence, different net charge, and it is only monomeric. Therefore, the 
observed force curves seem to be a consequence of the particular features of the amphiphilic 
α-helices. 

5. Lipid dependant disorder-to-order conformational transitions in 
Apolipoproteins 
5.1 Apo CI derived peptides-lipid interaction  

As mentioned in sections 3 and 4, it has been observed for exchangeable Apolipoproteins 
that when they are subjected to lateral pressures then several helical segments were placed 
directly in the hydrophobic phase of the interface. In the case of Apo CI, our data showed an 
interesting new property since we observed that injecting it into the subphase allows the 
protein to go to the water/lipid interface quickly and when lateral pressure is increased the 
C-terminal helical segment penetrates the monolayer. In addition, when lateral pressure is 
released, this segment is again incorporated into the water/lipid interface (Bolaños-García et 
al., 1999). With these results we were interested to know if the secondary structure of the C-
terminal segment of Apo CI remained stable regardless of their position in the different 
hydrophilic/hydrophobic interfaces. To solve this question we conducted studies of 
peptides derived from the C-terminal segment of Apo CI in different environments.  

The peptides were designated according to the first three letters of their amino acid 
sequence and called ALDO (A7-E24), ARELI (A22-M38) and SAK (S35-L53). Apo CI in 
solution shows a clear circular dichroism (CD) signal associated with a high degree of α-
helix structure (Bolaños-García et al., 1999). However, when peptides ALDO, ARELI and 
SAK (Mendoza-Espinosa et al., 2008) were tested under the same experimental conditions, 
they showed no defined secondary structure and remain non-structured independently of 
pH, temperature and ionic strength. Interestingly, despite that these peptides have an 
amphipathic character and high hydrophobic moment values (μH > 0.315 kcal/mol), they 
remain completely unfolded in solution (see Fig. 7a). 

Nevertheless, when peptides ALDO, SAK and ARELI are placed in aqueous solution with 
40% v/v trifluoroethanol (TFE) or sodium dodecylsulphate (SDS, cmc of 8.5 mM) they show 
a CD signal clearly associated with an α-helical structure. If SDS was used at different 
concentrations (1.5-20 mM), each of the peptides acquire secondary structures in a 
differentiated way, where the lowest percentage of α-helix structure corresponds to ARELI 
and the highest to SAK peptide, which corresponds to the C-terminal segment of Apo CI 
(see Figs. 7b and 7c). Then in order to test the possibility that specific lipids on the surface of 
lipoproteins and plasma membrane induce an α-helix conformation as in the case of TFE 
and SDS, we tested a series of phospholipids above and below its critical micelle 
concentration and with different acyl long chain to probe their hydrophobic effect. L-α-
Phosphatidylcholine (PC) was used above its critical micellar concentration (cmc <0.005 
mM) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) slightly below its cmc (~15 
mM), because concentrations above the cmc of DHPC generate solutions that prevent the 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

342 

and Apo CI monolayers have shown that it is possible to form a layer with protruding 
segments at an interface (Bolaños-García et al., 2001; Ruíz-García et al., 2003). The fact that at 
short adsorption time, it was observed a weak repulsive force, suggests a more extended 
conformation of the adsorbed proteins. Such protruding segments could be compressed, 
bearing in mind the relative flexibility of the polypeptide chains connecting the α-helices. 
Given enough time for adsorption, the protein molecule preferentially will be oriented 
parallel to the surface and hence, this repulsive force disappears. The driving force for 
protein reorientation is to avoid the exposure of hydrophobic segments to the aqueous 
environment, as well as to promote the electrostatic attractive interactions between the 
protein and the surface. At low concentrations, the attractive interaction is reduced with 
time, which implies a higher protein surface coverage confined in a thin layer. This thin 
protein layer was found experimentally since it was found a surface separation of just 11 Å 
at the hard wall position. This final layer thickness value is between 5 to 6 Å on each surface, 
which is similar to the estimated value for α-helices diameter. Previously, it has been shown 
that structural changes on adsorption are not enough to disturb the α-helix structure 
(Burkett & Read, 2001). 

4.2.2 Sequential addition of Apos builds up protein multilayers  

Experiments conducted at higher concentrations suggest the build up of more than one 
layer on each surface since each curve shown in figure 5 represents an increase in hard-wall 
separation of ~10 Å or approximately 5 Å of thickness on each surface (see Fig. 6). 
Confirmation of this process was obtained by ellipsometry measurements done by our 
group (Ramos et al., 2008), which showed that sequential addition of protein (at least at high 
ionic strength) leads to an increase in the adsorbed amount of protein, as well as the protein 
layer thickness. However, for the case of Apo AII, the presence of a repulsive interaction 
showed that protein adsorption do not lead to charge neutralization of the mica surface 
charge as it was found for Apo CI (Campos-Terán et al., 2004). This is most likely due to the 
structural difference between both proteins, where the Apo CI monomer can more 
efficiently arrange so that it better match the surface charge compare to the Apo AII dimer. 
However, since the apparent surface potential has a small change when the protein 
concentration is increased from 0.002 mg/ml to 0.004 mg/ml, a charge regulation 
mechanism involving small ions during the adsorption of the proteins cannot be discarded. 
This mechanism has been observed to occur in the surface adsorption of other proteins 
(Claesson et al., 1995). Protein multilayer adsorption has been observed in proteins with 
amphiphilic or flexible segments, as observed at SFA experiments with cytochrome c 
(Kekicheff et al., 1990) and β-casein (Nylander & Wahlgren, 1997). A multilayer protein 
adsorption requires attractive protein-protein interaction, which often is weaker than the 
protein-surface interactions. Confirmation of this statement was obtained by diluting the 
solution surrounding the surfaces. Here, the hard wall separation decreased from d ≈ 58 Å 
to d ≈ 26 Å and the apparent surface potential has increased from ~37 mV to ~53 mV 1 ½ h 
after dilution, which indicates protein desorption. Even more protein has desorbed after 18 
h, and the hard-wall separation reaches d ≈ 11 Å, corresponding to one monolayer on each 
surface. In addition, an attractive jump appears. No further desorption occurs, which is 
mostly likely due to the strong interaction between the negatively charged mica and the 
cationic protein as well as the entropy gain due to counter ion release. This experiment 
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showed the reversibility of Apo AII adsorption process that produces in each stage different 
protein conformations. Also, it is noteworthy that quite similar force curves were observed 
in Apo CI (Campos-Terán et al., 2004), which also has a similar secondary structure but with 
a different peptide sequence, different net charge, and it is only monomeric. Therefore, the 
observed force curves seem to be a consequence of the particular features of the amphiphilic 
α-helices. 

5. Lipid dependant disorder-to-order conformational transitions in 
Apolipoproteins 
5.1 Apo CI derived peptides-lipid interaction  

As mentioned in sections 3 and 4, it has been observed for exchangeable Apolipoproteins 
that when they are subjected to lateral pressures then several helical segments were placed 
directly in the hydrophobic phase of the interface. In the case of Apo CI, our data showed an 
interesting new property since we observed that injecting it into the subphase allows the 
protein to go to the water/lipid interface quickly and when lateral pressure is increased the 
C-terminal helical segment penetrates the monolayer. In addition, when lateral pressure is 
released, this segment is again incorporated into the water/lipid interface (Bolaños-García et 
al., 1999). With these results we were interested to know if the secondary structure of the C-
terminal segment of Apo CI remained stable regardless of their position in the different 
hydrophilic/hydrophobic interfaces. To solve this question we conducted studies of 
peptides derived from the C-terminal segment of Apo CI in different environments.  

The peptides were designated according to the first three letters of their amino acid 
sequence and called ALDO (A7-E24), ARELI (A22-M38) and SAK (S35-L53). Apo CI in 
solution shows a clear circular dichroism (CD) signal associated with a high degree of α-
helix structure (Bolaños-García et al., 1999). However, when peptides ALDO, ARELI and 
SAK (Mendoza-Espinosa et al., 2008) were tested under the same experimental conditions, 
they showed no defined secondary structure and remain non-structured independently of 
pH, temperature and ionic strength. Interestingly, despite that these peptides have an 
amphipathic character and high hydrophobic moment values (μH > 0.315 kcal/mol), they 
remain completely unfolded in solution (see Fig. 7a). 

Nevertheless, when peptides ALDO, SAK and ARELI are placed in aqueous solution with 
40% v/v trifluoroethanol (TFE) or sodium dodecylsulphate (SDS, cmc of 8.5 mM) they show 
a CD signal clearly associated with an α-helical structure. If SDS was used at different 
concentrations (1.5-20 mM), each of the peptides acquire secondary structures in a 
differentiated way, where the lowest percentage of α-helix structure corresponds to ARELI 
and the highest to SAK peptide, which corresponds to the C-terminal segment of Apo CI 
(see Figs. 7b and 7c). Then in order to test the possibility that specific lipids on the surface of 
lipoproteins and plasma membrane induce an α-helix conformation as in the case of TFE 
and SDS, we tested a series of phospholipids above and below its critical micelle 
concentration and with different acyl long chain to probe their hydrophobic effect. L-α-
Phosphatidylcholine (PC) was used above its critical micellar concentration (cmc <0.005 
mM) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) slightly below its cmc (~15 
mM), because concentrations above the cmc of DHPC generate solutions that prevent the 
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determination of the CD signal (data not shown). Under these conditions, only peptide SAK 
showed a well-defined disorder to order type transition. Since medium hydrophobicity 
seems to be critical for the transition to be observed, we tested if these lipids mixed with 
small amounts of cholesterol altered these low percentages of α-helix, finding no changes 
(data not shown). 

 
Fig. 7. Far-UV CD data of Apo CI-derived peptides. a) Spectra recorded in water for 
peptides ALDO, ARELI, and SAK. b) In the presence of 40% v/v TFE. c) In the presence of 
SDS (20 mM). d) In the presence of lyso-C12PC (20 mM). Insets: DLS analysis of the same 
corresponding peptide solutions employed for CD experiments. Adapted from (Mendoza-
Espinosa et al., 2008). 

Tests performed with 1-hexanoyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-C6PC) do 
not promote any change in the secondary structure of all peptides studied (data not shown). 
However, in the presence of 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-C12PC), 
peptides corresponding to the N-terminal (ALDO) and C-terminal (SAK) segments acquired 
different percentages of α-helix structure as a function of the lysophospholipid 
concentration. ALDO was the peptide less sensitive to lyso-C12PC, however, the effect of this 
lysophospholipid is greater than that generated by SDS. On the other hand, SAK presented 
disorder-to-order transitions from the lowest levels of lyso-C12PC. Greater effect was 
observed for this lipid on this peptide compared to the one observed with SDS and TFE 
molecules (see Fig. 7d). Interestingly DLS experiments showed that peptide solutions with 
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pure water and lyso-C6PC in which there was no disorder-order transitions, presented 
aggregates in solution. In contrast, for the peptides-lyso-C12PC solutions that generated 
disorder-to-order transition and the promotion of a well-defined α-helical conformation, 
allows the association of lipid/peptide molecules in such an orderly fashion that the system 
avoids aggregation. It is interesting to note that while lyso-C6PC aggregates increase in size 
in the presence of peptides for the case of lyso-C12PC the size does not change with or 
without the same peptides (see Fig. 8). 

 
Fig. 8. Dynamic light scattering of Apo CI peptides associated with lysophospholipids of 
different acyl-chain lengths. a) Quantification of particle diameters given by peptide/lipid 
aggregates in the presence of SDS (20mM), lyso-C6PC (20 mM) and lyso-C12PC (20 mM). 
Adapted from (Mendoza-Espinosa et al., 2008). 

Based on data obtained in this study, we have elucidated a mechanism by which the Apo CI 
could be functioning as a molecular switch on the surface of HDL. In this scenario we 
propose that Apo CI responds to a decrease in lateral pressure on the surface of HDL, which 
is given by an increase of cholesterol ester in the nucleus (Frank & Marcel, 2000), by 
promoting its C-terminal segment to the polar/nonpolar interface of the lipoprotein particle 
with a concomitant change from a disordered structure to an α-helix. The fact that the 
surface of lipoproteins and certain types of membranes are associated with the presence of 
molecules such as lyso-C12PC could generate dramatic disorder-to-order transitions in the C-
terminal segment of Apo CI. In consequence, these conformational changes generated by 
Apo CI could be related to the biological activity of molecules such as esphingosine 1 
phosphate that when associated with HDL particles it has been observed that promotes an 
anti-inflammatory effect and therefore presents a potential role as atheroprotective (Jerzy-
Roch & Assman, 2005). 
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determination of the CD signal (data not shown). Under these conditions, only peptide SAK 
showed a well-defined disorder to order type transition. Since medium hydrophobicity 
seems to be critical for the transition to be observed, we tested if these lipids mixed with 
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(data not shown). 

 
Fig. 7. Far-UV CD data of Apo CI-derived peptides. a) Spectra recorded in water for 
peptides ALDO, ARELI, and SAK. b) In the presence of 40% v/v TFE. c) In the presence of 
SDS (20 mM). d) In the presence of lyso-C12PC (20 mM). Insets: DLS analysis of the same 
corresponding peptide solutions employed for CD experiments. Adapted from (Mendoza-
Espinosa et al., 2008). 
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Also, since cholesterol esters formed by the enzyme lecithin-cholesterol acyltransferase 
(LCAT) located at the surface of HDL particles promotes the transfer of a fatty acyl group 
from position two of phosphatidylcholine to cholesterol, with the consequent synthesis of 
lysophosphatidylcholine, it is possible that the presence of new OH groups at the 
polar/non-polar interface change the electrostatic properties of the interface and the way 
water is displaced from the interface during peptide folding. In fact, it has been proposed 
that in the presence of lipids, the process of peptide folding corresponds to an enthalpy 
driven process supported by the energy employed for water displacement (Rozek et al., 
1997). Localized changes in secondary structure of a number of proteins have been found to 
be physiologically relevant (Chakrabartty & Baldwin, 1995; Meador et al., 1992). Therefore, a 
series of conformational switches have been proposed, in specific cases, to promote protein 
activation (Wei et al., 1994) and folding (Hamada et al., 1996). In order to find out the 
mechanism by which lyso-C12PC is required to induce an important conformational change, 
further investigation is needed. These important changes might be important in the 
understanding of the mechanisms Apo CI employs to modulate protein/protein recognition 
directly related to enzyme activation and modulation of Apo E and the cholesterol ester 
transfer protein (CETP) function when associated to the surface of HDL particles. Our 
proposal of a lipid dependant disorder-to-order conformational transition in Apo CI might 
be considered a conformational switch mediating enzyme activation and lipid transport. 
This possibility opens new ways to visualize the concert of events that take place at the 
surface of HDL during their transformation from early protein/lipid discoidal aggregates to 
spherical particles, ready to be taken up by liver cells. Further investigation of this potential 
mechanism designed to recognize and promote localized secondary structure conformations 
in proteins, undoubtedly will provide an improvement to better comprehend the protein 
function at the surface of lipoproteins. 

5.2 Apo AI-lipid interactions 

Several studies have evaluated the lipid-binding propensity of each of the helices 
composing Apo AI, noting that the N-terminal domain determines the open or closed 
structure of the protein when modulated by the presence of cholesterol obtained by 
interacting with the ATP-binding cassette (ABC) A1 (ABCA1) giving rise to the nascent 
HDL. Likewise, due to its high hydrophobicity, the C-terminal domain of Apo AI facilitates 
anchoring to lipid membranes (Fang et al., 2003; Kono et al., 2008). These studies are based 
on the widely accepted model for discoidal HDL, which corresponds to a disk made of a 
lipid bilayer surrounded by two Apo AI helices with its long axis perpendicular to the acyl 
chains of phospholipids (Garda, 2007). These properties can be easily observed in the 
hydrophobicity profile of Apo AI obtained with the use of the EMBOSS Pepinfo algorithm, 
employing a window of 9 amino acids and the scale of Kyte J. & Doolittle R. F. (Kyte & 
Doolittle, 1982) (see Fig. 9a). While its negative profile is characteristic of membrane proteins 
at the N and C-terminal regions of the protein (10-17, 213-229), the positive profile indicates 
the hydrophobic ones. On the other hand, the use of the Hydrophobic Cluster Analysis 
(HCA) server, which predicts hydrophobic blocks depending on the secondary structure of 
the polypeptide chain, shows three highly hydrophobic segments (aa 13-22, 45-49, 216-232) 
(Fig. 9a, hydrophobic clusters) (Callebaut et al., 1997). The distribution in the helix of 
negatively charged, positive or neutral aminoacids, generates the different types of helices 
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present in the Apo AI. This change in the distribution of amino acids is important in the 
understanding of the way the protein associates with lipids (Segrest et al., 1992). For 
example, segments corresponding to helices 1-2 (A-type helices) and 9-10 (Y-type helices) 
are those with the greatest affinity for lipids, which are particularly high in the latter 
(Mishra et al., 1998). 

Interestingly, in two SDSL-EPR spectroscopic studies (electron paramagnetic spin-label 
resonance spectroscopy), β-type segments were also detected in the N-and C-terminal 
domains of Apo AI (Lagerstedt et al., 2007; Oda et al., 2003). The possibility of having 
secondary structure conformational changes has been also observed in other proteins. For 
instance, the fusogenic HA2 unit of hemagglutinin of the influenza virus has been shown to 
present these types of conformational transitions. HA2 corresponds to a segment containing 
36 amino acids, that presents the ability to carry out transitions from a random coil structure 
to an α-helix domain. The presence of these secondary structure conformational changes in 
Apo AI in the presence of lipid could serve as a mechanism to decrease the energy barrier in 
their interaction with these molecules, a crucial step in the flow of cholesterol and assembly 
of HDL (Oda et al., 2003; Tamm, 2003). 

5.3 Intrinsic disorder in Apo AI 

On the other hand, Apo AI is considered within the group of natively unstructured proteins 
(Uversky et al., 2000). Recently, this type of protein has taken a major importance when 
giving rise to the term “unfoldomics”. A highly dysfunctional group of proteins has been 
associated with a number of conditions such as amyloidosis, cancer, diabetes, 
neurodegenerative diseases and others. The altered sites contained in many disordered 
proteins have been shown to be highly susceptible to proteolysis. In the lipid-free Apo AI, 
specifically the N-terminal segment has been observed by various techniques such as NMR, 
EPR that mobility presents a great variability in their secondary structure (Kono et al., 2008; 
Lagerstedt et al., 2007; Okon et al., 2001, 2002; Wang et al., 1996, 1997). Using the PONDR 
server with the native sequence of the native Apo AI it was estimated a high percentage of 
disorder for five segments of Apo AI (Fig. 9b). The first segment (aa 1-10) corresponds to a 
site that could serve as a lipid sensor when the Apo AI is in the discoidal particle (Kono et 
al., 2008; Wu et al., 2007). The second site (aa 69-89) has a particularly negative charge 
distribution compared to the other un-structured sites (Fig 9c). The site also includes a 
transition between a helix type A to a type Y, which has been postulated could be a 
destabilizing factor in the continuity of the secondary structure of an α-helix. Wu Z. et al 
(Wu et al., 2007) have proposed a discoidal HDL model where the third and longest 
disordered segment (aa 116-150) presents a region that could be considered as a hinge. The 
same model includes a loop (159-180) that corresponds to the fourth disordered segment (aa 
172-194). Also, this site is adjacent to the segment postulated to be the one that interacts with 
LCAT (aa 159-170). The fifth disordered segment is located close to a transition region from 
a helix type A to a type Y. Although the latter site presents an α-helix structure in the crystal 
structure of Apo AI, by EPR tests this segment shows a β-structure that could serve as a 
mechanism to facilitate the interaction with lipids. Interestingly, very low concentrations of 
amyloid fibrils formed by a segment of 10 kD N-terminus of native Apo AI, have been 
found in vivo (Schmidt et al., 1997). These structures are constituted by β-cross structures 
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are those with the greatest affinity for lipids, which are particularly high in the latter 
(Mishra et al., 1998). 

Interestingly, in two SDSL-EPR spectroscopic studies (electron paramagnetic spin-label 
resonance spectroscopy), β-type segments were also detected in the N-and C-terminal 
domains of Apo AI (Lagerstedt et al., 2007; Oda et al., 2003). The possibility of having 
secondary structure conformational changes has been also observed in other proteins. For 
instance, the fusogenic HA2 unit of hemagglutinin of the influenza virus has been shown to 
present these types of conformational transitions. HA2 corresponds to a segment containing 
36 amino acids, that presents the ability to carry out transitions from a random coil structure 
to an α-helix domain. The presence of these secondary structure conformational changes in 
Apo AI in the presence of lipid could serve as a mechanism to decrease the energy barrier in 
their interaction with these molecules, a crucial step in the flow of cholesterol and assembly 
of HDL (Oda et al., 2003; Tamm, 2003). 

5.3 Intrinsic disorder in Apo AI 

On the other hand, Apo AI is considered within the group of natively unstructured proteins 
(Uversky et al., 2000). Recently, this type of protein has taken a major importance when 
giving rise to the term “unfoldomics”. A highly dysfunctional group of proteins has been 
associated with a number of conditions such as amyloidosis, cancer, diabetes, 
neurodegenerative diseases and others. The altered sites contained in many disordered 
proteins have been shown to be highly susceptible to proteolysis. In the lipid-free Apo AI, 
specifically the N-terminal segment has been observed by various techniques such as NMR, 
EPR that mobility presents a great variability in their secondary structure (Kono et al., 2008; 
Lagerstedt et al., 2007; Okon et al., 2001, 2002; Wang et al., 1996, 1997). Using the PONDR 
server with the native sequence of the native Apo AI it was estimated a high percentage of 
disorder for five segments of Apo AI (Fig. 9b). The first segment (aa 1-10) corresponds to a 
site that could serve as a lipid sensor when the Apo AI is in the discoidal particle (Kono et 
al., 2008; Wu et al., 2007). The second site (aa 69-89) has a particularly negative charge 
distribution compared to the other un-structured sites (Fig 9c). The site also includes a 
transition between a helix type A to a type Y, which has been postulated could be a 
destabilizing factor in the continuity of the secondary structure of an α-helix. Wu Z. et al 
(Wu et al., 2007) have proposed a discoidal HDL model where the third and longest 
disordered segment (aa 116-150) presents a region that could be considered as a hinge. The 
same model includes a loop (159-180) that corresponds to the fourth disordered segment (aa 
172-194). Also, this site is adjacent to the segment postulated to be the one that interacts with 
LCAT (aa 159-170). The fifth disordered segment is located close to a transition region from 
a helix type A to a type Y. Although the latter site presents an α-helix structure in the crystal 
structure of Apo AI, by EPR tests this segment shows a β-structure that could serve as a 
mechanism to facilitate the interaction with lipids. Interestingly, very low concentrations of 
amyloid fibrils formed by a segment of 10 kD N-terminus of native Apo AI, have been 
found in vivo (Schmidt et al., 1997). These structures are constituted by β-cross structures 



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

348 

that in turn produce β-strands oriented in a perpendicular way with respect to the long axis 
of the fiber, resulting in its increased spreading capacity. Subsequently, protofibrils associate 
laterally or rotate together to form fibers of larger diameter (DuBay et al., 2004).  

In our laboratory by their structural and perhaps biological importance, we have analyzed 
three peptides designed according to the sequence reported for the native Apo AI and its 
crystal structure (Borhani et al., 1997). These peptides are DRV (D9-D24) and KLL (K45-Q63) 
located within its N-terminal helical segments, and VLES (V221-K239) located in a C-
terminal segment. By sequence analysis of native Apo AI employing the Zyggregator server 
(Tartaglia et al., 2008), it has been observed that this protein presents several sites with the 
propensity to form amyloid fibrils (A15-D20, W50-F57 and S224-L230), which interestingly 
enough are included in peptide sequence DRV, KLL and VLES (Fig. 9d, Zagg Propensity). 
This server uses an algorithm that considers patterns of hydrophobicity, polar amino acids  

 
Fig. 9. Methods employed in the prediction of disorder, aggregation and propensity of 
amyloid fiber formation based on the sequence of native Apo AI. a) Hydrophobicity profile 
calculated with the EMBOSS server: Pepinfo, using a window of 9 aa and scale of Kyte & 
Doolittle hydrophobicity, red line. Hydrophobic segments calculated with the HCA server, 
orange box. Peptide position DRV, KLL and VLES in the sequence of Apo AI, black box.  
b) Profile of disorder determined by the PONDR server (PONDR VL-XT). c) Load profile 
calculated with the EMBOSS server: Charge using a window of 9 aa. d) Propensity of 
amyloid fiber formation with the Zyggregator server (Zagg Propensity) and formation of 
globular structures (Ztox Propensity). 
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and aromatic content observed in polypeptide chains of amyloidogenic proteins. The 
segments prone to aggregation in the Apo AI present sequences of highly hydrophobic 
blocks composed of six to seven amino acids flanked by negative and/or positive charges. 
On the other hand, Zyggregator calculates the tendency to form globular structures, which 
have been observed to be a step in the formation of amyloidogenic fibers. It has been 
observed with in vitro experiments that these globular structures formed by amyloid 
peptides are involved in a process of cellular cytotoxicity due the formation of pores in 
membranes (Lashuel & Lansbury, 2006). The patterns to form amyloid structures in Apo AI 
calculated by Zyggregator, show the same one that is observed during the formation of 
amyloid fibers (Fig. 9d, Ztox propensity). 

5.4 Amyloidogenic Apo AI 

Interestingly, within the existing mutants of Apo AI, there are 4 isoforms associated with 
systemic forms of hereditary amyloidosis. Mutations correspond to Gly26-Arg, Leu60-Arg, 
Trp50-Arg and a deletion/insertion of segment (Leu60-Phe71) - (Val-Val-Thr). Considering 
the structure for the lipid-free Apo AI proposed by Ajees et al., these mutations generally 
provide positive charges to the hydrophobic interface formed between the two pairs of 
helices at the N-terminal segment (aa 1-188). The introduction of a polar amino acid residue 
by the amyloidogenic mutations in the hydrophobic interface of the lipid-free Apo AI, 
probably prevents the formation of the cluster of α-helices in the N-terminal structure. This 
also hinders the formation of hydrophilic patches located in different areas of the protein 
(see Fig. 10) (Oram, 2002). These hydrophilic patches have been postulated to interact with 
ABCA1 for the transfer of phospholipid and cholesterol. One consequence of this obstacle 
might be that the formation of a properly sized discoidal HDL needed to interact with the 
enzyme LCAT, as observed in these mutations, is not properly achieved (Fang et al., 2003; 
Genschel et al., 1998). This interaction is crucial in the transition from discoidal to spherical 
HDL (Calabresi & Franceschini, 2010). Discoidal HDL formed by one of the several isoforms 
of the amyloidogenic Apo AI known nowadays, are rapidly catabolized and do not become 
spherical HDL (Genschel et al., 1998). At this stage, it is interesting to mention that the 
metabolic pathway of these Apo AI isoforms that cause deposition of amyloid fibrils, has 
not yet been clarified. However any of these mutations found in helix 1 and helix G * of Apo 
AI could be generating a loop susceptible to proteolysis between helices 2 and 3 (Apo AI 
disordered second site with low affinity to lipid profile and with a distinctly negative 
charge) (Figs. 9b and 9c). In all cases, amyloid fibers are generated with polypeptides from 
the first 83-94 amino acids at the N-terminus of Apo AI. Mutations at amino acids 26, 50 and 
60 also generate charge changes, characteristic that favors the formation of extended β-
sheets (García-González & Mas-Oliva, 2011). These peptides released regardless of the 
origin of the mutation, always have the same net charge, indicating the conservation of the 
hydrophilic profile. Likewise, the hydrophobic moment value and the average total 
hydrophobicity decrease in the mutations with respect to native sequences. 

It is remarkable that several theoretical and experimental data related to several N-terminal 
and C-terminal segments of Apo AI indicate that both have a high propensity for 
aggregation. However, only the first one was found in the amyloidogenic plaques isolated 
from familial amyloidosis or Alzheimer-affected people. Segments of Apo AI with a 
tendency to be maintained in a disordered state, together with their low affinity sites for 
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from familial amyloidosis or Alzheimer-affected people. Segments of Apo AI with a 
tendency to be maintained in a disordered state, together with their low affinity sites for 
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lipid, could be the key for the understanding of HDL particles formation. Due to these 
characteristics, it seems Apo AI has the ability to modulate its secondary structure based on 
the presence of hydrophobic/hydrophilic interfaces that in turn might activate or inhibit the 
function of proteins that regulate the metabolism of HDL. 

 
Fig. 10. The ABCA1 receptor promotes the transfer of phospholipids to a lipid-poor form of 
native Apo AI native, the major component of HDLs. The mechanism by which this process 
occurs is not fully understood; probably ABCA1 translocates phospholipids and cholesterol 
from the plasma membrane to HDL Apo AI producing a discoidal particle. These discoidal 
particles are transformed into spherical HDLs in the blood by the action of the enzyme 
LCAT. Spherical HDLs associate with the SRB1 receptor in the plasma membrane of 
hepatocytes and transfer free and esterified cholesterol to the liver for excretion into the bile 
as free cholesterol (via ABCG5/G8) or subsequent conversion to bile salts (Oram, 2002). In 
the case of the formation of amyloidogenic isoforms of Apo AI, a proper interaction with 
ABCA1 is impeded and therefore the formation of discoidal HDLs becomes a deficient 
process, with the consequent problems in the recognition of LCAT and also SR-B1. It is 
known that abnormal HDLs are rapidly catabolized releasing different peptides that in turn 
generate peptides that form amyloid fibers that might initiate a systemic amyloidosis. 

6. Conclusions  
We believe conformational changes observed in monolayers of Apo CI and AII during 
lateral compression could be of direct relevance to changes in surface tension at the surface 

Conformational and Disorder to Order Transitions 
in Proteins: Structure / Function Correlation in Apolipoproteins 

 

351 

of lipoproteins. Thus, in response to changes in surface tension of the lipoprotein particle, 
Apolipoproteins could present structural changes. Interestingly, our working hypothesis is 
of relevance when extrapolated to the conformational changes observed at the lipid/plasma 
interface at the surface of a lipoprotein particle. In this case, because of the small size and 
rich protein composition of discoidal HDL (pre-2HDL β) it is proposed that the lateral 
pressure in the phospholipid monolayer of these particles is most likely to be high and only 
decreases in parallel with changes in size and shape of these lipoproteins when they begin to 
accumulate cholesterol esters to form HDL spherical (α-HDL). The results of our studies 
employing Apos allow us to postulate that the lateral pressure of the phospholipids 
monolayer associated with proteins on the surface of the different HDL particles may be 
very different depending on their size and shape.  

In addition, the fact that these Apos could present a different conformation from newly 
synthesized lipoproteins with a discoidal form to a mature state with a spherical shape 
could be an important factor in the understanding of their physiological properties such as 
directionality and receptor recognition. However, the ways in which structural changes 
induced by lipid interaction modulate the functionality of these Apos are still to be clarified, 
since the formation of amyloidogenic forms for several segments of these Apos, as presented 
in this chapter, have also been found to play a critical role in their structure/function 
relationship. 

Currently, the understanding of the mechanisms by which segments, entire native or 
mutated proteins get transformed into amyloid-like structures, has resulted to be a 
challenge. Since several disorder-to-order transitions in proteins have been found to be 
reversible, this phenomenon has been frequently associated with important signaling events 
in the cell. Due to the central role of this phenomenon in cell biology, protein misfolding and 
aberrant conformational transitions have been at present associated with an important 
number of diseases. Nevertheless, differences between ‘‘functional’’ and ‘‘pathological’’ 
disorder-to-order or order-to-disorder transitions that might lead to the formation of 
amyloids, might simply reside in the modulatory pathways involved along their synthesis 
and the environment proteins or protein segments are placed into.  
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1. Introduction 
Protein-protein interactions drive many biophysical processes of proteins in solutions, such 
as aggregation, solubility, and phase transitions including crystallization, gelation, and 
amorphous precipitation. Many of these processes are of significant research interest 
because of their practical importance. In the biopharmaceutical industry, it is crucial to 
prevent therapeutic proteins from aggregation during the manufacturing process and 
storage in order to maintain safety and efficacy (1). In addition, protein crystallization and 
precipitation are used for industrialized recombinant protein purification process (2). In the 
field of structure biology, it is still a daunting task to produce diffractive quality protein 
crystals for determining protein 3-D structures because there is lack of clear understanding 
of the mechanisms for protein crystallization (3). Furthermore, studying protein-protein 
interactions could shed light on the mechanism of protein condensation (or phase transition) 
diseases, such as cataract and sickle cell disease (4). Finally, protein-protein interactions may 
play essential roles in many human neurodegenerative diseases attributed to protein 
aggregation, such as Parkinson and Alzheimer diseases (5).  

In solutions, salts are ubiquitously used to control pH, ionic strength and osomlality in 
scientific research and industry applications. It is important to understand how salts 
modulate protein-protein interactions so that solution behavior, such as protein 
crystallization, precipitation, and solution stability, can be controlled and manipulated. 
However, the exact interaction mechanisms between salt ions and proteins are poorly 
understood (6, 7). As a consequence, modulations on protein-protein interactions by salt 
ions and their implications for protein solution behavior cannot be completely rationalized. 
The challenges rise because of (i) the sheer complexity of physical and chemical properties 
for both salt ions and proteins and (ii) the wide range of salt concentrations, which can be 
varied up to 1000 fold from millimolar to molar. It cannot be emphasized better than how 
Kunz and Neueder mentioned in their book with regards to salt solutions: “In total, it is still 
a fact that over the last decades, it was still easier to fly to the moon than to describe the free 
energy of even the simplest salt solutions beyond a concentration of 0.1 M or so”(6). Proteins 
probably belong to the most complex colloidal system in terms of variations in surface 
charge, surface chemistry, and size. Specifically, a protein could be net positive-charged, 
neutral, or negative-charged at pH conditions below, near, and above its pI (Isoelectric 
point), respectively. Additionally, protein surfaces are heterogeneously composed of 
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positive and negative charged, polar and nonpolar amino acid residues. Finally, the size of 
proteins in the range of 1-5 nm (estimated by the minimal radius of a sphere containing a 
given mass) would significantly impact the surface charge density(8).  

Intermolecular interactions between protein molecules can have different origins, such as 
electrostatic, hydrophobic, van der waals, and hydrogen bonding (9). It is difficult to 
pinpoint the exact relative contributions from each type of interaction to the (overall) 
protein-protein interactions. In this review, I focus on explaining the modulations of 
electrostatic protein-protein interactions by the simple salt ions (shown in Figure 1) through 
their specific interactions (or binding) from both cation and anion with protein surface at 
salt concentrations below 0.5- 1 M. In addition, the complete picture of salt ion’s effects on 
the intermolecular interactions may be better understood by considering the following 
biophysical properties of proteins and salt ions: (i) the net charge, surface charge density 
and hydrophobicity of a protein; (ii) hydration, size, polarizability and valency of salt ions. 
The discussion is based on the recent experimental results reported in literature and 
findings from Amgen using the following experimental techniques, such as protein 
solubility measurement, phase transition temperature of Tcritical (critical temperature) or 
Tcloud (cloud temperature) for liquid-liquid phase separation and small angle X-ray 
scattering (SAXS) (10-13). It has been demonstrated that there is a strong correlation 
between protein solubility and protein-protein interactions: protein solubility decreases 
when the protein-protein interactions become less repulsive or more attractive (for a protein 
for which its solubility increases with temperature)(12, 13). Also it is generally accepted that 
for a protein solution with an upper consolute point, an increase in phase transition 
temperature, as a result of change in the solution condition, indicates that protein-protein 
interactions become less repulsive or more attractive. 

 
Fig. 1. Hofmeister series adapted from (14). 

2. Historical background 
2.1 Direct and reverse Hofmeister series 

The most important experimental work on protein-protein interactions in salt solutions can 
be traced back more than 100 years ago when Franz Hofmeister and his coworkers studied 
salt effects at high salt concentrations on protein precipitation of hen egg white proteins 
whose main component is ovalbumin (pI=4.6). At that time, he hypothesized that the 
protein precipitating (salting-out) capability for the salts was dependent on their ion 
hydration properties (6). Later on, an empirical ranking for both cations and anions in their 
effectiveness, as shown in Figure 1, for precipitating proteins was named as (direct) 
Hofmeister series (14).  Typically, the anions’ effects are more dramatic than cation (14). In 
1989, a surprising and complete reverse Hofmeister series was discovered by Ries-Kautt and 
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Ducruix in solubility measurement of lysozyme in salt solutions at pH below its pI where 
the protein was net positively charged (15).  

2.2 Protein-protein interactions for a net charge neutral protein in salt solutions 

A protein is net-charge neutral at its pI with the equal numbers of positive and negative 
charges. This is the most distinctive difference between proteins and the peptides with 
neutral side chains/small nonpolar molecules, for which extensive and detailed solubility 
experiments were conducted in salt solutions (16-19). However, there is lack of systematic 
protein solubility studies in salt solutions near their pIs. It is generally accepted that near the 
pI an increase in protein solubility (salting-in) is expected when salts are initially added and 
then a decrease occurs at high salt concentrations (salting-out by kosmotropic salts)(20). 
Although the mechanism of protein-protein interactions near its pI remains to be 
determined, it can be inferred from the observation above that the protein-protein 
interactions may initially become less attractive and then more attractive with increasing salt 
concentrations. 

2.3 Protein-protein interactions for a net positive-charged protein in salt solutions 

Lysozyme is a small globular protein with a Molecular Weight (MW) of 14.4 kilo-Dalton 
(kD) with a high pI value of ∼11(12). Despite the fact that the experiments can mostly be 
conducted at pH conditions below its pI, lysozyme was frequently used as a model protein 
for studying both protein-protein interactions and protein-salt ion interactions in salt 
solutions probably due to its availability and easy crystallization propensity. Numerous 
experiments revealed very complex relationships between intermolecular interactions and 
salt concentration, salt type and pH; different theories were put into place to interpretate the 
trends (12, 21, 22).  

In monovalent salt solutions under 1.0 M, the intermolecular interactions for lysozyme 
generally became monotonically more attractive as the salt concentration increased at pH 
conditions far below its pI(12, 21). These findings are consistent with the no salting-in event, i. 
e. protein solubility decrease, for lysozyme by NaCl in a pH range from 3 to 9 under the salt 
concentration up to 1.2 M (23). Acting as counter-ions to the net positively-charged lysozyme 
and following the reverse Hofmeister series, these monovalent anions imposed profound 
effects on the intermolecular interactions. But at pH 9.4 closer to pI, a nonmonotonic transition 
was discovered for SCN- where the intermolecular interactions initially became more attractive 
and then less attractive when the phase transition temperature was measured (22). For γD-
crystallins, a 20-kD protein, the same reverse Hofmeister series for anions was observed at pH 
4.5 below its pI of ∼7.0 by using SAXS (13). 

Despite the dominant effect of the counter-ions (or anions), the co-ions (or cations) can still 
significantly perturb the protein-protein interactions. Specifically, comparing the effect by 
different cation in the salt solutions with the same anion, the intermolecular interactions for 
positive-charged lysozyme were less attractive and even perturbed nonmonotonically by the 
strongly hydrated divalent cation (Mg2+ and Ca2+) , in comparison to the monotonic effect by 
the monovalent cations of Na+ and K+(12, 21). These findings are consistent with the findings 
from lysozyme solubility measurement in the multivalent cation salt solutions (12, 24).  
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and then less attractive when the phase transition temperature was measured (22). For γD-
crystallins, a 20-kD protein, the same reverse Hofmeister series for anions was observed at pH 
4.5 below its pI of ∼7.0 by using SAXS (13). 

Despite the dominant effect of the counter-ions (or anions), the co-ions (or cations) can still 
significantly perturb the protein-protein interactions. Specifically, comparing the effect by 
different cation in the salt solutions with the same anion, the intermolecular interactions for 
positive-charged lysozyme were less attractive and even perturbed nonmonotonically by the 
strongly hydrated divalent cation (Mg2+ and Ca2+) , in comparison to the monotonic effect by 
the monovalent cations of Na+ and K+(12, 21). These findings are consistent with the findings 
from lysozyme solubility measurement in the multivalent cation salt solutions (12, 24).  
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2.4 Protein-protein interactions for a net negative-charged protein in salt solutions 

Recently, many experiments were conducted to study protein-protein interactions for a net 
negatively-charged protein in salt solutions where a cation-dominant effect was expected. 
But the experimental findings were not straight-forward to interpret. Using SAXS and 
neutron scattering for studying protein-protein interactions of ovalbumin (MW=45 kD) in 
NaCl and YCl3 solutions at pH conditions above its pI of 5.2, it was found that NaCl was 
ineffective in screening the electrostatic repulsive interactions between the proteins while 
YCl3 not only suppressed the electrostatic repulsive interactions initially but also raised the 
repulsive interactions at higher concentrations (25). The ineffectiveness of Na+ salts to screen 
the electrostatic repulsion was also confirmed for α-crystallins, a 800-kDa protein, at pH 
conditions above its pI of 4.5 by using SAXS (13). Similar behaviour was observed for BSA at 
pH conditions above its pI of 4.6 (26). Interestingly, Petsev et al found that NaAcetate was 
effective at screening the electrostatic repulsions (protein-protein interactions become more 
attractive) and then rendered the intermolecular interactions more repulsive for negatively-
charged Apoferrtin (MW=450kD) (27).  

2.5 Protein-protein interactions for an antibody at different pH conditions  

Protein-protein interactions in salt solutions for an antibody with an experimentally 
determined pI of 7.2 were systematically explored through the measurements of protein 
solubility and phase transition temperature of Tcritical in liquid-liquid phase separation (11). 
The advantage of using this antibody is that the intermolecular interactions can be 
systemically assessed for the positive-charged and neutral for the same protein, allowing 
comprehensive experimental investigations of how salts modulate intermolecular 
interactions. Also, the antibody (MW=147 kD) is a much larger protein than lysozyme, 
which provides an opportunity for evaluating the surface charge density as a variable in 
protein-protein interactions(10). These approaches could help us understand how salt ions 
interact with proteins of different size. 

At pH 7.1 close to its pI of 7.2, antibody solubility measurement revealed a general salting-in 
effect by all the anions as shown in Figure 2. More importantly, the specific anion 

  
Fig. 2. Antibody solubility at pH 7.1 in KSCN, KCl and KF solutions [reprint with 
permission from ref (11)]. 
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effect was observed in which SCN- was the most effective at raising the antibody solubility, 
following the direct Hofmeister series. These observations are consistent with the ranking of 
these anions for disrupting the attractive intermolecular interactions as revealed by the 
results of Tcritical measurement (10).  

At pH 5.3 below its pI, nonmonotonic behavior where protein solubility decreased and then 
increased with salt concentrations (in Figure 3) was observed for all the salts studied, 
suggesting that intermolecular interactions became less repulsive and then more. In 
addition, the effectiveness of the anions for reducing the protein solubility followed the 
reverse Hofmeister series, in which SCN- was the most effective at reducing the antibody 
solubility. Then strikingly, the effectiveness for the anion to increase the protein solubility 
reverted back to the direct Hofmeister series as the salt concentration further increased. The 
above nonmonotonic transitions are in agreement with the protein-protein interactions 
pattern revealed by the measurement of Tcritical for liquid-liquid phase separation in the 
same salt solutions (10).  
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effect was observed in which SCN- was the most effective at raising the antibody solubility, 
following the direct Hofmeister series. These observations are consistent with the ranking of 
these anions for disrupting the attractive intermolecular interactions as revealed by the 
results of Tcritical measurement (10).  

At pH 5.3 below its pI, nonmonotonic behavior where protein solubility decreased and then 
increased with salt concentrations (in Figure 3) was observed for all the salts studied, 
suggesting that intermolecular interactions became less repulsive and then more. In 
addition, the effectiveness of the anions for reducing the protein solubility followed the 
reverse Hofmeister series, in which SCN- was the most effective at reducing the antibody 
solubility. Then strikingly, the effectiveness for the anion to increase the protein solubility 
reverted back to the direct Hofmeister series as the salt concentration further increased. The 
above nonmonotonic transitions are in agreement with the protein-protein interactions 
pattern revealed by the measurement of Tcritical for liquid-liquid phase separation in the 
same salt solutions (10).  
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range (9). The DLVO theory was named after the scientists: Derjaguin and Landau, and 
Verwey and Overbeek (9). This theory lays the foundation for explaining the interparticle 
electrostatic interactions in low salt concentrations below 0.1 M in the most simplified way 
when the protein is net-charged. Specifically, the intermolecular interactions between two 
protein molecules in low salt concentrations can be described by the following equation (28): 

 w2(r) = wex(r) + w disp (r) + welec (r) (1) 

Where r is the center-to-center distance from two molecules; wex(r) is the repulsive protein 
hard-sphere (excluded-volume) potential; w disp (r) is the attractive dispersion potential; welec 
(r) is the electric double-layer repulsion potential, which can be further described by Debye-
Huckel theory as the following: 

� elec (�) = (��)��������(� � �)]
����0�r(1 + ��

2 )�
for � � �  (2)

Where ze is the net charge of a protein, e is the elementary charge, ε0 is the dielectric 
permittivity of vacuum, εr is the dielectric constant of water, and κ is the inverse Debye 
length calculated by 

�2 = 2�2�A�
���0�r

 (3)

Where I is the ionic strength of the solution, k is the Boltzmann’s constant, T is the absolute 
temperature, and NA is the Avogadro’s number.  

As presented in Equation 2, it is obvious that the more net charges a protein carries, the 
stronger the electrostatic double-layer repulsive force becomes. Also, Equation 2 indicates 
the addition of the salts monotonically decreases (or screens) the double-layer repulsion, 
and then reaches a plateau (the exponential term approach zero). The general screening 
effect is consistent with the initial drop in protein solubility and rise in liquid-liquid phase 
transition temperature as described above for the charged proteins. The DLVO theory was 
used to explain the protein solubility decrease of lysozyme (23). It should be pointed out 
that it is difficult to differentiate between the direct binding of salt ions to their opposite-
charged partners on the protein surface and the screening by the salt-ion layer near the 
protein surface. The reason is that the first type of interaction decreases the double layer 
repulsion through balancing out the “ze” term in Equation 2 while the second type of 
interaction work through κ, the inverse Debye length. One of the major limitations of the 
DLVO theory is lack of ion-specificity as presented in Equation 2 and both cation and 
anion contribute equally as far as they have the same valency. Therefore, the DLVO 
theory cannot explain the anion-specific modulations on protein-protein interactions, i.e. 
the direct or reverse Hofmeister series at pH 5.3 for the antibody (3). In addition, the 
DLVO theory suggests that the double-layer repulsion decreases and levels off with salt 
addition, in contrary to the numerous nonmonotonic behavior mentioned above in 
Historical Background. 

For a charge-neutral species (i.e. proteins at their pI), many other theoretical considerations 
were developed to explain the initial salting-in and later salting-out behavior (19, 29, 30). They 
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can be used to explain the general pattern of protein-protein interactions. In essence, the 
electrostatic interactions and hydrophobic interactions are the two major types of 
intermolecular forces (20, 31). The effects from the electrostatic interactions on the free energy 
of a protein in a low salt concentration solution may be described by Debye-Huckel theory in 
combination with Kirkwood’s expression of the protein dipole moment as follows (20, 31): 

� ����� � � � �������
� � ������) � ��� (4)

Where A, B, C and D are constants, I is the ionic strength of the solution, d is the dipole 
moment for the protein. This theory predicts the salting-in effect: as the ionic strength 
increases, protein solubility rises. This idea is consistent with the observations of salting-in 
of proteins near pI. The main limitation of this theory is that it does not consider ion-
specificity.  

The free energy change for a protein involving the hydrophobic interactions may be 
illustrated by the cavity theory as follows(20): 

� ���� � �� � ���� � ���������� � �)����� � �����
��� (5)

where N is Avogadro’s number, Area is the surface area of a protein molecule, �� corrects 
the macroscopic surface tension of the solvent to molecular dimensions, � is the protein’s 
molar volume, � ��

���� is the molal surface tension increment of the salt, and m3 is the 
molality of the salt. This cavity theory describes how much free energy is needed to form 
a cavity in the solution to accommodate a hydrophobic protein molecule. Therefore, the 
surface tension of the solution is an important parameter and its modulation by salts 
impacts protein solubility and therefore protein-protein interactions. It predicts that the 
addition of kosmotropic salts, which increase the solution surface tension, will result in 
the salting-out effect and effectively strengthening of attractive protein-protein 
interactions. Therefore, these salting-in and salting-out effects in combination modulate 
protein solubility and protein-protein interactions in salt solutions (20, 31). Specifically, 
near the pI the salting-in effect dominates initially (protein solubility increases) and the 
addition of salts disrupts attractive protein-protein interactions. Then, further increase in 
(kosmotropic) salt concentration results in strengthening attractive protein-protein 
interactions as the salting-out effect begins to dominate (protein solubility decreases). 

4. Molecular mechanism for protein-ion interactions 
The simple ions shown in Figure 1 have different sizes, diverse hydration properties and 
polarizabilities (32). The interaction strength between an ion and water molecule in 
comparison to that between water-water determine the ion hydration property: an ion is 
strongly hydrated when it interacts with water molecules more strongly than the water-
water interaction while the opposite makes an ion less hydrated (33-36). Shown in Figure 4 
is the ranking of hydration property for the selected salt ions. Specifically, the large and 
more polarizable anion, i.e. SCN-, is less hydrated while the small and less polarizable 
anion, i.e. F-, is strongly hydrated.  
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can be used to explain the general pattern of protein-protein interactions. In essence, the 
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intermolecular forces (20, 31). The effects from the electrostatic interactions on the free energy 
of a protein in a low salt concentration solution may be described by Debye-Huckel theory in 
combination with Kirkwood’s expression of the protein dipole moment as follows (20, 31): 
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moment for the protein. This theory predicts the salting-in effect: as the ionic strength 
increases, protein solubility rises. This idea is consistent with the observations of salting-in 
of proteins near pI. The main limitation of this theory is that it does not consider ion-
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interactions. Therefore, these salting-in and salting-out effects in combination modulate 
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near the pI the salting-in effect dominates initially (protein solubility increases) and the 
addition of salts disrupts attractive protein-protein interactions. Then, further increase in 
(kosmotropic) salt concentration results in strengthening attractive protein-protein 
interactions as the salting-out effect begins to dominate (protein solubility decreases). 

4. Molecular mechanism for protein-ion interactions 
The simple ions shown in Figure 1 have different sizes, diverse hydration properties and 
polarizabilities (32). The interaction strength between an ion and water molecule in 
comparison to that between water-water determine the ion hydration property: an ion is 
strongly hydrated when it interacts with water molecules more strongly than the water-
water interaction while the opposite makes an ion less hydrated (33-36). Shown in Figure 4 
is the ranking of hydration property for the selected salt ions. Specifically, the large and 
more polarizable anion, i.e. SCN-, is less hydrated while the small and less polarizable 
anion, i.e. F-, is strongly hydrated.  
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The law of matching water affinities is the hallmark theory for defining the interaction 
strength between salt ions and proteins thermodynamically, in which the hydration and size 
properties of the ions and their counterparts on the protein surface are the key for 
explaining the protein-protein interaction behavior (33-36). Specifically according to the law 
of matching water affinities, oppositely charged ions in solutions form inner sphere ion 
pairs spontaneously when they have similar water affinities (36).  

The chemistry of protein surface is heterogeneous, composed of both positive and negative-
charged residues, and polar and nonpolar groups. As shown in Figure 4, monovalent anions 
of SCN- and halides, except F-, were weakly hydrated because of their large size, in 
comparison to the small-size monovalent cations being reasonably hydrated. On the protein 
surface, the positive-charged side chains on Arg, Lys and His are all derivatives of 
ammonium and therefore they are all weakly hydrated, matching well with the weakly 
hydrated SCN-. According to the law of matching water affinity, the weakly hydrated 
anions, such as SCN-, have the strongest interactions with the positive-charged side chains 
from the protein and neutralize them, followed by CI- and F-. On the other hand, the 
negative-charged side chains from Asp and Glu are strongly hydrated carboxylate, 
mismatching with Na+ and K + whose interaction strengths are similar to that between water 
molecules (33-36). To the contrary, the divalent cation, i.e. Mg2+, interacts with water 
molecules more strongly than Na+ and K+ and is strongly hydrated. It is then expected that 
the divalent cation interacts with the carboxylate more strongly than both Na+ and K+.  

 

 
 

Fig. 4. Hydration properties of selected salt ions (34, 36). 
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weakly hydrated anions and the amide bonds was also proposed based on the solubility 
study on poly(N-isopropylacrylamide) in salt solutions (39). For cations, it has been 
shown that both Ca2+ and Mg2+ can interact strongly with proteins through the diopolar 
amide bond (40) (18, 41).  

The electroselectivity theory deserves attention when considering salt ion-protein 
interactions. Developed based on the anions’ affinity for the anion exchanger, the 
electroselectivity theory proposed, purely based on the electrostatic interaction, that the ions 
with higher valency, such as SO42- , interact with the positive-charge residues on the protein 
surface more strongly than those with a single valence, such as SCN-(42, 43). The strong 
electrostatic interactions imparted by SO42- were recently demonstrated by exploring specific 
ion effects on interfacial water structure adjacent to a bovine serum albumin at pH 
conditions below its pI using vibrational sum frequency spectroscopy (VSFS) (44).  

5. From protein-ion interactions to protein-protein interactions 
The complexity of protein-protein interactions as modulated by salt ions at low concentrations 
might be explained from the framework of dominance of specific electrostatic interactions 
from both cation and anions for the protein surface, concomitantly considering the following 
biophysical properties including net charge, surface charge density and hydration of a protein, 
and hydration, size, polarizability and valency of salt ions.  

The first key property is the macroscopic net charge (considering the protein as a particle) as 
modulated by pH. First, a protein is net charge neutral, positively-charged and negatively-
charged at pH near, below, or above its pI, respectively. Furthermore, patches of protein 
surface could be macroscopically weakly-hydrated because of the abundantly exposed 
nonpolar and polar groups, regardless of whether a protein surface is overall hydrophobic 
or hydrophilic. It was pointed out that in general 1/3 of the protein surface is hydrophobic, 
resulting in a partially weakly-hydrated surface(45). Although the net charge of the protein 
is dictated by the solution pH, its nonpolar or polar surface might maintain its property of 
weak hydration when the native folding structure is not drastically affected by pH and low 
salt concentrations. As pH decreases below its pI, the increasingly net positive-charges, from 
the weakly hydrated side chains of Arg, His and Lys, might render the protein surface even 
more weakly hydrated. At pH above its pI, the strongly hydrated carboxylates, from the 
strongly hydrated side chains of Asp and Glu, bring more water onto the protein surface, 
which results in the surface becoming more hydrated.   

5.1 pH near pI 

A protein is net charge neutral at pI with the equal number of positive and negative-charged 
residues. Therefore the protein molecules may approach each other and fully explore 
complementary interaction configurations (46). It is well-known that a protein has the 
lowest solubility near its pI and easily precipitates, suggesting the presence of strong 
intermolecular attractive interactions. The interactions can be highly anisotropic due to 
ionic-pair interactions, cation-π interaction, hydrophobic interaction and others types of 
interactions. It is difficult to dissect which type of interaction contributes most to the 
intermolecular interactions, which might be sequence dependent and protein-specific.  



 
Protein-Protein Interactions – Computational and Experimental Tools 366 

The law of matching water affinities is the hallmark theory for defining the interaction 
strength between salt ions and proteins thermodynamically, in which the hydration and size 
properties of the ions and their counterparts on the protein surface are the key for 
explaining the protein-protein interaction behavior (33-36). Specifically according to the law 
of matching water affinities, oppositely charged ions in solutions form inner sphere ion 
pairs spontaneously when they have similar water affinities (36).  

The chemistry of protein surface is heterogeneous, composed of both positive and negative-
charged residues, and polar and nonpolar groups. As shown in Figure 4, monovalent anions 
of SCN- and halides, except F-, were weakly hydrated because of their large size, in 
comparison to the small-size monovalent cations being reasonably hydrated. On the protein 
surface, the positive-charged side chains on Arg, Lys and His are all derivatives of 
ammonium and therefore they are all weakly hydrated, matching well with the weakly 
hydrated SCN-. According to the law of matching water affinity, the weakly hydrated 
anions, such as SCN-, have the strongest interactions with the positive-charged side chains 
from the protein and neutralize them, followed by CI- and F-. On the other hand, the 
negative-charged side chains from Asp and Glu are strongly hydrated carboxylate, 
mismatching with Na+ and K + whose interaction strengths are similar to that between water 
molecules (33-36). To the contrary, the divalent cation, i.e. Mg2+, interacts with water 
molecules more strongly than Na+ and K+ and is strongly hydrated. It is then expected that 
the divalent cation interacts with the carboxylate more strongly than both Na+ and K+.  

 

 
 

Fig. 4. Hydration properties of selected salt ions (34, 36). 

Protein surface is composed of not only polar functional groups from the amide bonds of 
the exposed peptide backbone and the side chains of Asn and Gln, but also non-polar 
functional groups from the side chains of Phe, Ile and other amino acids. Both the polar and 
non-polar groups can be considered as weakly hydrated (37). Collins proposed that the 
weakly hydrated anions could also interact with both of the groups, besides the charged 
side chains (33-36). Recently, it was demonstrated, through a molecular dynamics (MD) 
study of lysozyme in a mixed aqueous solution of potassium chloride and iodide (0.4 M), 
that weakly hydrated anions, i.e. I-, preferred to interact with the nonpolar groups besides 
the positive-charged residues on lysozyme (38). Furthermore, the interaction between 

Mg2+ Li+ Na+ K+ NH4
+

CH3COO- SO4
2- F- Cl- Br- NO3

- I- SCN-

Strength of H2O/H2O interaction

More hydrated Less hydrated

 
Protein-Protein Interactions in Salt Solutions 367 

weakly hydrated anions and the amide bonds was also proposed based on the solubility 
study on poly(N-isopropylacrylamide) in salt solutions (39). For cations, it has been 
shown that both Ca2+ and Mg2+ can interact strongly with proteins through the diopolar 
amide bond (40) (18, 41).  

The electroselectivity theory deserves attention when considering salt ion-protein 
interactions. Developed based on the anions’ affinity for the anion exchanger, the 
electroselectivity theory proposed, purely based on the electrostatic interaction, that the ions 
with higher valency, such as SO42- , interact with the positive-charge residues on the protein 
surface more strongly than those with a single valence, such as SCN-(42, 43). The strong 
electrostatic interactions imparted by SO42- were recently demonstrated by exploring specific 
ion effects on interfacial water structure adjacent to a bovine serum albumin at pH 
conditions below its pI using vibrational sum frequency spectroscopy (VSFS) (44).  

5. From protein-ion interactions to protein-protein interactions 
The complexity of protein-protein interactions as modulated by salt ions at low concentrations 
might be explained from the framework of dominance of specific electrostatic interactions 
from both cation and anions for the protein surface, concomitantly considering the following 
biophysical properties including net charge, surface charge density and hydration of a protein, 
and hydration, size, polarizability and valency of salt ions.  

The first key property is the macroscopic net charge (considering the protein as a particle) as 
modulated by pH. First, a protein is net charge neutral, positively-charged and negatively-
charged at pH near, below, or above its pI, respectively. Furthermore, patches of protein 
surface could be macroscopically weakly-hydrated because of the abundantly exposed 
nonpolar and polar groups, regardless of whether a protein surface is overall hydrophobic 
or hydrophilic. It was pointed out that in general 1/3 of the protein surface is hydrophobic, 
resulting in a partially weakly-hydrated surface(45). Although the net charge of the protein 
is dictated by the solution pH, its nonpolar or polar surface might maintain its property of 
weak hydration when the native folding structure is not drastically affected by pH and low 
salt concentrations. As pH decreases below its pI, the increasingly net positive-charges, from 
the weakly hydrated side chains of Arg, His and Lys, might render the protein surface even 
more weakly hydrated. At pH above its pI, the strongly hydrated carboxylates, from the 
strongly hydrated side chains of Asp and Glu, bring more water onto the protein surface, 
which results in the surface becoming more hydrated.   

5.1 pH near pI 

A protein is net charge neutral at pI with the equal number of positive and negative-charged 
residues. Therefore the protein molecules may approach each other and fully explore 
complementary interaction configurations (46). It is well-known that a protein has the 
lowest solubility near its pI and easily precipitates, suggesting the presence of strong 
intermolecular attractive interactions. The interactions can be highly anisotropic due to 
ionic-pair interactions, cation-π interaction, hydrophobic interaction and others types of 
interactions. It is difficult to dissect which type of interaction contributes most to the 
intermolecular interactions, which might be sequence dependent and protein-specific.  
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Our previous experiment of antibody liquid-liquid phase separation near its pI suggests 
that the intermolecular interactions were attractive and sensitive to salts, indicating that 
there were electrostatic interactions between the antibodies. Our observations of the 
general salting-in trends in the solubility measurement and disruption of intermolecular 
electrostatic attractive interactions in the LLPS are in agreement of the solubility data at 
low salt concentrations for other proteins near their respective pI, i.e. carboxyhemoglobin 
(47).  The idea of attractive electrostatic interactions is especially supported by the salting-
in behavior near its pI by KF. Typically, KF only salts out neutral peptides without 
charged side chains and nonpolar small molecules (16, 17). The general salting-in trend is 
also consistent with the electrostatic interaction theory as described by Equation 4. 
However, this theory cannot explain the ranking of the anion’s effectiveness for raising 
the antibody solubility. 

In the monovalent K+ salt solutions, K+ does not match well with the strongly hydrated 
carboxylate as discussed above. In contrast, the water affinity of the weakly hydrated 
positive-charge side chains, polar and nonpolar groups match well with those weakly 
hydrated anions from SCN- to Cl-. It is then expected that K+ interacts with protein surface 
fairly weakly and anion could specifically binds to the protein surface in which their 
specificities are determined by their binding constants for the protein. This idea is consistent 
with the specific anion’s effect, as described by a direct Hofmeister series, of raising the 
antibody solubility and disruption of the intermolecular attractive interactions at pH 7.1. In 
addition, this idea is in agreement with the recent findings where a chaotropic monovalent 
anion bound more strongly to a net-charge neutral macromolecule, like BSA near its pI and 
polar Poly-(N-isopropylacrylamide), than a kosmotropic monovalent anion(44) (48). 

On the other hand, strongly hydrated multivalent cation, such as Mg2+ and Ca2+, could bind 
to the strongly-hydrated carboxylate. In addition, there are strong interactions between the 
amide bond and multivalent cation (17). The above two modes of binding could make 
multivalent cations strong salting-in reagents (just like the anions) at low salt concentrations, 
overshadowing the possible salt-outing of the nonpolar residues on a protein by the 
multivalent cations.  

In short, the electrostatic attractive interactions may dominate at protein-protein interactions 
in low salt solutions at pH near its pI, where the binding strengths between the protein 
surface for both cation and anions, working in synergy, determines the salting-in 
effectiveness of the salts as they are initially added. 

5.2 pH below pI 

When a protein is net charged at pH above and below its pI, the aforementioned 
observations of protein-protein interactions initially becoming more attractive or drop in 
protein solubility suggest that (i) the electrostatic repulsion dominates the protein-protein 
interactions and (ii) the initial addition of the salts to a charged protein effectively 
neutralizes the net charge of the protein and reduces the electrostatic repulsion.  

Below pI, the positive-charges on proteins are from the weakly hydrated side chains of 
Arg, Lys or His. In addition, polar and nonpolar sites on the protein surface are also 
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weakly hydrated. As results, the more weakly hydrated a monovalent anion is, the more 
strongly it interacts with the positive-charged protein, and the more effectively it 
neutralizes the protein’s net charge. The monovalent anions then follow the reverse 
Hofmeister series for their effectiveness of weakening the electrostatic repulsive 
intermolecular interactions and decreasing the protein solubility. This idea is consistent 
with the solubility measurement and phase transition data for both lysozyme and the 
antibody. The ranking for the binding strength between the anions and this antibody is 
also in agreement with what has been observed in monovalent salt solutions for other 
positive-charged proteins including other antibodies, BSA and lysozyme(49) (44) (22, 50). 
The binding of SO42- to the positive-charged lysozyme and BSA, consistent with the 
electroselectivity theory, provides convincing experimental evidence that there is strong 
electrostatic interaction between a positive-charged protein and divalent anions, despite 
the mismatching water affinity. 

The competitive interactions of co-ions against the counter-ions for a positive-charged 
protein become apparent for the strongly hydrated multivalent cation, i.e. Mg2+. For 
example, Mg2+ may interact strongly at the strongly hydrated carboxylate or peptide groups 
in comparisons to Na+ and K+, effectively raising the positive-charges of the protein and 
hindering the anion’s charge neutralization effect. Then, it appears that MgCl2 will be less 
effective at weakening the electrostatic repulsive interactions and decreasing the protein 
solubility than NaCl (with the same molar concentration of Cl-). Therefore, the protein-
protein interactions are expected to be more repulsive in the MgCl2 solutions than in the 
NaCl solutions, following the direct Hofmeister series. This notion is in agreement with the 
measurement of the phase transition temperature for lysozyme(21). Similarly, solubility of 
lysozyme in multivalent cation salt solutions was higher than that in the monovalent cation 
salt solutions with the same anion(24). 

When anions complete their charge neutralization process as suggested by the minimum 
of protein solubility in Figure 3, the protein can be considered as pseudo charge-neutral. 
The salt’s effect on protein-protein interactions then is expected to follow the direct 
Hofmeister series, as described above for a protein near its pI. This is the reason for why 
we observed the nonmonotonic behavior in the aforementioned proteins at pH below 
their pI.  

5.3 pH above pI 

On the other hand, at pH above its pI, the protein is negatively charged. Although the net 
negative charges are from the strongly hydrated carboxylate side chains on Asp and Glu, its 
surface still has significant presence of polar and nonpolar residues, attracting weakly 
hydrated anions. It is anticipated that the competitive bindings of cation and anion for 
protein surface determine the final effect on protein-protein interactions and solubility. The 
counterions with strong electrostatic interactions with the proteins, i.e. multivalent cations, 
can neutralize the net charge, weaken the repulsive electrostatic intermolecular interactions 
and decrease the protein solubility more effectively than the monovalent cations of Na+, 
following the reverse Hofmeister series. Furthermore, in the Na+ salt solutions, the anion’s 
binding to the weakly hydrated sites, possibly stronger than that between Na+ and the 
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Our previous experiment of antibody liquid-liquid phase separation near its pI suggests 
that the intermolecular interactions were attractive and sensitive to salts, indicating that 
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However, this theory cannot explain the ranking of the anion’s effectiveness for raising 
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positive-charge side chains, polar and nonpolar groups match well with those weakly 
hydrated anions from SCN- to Cl-. It is then expected that K+ interacts with protein surface 
fairly weakly and anion could specifically binds to the protein surface in which their 
specificities are determined by their binding constants for the protein. This idea is consistent 
with the specific anion’s effect, as described by a direct Hofmeister series, of raising the 
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addition, this idea is in agreement with the recent findings where a chaotropic monovalent 
anion bound more strongly to a net-charge neutral macromolecule, like BSA near its pI and 
polar Poly-(N-isopropylacrylamide), than a kosmotropic monovalent anion(44) (48). 

On the other hand, strongly hydrated multivalent cation, such as Mg2+ and Ca2+, could bind 
to the strongly-hydrated carboxylate. In addition, there are strong interactions between the 
amide bond and multivalent cation (17). The above two modes of binding could make 
multivalent cations strong salting-in reagents (just like the anions) at low salt concentrations, 
overshadowing the possible salt-outing of the nonpolar residues on a protein by the 
multivalent cations.  

In short, the electrostatic attractive interactions may dominate at protein-protein interactions 
in low salt solutions at pH near its pI, where the binding strengths between the protein 
surface for both cation and anions, working in synergy, determines the salting-in 
effectiveness of the salts as they are initially added. 

5.2 pH below pI 

When a protein is net charged at pH above and below its pI, the aforementioned 
observations of protein-protein interactions initially becoming more attractive or drop in 
protein solubility suggest that (i) the electrostatic repulsion dominates the protein-protein 
interactions and (ii) the initial addition of the salts to a charged protein effectively 
neutralizes the net charge of the protein and reduces the electrostatic repulsion.  

Below pI, the positive-charges on proteins are from the weakly hydrated side chains of 
Arg, Lys or His. In addition, polar and nonpolar sites on the protein surface are also 
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weakly hydrated. As results, the more weakly hydrated a monovalent anion is, the more 
strongly it interacts with the positive-charged protein, and the more effectively it 
neutralizes the protein’s net charge. The monovalent anions then follow the reverse 
Hofmeister series for their effectiveness of weakening the electrostatic repulsive 
intermolecular interactions and decreasing the protein solubility. This idea is consistent 
with the solubility measurement and phase transition data for both lysozyme and the 
antibody. The ranking for the binding strength between the anions and this antibody is 
also in agreement with what has been observed in monovalent salt solutions for other 
positive-charged proteins including other antibodies, BSA and lysozyme(49) (44) (22, 50). 
The binding of SO42- to the positive-charged lysozyme and BSA, consistent with the 
electroselectivity theory, provides convincing experimental evidence that there is strong 
electrostatic interaction between a positive-charged protein and divalent anions, despite 
the mismatching water affinity. 

The competitive interactions of co-ions against the counter-ions for a positive-charged 
protein become apparent for the strongly hydrated multivalent cation, i.e. Mg2+. For 
example, Mg2+ may interact strongly at the strongly hydrated carboxylate or peptide groups 
in comparisons to Na+ and K+, effectively raising the positive-charges of the protein and 
hindering the anion’s charge neutralization effect. Then, it appears that MgCl2 will be less 
effective at weakening the electrostatic repulsive interactions and decreasing the protein 
solubility than NaCl (with the same molar concentration of Cl-). Therefore, the protein-
protein interactions are expected to be more repulsive in the MgCl2 solutions than in the 
NaCl solutions, following the direct Hofmeister series. This notion is in agreement with the 
measurement of the phase transition temperature for lysozyme(21). Similarly, solubility of 
lysozyme in multivalent cation salt solutions was higher than that in the monovalent cation 
salt solutions with the same anion(24). 

When anions complete their charge neutralization process as suggested by the minimum 
of protein solubility in Figure 3, the protein can be considered as pseudo charge-neutral. 
The salt’s effect on protein-protein interactions then is expected to follow the direct 
Hofmeister series, as described above for a protein near its pI. This is the reason for why 
we observed the nonmonotonic behavior in the aforementioned proteins at pH below 
their pI.  

5.3 pH above pI 

On the other hand, at pH above its pI, the protein is negatively charged. Although the net 
negative charges are from the strongly hydrated carboxylate side chains on Asp and Glu, its 
surface still has significant presence of polar and nonpolar residues, attracting weakly 
hydrated anions. It is anticipated that the competitive bindings of cation and anion for 
protein surface determine the final effect on protein-protein interactions and solubility. The 
counterions with strong electrostatic interactions with the proteins, i.e. multivalent cations, 
can neutralize the net charge, weaken the repulsive electrostatic intermolecular interactions 
and decrease the protein solubility more effectively than the monovalent cations of Na+, 
following the reverse Hofmeister series. Furthermore, in the Na+ salt solutions, the anion’s 
binding to the weakly hydrated sites, possibly stronger than that between Na+ and the 
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carboxylate, may effectively increase the repulsive interactions. This is consistent with the 
experimental observation of the experimental findings for protein-protein interactions of 
ovalbumin in NaCl and YCl3 solutions at pH conditions above its pI. Specifically, in the 
NaCl solution Cl-‘s binding to ovalbumin preempted that of Na+, effectively raising the 
intermolecular repulsive interactions. On the other hand, the trivalent Y3+ could bind to the 
carboxylate strongly, neutralize the net negative-charges and weaken the repulsive 
intermolecular interactions. After charge neutralization, the salting-in effect by YCl3 
followed. 

However, when either strongly hydrated F- or acetate was used, they mismatched for both 
the positive-charged side chains and weakly hydrated polar and nonpolar residues on the 
net negative-charged protein surface. Possibly, Na+ now might interact with the protein 
stronger than F- or acetate and neutralize the negative charges. This could be a reasonable 
explanation for the nonmonotonic behavior mentioned for Apoferrtin in NaAcetate solution, 
but not in the NaCl solution. 

5.4 Surface charge density 

The surface charge density of a protein could dramatically change the above 
nonmonotonic behavior. At pH close to the pI or a large-size protein with small number of 
either positive or negative net charges, where the surface charge density is low, only the 
monotonic salting-in behavior could be observed because the charge neutralization 
process is less dramatic. On the other hand, when a protein has high surface charge 
density due to either a small size or a large number of positive charges, the anions might 
not completely neutralize the positive charges even at molar concentration and therefore 
only a decrease in protein solubility can occur. As a matter of fact, this might be for the 
case of lysozyme solubility at pH 4 and 7, especially when a weak chaotropic anion, i.e. 
Cl-, was used(22). The reason is that Cl- could bind to the protein surface less strongly and 
effectively at weakening the electrostatic repulsive interactions than a strong chaotropic 
anion, such as SCN-. But at pH 9.4 where the surface charge density was smaller than at 
pH 4 and 7, the weakly hydrated SCN- could neutralize the net charges completely, and as 
a result the nonmonotonic behavior appeared.  

As proteins transition from a high surface charge density system to low, the interaction 
between a co-ion and charged surface could be explained through the smeared surface 
charge model and discrete surface charge model, respectively. In a low surface charge 
density system (discrete charge surface), such as a large-size antibody, the co-ion binding 
probably becomes more significant, in comparison to a small globular protein, i.e. 
lysozyme, of a high surface-charged density system. The reason is that the co-ion can 
approach the surface without experiencing the repulsive electrostatic force. This idea of 
co-ion adsorption to a low or medium negative-charged hydrophobic surface is supported 
by the recent molecular simulation for a self-assembled monolayer (51). The simulation 
results shows that even at a high surface charge density of – 2.0 x 10-2 C/m2, there was 
significant co-ion adsorption. Therefore, significant presence of co-ion adsorption is 
expected for a typical protein surface with a surface charge density in the low range of 
mC/m2 (10, 52),. 
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5.5 Additional attractive interaction by polarizable anions 

Another important feature of protein-protein interactions in salt solutions is the presence of 
possible additional protein-protein attractive force caused by the weakly hydrated anions 
for a positive-charged protein, although the exact mechanism remains to be defined. A 
recent Monte Carlo simulation reveals that the presence of chaotropic (or polarizable) ions, 
like SCN-, introduced this additional interaction of dispersion force in nature between 
protein molecules (53). More importantly, liquid-liquid phase separation of the antibody at 
different pHs in a KSCN solution at a pH below its pI indicates that this attractive protein-
protein interaction became stronger as the pH dropped and the protein carried more 
positive charges.  

6. Conclusions 
Despite the complexity of salt ion and protein interactions and their effects on protein-
protein interactions, the rich salt-specific effect at low salt concentrations may be 
qualitatively explained based on the specific binding of both anions and cations for protein 
surface with heterogeneous surface chemistry as illustrated in Figure 5. In the future, it 
would be beneficial to have a quantitative description for the salt ions’ effect on protein-
protein interactions. 

As shown in Figure 5, protein surface may always have hydrophobic patches, which are 
weakly hydrated and matches well with the weakly hydrated anions. Additionally, the 
exposed dipolar amide bond of the peptide backbone is the potential site for the divalent 
cation and weakly hydrated anions. Furthermore, pH change not only modulates the net 
charge property of the protein but also modifies the degree of surface hydration. 
Specifically, as the pH decreases away from their pIs, proteins become net positively-
charged and even more weakly hydrated because the positive-charges are from the 
weakly hydrated side chains of Arg, Lys, and His. At pH values close to their pIs, proteins 
are net-charge neutral. Then as pH increases away from their pI, proteins become becomes 
net negatively-charged and less weakly hydrated because the negative charges are from 
strongly hydrated carboxylate from Asp and Glu.  

At a pH close to the pI of a protein, both cations and anions can access the neutral protein 
and may work in synergy to disrupt the attractive intermolecular protein interactions and 
result an increase of protein solubility. On the other hand, they work competitive for a 
sufficiently charged protein (in Figure 5). Specifically, the counter-ion from the salt tends to 
neutralize the net charge of the protein, weakening the electrostatic repulsive intermolecular 
interactions while the co-ion is likely to hinder the charge-neutralization effect by the 
counter-ion, effectively strengthening the repulsive intermolecular interactions. The 
interaction strength between the ions and protein surface is dependent on both electrostatic 
and hydration properties for both ions and protein. The final outcome of protein-protein 
interactions is then determined by a combination of the protein surface charge density and 
the relative binding strength of both ions for the protein surface. When the counter-ions 
interact with the charge protein more strongly than the co-ions, the charge neutralization 
step dominates, resulting in protein-protein interactions becoming less repulsive, after 
which there could be the salting-in effect as if the protein-counter-ion complex is pseudo 
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carboxylate, may effectively increase the repulsive interactions. This is consistent with the 
experimental observation of the experimental findings for protein-protein interactions of 
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intermolecular interactions. After charge neutralization, the salting-in effect by YCl3 
followed. 
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net negative-charged protein surface. Possibly, Na+ now might interact with the protein 
stronger than F- or acetate and neutralize the negative charges. This could be a reasonable 
explanation for the nonmonotonic behavior mentioned for Apoferrtin in NaAcetate solution, 
but not in the NaCl solution. 

5.4 Surface charge density 

The surface charge density of a protein could dramatically change the above 
nonmonotonic behavior. At pH close to the pI or a large-size protein with small number of 
either positive or negative net charges, where the surface charge density is low, only the 
monotonic salting-in behavior could be observed because the charge neutralization 
process is less dramatic. On the other hand, when a protein has high surface charge 
density due to either a small size or a large number of positive charges, the anions might 
not completely neutralize the positive charges even at molar concentration and therefore 
only a decrease in protein solubility can occur. As a matter of fact, this might be for the 
case of lysozyme solubility at pH 4 and 7, especially when a weak chaotropic anion, i.e. 
Cl-, was used(22). The reason is that Cl- could bind to the protein surface less strongly and 
effectively at weakening the electrostatic repulsive interactions than a strong chaotropic 
anion, such as SCN-. But at pH 9.4 where the surface charge density was smaller than at 
pH 4 and 7, the weakly hydrated SCN- could neutralize the net charges completely, and as 
a result the nonmonotonic behavior appeared.  

As proteins transition from a high surface charge density system to low, the interaction 
between a co-ion and charged surface could be explained through the smeared surface 
charge model and discrete surface charge model, respectively. In a low surface charge 
density system (discrete charge surface), such as a large-size antibody, the co-ion binding 
probably becomes more significant, in comparison to a small globular protein, i.e. 
lysozyme, of a high surface-charged density system. The reason is that the co-ion can 
approach the surface without experiencing the repulsive electrostatic force. This idea of 
co-ion adsorption to a low or medium negative-charged hydrophobic surface is supported 
by the recent molecular simulation for a self-assembled monolayer (51). The simulation 
results shows that even at a high surface charge density of – 2.0 x 10-2 C/m2, there was 
significant co-ion adsorption. Therefore, significant presence of co-ion adsorption is 
expected for a typical protein surface with a surface charge density in the low range of 
mC/m2 (10, 52),. 
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recent Monte Carlo simulation reveals that the presence of chaotropic (or polarizable) ions, 
like SCN-, introduced this additional interaction of dispersion force in nature between 
protein molecules (53). More importantly, liquid-liquid phase separation of the antibody at 
different pHs in a KSCN solution at a pH below its pI indicates that this attractive protein-
protein interaction became stronger as the pH dropped and the protein carried more 
positive charges.  
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protein interactions, the rich salt-specific effect at low salt concentrations may be 
qualitatively explained based on the specific binding of both anions and cations for protein 
surface with heterogeneous surface chemistry as illustrated in Figure 5. In the future, it 
would be beneficial to have a quantitative description for the salt ions’ effect on protein-
protein interactions. 

As shown in Figure 5, protein surface may always have hydrophobic patches, which are 
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exposed dipolar amide bond of the peptide backbone is the potential site for the divalent 
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net negatively-charged and less weakly hydrated because the negative charges are from 
strongly hydrated carboxylate from Asp and Glu.  
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and may work in synergy to disrupt the attractive intermolecular protein interactions and 
result an increase of protein solubility. On the other hand, they work competitive for a 
sufficiently charged protein (in Figure 5). Specifically, the counter-ion from the salt tends to 
neutralize the net charge of the protein, weakening the electrostatic repulsive intermolecular 
interactions while the co-ion is likely to hinder the charge-neutralization effect by the 
counter-ion, effectively strengthening the repulsive intermolecular interactions. The 
interaction strength between the ions and protein surface is dependent on both electrostatic 
and hydration properties for both ions and protein. The final outcome of protein-protein 
interactions is then determined by a combination of the protein surface charge density and 
the relative binding strength of both ions for the protein surface. When the counter-ions 
interact with the charge protein more strongly than the co-ions, the charge neutralization 
step dominates, resulting in protein-protein interactions becoming less repulsive, after 
which there could be the salting-in effect as if the protein-counter-ion complex is pseudo 
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charge-neutral. In the opposite situation, the strong interaction from the co-ions effectively 
renders the protein-protein interactions more repulsive. 

 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 5. Schematic illustration of the changes in net charge and hydration properties of a 
protein as pH varies.  
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charge-neutral. In the opposite situation, the strong interaction from the co-ions effectively 
renders the protein-protein interactions more repulsive. 

 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 5. Schematic illustration of the changes in net charge and hydration properties of a 
protein as pH varies.  
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1. Introduction  
One of the most pressing challenges in the post genomic era is the characterization and 
charting of protein-protein interactions (PPIs) in living organisms, as these are essential in 
the shaping of normal and pathological behaviours in cells. It is for this reason that 
unravelling the nature of PPIs has been the pursuit of many experimental techniques, 
ranging from high-throughput to high-detail approaches (Shoemaker and Panchenko 2007), 
as well as a wide spectrum of computational prediction methods. Current estimations of 
human interactome size range from 100,000 to more than 600,000 interactions (Bork et al. 
2004; Stelzl and Wanker 2006; Stumpf et al. 2008; Venkatesan et al. 2009). Experimental 
strategies have reached their best at describing around 50,000 interactions by collating a 
large number of small and very focused experiments with high-throughput ones, such as 
massive yeast two-hybrid (Rual et al. 2005; Stelzl et al. 2005), or mass spectrometry coupled 
to affinity purification experiments (Ewing et al. 2007; Hubner et al. 2010). The smallest gap 
between experimentally validated and theoretically predicted PPIs amounts to around 50% 
of total interactions, being probably much higher. When it comes to to studying PPIs in 
other species on which, even having been sequenced, experimental data is even more scarce, 
the need for PPI-map completeness is even more notorious. Computational prediction and 
characterization of PPIs, with its drawbacks, successes and challenges, constitutes a valuable 
aid in the way to a complete description of interactomes, hence being a promising research 
field that has enriched our image of living cells for some time now. 

Computational tools can provide useful information at different levels of resolution and this 
chapter seeks to present an up-to-date and comprehensive review of these. The first part of 
the chapter presents the theoretical basis of computational tools designed to predict PPIs. 
The main aim of these tools is to predict whether two proteins A and B can interact, either 
directly or indirectly (functional associations), but without dwelling on the molecular details 
of the interaction, i.e. which proteins interact. These predictions are useful as complement to 
large-scale experimental analyses, either to confirm observed interactions or discard false 
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positives, and also to uncover novel interactions. The second part of the chapter is devoted 
to the computational methods developed to predict protein interfaces. At this level, 
predictions identify specific regions and residues of the protein that are likely to mediate 
PPIs. Thus, these methodologies uncover a higher level of detail, i.e. how proteins interact, 
and have a number of applications in experimental work such as guiding the mapping of 
protein interfaces by mutagenesis or structural modelling of protein complexes. A special 
emphasis will be given to a novel and highly accurate tool: VORFFIP(Segura et al. 2011). The 
concluding part of the chapter describes computational tools developed to predict the 
important regions or hot spots in protein interfaces. Recent successes in the quest for finding 
new therapeutic agents to modulate PPIs have been aided by the realization, following the 
pioneering work by Clackson and Wells(Clackson and Wells 1995), that the binding energy 
of many PPIs can be ascribed to a small and complementary set of interfacial residues: a hot 
spot of binding energy. Thus, identifying these critical residues by computational means has 
clear applications in drug discovery and in some aspects of protein design. PCRPi(Assi et al. 
2010), a novel and highly precise tool will be discussed.  

2. Prediction of protein-protein interactions 
With the aim of detailing a complete protein interaction map that agglutinates the rising 
amount of genomic data, high-throughput experimental techniques have walked in parallel 
with computational approaches. There are six basic computational approaches to predict 
PPIs depending on the nature of the information used for the prediction. These include PPIs 
inferred from: (i) genomic context including phylogenetic profiles, gene neighbouring 
analyses and gene fusion events; (ii) co-evolution events; (iii) protein domain co-occurrence 
(or signatures) between pair of proteins; (iv) text mining; (v) transference of annotation 
between species: protein-protein interologs; and (vi) structural annotation including 
homology-based or ab initio. Figure 1 depicts an overall diagrammatic description of these 
basic approaches and tables 1 and 2 compile a number of on line databases and 
computational tools respectively.  

2.1 Genomic context methods 

Biological processes subjected to evolutionary pressure tend to cluster together all 
interrelated molecular actors in single units to simplify control mechanisms and thus avoid 
the lost of any essential component. This principle, which operates from maintaining 
bacterial operon systems to more sophisticated co-regulation strategies found in eukaryotes, 
is on the basis of genomic context based methods for the detection of functional PPIs. 

The first group of genome context methods are based in the comparison of phylogenetic 
profiles. A phylogenetic profile is the presence or absence of a given gene across N species 
that can be expressed as an N-dimensional array of ones and zeroes. Originally, functional 
relationship was assumed if having similar phylogenetic profiles(Pellegrini et al. 1999); 
however, positive results were limited to very strong interactions and many relations 
between analogous proteins were missing. Further improvements were made by discarding 
overlaps given by chance(Wu et al. 2003), using protein domains instead of full length 
proteins(Pagel et al. 2004), through a concurrent search of multiple independent 
phylogenetic events of gain/loss of pairs of genes to discard spurious correlated 
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patterns(Barker and Pagel 2005), or the use of enhanced representation of phylogenetic 
trees(Ta et al. 2011). The second group of genome context methods is based on gene 
closeness among different genomes, considering closeness as a sign of functional 
relatedness. After some initial successes(Koonin et al. 2001; Evguenieva-Hackenberg et al. 
2003) and despite some improvements such as allowing for changes in gene order and 
orientation(Szklarczyk et al. 2011), large-scale predictions should be considered cautiously. 
Finally, gene fusion approaches are a group of computational tools based on the evidence 
that some interacting proteins have orthologous where both proteins appear fused in a 
single protein. Thus, it has been observed that many of these pairs, fused in single proteins 
in other organisms, correspond to binding partners or at least functionally related 
proteins(Marcotte et al. 1999; Yanai et al. 2001). Rosetta method(Marcotte et al. 1999) and 
other implementations(Enright et al. 1999) exploit gene fusion events as predictors of PPIs.  
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being reported in the literature (Travers and Fares 2007; Chao et al. 2008; Presser et al. 2008). 
Co-evolutionary information may be divided into three groups: the simultaneous loss or 
gain of orthologous genes(Marcotte et al. 1999), correlated changes affecting both interacting 
partners at whole sequence level (explored by mirrortree-based approaches)(Goh and Cohen 
2002; Hakes et al. 2007; Juan et al. 2008) or single amino acids changes(Mintseris and Weng 
2005; Madaoui and Guerois 2008).  

In the case of mirrortree-based methods (e.g.(Ochoa and Pazos 2010)), the likelihood of 
interaction is measured as a correlation value between the phylogenetic trees of two families 
of proteins. Although these approaches have been successfully applied in PPIs 
prediction(Labedan et al. 2004; Dou et al. 2006; McPartland et al. 2007; Juan et al. 2008), it is 
still a major problem distinguishing between co-evolution arising from a direct PPI, what 
has been termed as co-adaptation (Pazos and Valencia 2008), from non-specific changes and 
thus not necessary driven by a functional relatedness(Lovell and Robertson 2010). Recent 
advances in this area include MatrixMatchMaker algorithm(Tillier and Charlebois 2009) and 
a faster implementation suitable for large-scale analyses(Rodionov et al. 2011). 

The detection of site-specific co-evolution events reflecting PPIs, despite being more 
intuitive and informative, is even more challenging given the complexity of the mixed 
evolutionary-structural scenario involved. A single point mutation might ease or complicate 
each imaginable path of mutation at any other position in the complex, regardless of its 
distance from the interface(Lovell and Robertson 2010). In fact, co-evolution events have 
been detected affecting sites that are distant structurally (Gobel et al. 1994; Clarke 1995; 
Gloor et al. 2005; Fares and McNally 2006). On the other hand, the probability of correlated 
amino acid changes is closely related to the chemical nature of changes. In this sense, 
volume variations seem to strongly affect fitness, and so they are frequently balanced by 
evolution machinery (up to almost 50% of the cases)(Williams and Lovell 2009). Moreover, 
interface residues in obligate complexes evolve at a slower rate than those in transient 
interactions(Mintseris and Weng 2005).Taken together, all these particulars illustrate the 
challenges encountered when looking for site-specific co-evolution events related to PPIs. 
Recent developments have looked at improving the discrimination between direct and 
indirect correlations(Burger and van Nimwegen 2010), or including amino acid background 
distribution information and the mutual information of residues physicochemical 
properties(Gao et al. 2011). However, new, more discriminative, approaches are required to 
better understand co-evolution at residue-centred level. 

2.3 Domain-based methods 

There are strong evidences supporting the idea that the range of different PPIs can be 
accounted for by considering a more reduced set of specific domain-domain interactions, 
domain signatures, that are even conserved across different species(Finn et al. 2006; Itzhaki 
et al. 2006; Stein et al. 2011). Thus, the basis of domain-based methods is presence/absence 
of given domain signatures between pairs of proteins that can be used to infer interaction. 
An early method exploiting domain signatures was an association method where domain 
interactions were assumed if the frequency of association was higher than the expected 
frequency(Kim et al. 2002). Further improvements have been devised to improve predictions 
including the domain pair exclusion analysis, which implemented a new scoring 
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scheme(Riley et al. 2005), the use of Random Forest ensemble classifiers to deal with the 
pairing of multi-domain proteins(Chen and Liu 2005) or the use of Gene Ontology(Lee et al. 
2006) or co-evolution data(Jothi et al. 2006).  

2.4 Literature-based data mining methods 

Numerous research efforts have been focused on automatically extracting and analysing 
information from the scientific literature in order to infer putative PPIs(Blaschke et al. 2001; 
Fundel et al. 2007; Airola et al. 2008). These include, the search for the co-occurrence of 
terms(Blaschke et al. 2001) or the presence of similar Gene Ontology terms(Pesquita et al. 
2009) or kernel-based methods including subsequence kernels, tree kernels, shortest path 
kernels and graph kernels(Tikk et al. 2010). The most recent approaches use multiple kernels 
to maximize the information extracted from scientific papers(Kim et al. 2008; Miwa et al. 
2009), the combination of multiple kernels and machine learning algorithms to improve the 
scoring(Yang et al. 2011), or the more recent neighbourhood hash graph kernels that are 
substantially faster than previous text-mining approaches(Zhang et al. 2011). 
 

Name URL Reference 
STRING http://string-db.org (Szklarczyk et al. 2011) 
BioGRID http://thebiogrid.org/ (Stark et al. 2011) 
IntAct http://www.ebi.ac.uk/intact/ (Aranda et al. 2010) 
HPRD http://www.hprd.org/ (Prasad et al. 2009) 
HitPredict http://hintdb.hgc.jp/htp/ (Patil et al. 2011) 
DIP http://dip.doe-mbi.ucla.edu/dip (Salwinski et al. 2004) 

MINT http://mint.bio.uniroma2.it/mint/ (Chatr-aryamontri et al. 
2007) 

TAIR www.arabidopsis.org/portals/proteome/ (Swarbreck et al. 2008) 
iPFAM http://ipfam.sanger.ac.uk/ (Finn et al. 2005) 
3DID http://3did.irbbarcelona.org/ (Stein et al. 2011) 
DIMA 3.0 http://webclu.bio.wzw.tum.de/dima/ (Luo et al. 2011) 
DOMINE http://domine.utdallas.edu/cgi-bin/Domine (Yellaboina et al. 2011) 
GWIDD http://gwidd.bioinformatics.ku.edu (Kundrotas et al. 2010) 
IsoBase http://isobase.csail.mit.edu/ (Park et al. 2011) 

I2D http://ophid.utoronto.ca/ophidv2.201 (Brown and Jurisica 
2007) 

DroID http://www.droidb.org (Murali et al. 2011) 
HCPIN http://nesg.org:9090/HCPIN (Huang et al. 2008) 
HIV1,HPID http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions (Fu et al. 2009) 
MPIDB http://www.jcvi.org/mpidb/about.php (Goll et al. 2008) 

Table 1. List of major databases compiling experimentally determined or computationally 
predicted PPIs.  
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2.5 Orthology mapping (Interologs) methods 

The basis of these methods is the transference of annotated interactions between organisms; 
hence the term interologs to refer to predicted homologous interactions(Walhout et al. 2000; 
Shoemaker and Panchenko 2007; Lewis et al. 2010). Interolog annotations have been 
successfully applied to transfer experimentally known interactions in yeast to predicted 
ones in worm(Matthews et al. 2001) and between mouse and human(Huang et al. 2007). 
Although some improvement has been devised such as scoring schemes that depend on the 
sources of experimental data(Jonsson and Bates 2006), the applicability of orthology 
mapping is limited. Firstly, accurate predictions require high sequence similarities between 
interologs (~70%)(Mika and Rost 2006) thus limiting its range of applicability. Secondly, 
even at high sequence identity level, in some cases small variations in protein sequence at 
the interface have been shown to dramatically change PPI specificity, thus redefining 
complex protein networks and leading to important phenotypic differences(Panni et al. 
2002; Kiemer and Cesareni 2007).  

2.6 Structure-based methods 

A final category of computational methods includes those based in structural information. 
The structure of a protein complex formed by two or more proteins can be modelled using 
the structure of a known protein complex as template either by homology modelling or 
threading(Lu et al. 2002; Aloy et al. 2004; Hue et al. 2010). Even in the absence of a suitable 
template, the structure of the complex can be modelled by using protein docking(Wass et al. 
2011) and selecting the protein complex based on predicted binding energy, i.e. ab initio 
modeling. Despite being a promising strategy, and without considering the high 
computational cost, the correlation between predicted and experimentally measured 
binding affinities, such as Kd, is very low thus greatly impairing its predictive power 
(Kastritis and Bonvin 2010; Stein et al. 2011). Other strategies combine structural data, 
docking and evolutionary conservation(Tuncbag et al. 2011). 
 

Name Methodology URL Reference 

MirrorTree Co-evolution http://csbg.cnb.csic.es/mtserver/ (Ochoa and 
Pazos 2010) 

MatrixMatchMaker Co-evolution http://www.uhnresearch.ca/labs/tillier/
(Tillier and 
Charlebois 
2009) 

iHOP Text mining http://www.ihop-net.org/ 
(Hoffmann 
and Valencia 
2004) 

PathBLAST Orthology http://www.pathblast.org/ (Kelley and 
Ideker 2005) 

InterPreTS Structure-based http://www.russelllab.org/  (Aloy and 
Russell 2003) 

IBIS Structure-based http://www.ncbi.nlm.nih.gov/ 
Structure/ibis/ibis.cgi 

(Shoemaker et 
al. 2010) 

Table 2. List of on line resources for the prediction of PPIs. 
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3. Prediction of protein binding sites 
As indicated by its name, binding site prediction methods seek to define the regions in 
proteins that are more likely to mediate PPIs. The level of resolution is therefore higher and the 
starting point is either the sequences or structures of proteins that are known to interact (i.e. 
experimental evidence) but for which no structural details of the interaction are known.  

3.1 Distinctiveness of interface residues 

Large-scale analyses of the structures of protein complexes have shown that residues located 
in interfaces present a number of differential physicochemical and structural qualities. In 
general, hydrophobic residues are overrepresented in the interfaces of permanent 
complexes(Lo Conte et al. 1999; Glaser et al. 2001) and charge residues, Arg in particular, are 
also commonly found in interfaces and often define the lifetime of complexes(Zhou and 
Shan 2001). A higher accessibility to the solvent than exposed residues not located in 
interfaces is also a differential trait of interface residues(Chen and Zhou 2005), being the 
most effective feature to predict interfaces in homodimeric complexes(Jones and Thornton 
1997). On the other hand and in agreement with earlier observations that found interface 
residues have lower crystallographic B-factors(Neuvirth et al. 2004), the side chains of 
interface residues are less likely to sample alternative rotamers, i.e. more rigid, to decrease 
the entropic cost upon complex formation(Cole and Warwicker 2002; Fleishman et al. 2011). 
Sequence conservation has also proved to be a predictor(Lichtarge et al. 1996; Wang et al. 
2006), although it remains a contentious issue as some works have shown that interfaces are 
not more conserved than the rest of the protein(Grishin and Phillips 1994; Caffrey et al. 
2004). Finally, it has been shown that interfaces are richer in -strands and long loops while 
-helical conformations are disfavoured(Neuvirth et al. 2004). 

3.2 Prediction methods 

Prediction methods rely on sequence and/or structural information that is unique to 
interface residues (see before). Hence, prediction methods can be divided into two groups: 
sequence-based methods, which rely only on the primary sequence of the protein and 
structure-based methods that require the three-dimensional structure of the protein. Table 3 
compiles a list of on line computational tools to predict protein binding sites.  

3.2.1 Structure-based prediction methods 

One of the first structure-based prediction methods, later updated(Murakami and Jones 
2006), was based on surface patch analysis(Jones and Thornton 1997). Surface patches were 
defined by grouping neighbouring exposed residues that were subsequently ranked using a 
scoring function that included the solvation potential, interface propensity, hydrophobicity, 
protrusion and accessible surface area of each of the residues within the patch. A 
probabilistic approach, ProMate, also based on patch analysis, was developed for 
heteromeric transient protein complexes by combining secondary structure content, 
hydrophobicity and crystallographic B-factors information(Neuvirth et al. 2004). The 
combination of ProMate’s predictions and a parametric scoring function based of sequence 
conservation and structural features resulted in an improvement of the accuracy of the 
predictions(de Vries et al. 2006). Other implementations of prediction methods include an 
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hydrophobicity and crystallographic B-factors information(Neuvirth et al. 2004). The 
combination of ProMate’s predictions and a parametric scoring function based of sequence 
conservation and structural features resulted in an improvement of the accuracy of the 
predictions(de Vries et al. 2006). Other implementations of prediction methods include an 
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empirical scoring function composed of side chain energy score, residue conservation and 
interface propensity(Liang et al. 2006), the search of structural interaction templates 
extracted from protein complexes(Chang et al. 2006) and a clustering algorithm that 
identifies residues with a high propensity of being located in interfaces(Negi et al. 2007). 

In order to combine and integrate heterogenous data, i.e. sources of information of a 
different nature (e.g. hydrophobicity indexes and solvent accessibility surface) into a 
common and coherent scoring framework, a number of machine learning methods have 
been proposed including Neural Networks (NN)(Fariselli et al. 2002; Chen and Zhou 2005; 
Porollo and Meller 2007), Support Vector Machines (SVM)(Bradford and Westhead 2005), 
Random Forests (RF)(Sikic et al. 2009; Segura et al. 2011) and Bayesian Networks 
(BN)(Bradford et al. 2006; Ashkenazy et al. 2010). Thus, the commonality of these 
approaches is the use of a machine-learning algorithm (NN, SVM, RF or BN) to combine a 
set of sequence- and structural-based measures into an unified score or probability. The 
nature of the combined features used by the prediction methods includes: evolutionary 
conservation and surface disposition(Fariselli et al. 2002); sequence conservation, 
electrostatic potentials, SASA, hydrophobicity, protusion and interface propensity(Bradford 
and Westhead 2005; Bradford et al. 2006); properties taken from the AAIndex 
database(Kawashima et al. 2008) (e.g. expected number of contacts within 14 Å sphere), 
multiple sequence alignment-derived features (e.g. amino acid frequency), and structural 
features(Porollo and Meller 2007); structure-based, energy terms, sequence conservation and 
crystallographic B-factors(Segura et al. 2011); structural features, sequence and secondary 
structure(Sikic et al. 2009); or more complex approaches that combine several prediction 
methods in the form of a meta-prediction(Qin and Zhou 2007; Ashkenazy et al. 2010). 

3.2.2 Sequence-based prediction methods 

Even if the structure of the protein is not available, there are still a number of prediction 
methods that are based solely on sequence information. Early examples of approaches in 
this category include a NN (Ofran and Rost 2003) that uses local sequence information, 
which was subsequently improved by including a post-neural network filtering step(Ofran 
and Rost 2007). Other approaches include SVMs that combine sequence profiles and other 
sequence-based information such as spatially neighbouring residues(Koike and Takagi 2004; 
Res et al. 2005; Chen and Li 2010), a RF that integrates physicochemical properties of 
residues, evolutionary conservation and amino acid distances(Chen and Jeong 2009), and a 
naive Bayesian classifier trained to integrate position-specific scoring matrix and predicted 
accessibility(Murakami and Mizuguchi 2010). Finally, other sequence-based methods have 
been developed to improve prediction by tacking issues such as the problem of unbalanced 
data in protein sets(Yu et al. 2010), i.e. the interface accounts for a small proportion of the 
exposed residues so the number of negative cases (non-interface residues) is much larger 
than the number of positive cases (interface residues) or improving the sampling(Engelen et 
al. 2009) in evolutionary trace-based(Lichtarge et al. 1996) methodologies. 

3.3 VORFFIP, a holistic approach to predict protein binding sites in protein structures 

VORFFIP is a novel, structure-based, method that integrates a wide range of residue-based 
features and environment information using a 2-step Random Forest ensemble 
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classifier(Segura et al. 2011). Residue-based features include structural-based, energy terms, 
evolutionary conservation and crystallographic B-factors information. VORFFIP implements 
a novel definition of local environment by means of Voronoi Diagrams (see next and Fig. 2) 
that complements residue-based information improving the accuracy of predictions.  

Residue-based information characterizes individual residues. Structure-based features 
account from 16 different features and define the local geometry of the protein at residue 
level. Structural features include, among others, the absolute and relative accessibility 
surface area, the protrusion index that is a measure of the local concavity/convexity and a 
deepness index(Vlahovicek et al. 2005). The energetic state of exposed residue is 
characterized by 10 energy terms including electrostatic potential, solvent exposure energy, 
entropy and hydrogen bond energy among others(Guerois et al. 2002). The sequence 
conservation of residues consist of the regional conservation score that defines the 
conservation for each residue and its neighbourhood in the 3D space(Landgraf et al. 2001) 
and a sequence positional score calculated from multiple sequence alignment profiles(Pei 
and Grishin 2001). Finally, crystallographic B-factors, which are a measure of thermal 
motion, are converted to Z-score as described previoulsy(Yuan et al. 2003). 

 
Fig. 2. Overview of prediction process in VORFFIP and a Voronoi Diagram of a interacting 
pair. The left side of the figure illustrates the 2-step prediction approach in VORFFIP. The 
right side of the figure shows the Voronoi Diagram of two neighbouring residues; heavy 
atoms are represented by red dots and coloured cells illustrate interaction between atoms of 
neighbouring residues. 
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empirical scoring function composed of side chain energy score, residue conservation and 
interface propensity(Liang et al. 2006), the search of structural interaction templates 
extracted from protein complexes(Chang et al. 2006) and a clustering algorithm that 
identifies residues with a high propensity of being located in interfaces(Negi et al. 2007). 

In order to combine and integrate heterogenous data, i.e. sources of information of a 
different nature (e.g. hydrophobicity indexes and solvent accessibility surface) into a 
common and coherent scoring framework, a number of machine learning methods have 
been proposed including Neural Networks (NN)(Fariselli et al. 2002; Chen and Zhou 2005; 
Porollo and Meller 2007), Support Vector Machines (SVM)(Bradford and Westhead 2005), 
Random Forests (RF)(Sikic et al. 2009; Segura et al. 2011) and Bayesian Networks 
(BN)(Bradford et al. 2006; Ashkenazy et al. 2010). Thus, the commonality of these 
approaches is the use of a machine-learning algorithm (NN, SVM, RF or BN) to combine a 
set of sequence- and structural-based measures into an unified score or probability. The 
nature of the combined features used by the prediction methods includes: evolutionary 
conservation and surface disposition(Fariselli et al. 2002); sequence conservation, 
electrostatic potentials, SASA, hydrophobicity, protusion and interface propensity(Bradford 
and Westhead 2005; Bradford et al. 2006); properties taken from the AAIndex 
database(Kawashima et al. 2008) (e.g. expected number of contacts within 14 Å sphere), 
multiple sequence alignment-derived features (e.g. amino acid frequency), and structural 
features(Porollo and Meller 2007); structure-based, energy terms, sequence conservation and 
crystallographic B-factors(Segura et al. 2011); structural features, sequence and secondary 
structure(Sikic et al. 2009); or more complex approaches that combine several prediction 
methods in the form of a meta-prediction(Qin and Zhou 2007; Ashkenazy et al. 2010). 

3.2.2 Sequence-based prediction methods 

Even if the structure of the protein is not available, there are still a number of prediction 
methods that are based solely on sequence information. Early examples of approaches in 
this category include a NN (Ofran and Rost 2003) that uses local sequence information, 
which was subsequently improved by including a post-neural network filtering step(Ofran 
and Rost 2007). Other approaches include SVMs that combine sequence profiles and other 
sequence-based information such as spatially neighbouring residues(Koike and Takagi 2004; 
Res et al. 2005; Chen and Li 2010), a RF that integrates physicochemical properties of 
residues, evolutionary conservation and amino acid distances(Chen and Jeong 2009), and a 
naive Bayesian classifier trained to integrate position-specific scoring matrix and predicted 
accessibility(Murakami and Mizuguchi 2010). Finally, other sequence-based methods have 
been developed to improve prediction by tacking issues such as the problem of unbalanced 
data in protein sets(Yu et al. 2010), i.e. the interface accounts for a small proportion of the 
exposed residues so the number of negative cases (non-interface residues) is much larger 
than the number of positive cases (interface residues) or improving the sampling(Engelen et 
al. 2009) in evolutionary trace-based(Lichtarge et al. 1996) methodologies. 

3.3 VORFFIP, a holistic approach to predict protein binding sites in protein structures 

VORFFIP is a novel, structure-based, method that integrates a wide range of residue-based 
features and environment information using a 2-step Random Forest ensemble 
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classifier(Segura et al. 2011). Residue-based features include structural-based, energy terms, 
evolutionary conservation and crystallographic B-factors information. VORFFIP implements 
a novel definition of local environment by means of Voronoi Diagrams (see next and Fig. 2) 
that complements residue-based information improving the accuracy of predictions.  

Residue-based information characterizes individual residues. Structure-based features 
account from 16 different features and define the local geometry of the protein at residue 
level. Structural features include, among others, the absolute and relative accessibility 
surface area, the protrusion index that is a measure of the local concavity/convexity and a 
deepness index(Vlahovicek et al. 2005). The energetic state of exposed residue is 
characterized by 10 energy terms including electrostatic potential, solvent exposure energy, 
entropy and hydrogen bond energy among others(Guerois et al. 2002). The sequence 
conservation of residues consist of the regional conservation score that defines the 
conservation for each residue and its neighbourhood in the 3D space(Landgraf et al. 2001) 
and a sequence positional score calculated from multiple sequence alignment profiles(Pei 
and Grishin 2001). Finally, crystallographic B-factors, which are a measure of thermal 
motion, are converted to Z-score as described previoulsy(Yuan et al. 2003). 

 
Fig. 2. Overview of prediction process in VORFFIP and a Voronoi Diagram of a interacting 
pair. The left side of the figure illustrates the 2-step prediction approach in VORFFIP. The 
right side of the figure shows the Voronoi Diagram of two neighbouring residues; heavy 
atoms are represented by red dots and coloured cells illustrate interaction between atoms of 
neighbouring residues. 
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Environment-based information accounts the local structural environment of residues. 
Interfaces tend to form contiguous patches on the surface and thus, the environment of a 
residue can provide valuable information for predictions. Several methods have been used 
to account for the local environment of residues including sliding window (e.g.(Ofran and 
Rost 2003)) and Euclidian distances (e.g. (Porollo and Meller 2007)). VORFFIP however uses 
a novel definition of environment by means of Voronoi Diagrams (VD). VD is computed 
using the heavy atoms coordinates as seeds and as a result the 3D space is partitioned into 
polyhedral cells where each single cell contains one of the atoms (Barber et al. 1996). Atoms 
sharing a common facet in the VD are said to be in contact or neighbours, i.e. part of the 
local environment. Figure 2 shows a 2D representation of a VD diagram depicting the 
interaction between atoms of two neighbouring residues. The number of contacts between  
 

Name Input Method URL Reference 

VORFFIP Structure RF http://www.bioinsilico.org/VORFFIP (Segura et 
al. 2011) 

ProMate Structure Scoring 
function http://bioinfo.weizmann.ac.il/promate (Neuvirth et 

al. 2004) 

ISIS Sequence NN http://rostlab.org/cms/resources/ 
web-services/ 

(Ofran and 
Rost 2007) 

WHISCY Structure Scoring 
function

http://nmr.chem.uu.nl/Software/ 
whiscy 

(de Vries et 
al. 2006) 

PPI-pred Structure SVM http://www.bioinformatics.leeds.ac.uk/
ppi_pred 

(Bradford 
and 
Westhead 
2005) 

SPPIDER Structure NN http://sppider.cchmc.org (Porollo and 
Meller 2007) 

PINUP Structure Scoring 
function http://sparks.informatics.iupui.edu (Liang et al. 

2006) 

meta-PPISP Structure Meta-
server 

http://pipe.scs.fsu.edu/meta-
ppisp.html 

(Qin and 
Zhou 2007) 

Protemot Structure Scoring 
function

http://bioinfo.mc.ntu.edu.tw/ 
protemot  

(Chang et 
al. 2006) 

InterProSurf Structure Scoring 
function http://curie.utmb.edu (Negi et al. 

2007) 

cons-PPISP Structure NN http://pipe.scs.fsu.edu/ppisp.html (Chen and 
Zhou 2005) 

PSIVER Sequence BN http://tardis.nibio.go.jp/PSIVER/ 

(Murakami 
and 
Mizuguchi 
2010) 

SHARP Structure Scoring 
function

http://www.bioinformatics.sussex.ac.uk/
SHARP2  

(Murakami 
and Jones 
2006) 

Table 3. List of online resources for protein binding site prediction. 
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neighbouring residues is used to derive weights that will be then used to normalize residue-
based features among residues within the local environment. The advantage of using VD 
over other definition of local environment is that there are no requirements with regards 
cut-off to define the local environment (e.g. a distance cut-off) and that a weighting system 
can be easily implemented based on the number of interactions (i.e. neighbouring residues) 
in the VD. When the performance of VORFFIP was assessed in term of type of methods used 
to define local environment, VD were superior to Euclidean distances and sliding window 
approaches(Segura et al. 2011). 

The final stage of the method is the integration of residue- and environment-based features 
using a machine learning approach: a 2-steps RF ensemble classifier (Fig. 2), which is also a 
novel feature as most machine learning methodologies use a single step classifier. In the first-
step RF, residue and residue-environment features are calculated and used as input variables. 
The scores yielded by the first-step RF are then decomposed into a number of new input 
variables including VD-derived environment scores. Residue and environment scores together 
with the previously calculated features form the new set of input variables to the second-step 
RF that will output the final scores. The logic behind using a second-step RF relates to the 
observation that residues belonging to the same interface tend to form contiguous patches on 
the surface, i.e. high scoring residues are expected to be neighbouring mainly high scoring 
residues unless located at the boundaries of the interface. Thus, the second-step RF 
harmonizes outliers and generates more homogenous scores for interface residues resulting in 
better predictions as shown by the competitive results obtained(Segura et al. 2011) when 
comparing to other methods(de Vries et al. 2006; Porollo and Meller 2007; Sikic et al. 2009).  

4. Prediction and charting of hot spots in protein interfaces 
The final part of the chapter describes the current state in computational prediction of hot 
spots in protein interfaces. The goal of these methods is the prediction of the region of a 
given interface that contributes the most to the binding energy of the complex, i.e. the hot 
spot of the interaction. These methods are a good complement to highly intensive and 
costing experimental techniques, in particular in large-scale analyses, and have clear 
applications in drug discovery and protein engineering.  

4.1 Distinctiveness of hot spot residues 

As in the case of interface residues, hot spot residues present a number of structural and 
physicochemical properties unique to them and these are exploited by the prediction 
methods. The first is the type of residues that are commonly found in hot spots: while the 
proportion of Trp, Arg and Tyr is higher, Leu, Ser and Val are disfavoured(Bogan and 
Thorn 1998). Likewise, Asn and Asp are more commonly found in hot spots than chemically 
comparable (but bulkier) Gln and Glu(Bogan and Thorn 1998). Hot spot residues are 
optimally packed, structurally conserved and usually located in the central part of the 
interface(Keskin et al. 2005; Yogurtcu et al. 2008). One more characteristic of hot spot 
residues is that they are often located in complemented pockets, i.e. hot spot residues in one 
protein interact with hot spot residues of cognate protein(s)(Li et al. 2004). Finally, hot spot 
residues usually have a higher evolutionary conservation than the rest of the residues in the 
interface(Guharoy and Chakrabarti 2005).   
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Environment-based information accounts the local structural environment of residues. 
Interfaces tend to form contiguous patches on the surface and thus, the environment of a 
residue can provide valuable information for predictions. Several methods have been used 
to account for the local environment of residues including sliding window (e.g.(Ofran and 
Rost 2003)) and Euclidian distances (e.g. (Porollo and Meller 2007)). VORFFIP however uses 
a novel definition of environment by means of Voronoi Diagrams (VD). VD is computed 
using the heavy atoms coordinates as seeds and as a result the 3D space is partitioned into 
polyhedral cells where each single cell contains one of the atoms (Barber et al. 1996). Atoms 
sharing a common facet in the VD are said to be in contact or neighbours, i.e. part of the 
local environment. Figure 2 shows a 2D representation of a VD diagram depicting the 
interaction between atoms of two neighbouring residues. The number of contacts between  
 

Name Input Method URL Reference 

VORFFIP Structure RF http://www.bioinsilico.org/VORFFIP (Segura et 
al. 2011) 

ProMate Structure Scoring 
function http://bioinfo.weizmann.ac.il/promate (Neuvirth et 

al. 2004) 

ISIS Sequence NN http://rostlab.org/cms/resources/ 
web-services/ 

(Ofran and 
Rost 2007) 

WHISCY Structure Scoring 
function

http://nmr.chem.uu.nl/Software/ 
whiscy 

(de Vries et 
al. 2006) 

PPI-pred Structure SVM http://www.bioinformatics.leeds.ac.uk/
ppi_pred 

(Bradford 
and 
Westhead 
2005) 

SPPIDER Structure NN http://sppider.cchmc.org (Porollo and 
Meller 2007) 

PINUP Structure Scoring 
function http://sparks.informatics.iupui.edu (Liang et al. 

2006) 

meta-PPISP Structure Meta-
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http://pipe.scs.fsu.edu/meta-
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(Qin and 
Zhou 2007) 

Protemot Structure Scoring 
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http://bioinfo.mc.ntu.edu.tw/ 
protemot  

(Chang et 
al. 2006) 

InterProSurf Structure Scoring 
function http://curie.utmb.edu (Negi et al. 

2007) 

cons-PPISP Structure NN http://pipe.scs.fsu.edu/ppisp.html (Chen and 
Zhou 2005) 

PSIVER Sequence BN http://tardis.nibio.go.jp/PSIVER/ 

(Murakami 
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Mizuguchi 
2010) 

SHARP Structure Scoring 
function
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(Murakami 
and Jones 
2006) 

Table 3. List of online resources for protein binding site prediction. 
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neighbouring residues is used to derive weights that will be then used to normalize residue-
based features among residues within the local environment. The advantage of using VD 
over other definition of local environment is that there are no requirements with regards 
cut-off to define the local environment (e.g. a distance cut-off) and that a weighting system 
can be easily implemented based on the number of interactions (i.e. neighbouring residues) 
in the VD. When the performance of VORFFIP was assessed in term of type of methods used 
to define local environment, VD were superior to Euclidean distances and sliding window 
approaches(Segura et al. 2011). 

The final stage of the method is the integration of residue- and environment-based features 
using a machine learning approach: a 2-steps RF ensemble classifier (Fig. 2), which is also a 
novel feature as most machine learning methodologies use a single step classifier. In the first-
step RF, residue and residue-environment features are calculated and used as input variables. 
The scores yielded by the first-step RF are then decomposed into a number of new input 
variables including VD-derived environment scores. Residue and environment scores together 
with the previously calculated features form the new set of input variables to the second-step 
RF that will output the final scores. The logic behind using a second-step RF relates to the 
observation that residues belonging to the same interface tend to form contiguous patches on 
the surface, i.e. high scoring residues are expected to be neighbouring mainly high scoring 
residues unless located at the boundaries of the interface. Thus, the second-step RF 
harmonizes outliers and generates more homogenous scores for interface residues resulting in 
better predictions as shown by the competitive results obtained(Segura et al. 2011) when 
comparing to other methods(de Vries et al. 2006; Porollo and Meller 2007; Sikic et al. 2009).  

4. Prediction and charting of hot spots in protein interfaces 
The final part of the chapter describes the current state in computational prediction of hot 
spots in protein interfaces. The goal of these methods is the prediction of the region of a 
given interface that contributes the most to the binding energy of the complex, i.e. the hot 
spot of the interaction. These methods are a good complement to highly intensive and 
costing experimental techniques, in particular in large-scale analyses, and have clear 
applications in drug discovery and protein engineering.  

4.1 Distinctiveness of hot spot residues 

As in the case of interface residues, hot spot residues present a number of structural and 
physicochemical properties unique to them and these are exploited by the prediction 
methods. The first is the type of residues that are commonly found in hot spots: while the 
proportion of Trp, Arg and Tyr is higher, Leu, Ser and Val are disfavoured(Bogan and 
Thorn 1998). Likewise, Asn and Asp are more commonly found in hot spots than chemically 
comparable (but bulkier) Gln and Glu(Bogan and Thorn 1998). Hot spot residues are 
optimally packed, structurally conserved and usually located in the central part of the 
interface(Keskin et al. 2005; Yogurtcu et al. 2008). One more characteristic of hot spot 
residues is that they are often located in complemented pockets, i.e. hot spot residues in one 
protein interact with hot spot residues of cognate protein(s)(Li et al. 2004). Finally, hot spot 
residues usually have a higher evolutionary conservation than the rest of the residues in the 
interface(Guharoy and Chakrabarti 2005).   
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4.2 Prediction algorithms 

A number of computational methods have been developed for the prediction of hot spots in 
protein interfaces. An important part of these is represented by energy-based methods that 
predict changes in binding energy upon mutations, i.e. in silico alanine scanning. These 
methodologies range from scoring function derived from simple physical models(Guerois et 
al. 2002; Kortemme and Baker 2002; Kruger and Gohlke 2010) to more complex, time 
consuming atomistic simulations to model effect of mutations in the binding energy(Almlof et 
al. 2006; Lafont et al. 2007; Moreira et al. 2007; Benedix et al. 2009; Diller et al. 2010). Other 
methods exploit individual features (or combination of them) that are characteristic to hot 
spots such as solvent accessibility(Landon et al. 2007; Tuncbag et al. 2009; Xia et al. 2010; Li et 
al. 2011), atomic contacts(Li et al. 2006), structural conservation(Li et al. 2004), restricted 
mobility(Yogurtcu et al. 2008), relative location of residues in the interface(Keskin et al. 2005), 
sequence conservation(Hu et al. 2000; Ma and Nussinov 2007) and pattern mining(Hsu et al. 
2007). Other examples include a number of machine learning approaches (Darnell et al. 2007; 
Ofran and Rost 2007; Cho et al. 2009; Lise et al. 2009; Assi et al. 2010) such as PCRPi (see next) 
that integrate a range of structural- and sequence-based information and a docking-based 
approach(Grosdidier and Fernandez-Recio 2008). 

4.3 PCRPi: Presaging Critical Residues in Protein interfaces, a novel and highly 
accurate prediction algorithm 

While the attributes described in section 4.1 have predictive power, it has been found that 
individually cannot unambiguously define hot spot residues(DeLano 2002). To overcome 
this limitation, PCRPi(Assi et al. 2010), a novel computation tool for the prediction of hot 
spots residues, integrates seven different variables that account for structural, evolutionary 
conservation and predicted binding energy (Fig.3).  

The structural information of interface residues is described by two different variables: the 
interaction engagement (IE) and the topographical (TOP) indexes. The IE index gauges for 
the number of inter-chain atomic interactions of the given residue normalized by total 
number of atoms that can potentially interact. An IE index of 1.0 would indicate that all 
atoms are actively engaged in atomic interactions with groups of cognate protein(s). The 
TOP index describes the structural environment of residues and is ratio between the number 
of neighbouring residues of cognate proteins and the average number neighbouring 
residues. Neighbouring residues are any residues of cognate protein(s) whose carbon alpha 
is enclosed in a sphere of 10 Angstroms of radius centered on the carbon alpha of the 
residue of interest. Thus, TOP index quantifies whether residues are intimately interacting 
with cognate proteins or are located in a more flat or unprotected region. 

The second group of variables used by PCRPi relates to evolutionary conservation. 
Evolutionary conservation is quantified by looking at the sequence conservation and the 3D 
regional conservation (i.e. structural conservation of patches) in both target (ANCCON and 
ANC3DCON) and cognates proteins (CON and 3DCON). To calculate ANCCON and CON 
values, sequence profiles are derived as described(Fernandez-Fuentes et al. 2007). Next, 
ANCCON corresponds to conservation scores as calculated by al2co(Pei and Grishin 2001) 
and the CON variable is the ratio between residues with and al2co scores above 1.0 an the 
number of cognate residues in the interface. Likewise, the ANC3DCON and 3DCON values 
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are calculate but instead of using al2co scores, the normalize regional conservation scores as 
defined by Landgrad et al(Landgraf et al. 2001) are used. The last input used by PCRPi is the 
BE index, which represents the predicted binding energy change upon mutation, i.e. in silico 
Alanine scanning, as calculated using FoldX(Guerois et al. 2002). 

 
Fig. 3. Overview of the prediction process. PCRPi integrates seven features characterizing 
interface residues that are used as input variables to three different Bayesian networks, two 
experts and one naïve, that can be trained with protein complexes including (Ab+) or 
excluding (Ab-) Antigen-Antibodies complexes. PCRPi outputs a probability where the 
higher the probability the more likely the residues to be critical, i.e. hot spot residues, for the 
interaction. 

The final part of the prediction is the integration of the data, i.e. IE, TOP, ANCCON, CON, 
ANC3DCON, 3DCON and BE, into a common probabilistic framework by using BN. PCPRi 
features three different types BN, two experts and one naïve (Fig. 3). The difference between 
them is the relationship of dependence between input variables; while naïve BN assumes 
independence, an expert BN allows conditional dependence between variables (Fig. 3). Both 
expert and naïve BNs are trained using two specific sets of protein complexes: Ab+ and Ab- 
(Fig. 3). The Ab+ set corresponds to protein complexes that can include non-evolutionary 
related complexes such as Antigen-Antibodies complexes while Ab- does not include the 
latter. The reason being is the lack of sequence conservation in the complementary 
determining regions of Antibodies, i.e. regions that mediate interaction, which renders 
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4.2 Prediction algorithms 

A number of computational methods have been developed for the prediction of hot spots in 
protein interfaces. An important part of these is represented by energy-based methods that 
predict changes in binding energy upon mutations, i.e. in silico alanine scanning. These 
methodologies range from scoring function derived from simple physical models(Guerois et 
al. 2002; Kortemme and Baker 2002; Kruger and Gohlke 2010) to more complex, time 
consuming atomistic simulations to model effect of mutations in the binding energy(Almlof et 
al. 2006; Lafont et al. 2007; Moreira et al. 2007; Benedix et al. 2009; Diller et al. 2010). Other 
methods exploit individual features (or combination of them) that are characteristic to hot 
spots such as solvent accessibility(Landon et al. 2007; Tuncbag et al. 2009; Xia et al. 2010; Li et 
al. 2011), atomic contacts(Li et al. 2006), structural conservation(Li et al. 2004), restricted 
mobility(Yogurtcu et al. 2008), relative location of residues in the interface(Keskin et al. 2005), 
sequence conservation(Hu et al. 2000; Ma and Nussinov 2007) and pattern mining(Hsu et al. 
2007). Other examples include a number of machine learning approaches (Darnell et al. 2007; 
Ofran and Rost 2007; Cho et al. 2009; Lise et al. 2009; Assi et al. 2010) such as PCRPi (see next) 
that integrate a range of structural- and sequence-based information and a docking-based 
approach(Grosdidier and Fernandez-Recio 2008). 

4.3 PCRPi: Presaging Critical Residues in Protein interfaces, a novel and highly 
accurate prediction algorithm 

While the attributes described in section 4.1 have predictive power, it has been found that 
individually cannot unambiguously define hot spot residues(DeLano 2002). To overcome 
this limitation, PCRPi(Assi et al. 2010), a novel computation tool for the prediction of hot 
spots residues, integrates seven different variables that account for structural, evolutionary 
conservation and predicted binding energy (Fig.3).  

The structural information of interface residues is described by two different variables: the 
interaction engagement (IE) and the topographical (TOP) indexes. The IE index gauges for 
the number of inter-chain atomic interactions of the given residue normalized by total 
number of atoms that can potentially interact. An IE index of 1.0 would indicate that all 
atoms are actively engaged in atomic interactions with groups of cognate protein(s). The 
TOP index describes the structural environment of residues and is ratio between the number 
of neighbouring residues of cognate proteins and the average number neighbouring 
residues. Neighbouring residues are any residues of cognate protein(s) whose carbon alpha 
is enclosed in a sphere of 10 Angstroms of radius centered on the carbon alpha of the 
residue of interest. Thus, TOP index quantifies whether residues are intimately interacting 
with cognate proteins or are located in a more flat or unprotected region. 

The second group of variables used by PCRPi relates to evolutionary conservation. 
Evolutionary conservation is quantified by looking at the sequence conservation and the 3D 
regional conservation (i.e. structural conservation of patches) in both target (ANCCON and 
ANC3DCON) and cognates proteins (CON and 3DCON). To calculate ANCCON and CON 
values, sequence profiles are derived as described(Fernandez-Fuentes et al. 2007). Next, 
ANCCON corresponds to conservation scores as calculated by al2co(Pei and Grishin 2001) 
and the CON variable is the ratio between residues with and al2co scores above 1.0 an the 
number of cognate residues in the interface. Likewise, the ANC3DCON and 3DCON values 
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are calculate but instead of using al2co scores, the normalize regional conservation scores as 
defined by Landgrad et al(Landgraf et al. 2001) are used. The last input used by PCRPi is the 
BE index, which represents the predicted binding energy change upon mutation, i.e. in silico 
Alanine scanning, as calculated using FoldX(Guerois et al. 2002). 

 
Fig. 3. Overview of the prediction process. PCRPi integrates seven features characterizing 
interface residues that are used as input variables to three different Bayesian networks, two 
experts and one naïve, that can be trained with protein complexes including (Ab+) or 
excluding (Ab-) Antigen-Antibodies complexes. PCRPi outputs a probability where the 
higher the probability the more likely the residues to be critical, i.e. hot spot residues, for the 
interaction. 

The final part of the prediction is the integration of the data, i.e. IE, TOP, ANCCON, CON, 
ANC3DCON, 3DCON and BE, into a common probabilistic framework by using BN. PCPRi 
features three different types BN, two experts and one naïve (Fig. 3). The difference between 
them is the relationship of dependence between input variables; while naïve BN assumes 
independence, an expert BN allows conditional dependence between variables (Fig. 3). Both 
expert and naïve BNs are trained using two specific sets of protein complexes: Ab+ and Ab- 
(Fig. 3). The Ab+ set corresponds to protein complexes that can include non-evolutionary 
related complexes such as Antigen-Antibodies complexes while Ab- does not include the 
latter. The reason being is the lack of sequence conservation in the complementary 
determining regions of Antibodies, i.e. regions that mediate interaction, which renders 
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evolutionary information meaningless for prediction purposes and thus special BNs were 
devised to cope with this problem. In terms of performance, PCRPi delivers highly 
consistent and competitive predictions as shown in the study of the protein complex formed 
by RAS and VH-HRAS antibody(Tanaka et al. 2007) and a comprehensive comparative 
study(Assi et al. 2010). Moreover, PCPRi is a central part of a database that compiles and 
annotates hot spot in protein interfaces: PCRPI-DB (Segura and Fernandez-Fuentes 2011). 
 

Name Input Method URL Reference 

PCRPi Structure Machine 
learning http://www.bioinsilico.org/PCRPi  (Assi et al. 

2010) 

Robetta Structure Energy-
based http://robetta.bakerlab.org  

(Kortemme 
and Baker 
2002) 

FoldX Structure Energy-
based http://foldx.crg.es  (Guerois et 

al. 2002) 

DrugScorePPi Structure Energy-
based 

http://cpclab.uni-
duesseldorf.de/dsppi  

(Kruger and 
Gohlke 2010) 

CC/PBSA 
server Structure Energy-

based 
http://ccpbsa.biologie.uni-
erlangen.de/ccpbsa  

(Benedix et 
al. 2009) 

KFC Structure Machine 
learning http://kfc.mitchell-lab.org  (Darnell et al. 

2008) 

HotPoint Structure Scoring 
function http://prism.ccbb.ku.edu.tr/hotpoint  (Tuncbag et 

al. 2009) 

ISIS Sequence Neural 
Network 

http://rostlab.org/cms/resources/ 
web-services/  

(Ofran and 
Rost 2007) 

Table 4. List of online resources for prediction of hot spots. 

5. Conclusions and outlook 
During the last years, scientists aiming at understanding living organisms at a molecular 
level have seen their benches become swapped with the sheer amount of information and 
this burst of data being mirrored by the development of a wide and miscellaneous set of 
computational tools designed to unveil biologically relevant information from the noisy 
background. PPIs are among the most crucial events that define the behaviour of a living 
system and that explains the rise of research efforts and strategies to describe the nature of 
PPIs. This chapter presents a summary and extensive view on computational methods 
devoted to predict which proteins participate in PPIs (section 2), which are the regions 
involved in the interaction (section 3) and which are the most important regions or residues 
in the interaction (section 4).  

In general the prediction tools achieve a high rate of prediction success and are important 
tools for scientists. However, there are still a number of unmet needs and challenges to be 
solved. In the case of prediction of PPIs, genome context approaches would benefit from 
improved definitions of phylogenetic profiles and the masking effect of gene fusion events. 
Text-mining approaches require further development to reduce false positive rates and 
increase efficiency. A deeper understanding of the complex interlink between (bio)chemistry, 
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structure and genetics that governs the evolution of protein interfaces would certainly 
benefit co-evolution-based methods. The correct detection of remote homology between 
interologs is a major challenge as is the lack of correlation between predicted and observed 
binding affinities in structure-based methods. 

Protein binding site prediction methods have also their own limitations and challenges. 
The physical forces and chemical properties that drive the interaction between proteins 
are not fully understood and thus current models do not reflect the binding process 
accurately. However, the increasing amount of experimental data that is being generated 
in an important factor that plays in favour of developing novel and more accurate 
computational tools. Some specific challenges in the field are the prediction of binding 
sites in proteins that recognize multiple partners (hub proteins) and the distinction 
between each of the interfaces that are relevant to each of the interacting partners. Current 
methods cannot properly handle binding events that involve conformational changes in 
any of the intervening components, including those mediated by intrinsic disordered 
regions, and thus future efforts need to be directed to tackle this very important question. 
Finally, the main challenge in the prediction of hot spots is the development of new 
approaches to bridge the gap between highly computationally expensive methods and 
those based on simplified models by finding the right balance between the accuracy of the 
former and the speed of the latter.  
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1. Introduction 
Since proteins exert their functions through interaction with other proteins rather than in 
isolation, networks of protein interactions are inevitable for understanding protein 
functions, disease mechanisms, and discovering novel targets of therapeutic drugs (Hase et 
al. 2009, Barabasi et al. 2011, Vidal et al. 2011). With the recent influx of genome-wide data of 
protein interactions, many researchers have studied on the structures and statistics of 
protein-protein interaction networks (PINs). To discover novel drug target genes, it is 
informative to understand topological and statistical characteristics of PINs, and how 
disease and drug target genes are distributed over the networks. Moreover, because those 
statistical properties of PINs are the results of long-term evolution, analysis of the PIN 
architecture from the viewpoint of comparative genomics and molecular evolution is of 
particular importance. 

In this chapter, we will first summarize our current knowledge of the statistical properties of 
PINs. We then argue on possible evolutionary mechanisms generating those properties and 
review the studies related to drug discovery and diseases as an application of the analyses 
of PIN structure. Finally, we briefly discuss the possibilities of medical studies as an 
integration of network and evolutionary biology. 

2. Genome-wide data of protein-protein interactions 
Genome-wide protein-protein interaction data have been obtained from several organisms, 
including Escherichia coli (Arifuzzaman et al. 2006), Saccharomyces cerevisiae (Uetz et al. 2000, 
Ito et al. 2001, Guldener et al. 2006, Reguly et al. 2006, Yu et al. 2008), Plasmodium falciparum 
(LaCount et al. 2005), Arabidopsis thaliana (Arabidopsis Interactome Mapping Consortium 
2011), Caenorhabditis elegance (Li et al. 2004, Simonis et al. 2009), Drosophila melanogaster (Giot 
et al. 2003), and Homo sapiens (Rual et al. 2005, Stelzl et al. 2005). Table 1 summarizes the PIN 
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datasets that are currently available. These data were mainly obtained by high-throughput 
experimental techniques such as yeast two-hybrid (Y2H) screens and tandem affinity 
purification followed by mass spectrometry (APMS) screens (Deane et al. 2002, Parrish et al. 
2006, Lavallee-Adam et al. 2011), as well as extensive literature curation by experts. 
 

Species Number of 
proteins 

Number of 
interactions Data type References 

Mycoplasma 
pneumoniae 410 1,058 APMS Kuhner et al. (2009) 

MRSA 252 608 13,219 APMS Cherkasov et al. (2011) 
Treponema 
pallidum 726 3,649 Y2H Titz et al. (2008) 

Mesorhizobium loti 1,804 3,121 Y2H Shimoda et al. (2008) 
Escherichia coli 2,448 8,625 APMS Arifuzzaman et al. (2006) 
Campylobacter 

jejuni 1,301 11,557 Y2H Parrish et al. (2007) 

Yeast 1,647 2,518 Y2H Yu et al. (2008) 

 3,224 11,291 Literature 
curated Reguly et al. (2006) 

 3,891 7,270 Manually 
curated MIPS 

 3,278 4,549 Y2H Ito et al. (2001) 
 1,004 957 Y2H Uetz et al. (2000) 

Malaria parasite 1,267 2,726 Y2H LaCount et al. (2005) 

Arabidopsis 
thaliana 2,661 5,664 Y2H 

Arabidopsis Interactome 
Mapping Consortium 

(2011) 
Worm 2,898 5,240 Y2H Li et al. (2004) 

 2,528 3,864 Y2H Simonis et al. (2009) 
Fly 4,679 4,780 Y2H Giot et al. (2003) 

 2,477 3,546 Y2H Pacifico et al. (2006) 

Human 2,783 6,007 Y2H, Literature 
curated Rual et al. (2005) 

 1,613 3,101 Y2H Stelzl et al. (2005) 

Table 1. PIN datasets. Y2H, Yeast two-hybrid screens; APMS, tandem affinity purification 
followed by mass spectrometry screens. “Manually curated” indicates that interactions 
obtained from high-throughput screens and literatures are manually integrated by experts. 

Y2H screens examine an interaction between two proteins, by expressing these genes in yeast 
nucleus as fusion proteins (Parrish et al. 2006). One protein is fused to a DNA-binding domain 
of a transcription factor (e.g., Gal4 and LexA), and the other protein is fused to a transcription 
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activation domain of the transcription factor. When two proteins interact with each other, 
DNA-binding domain and activation domain are indirectly connected. The activation domain 
can then interact with the transcription start site of the reporter genes (e.g., LacZ). From the 
expression of the reporter gene, the interaction between two proteins can be detected. In 
APMS screens, affinity purification selectively purifies a protein complex that includes a 
protein of interest (bait protein) (Lavallee-Adam et al. 2011). Then, from the purified complex, 
mass spectrometry identifies possible interacting partners of the bait protein. 

It has been pointed out that genome-wide PIN data identified by high-throughput 
experiments contains a large number of false positive interactions (Hakes et al. 2008). Y2H 
screens may detect possible interactions between two proteins that actually reside in 
different subcellular localizations (Deane et al. 2002). APMS studies identify many false 
positive interactions caused by inadequate purification (Lavallee-Adam et al. 2011).  

Literature-curated PIN datasets are likely to be more reliable, because interactions included 
in such datasets were obtained from small-scale experiments. However, those data are 
derived from hypothesis-driven researches focusing on several proteins that are supposed 
to be biologically important, and thus the datasets can be highly biased (Arabidopsis 
Interactome Mapping Consortium 2011). Therefore, to study the global structure of PINs, 
researchers should use several datasets obtained by various methods. 

3. Statistical properties of PINs 
In PINs, a protein and a physical interaction between two proteins are represented as a node 
and a link, respectively. A series of studies have revealed that PINs have several interesting 
properties from the viewpoint of network architecture. 

3.1 Scale-freeness 

The number of links for a given node is called a degree. The degree distribution P(k), the 
fraction of nodes with k degrees in a network, has been used to characterize the global 
structure of a network. 

Erdös and Renyi (1960) investigated a random network with N nodes, in which links are 
attached between each pair of nodes with a uniform probability p. This network contains 
approximately pN(N-1)/2 randomly placed links. Erdös and Renyi (1960) showed that, in a 
random network, the distribution P(k) follows the Poisson distribution (Fig 1A, left). 
Therefore, most nodes have degrees that are nearly equal to the mean degree <k> among all 
nodes in the network. 

On the other hand, the distribution P(k) of various technological, social, and biological 
networks including PINs is known to follow the power law, i.e., P(k) ~k-γ (Albert et al. 1999; 
Fig 1A, right). These networks are highly heterogeneous; they have a large number of low-
degree nodes and a small but significant number of high-degree nodes that are called hubs. 
A network following the power law does not have a typical degree characterizing most 
nodes in the network (e.g., the mean degree <k> in a random network), and thus it is called a 
“scale-free” network. It was shown that scale-free networks are very robust against random 
removal of nodes, although selective removal of hubs drastically changes their structures 
(Jeong et al. 2001, Han et al. 2004). 
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random network, the distribution P(k) follows the Poisson distribution (Fig 1A, left). 
Therefore, most nodes have degrees that are nearly equal to the mean degree <k> among all 
nodes in the network. 
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networks including PINs is known to follow the power law, i.e., P(k) ~k-γ (Albert et al. 1999; 
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degree nodes and a small but significant number of high-degree nodes that are called hubs. 
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removal of nodes, although selective removal of hubs drastically changes their structures 
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3.2 Small-worldness 

The cluster coefficient of nodes i is defined as Ci = 2ei/ki(ki-1), where ki is the degree of node 
i, and ei is the number of links among ki neighbors of node i (Watts & Strogatz 1998) (see Fig. 
1B). In other words, ei is the number of triangles that pass through node i. Ci is equal to one 
when all neighbors of node i fully interact with one another, while Ci is 0 when there are no 
links among the neighbors of node i. The mean of the cluster coefficient among all nodes, 
<C>, reflects the density of triangles (“cliques”) within a network. 

 
Fig. 1. Measures of a network structure 
(A) A random network (left) and a scale-free network (right). The degree distribution P(k) is 
shown below the networks. (B) Cluster coefficient. Red lines represent links among three 
neighbors of node A. The numbers of links (eA) among nodes B, C, and D (the neighbors of 
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node A) in the left, middle, and right networks are 0, 1, and 3, respectively. The cluster 
coefficient CA of node A is shown for each network. (C) Assortative (left) and disassortative 
(right) networks. The distribution of <Knn(k)> is shown below the networks. Blue and Red 
nodes indicates hubs and non-hubs, respectively. 

The shortest path length between a pair of nodes is the smallest number of links (distance) 
that are necessary for travelling from one node to the other (Barabasi & Oltvai 2004). The 
mean shortest path length among all possible pairs of nodes in a network is denoted by <L>. 
Watts and Strogatz (1998) found that a random network has a much smaller value of <L> 
compared with a regular lattice. Based on this observation, they defined a “small-world” 
network as a network that has a value of <L> as small as a random network but is highly 
clustered like a regular lattice. In a random network, <L> ~ logN/log<k>, and <C> = <k>/N, 
where N is the number of nodes. 

In PINs, the value of <L> is small and the value of <C> is much higher than a random 
network; therefore, PINs are generally considered to be small-world networks. However, 
several studies showed that PINs are actually “ultra-small”, because <L> is considerably 
smaller than that in a random network (Chung & Lu 2002, Cohen & Havlin 2003, Hase et al. 
2008). In a PIN, proteins are located close to each other, suggesting that perturbations given to 
a single protein would affect the behaviour of many other proteins and even the entire PIN. 

3.3 Assortativity 

Another statistic characteristic of a network is the correlation between degrees of nodes that 
are linked to each other (Callaway et al. 2001, Newman 2002, Costa et al. 2007). Pearson 
correlation coefficient r of the degrees at both ends of a link is used to evaluate the degree 
correlation. Networks with r > 0 and r < 0 are called as assortative and disassortative 
networks, respectively. In an assortative network, hubs tend to be connected to each other 
(Fig 1C, left), while in a disassortative network, hubs tend to have links to low-degree nodes 
(Fig 1C, right). 

<Knn(k)>, the mean degree among the neighbors of all k-degree nodes (“nn” in <Knn(k)> 
means “nearest neighbors”), is also used to evaluate the assortativity of a network (Pastor-
Satorras et al. 2001, Maslov & Sneppen 2002, Costa et al. 2007, Hase et al. 2008). In an 
assortative network, <Knn(k)> increases as k increases, while <Knn(k)> in a disassortative 
network follows decreasing functions of k (Fig 1C). If there are no correlations between 
degrees of nodes at both ends of a link (e.g., r = 0), <Knn(k)> is independent from k and is 
equal to <k2>/<k>. 

It has been shown that the yeast PIN is a disassortative network (Maslov & Sneppen 2002). 
Therefore, in the yeast PIN, interactions between high- and low-degree nodes are favoured, 
while those between hubs are suppressed. The biological significance of this structure is 
unclear. Maslov and Sneppen (2002) proposed that, in the yeast PIN, a hub protein forms a 
functional module of a cell together with a large number of low-degree neighbors. They then 
hypothesized that the suppression of links between hubs minimizes unfavourable cross-talks 
among different functional modules and makes networks robust against perturbations. 

If this hypothesis is true, disassortative structure observed in the yeast PIN is under the 
natural selection, and the disassortativity should be commonly found among PINs in any 
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organisms. However, by examining PINs from five eukaryote species, Hase et al. (2010) 
found that the disassortative structure is not a common feature of PINs. The distribution of 
<Knn(k)> in the PIN can be approximated by <Knn(k)> ~ k−ν, and the value of ν is used to 
quantify the extent of disassortative structure of a network. Hase et al. (2010) showed that 
the yeast, worm, fly, and human PINs are disassortative (ν = 0.47, 0.29, 0.35, and 0.26, 
respectively), while the malaria parasite PIN is not disassortative (ν = 0.02). This observation 
indicates that the “selectionist view” by Maslov and Sneppen (2002) is not necessary for 
explaining the disassortative structure of PINs. In section 4, we will see the evolutionary 
mechanisms generating the difference in assortativity among species. 

4. Evolutionary mechanisms generating structures of PINs 
To account for the emergence of PIN architecture mentioned above, researchers developed 
several network growth models and conducted simulation studies using these models. 
Moreover, statistical properties of PINs were analyzed from the viewpoint of comparative 
genomics and molecular evolution. In this section, we review evolutionary studies of PINs. 

4.1 Preferential attachment and gene duplication 

Barabasi and Albert (1999) suggested that the emergence of scale-freeness can be explained 
by two basic mechanisms: network growth and preferential attachment. The process of 
network growth adds a new node into a network (red node in Fig 2A). The process of 
preferential attachment introduces a new link between the new node and each of the other 
nodes with the probability proportional to the degree of the latter node. For example, the 
probability that the red node in Fig. 2A gains a new link connected to a blue node is three 
times higher than that to a black node (Fig 2A). Due to these two processes, a node with a 
higher degree gains a larger number of links, and thus the degrees of high-degree nodes 
increase faster than those of low-degree nodes, generating a scale-free network.  

In fact, Eisenberg and Levanon (2003) demonstrated that the number of interactions that a 
protein gained during its evolution is roughly proportional to the degree of the protein by 
comparing the genomes of E. coli, A. thaliana, Schizosaccharomyces pombe, and S. cerevisiae. 
This observation is consistent with the preferential attachment. 

What is the genetic mechanism of network growth and preferential attachment in the 
evolution of PINs? A plausible mechanism is gene duplication. Let us consider a small PIN 
containing both high- (node A) and low-degree nodes (node B, C, and D) (Fig 2B, middle). 
We assume that the number of nodes in a network increases by gene duplication, and a new 
node has the same interacting partners as the original node. When node B is duplicated, for 
example, node A acquires a new link and thus the degree of node A increases by one. When 
node C or node D is duplicated, the same thing happens. On the other hand, if node A is 
duplicated, each of the degrees of nodes B, C, and D increases by one. Under the assumption 
that gene duplication occurs randomly with an equal probability for all nodes, the 
probability that node A acquires a new link is three times higher than the other node does. 
In general, when we compare a high-degree node (e.g., A) and a low-degree node (e.g., B), a 
given node (e.g, C) is more likely to be a neighbor of a high-degree node than that of a low-
degree node. Therefore, a high-degree node gains new links faster than a low-degree node 
does. For this reason, gene duplication can account for the mechanism of “rich-get-richer”. 
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Fig. 2. Network growth by preferential attachment 
(A) Preferential attachment. A red node is added to the network. The probability that a new 
link is attached between red and blue nodes (3ε) is three times higher than that between red 
and black nodes (ε). (B) Network growth with gene duplication. Red nodes represent 
duplicated nodes. Gene duplication occurs with an equal probability (ε) for all nodes. When 
node A is duplicated, degrees of nodes B, C, and D increase by one (right), whereas when 
either node B, C, or D is duplicated, degree of node A increases by one (left). 

4.2 Duplication and divergence model 

A pair of genes generated by duplication will undergo one of three fates, namely, (i) 
neofunctionalization, (ii) subfunctionalization, and (iii) nonfunctionalization. After gene 
duplication, one of the duplicated genes becomes free from selective pressure because of the 
presence of redundant copies of the gene. Therefore, the gene can tolerate to the 
accumulation of random mutations and in some cases acquire a novel function (Ohno 1970). 
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This process is called neofunctionalization. On the other hand, in subfunctionalization 
process, each of the duplicated genes accumulates mutations, and the functions of the 
ancestral gene are assigned to the two genes (Force et al. 1999). In nonfunctionalization 
process, one of the duplicated genes loses its function and becomes a pseudogene due to 
deleterious mutations. Among the three processes, neofunctionalization and 
subfunctionalization contribute to the evolution of proteins (Lynch et al. 2000, Blanc et al. 
2004, He et al. 2005, Freilich et al. 2006). 

In the duplication-divergence model, neofunctionalization and subfunctionalization are 
modelled as attachment of new links and removal of the links generated by gene 
duplication, respectively. As for subfunctionalization process, there are two different 
models, the symmetric divergence and asymmetric divergence. In the former, links are 
eliminated from both of the duplicated nodes, while in the latter, elimination of links occurs 
only in one of the two nodes generated by duplication (Fig 3A).  

Wagner (2002) reported that one of the duplicated proteins retain a significantly larger 
number of interactions than the other. For this reason, several network growth models 
adopted the asymmetric divergence model (Kim et al. 2002, Wagner 2003, Chung et al. 2003, 
Ispolatov et al. 2005c). However, “complete” asymmetric divergence in which links are 
eliminated from only one of the duplicates is unrealistic, and the actual divergence process 
should be intermediate between symmetric and asymmetric divergence (Hase et al. 2010). 

Sole et al. (2002) proposed a model on the basis of neofunctionalization and asymmetric 
divergence. According to their model, after duplication generates a new node, 
neofunctionalization process attaches a new link between either of the duplicated nodes and 
each of the other nodes with a uniform probability θ, and then asymmetric divergence 
eliminates links to only one of the duplicated nodes with a uniform probability α (Fig 3A). 
Simulation and analytical studies have demonstrated that this model can generate scale-free 
networks with a small-world property (Sole et al. 2002, Kim et al. 2002, Pastor-Satorras et al. 
2003, Chung et al. 2003, Raval 2003).  

However, it has been pointed out that some statistical features of PINs could not be 
regenerated by the model of Sole et al. (2002). The yeast and fly PINs show a much larger 
<C> than the networks by Sole et al. with the same number of nodes and links as the actual 
PINs (Sole et al. 2002, Middendorf et al. 2005, Ispolatov et al. 2005a). To overcome this 
problem, Vazquez et al. (2003) proposed the heterodimerization (HD) model. In their model, 
symmetric divergence eliminates links from both of the duplicated nodes with a uniform 
probability α, and the HD process attaches a new link between two duplicated nodes with 
another uniform probability β, forming a heterodimer (Fig 3A). 

When gene duplication occurs for a self-interacting protein, the duplicated proteins will 
interact to each other. Therefore, β in Vazquez et al. (2003) represents the probability that a 
randomly selected protein is self-interacting and the new HD link between two duplicated 
proteins survives after divergence. Simulation and analytical studies have showed that the 
HD model could reproduce scale-free networks with a similar <C> to the yeast and fly PINs 
(Vazquez et al. 2003, Middendorf et al. 2005, Ispolatov et al. 2005a). This is because an HD 
process creates triangles, and a network containing a large number of triangles shows a high 
value of <C>. A computational study based on machine learning technique showed that the 
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HD model could best reproduce the fly PIN among seven network growth models 
(Middendorf et al. 2005). 

 
Fig. 3. Network growth models based on gene duplication and divergence 
A pair of two red nodes are generated by gene duplication. (A) The HD model with 
asymmetric or symmetric divergence processes. Nodes A and A’ are generated by gene 
duplication. In the symmetric divergence, each of the links to nodes A and A’ is eliminated 
with a uniform probability α. On the other hand, in the asymmetric divergence, each of the 
links to node A’ is eliminated with a uniform probability α. After the divergence process, an 
HD link (a red line) between two duplicated nodes (nodes A and A’) is attached with a 
uniform probability β. (B) The NHD model. An HD link (red link) is attached between 
nodes A and A’ with a probability proportional to the number (nN) of common neighbors 
shared by these nodes. (C) The DDD model. A probability of duplication of a given node is 
dependent on the degree of the node. If a node has k links, the node is duplicated with the 
probability proportional to 1 + kσ, where σ is a parameter of the duplicability of a node. 
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4.3 Non-uniform heterodimerization model 

By conducting simulation studies, Hase et al. (2008) showed that, to reproduce the value of 
<C> in the yeast PIN by the HD model, the number of HD links in the networks by the HD 
model has to be much larger than that in the yeast PIN. Similar observation was made for 
the fly PIN (Ispolatov et al. 2005a and b). This means that the HD model is insufficient for 
explaining the evolution of PINs. 

As shown in Fig. 3B, when two duplicated nodes share one, two, and three common 
neighbors, an HD link between them generates one, two, and three new triangles, 
respectively. The high <C> in a PIN indicates that the network contains many triangles. 
Therefore, if a new HD link is attached more preferentially between duplicated nodes 
sharing a larger number of common neighbors, the value of <C> in a simulation-generated 
network is expected to become higher. By considering in this way, Hase et al. (2008) 
proposed the non-uniform heterodimerization (NHD) model in which a new HD link is 
added between duplicated nodes with a probability proportional to the number of 
neighbors shared by those nodes (Fig 3B). Simulation studies demonstrated that the NHD 
model could indeed reproduce both the high value of <C> and the small number of HD 
links in the yeast PIN. 

 
Fig. 4. HD links in the yeast PIN and in the networks by the HD and NHD models (Hase et 
al. 2008). (A) Distribution of PHD(nN), the probability that an HD link exists between two 
homologous proteins when they share nN common neighbors. Green squares, blue 
diamonds, and red crosses indicate the values for the yeast PIN, the network by the NHD 
model, and that by the HD model, respectively. (B) Distribution of kHP(nN), the mean degree 
of proteins that are connected by an HD link and share nN common neighbors. 

In the evolution of PINs, duplication of a self-interacting protein adds an HD link between 
duplicated proteins. Some HD links were conserved in evolution, while others were 
eliminated because of occurrence of mutations at interacting sites in these duplicated 
proteins. In the HD model, the survival rate of HD links is uniform; on the other hand, the 
NHD model assumes it to be proportional to the number of their common neighbors (Fig. 
4A). In the yeast PIN, the probability that two homologous node retain an HD link increases 
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as the number of neighbors shared by the two nodes increases, which is consistent to the 
NHD model rather than the HD model (Fig. 4A). 

A possible explanation for this observation is as follows. It is expected that, when a given 
pair of proteins share a large number of common neighbors, the degree of these proteins 
should be high. In fact, in the yeast PIN, when two homologous proteins are connected by a 
HD link, there is a positive correlation between the number of common neighbors to the 
homologues and the mean degree of the two proteins (Fig. 4B). Moreover, several studies 
showed that high-degree proteins tend to show low evolutionary rate in the yeast PIN 
(Fraser et al. 2002, 2003, Fraser 2005). Therefore, it is suggested that the survival rates of HD 
links are also positively correlated with the number of common neighbors shared by the two 
homologous proteins. 

4.4 Degree-dependent duplicability and assortativity 

Duplication and divergence models including the NHD model can explain various aspects 
of the architecture of PINs (Pastor-Satrras et al. 2003, Vazquez 2003, Hase et al. 2008). 
However, these models cannot explain the differences in overall structures of PINs among 
species. As mentioned in section 3, the yeast, worm, fly, and human PINs are disassortative, 
while the malaria parasite PIN is non-disassortative. 

A possible evolutionary scenario that can explain the difference in assortativity of PINs 
among different species is as follows (Hase et al. 2010). Let us consider a disassortative 
network containing low- and high-degree nodes (e.g., A and C, respectively), in which the 
low- and high-degree nodes are linked to each other (Fig 5A, middle). Duplication of a low-
degree node (e.g., node A) causes the value of ν in the disassortative network to be higher, 
because the degree of its high-degree neighbor increases (Fig 5A, left). On the other hand, 
duplication of a high-degree node (e.g., node C) makes the degree of its low-degree 
neighbors higher, and thus the value of ν decreases (Fig 5A, right). For this reason, 
duplication of low- and high-degree nodes would make the value of ν in a disassortative 
network larger and smaller, respectively. 

Hase et al. (2010) proposed a novel duplication and divergence model named “degree–
dependent duplication (DDD) model”, in which duplication of nodes occurs depending on 
their degree (see Fig 3C). Simulation studies based on the DDD model revealed that 
preferential duplication of low-degree nodes can successfully reproduce the disassortative 
structure observed in the yeast, worm, and fly PINs, while preferential duplication of high-
degree nodes generate non-disassortative networks similar to the malaria parasite PIN (see 
Fig 5B and 5C). Moreover, Hase et al. (2010) evaluated the dependency of gene duplicability 
on their degrees by analyzing orthologous relationships of genes extracted from 55 
eukaryotic proteomes. The analyses demonstrated that proteins with a lower degree indeed 
have higher duplicability in disassortative PINs (the yeast, worm, and fly PINs) (Fig 5D), 
whereas high-degree proteins tend to have high duplicability in non-disassortative PINs 
(the malaria parasite PIN) (Fig 5E). Therefore, it is suggested that assortativity of a PIN is 
related with the gene duplicability dependent on the degrees of genes. If this is the case, 
disassortative structure of PINs is merely a byproduct of preferential duplication of low-
degree proteins, and we do not need to assume any adaptive meaning for this structure, as 
mentioned in section 3. 
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Fig. 5. The DDD model and the extent of assortativity in networks (Hase et al. 2010). 
(A) Duplication of a node alters the distribution of <Knn(k)> and the value of ν in a network. 
A diagram below a network shows the distribution of <Knn(k)> and the value of ν in the 
network. (B) The distribution of <Knn(k)> in the networks generated by the DDD model for 
yeast. Blue diamonds and red crosses show the results of simulation with σ = -0.05 and 0, 
respectively (as for σ, see Fig. 3C). Black squares represent <Knn(k)> in the yeast PIN. Dashed 
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lines in black, blue, and red represent k-0.47, k-0.51, and k-0.18, respectively. (C) The distribution 
of <Knn(k)> in the networks generated by the DDD model for malaria parasite. Blue 
diamonds and red crosses show the results of simulation with σ = 1.0 and 0, respectively. 
Black squares represent <Knn(k)> in the malaria parasite PIN. Dashed lines in black, blue, 
and red represent k-0.02, k0.01, and k-0.22, respectively. (D) and (E) indicate correlations between 
the degree and the duplicability in the yeast and malaria parasite PINs, respectively. Bars in 
blue, yellow, and red show the mean duplicability among low-, middle-, and high-degree 
proteins, respectively. A species name above each diagram denotes the species of which 
genome was compared with S. cerevisiae or P. falciparum. *, **, and *** represent P < 0.05,  
P < 0.01, and P < 0.001, respectively, by the Wilcoxon rank-sum test with the Bonferroni 
correction. 

5. Structures of PINs and their relationships with disease genes and drug 
targets 
As we have seen above, PINs are characterized by several interesting properties that are 
different from those of a random network. Therefore, understanding diseases and 
mechanisms of drug action in the context of PIN architecture may allow us to address some 
fundamental properties of disease genes and drug target molecules. Indeed, number of 
disease genes and that of drug targets are very small. Only 10% of the human genes are 
known to be disease genes (Amberger et al. 2009), and only 435 genes are target genes of 
therapeutic drugs (Rask-Andersen et al. 2011). Why is the number of drug targets and 
disease genes so small? Are they distributed randomly over the human PIN? Are there any 
quantifiable correlations between drug target genes and their statistical properties in the 
human PIN? To address these questions, drug target and disease genes were mapped onto 
the human PIN and their statistical properties in the PIN were investigated. Moreover, by 
using biological networks including the human PIN data, several studies showed that side 
effects of drugs depend on their statistical features in the network. In this and subsequent 
sections, we review the application of network analyses to medical researches. 

5.1 Statistical properties of disease genes and drug targets in the human PIN 

Elimination of a hub protein affects many proteins in a network (Jeong et al. 2001, Yu et al. 
2008). Therefore, it was previously hypothesized that genes encoding hub proteins are 
associated with diseases (Barabasi et al. 2011). Several studies reported that the mean degree 
among disease genes is in fact significantly higher than that among non-disease genes 
(Wachi et al. 2005, Jonsson & Bates 2006, Xu & Li 2006). 

A human gene is defined to be essential, when knock-out of its orthologous gene causes 
embryonic and postnatal lethality or sterility in mouse (Liang & Li 2007). Liang & Li (2007) 
reported that essential genes tend to encode hub proteins in the human PIN. 

However, Wachi et al. (2005), Jonsson & Bates (2006), and Xu & Li (2006) took no account for 
the fact that there are only a small number of disease genes that are also essential (essential 
disease genes), while vast majority of disease genes are actually non-essential. Because 
essential disease genes encode hub proteins, the mean degree of disease genes became 
apparently high in the three studies. In contrast, non-essential disease genes do not show 
any tendency to encode hub proteins (Goh et al. 2007). Rather, they tend to encode low- and 
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middle-degree proteins (Feldman et al. 2008). Mutations in high-degree proteins cause 
dysfunctionality of many neighbor proteins, leading severe impairment of developmental 
and physiological processes. Individuals having such mutations cannot survive until 
reproductive years and are likely to be removed from population. For this reason, non-
essential disease genes are enriched among low- and middle-degree genes.  

Hase et al. (2009) investigated drug target genes to see whether they have specific statistical 
features in the PIN or not. They found that most drug target genes are middle-degree 
proteins and some are low-degree, while there are almost no drug targets among high-
degree proteins (see Fig 6). The degree distribution is similar to that of disease genes, and, 
not surprisingly, drug target genes significantly overlap with disease genes (Yao & Rzhetsky 
2008). These results indicate that middle-degree proteins are likely to be most advantageous 
targets for therapeutic drugs. 

Oncogenes tend to be high-degree proteins (Jonsson & Bates 2006), and thus they are less 
likely to be targets for drugs, or one must accept major potential side effects. A possible 
strategy for designing anti-cancer therapy with less severe side effects is to develop a novel 
combination of drug compounds that targets several low- and middle-degree proteins, 
because such combination could generate synergetic effects to cancer cure, and low- or 
middle-degree targets are expected to induce less severe side effects compared with high-
degree targets. 

 
Fig. 6. Degree distribution of drug targets (Hase et al. 2009). 
(A)PDT(k) represents the fraction of drug targets to all proteins for the degree of k. The 
dashed line in red represents the probability that a randomly selected protein is a drug 
target. (B) White, yellow, and blue nodes represent low- (k = 1 – 5), middle- (k = 6 – 30) and 
high-degree (k > 30) proteins, respectively. Drug targets (red nodes) are mapped on the 
network. White, yellow, green, and blue links represent interactions between high- and low-
degree proteins, those between middle-degree proteins, those between high- and middle-
degree proteins, and those between high-degree proteins, respectively. Middle-degree 
proteins are extensively connected to each other, while links between high-degree proteins 
are rather suppressed. For clarity, low- and middle-degree proteins that do not have any 
interactions with high-degree proteins are not shown. 
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5.2 Predicting candidate drug targets and their side effects based on biological 
networks 

To develop a new drug, it is critical to accurately predict its side effect, because almost 30% 
of candidate drugs are rejected in clinical stages due to their unexpected toxicity or concerns 
about drug safety (Kola & Landis 2004, Billingsley 2008). Severe adverse reactions may be 
found long after the approval of drugs (e.g., Rosiglitazone), and in such cases, those drugs 
would go out of production (e.g., Rofecoxib) (Moore et al. 2007).  

The chemical structures of drugs have been used to predict their adverse side effects and 
target proteins (Kuhn et al. 2008, Campillos et al. 2008, Yamanishi et al. 2010). Campillos et 
al. (2008) developed a large-scale database of adverse side effects of drugs. By using the 
database with information of chemical structure of drugs, they made a similarity metric 
between two drugs. Under the assumption that drugs with higher similarity in their metric 
more tend to share the same target proteins, they inferred candidate targets for the drugs. 

However, if target proteins of two drugs are close in a molecular network, such drugs may 
cause similar downstream effects in the network and thus have similar side effects. To 
understand the molecular mechanisms of drug action and associated adverse effects in 
greater details, it makes sense to view targets of drugs in the context of biological networks 
including the genome-wide human interactome (Pache et al. 2008, Zanzoni et al. 2009).  

Recently, Brouwers et al. (2011) investigated how side effect similarities of targets depend 
on their closeness in the human PIN. They found that a certain number of pairs of two drugs 
without common targets show similar side effects, when they are close in the human PIN. 
Moreover, Wang et al. (2011) reported that drug side effects are significantly associated with 
network distances between drug target genes and diseases genes, i.e., targets for failure 
drugs that make severe adverse side effects are closer to disease genes than targets for 
approved drugs. Thus, selecting targets that are too close to diseases genes are not always 
the best strategy (Wang et al. 2011), although the pharmaceutical industry tends to select 
targets of new drugs that are close with the corresponding disease genes in the biological 
networks, especially after 1996 (Yildirim et al. 2007). 

With recent influx of information of biological networks, especially the human interactome, 
analyses like Brouwers et al. (2011) or Wang et al. (2011) can be refined and adapted to infer 
still unknown adverse side effects of drugs and to predict possible target genes. Indeed, by 
integrating information of the human PIN with similarities between two genes (e.g., GO 
semantic and sequence similarity) and those between two drugs (e.g., chemical and drug 
therapeutic similarity), several recent researches attempted to develop a method to predict 
possible targets for therapeutic drugs (Zhao & Li 2010, Perlman et al. 2011).  

6. Possibilities of medical studies with integration of PINs and evolutionary 
studies 
The human PIN is still incomplete and there are many proteins without any information of 
protein-protein interactions (Venkatesan et al. 2009). Evolutionary information (e.g., 
evolutionary rate and duplicability) of genes is significantly correlated with their statistical 
properties in PINs (see sections 2 and 3); therefore, such information can be utilized to 
complement to the incompleteness of the human PIN. 
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Rambaldi et al. (2008) reported that most of the cancer genes are singletons and have 
interactions with many genes. This finding indicates that both gene duplicability and 
network information are useful for predicting candidate cancer genes. Modification of 
currently available methods by integrating evolutionary information would improve the 
accuracy of predicting disease and drug target genes. 

Recently, large-scale PINs became available from several prokaryotes, including Methicillin-
resistant Staphylococcus aureus (MRSA) (Cherkasov et al. 2010), Treponema pallidum (Titz et al. 
2008), Campylobacter jejuni (Parrish et al. 2007), Mycoplasma pneumonia (Kuhner et al. 2009), 
and Mesorhizobium loti (Shimoda et al. 2008) (see Table 1). Some of them are pathogenic. By 
investigating the evolution of their PINs, we may be able to understand the process of 
acquiring the pathogenicity and developing drug resistance from the viewpoint of network 
architecture. 

Cherkasov et al. (2010) suggested that, in the MRSA PIN, hubs are essential for network 
stability and may be prospective antimicrobial drug targets. However, almost all known 
antimicrobial targets have relatively few interactions and hubs have largely been overlooked 
as drug targets. If hubs in pathogens have no orthologous genes in human and evolve very 
slowly, by targeting such hubs, we may be able to develop novel antibacterial drugs with 
high efficacy and small side effects, and without development of resistance to the drugs. 
With a recent influx of PINs from pathogenic organisms and genomes from various bacterial 
species, analyses integrating comparative genomics with PINs will become keys to identify 
still unknown disease mechanisms and novel targets for antibacterial drugs. 

7. Conclusion 
In this chapter, we describe various aspects of architecture of PINs, such as scale-freeness, 
small-world properties, and assortativity. Computational studies based on network-growth 
models and comparative genomics revealed how accumulation of local changes in PINs 
affects their overall architecture during evolution. We also discussed possible application of 
PINs and evolutionary studies to medical researches. With expected explosion of OMICs 
data (e.g., PINs and SNPs from human) in the near future, an integration of networks and 
genetics will be among the most powerful strategies to elucidate unknown mechanisms of 
disorders and discover novel targets for efficacious drugs. 
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1. Introduction

The analysis and application of the evolutionary information, as measured by means of
the conservation of protein sequences, using protein-protein interaction (PPI) networks, has
become one of the central research areas in systems biology from the last decade. It provides
a promising approach for better understanding the evolution of living systems, for inferring
relevant biological information about proteins, and for creating powerful protein interaction
and function prediction tools. The aim of this survey is to give a general overview of the
relevant literature and advances in the analysis and application of evolution in PPI networks.
Due to the broad scope and vast literature on this subject, the present overview will focus on
a representative selection of research directions and state-of-the-art methods to be used as a
solid knowledge background for guiding the development of new hypothesis and methods
aiming at the extraction and exploitation of evolutionary information in PPI networks.

This survey consists of two main parts (see Fig. 1). The first part deals with research works
concerning the relation between evolution and the topological structures of a PPI network,
in particular trying to discover and assess the evidence of such a relation and its strength at
different granularity levels. Specifically, we consider works analysing evolution at the single
protein level as well as at the level of a collection of proteins present in a PPI network. The
second part of this survey describes works analysing how such evolutionary evidence can be
exploited for knowledge discovery, in particular for inferring relevant biological information,
such as protein interaction prediction and the discovery of functional modules conserved
across multiple species.

The main terms and concepts underlying protein interaction and evolution which are used
throughout the survey are summarized in the sequel. In general, a protein-protein interaction
can represent different types of relations, such as a true physical bond or a functional
interplay between proteins. Here, if not explicitly stated, a PPI represents a physical protein
interaction as detected by experimental methods, such as yeast two-hybrid (Y2H) screening,
co-immunoprecipitation or tandem affinity purification.

Two proteins are called homologous if they share high sequence similarity. There are two main
types of homologous proteins: orthologous and paralogous. Here, for simplicity, we consider a
protein pair to be orthologous if the proteins of the pair are from different species. We refer to
the proteins of an orthologous pair as orthologs. Analogously, a protein pair is considered to
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the proteins of an orthologous pair as orthologs. Analogously, a protein pair is considered to
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be paralogous if its proteins belong to the same species, in this case their proteins are called
paralogs. A general assumption is that the proteins of an orthologous pair originated from
a common ancestor, having been separated in evolutionary time only by a speciation event,
while paralogous proteins are the product of gene duplication without speciation. The concept
of orthology can be directly extended to more than two species, where one can consider
clusters of orthologous proteins containing at least one protein of each species.

Fig. 1. The structure of the survey.

2. Unravelling the relations between evolution and network structure in PPI
networks

We begin with a summary of those studies that involve the analysis of evolutionary
information in a single PPI network. One can divide these works into the following two
main groups. The first group studies evolutionary conservation with respect to topological
properties of a PPI network. The second one primarily investigates the role of evolution with
respect to the functional modules present in a PPI network.

The aim of the first group of studies is to describe how the topology of a single PPI network
reflects the evolutionary signal present in the proteins it contains. This evolutionary signal
is represented by the set of orthologs and it is retrieved with respect to a different species.
Specifically, given a PPI network of the species to be investigated and a set of proteins of a
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distinct species, those proteins of the network being a part of orthologous pairs or clusters
(resulting from a sequence comparison of proteins of the two or multiple species respectively)
are considered to be source of the evolutionary or orthology signal in the network. Then,
having established the orthology relationship between proteins of the two or multiple species,
one can estimate the evolutionary rate or distance of aligned protein sequences (see e.g. Yang
& Nielsen, 2000). The higher the rate, the faster is considered the evolution of proteins.
Consequently, proteins which evolve slowly are well-conserved and a little or none change to
them can be observed throughout the evolution. Other protein evolutionary measures have
been also considered, as propensity for gene loss, evolutionary excess retention or protein age
(see Table 1).

Type of evolutionary
measure

Evolutionary
measure References

Evolutionary
conservation

Evolutionary Rate e.g. Yang & Nielsen (2000),
Wall et al. (2005),

Propensity for Gene Loss Krylov et al. (2003)
Evolutionary Excess Retention Wuchty (2004)

Phyletic Retention
Gustafson et al. (2006),
Chen & Xu (2005),
Fang et al. (2005)

Protein age
classification

Time of Origin Kunin et al. (2004)

Protein Age Group Ekman et al. (2006),
Kim & Marcotte (2008)

Table 1. Measures of evolutionary signal at protein level

2.1 Relation between a single protein in a PPI network and evolution

Various features of a PPI network topology can be investigated with respect to evolutionary
information; the first and simplest ones are measures acting on the single nodes of the
network. One can associate with a node different topological measures which estimate the
relative relevance of the node within the network, here called centrality or connectivity of a
node.

A basic centrality measure of a node is its degree. The degree of a node is the number of edges
containing the node or, in terms of a PPI network, it is the number of proteins with which the
protein represented by the node in the network interacts. It has been observed that a protein
degree distribution of PPI networks follows a power law and thus PPI networks fall into a
class of scale-free networks (see e.g. Jeong et al., 2001). Scale-free networks have a few highly
connected nodes, called hubs, and numerous less connected nodes, which mostly interact only
with one or two nodes.

2.1.1 Essentiality, centrality and conservation of a protein

As a decade ago large protein physical interaction data were not yet available, researchers
mainly focussed on the study of the correlation between importance of a protein function
for a living cell (essentiality, dispensability) and its evolutionary conservation rate. The
generally accepted premise is that essential genes or proteins should evolve at slower rates
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mainly focussed on the study of the correlation between importance of a protein function
for a living cell (essentiality, dispensability) and its evolutionary conservation rate. The
generally accepted premise is that essential genes or proteins should evolve at slower rates
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than non-essential ones (see e.g. Kimura, 1983). Although empirical studies have cast doubts
on the validity of this hypothesis (see e.g. Hurst & Smith, 1999; Pal et al., 2003; Rocha
& Danchin, 2004), in the end the vast majority and late evidences favour the existence of
correlation between gene essentiality or dispensability and evolutionary conservation (see
e.g. Fang et al., 2005; Fraser et al., 2002; 2003; Hahn & Kern, 2005; Hirsh & Fraser, 2001; 2003;
Jordan et al., 2002; Krylov et al., 2003; Ulitsky & Shamir, 2007; Wall et al., 2005; Wang & Zhang,
2009; Waterhouse et al., 2011; Zhang & He, 2005). In particular, as recently stated by Wang &
Zhang (2009), the correlation remains weak yet still conveniently sufficient for practical use.

After the growth of protein interaction data, also the correlation between essentiality and
centrality, and evolutionary conservation and centrality started to be investigated. At first the
centrality-essentiality relationship was mostly investigated by examining the degree of a node,
proving the existence of the correlation (see e.g. Fraser et al., 2002; 2003; Hahn & Kern, 2005;
Jeong et al., 2001; Krylov et al., 2003). However Coulomb et al. (2005) showed no correlation
between essentiality and centrality, where centrality was assessed not only by the degree but
also by higher order centrality measures, namely average neighbours’ degree of a node and
clustering coefficient of a node, suggesting that the correlation centrality-essentiality could
be an artefact of the dataset. These findings were later supported by Gandhi et al. (2006) who
considered a set of PPI networks and also did not observe any significant relationship between
a node degree and the essentiality of the corresponding protein. Interestingly, Coulomb
et al. (2005) did not test other centrality measures as betweenness and closeness, which
showed a higher correlation with essentiality than just the simple degree (Hahn & Kern, 2005).
Nevertheless, Batada, Hurst & Tyers (2006) reaffirmed the existence of the correlation between
the node degree and essentiality taking into account Coulomb et al.’s concerns. However, Yu
et al. (2008) again disputed the correlation using the compilation of Yeast high quality PPI data.
Results contradicting this work appeared in two consecutive studies by Park & Kim (2009) and
Pang, Sheng & Ma (2010). The first study (Park & Kim, 2009) considered also other centrality
measures than just the degree of a node. As a result, the correlation could be successfully
revealed, whereas the highest correlation was observed with measures based on betweenness
and closeness, similarly to Hahn & Kern (2005). In the other study (Pang, Sheng & Ma, 2010)
the newer, updated yeast PPI dataset was used and the correlation between degree of a node
and its (protein) essentiality could be detected.

Although, the above works support that there is a connection between topological position
of a node and functional importance, it seems one cannot explain this centrality-lethality rule
just by the degree distribution (He & Zhang, 2006; Zotenko et al., 2008). This seems to be
in accordance with the analysis conducted in (Lin et al., 2007) showing that protein domain
complexity is not the single determinant of protein essentiality and that there is a correlation
between the number of protein domains and the number of interactions (Schuster-Bockler &
Bateman, 2007). In addition, Kafri et al. (2008) showed that highly connected essential proteins
tend to have duplicates which can compensate their deletion thus decreasing the deleterious
effect of their removal, a phenomenon that could possibly explain the findings that genes
with no duplicates are more likely to be essential (Giaever et al., 2002). Therefore higher order
topological features appear to be more appropriate for capturing gene essentiality, especially
those based on node-betweenness and node-closeness (Hahn & Kern, 2005; Park & Kim, 2009;
Yu et al., 2007), which are believed to estimate better the local connectivity or centrality of a
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node within the network. Moreover, these features also relate with gene expression (Krylov
et al., 2003; Pang, Sheng & Ma, 2010; Yu et al., 2007).

We consider now works that analyse the correlation between evolution and centrality. Also
in this case the two main features used to estimate this correlation are the degree of a node
and the evolutionary rate. At first, it was hypothesized that proteins with a higher degree
should evolve slower (Fraser et al., 2002). A main criticism to this hypothesis was based
on the fact that the analysis conducted in (Fraser et al., 2002) did not take into account the
presence of a possible bias and of noise in data obtained from high-throughput experiments
(Bloom & Adami, 2003; Jordan et al., 2003a;b). Nevertheless Fraser et al. (2003), Fraser & Hirsh
(2004) and Lemos et al. (2005) could confirm the existence of such correlation by taking into
account these objections. Kim et al. (2007) also confirmed interconnection between centrality,
essentiality and conservation and showed that peripheral proteins of the PPI network are
under positive selection for species adaptation. Moreover, the link between the connectivity
of a node and its evolutionary history was further substantiated by works studying the
correlation between node degree and other evolutionary measures such as propensity for
gene loss (Krylov et al., 2003), evolutionary excess retention (Wuchty, 2004) and protein
age (Ekman et al., 2006; Kunin et al., 2004). However Batada, Hurst & Tyers (2006) again
pointed to a lack of evidence for a significant correlation between the evolutionary rate and
the connectivity of a node. Moreover, Makino & Gojobori (2006) classified proteins according
to two criteria, clustering coefficient of a node and protein’s multi-functionality, and showed
that multi-functional proteins of sparse parts of yeast PPI network (with a low clustering
coefficient) evolve at the slowest rate regardless of the degrees of the connectivity. This
suggests that clustering coefficient is a better descriptor of protein evolution within the global
network of protein interactions.

A possible explanation for these conflicting results was proposed by Saeed & Deane (2006)
who showed that the strength and significance of the correlation between evolution and
centrality varies depending upon the type of PPI data used. Also Saeed & Deane (2006)
found that more accurate datasets demonstrate stronger correlations between connectivity
and evolutionary rate than less accurate datasets. Another reason may be the existence of two
distinct types of highly connected nodes, so-called party and date hubs, which appear to satisfy
different evolutionary constraints.

2.1.2 Evolution of party and date hubs

Specifically, Han et al. (2004) observed a bimodal distribution of average Pearson correlation
coefficients between the expression profiles of proteins and its interacting partners. This
yielded a classification of hubs into party hubs, having similar co-expression profiles with
their neighbours, and date hubs, having different co-expression profiles with their neighbours.
As a consequence, party hubs tend to interact simultaneously (“permanently”) with their
partners and to connect proteins within functional modules while date hubs tend to interact
with different partners at different time/space (“transiently”) and to bridge different modules.
Thus, one may also refer to party hubs as intramodule and to date hubs as intermodule (Fraser,
2005).

Fraser (2005) was the first to investigate the difference in evolution between date and party
hubs and found that party hubs are highly evolutionary constrained, whereas date hubs are
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with no duplicates are more likely to be essential (Giaever et al., 2002). Therefore higher order
topological features appear to be more appropriate for capturing gene essentiality, especially
those based on node-betweenness and node-closeness (Hahn & Kern, 2005; Park & Kim, 2009;
Yu et al., 2007), which are believed to estimate better the local connectivity or centrality of a

430 Protein-Protein Interactions – Computational and Experimental Tools A Survey on Evolutionary Analysis in PPI Networks 5

node within the network. Moreover, these features also relate with gene expression (Krylov
et al., 2003; Pang, Sheng & Ma, 2010; Yu et al., 2007).

We consider now works that analyse the correlation between evolution and centrality. Also
in this case the two main features used to estimate this correlation are the degree of a node
and the evolutionary rate. At first, it was hypothesized that proteins with a higher degree
should evolve slower (Fraser et al., 2002). A main criticism to this hypothesis was based
on the fact that the analysis conducted in (Fraser et al., 2002) did not take into account the
presence of a possible bias and of noise in data obtained from high-throughput experiments
(Bloom & Adami, 2003; Jordan et al., 2003a;b). Nevertheless Fraser et al. (2003), Fraser & Hirsh
(2004) and Lemos et al. (2005) could confirm the existence of such correlation by taking into
account these objections. Kim et al. (2007) also confirmed interconnection between centrality,
essentiality and conservation and showed that peripheral proteins of the PPI network are
under positive selection for species adaptation. Moreover, the link between the connectivity
of a node and its evolutionary history was further substantiated by works studying the
correlation between node degree and other evolutionary measures such as propensity for
gene loss (Krylov et al., 2003), evolutionary excess retention (Wuchty, 2004) and protein
age (Ekman et al., 2006; Kunin et al., 2004). However Batada, Hurst & Tyers (2006) again
pointed to a lack of evidence for a significant correlation between the evolutionary rate and
the connectivity of a node. Moreover, Makino & Gojobori (2006) classified proteins according
to two criteria, clustering coefficient of a node and protein’s multi-functionality, and showed
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A possible explanation for these conflicting results was proposed by Saeed & Deane (2006)
who showed that the strength and significance of the correlation between evolution and
centrality varies depending upon the type of PPI data used. Also Saeed & Deane (2006)
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Specifically, Han et al. (2004) observed a bimodal distribution of average Pearson correlation
coefficients between the expression profiles of proteins and its interacting partners. This
yielded a classification of hubs into party hubs, having similar co-expression profiles with
their neighbours, and date hubs, having different co-expression profiles with their neighbours.
As a consequence, party hubs tend to interact simultaneously (“permanently”) with their
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more evolutionary labile. This is clearly in accordance with findings of Mintseris & Weng
(2005) who argued that residues in the interfaces of permanent protein interactions tend to
evolve at a relatively slower rate, allowing them to co-evolve with their interacting partners,
in contrast to the plasticity inherent in transient interactions, which leads to an increased
rate of substitution for the interface residues and leaves little or no evidence of correlated
mutations across the interface. The work of Fraser (2005) was, in addition, later corroborated
by Bertin et al. (2007). Examining three dimensional properties of proteins also supported
this hypothesis, as multi-interface hubs were found to be more evolutionary conserved and
essential as well as more likely to correspond to party hubs (Kim et al., 2006). Defining
singlish- and multi-Motif hubs further substantiated these findings, because multi-Motif
hubs were found to be more evolutionary conserved, more essential and to correlate with
multi-interface hubs (Aragues et al., 2007). In addition, other features as orderness of regions
in protein sequences and the solvent accessibility of the amino acid residues was shown to be
different between party and date hubs and to contribute in the lowering of the evolutionary
rate of party hubs (Kahali et al., 2009). Recently, Mirzarezaee et al. (2010) applied feature
selection methods and machine learning techniques to predict party and date hubs based on
a set of different biological characteristics including amino acid sequences, domain contents,
repeated domains, functional categories, biological processes, cellular compartments, etc.

However, other researchers disputed not only the evolutionary differences between party
and date hubs but the existence of hub types as such (Agarwal et al., 2010; Batada, Reguly,
Breitkreutz, Boucher, Breitkreutz, Hurst & Tyers, 2006; Batada et al., 2007). Indeed, some
datasets do not exhibit clear or robust bimodal distribution of hubs’ gene co-expression
profiles (Agarwal et al., 2010) and in some cases there is even a complete lack of bimodality
(Batada, Reguly, Breitkreutz, Boucher, Breitkreutz, Hurst & Tyers, 2006; Batada et al., 2007).
Therefore, Pang, Cheng, Xuan, Sheng & Ma (2010) argue that the average Pearson correlation
coefficient is a weak measure of whether a protein acts transiently or permanently with
its interacting partners and they propose a new measure, a co-expressed protein-protein
interaction degree. This measure estimates the actual number of partners with which a protein
can permanently interact. One can interpret it as a degree of ‘protein party-ness’ and it offers
more a continuum-like estimate of the protein’s interaction property. This seems to be in
accordance with Nooren & Thornton (2003) who suggest that rather a continuum range exists
between distinct types of protein interactions and that their stability very much depends on
the physiological conditions and environment.

Pang, Cheng, Xuan, Sheng & Ma (2010) firstly corroborated the results of Saeed & Deane
(2006) on the correlation variations between connectivity and evolutionary rate of a protein
on different datasets and then they showed that the co-expression-dependent node degree
correlates significantly with the protein’s evolutionary rate irrespectively of the specific
dataset used. However, their topological measure is derived by using an external source
of experimental data on gene expression. The further investigation on purely topological
features of a PPI network which would distinguish transient and permanent interactions, and
party and date hubs could bring more insights on how the evolutionary history of a protein is
wired in its position within the network of all the protein interactions in an organism. In
this perspective, network path-based measures, such as betweenness and closeness, seem
to be promising (Yu et al., 2007). All the more, these measures also appear to relate to
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protein essentiality (Park & Kim, 2009; Yu et al., 2007) and it could clarify the link between
essentiality and evolution as such. Thereafter, they could improve on the prediction of
essential genes from the topology of a PPI network in combination with protein evolutionary
information, such as phyletic retention (Gustafson et al., 2006), as already corroborated by
several application of machine learning techniques for essential gene detection, prioritizing
drug targets and determining virulence factors (see e.g. Chen & Xu, 2005; Deng et al., 2011;
Doyle et al., 2010; Gustafson et al., 2006; McDermott et al., 2009).

2.1.3 Node connectivity is relevant for protein evolution

Since the factors relevant for protein evolution could be of a multiple character (Wolf et al.,
2006), it is interesting to investigate whether protein connectivity plays a central or a more
subtle role. In the latter case, the link between protein connectivity and evolution could
be the results of spurious correlations due to other underlying biological processes (Bloom
& Adami, 2003). In order to address this issue, the contribution of protein connectivity to
protein evolutionary conservation has been also studied in an integrated way (Pal et al., 2006)
using multidimensional methods such as principal component analysis (PCA) and principal
component regression (PCR).

The first successful application of PCA was given by Wolf et al. (2006) on seven
genome-related variables. The derived first component reflected a gene’s ‘importance’
and confirmed positive correlation between lethality, expression levels and number of
protein-protein interaction which at the same time constrained protein evolution measures.
Interestingly, the component also showed that the number of paralogs positively contributes
to gene essentiality, which contradicts the finding of Giaever et al. (2002) that non-duplicated
genes tend to be essential. However, the study of Drummond et al. (2006) revealed by using
PCR only single determinant of protein evolution, namely translational selection, which is
almost entirely determined by the gene expression level, protein abundance, and codon bias.
Later, Plotkin & Fraser (2007) re-examined the use of PCR method and showed noise in
biological data can confound PCRs, leading to spurious conclusions. As a result, when they
equalized for different amounts of noise across the predictor variables no single determinant
of evolution could be found indicating that a variety of factors-including expression level,
gene dispensability, and protein-protein interactions may independently affect evolutionary
rates in yeast. This observation was further substantiated by a recent study (Theis et al.,
2011) where 16 genomic variables were analysed using Bayesian PCA. The study supports
the evidence for the three above-discussed correlations. It also demonstrates how different
definitions of paralogs may lead to different conclusions on their effect on essentiality, and
thus commenting on Wolf et al.’s conflicting result (Wolf et al., 2006).

2.2 Higher-order structures in a PPI network and evolution

Researchers have also focused on other topological structures of a PPI network than just a
node and their relation to evolutionary conservation. With increasing topological complexity
we may talk about a single protein-protein interaction (an edge in PPI network), topological
motifs, and protein clusters or modules as detected by their interaction density or network
traffic.
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2.2.1 Evolution and protein-protein interaction

Unlike in the case of a single protein, where various well-established methods for measuring
sequence evolution are developed, to the best of our knowledge only a recent attempt has
been made in order to estimate the evolutionary rate of protein-protein interaction (Qian et al.,
2011). However, this study is limited to a small set of PPIs in yeasts and can not be yet applied
for large-scale studies due to the lack of data. Thus, the research has extensively focused on
estimating correlated evolution of a protein pair and their functional or physical interaction
(Pazos & Valencia, 2008).

It is generally assumed that proteins which co-evolve tend to participate together in a
common biological function. This hypothesis is supported by many examples of functionally
interacting protein families that co-evolve (see e.g. Galperin & Koonin, 2000; Moyle et al.,
1994). Co-evolution of proteins may be assessed at sequence level (sequence co-evolution)
by correlating evolutionary rates (Clark et al., 2011), or at gene family level (gene family
evolution) by correlating occurrence vectors (Kensche et al., 2008). An occurrence vector or
a phylogenetic profile (phyletic pattern) (Tatusov et al., 1997) is an encoding of protein’s
(homologue’s) presence or absence within a given set of species of interest (Kensche et al.,
2008). In general, the methods for correlating protein evolution have been successfully applied
to predict a physical or functional interaction between proteins (Clark et al., 2011; Kensche
et al., 2008), where sequence co-evolution is powerful in predicting the physical interaction
and phylogenetic profiling is a good indicator of functional interplay between proteins in a
broader sense. Large-scale co-evolutionary maps have also been constructed and analysed for
better understanding the evolution of a species and its link to protein interactions (see e.g.
Cordero et al., 2008; Tillier & Charlebois, 2009; Tuller et al., 2009). All these works suggest
that the topology of PPIs should reflect the evolutionary processes behind the proteins which
formed such network.

The first systematic study of linked genes and their evolutionary rates was done by Williams
& Hurst (2000) who showed that the rates of linked genes are more similar than the rates
of random pairs of genes. Pazos & Valencia (2001) performed the first successful large-scale
prediction of physical PPIs based on sequence co-evolution by correlating phylogenetic trees.
Another large-scale study by Kim et al. (2004) on domain structural data of interacting
protein families also revealed their high co-evolution but also showed a high diversity in
the correlation of rates of each family pair. Specifically, protein families with a greater
number of domains were shown to be more likely to co-evolve. However, Hakes et al.
(2007) argued that this correlation of evolutionary rates is not responsible for the covariation
between functional residues of interacting proteins. Nevertheless, other studies have been
able to predict interacting domains from co-evolving residues between domains or proteins
(see e.g. Jothi et al., 2006; Yeang & Haussler, 2007) indicating that different organisms use the
same ’building blocks’ for PPIs and that the functionality of many domain pairs in mediating
protein interactions is maintained in evolution (Itzhaki et al., 2006).

Another perspective on co-evolution of interacting partners was given by Mintseris & Weng
(2005), who distinguished between transient and obligate interactions. The authors concluded
that obligate complexes are likely to co-evolve with their interacting partners, while transient
interactions with an increased evolutionary rate show only little evidence for a correlated
evolution of the interacting interfaces. This observation was later corroborated by Brown
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& Jurisica (2007) who analysed the presence of protein interactions across multiple species
via orthology mapping and found that the greater the conservation of a protein interaction
is, the higher the enrichment for stable complexes. Beltrao et al. (2009) also observed that
stable interactions are more conserved than transient interactions, by studying evolution
of interactions involved in phosphoregulation. Finally, Zinman et al. (2011) extracted
protein modules from a yeast integrated protein interaction network using various source
of PPI evidence, and showed that interactions within modules were much more likely to be
conserved than interactions between proteins in different modules.

The preference of conserved protein interactions to be placed in modular parts of a network
was also observed by Wuchty et al. (2006) by extending the paradigm of protein’s connectivity
and its evolutionary conservation to the connectivity of a protein-protein interaction.
Specifically, they used the hypergeometric clustering coefficient to estimate the interaction
cohesiveness of the PPI’s neighbourhood and orthologous excess retention in order to asses
the evolutionary conservation of PPIs. They used the same clustering coefficient as that given
by the presence of orthologs of interacting proteins in another organism and showed that
PPIs with highly clustered environment were accompanied by an elevated propensity for
the corresponding proteins to be evolutionary conserved as well as preferably co-expressed
(Wuchty et al., 2006). These findings are significant all the more they were shown to be
stable under perturbations. This propensity of interacting proteins to be more conserved
and prevalent among taxa was later confirmed by Tillier & Charlebois (2009) who used
evolutionary distances to estimate the protein’s conservation. Yet another perspective on
conservation of PPIs was given by Kim & Marcotte (2008) who classified proteins into four
groups (from oldest to youngest) according their age and found a unique interaction density
pattern between different protein age groups, where the interaction density tends to be dense
within the same group and sparse between different age groups.

2.2.2 Evolution and modularity of PPI networks

All the evidences above that PPIs whose proteins are evolutionary correlated tend to form
stable complexes and to be embedded in cohesive areas of a network topology support the
premise that modularity of PPI networks is maintained by evolutionary pressure (Vespignani,
2003). Indeed, when examining networks solely built from sequence co-evolution, gene
context analysis or gene family evolution of completely sequenced genomes, one may observe
that these networks exhibit high modularity with clusters corresponding to known functional
modules, thus revealing the structure of cellular organization (Cordero et al., 2008; Tuller et al.,
2009; von Mering et al., 2003).

Regarding the networks of physically interacting proteins, to the best of our knowledge the
first direct evidence that evolution drives the modularity of PPI networks was provided by
Wuchty et al. (2003). They looked beyond a single protein pair and studied the more complex
patterns of interacting proteins, called topological motifs. In general, they found that, as the
number of nodes in a motif and number of links among its constituents increase, a greater
and stronger conservation of the proteins could be observed. This was corroborated by
Vergassola et al. (2005) who focused on specific instances of motifs known as cliques. Cliques
are topological patterns where all protein constituents interact with each other. Vergassola
et al. (2005) provided evidence for co-operative co-evolution within cliques of interacting
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2.2.1 Evolution and protein-protein interaction
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protein modules from a yeast integrated protein interaction network using various source
of PPI evidence, and showed that interactions within modules were much more likely to be
conserved than interactions between proteins in different modules.

The preference of conserved protein interactions to be placed in modular parts of a network
was also observed by Wuchty et al. (2006) by extending the paradigm of protein’s connectivity
and its evolutionary conservation to the connectivity of a protein-protein interaction.
Specifically, they used the hypergeometric clustering coefficient to estimate the interaction
cohesiveness of the PPI’s neighbourhood and orthologous excess retention in order to asses
the evolutionary conservation of PPIs. They used the same clustering coefficient as that given
by the presence of orthologs of interacting proteins in another organism and showed that
PPIs with highly clustered environment were accompanied by an elevated propensity for
the corresponding proteins to be evolutionary conserved as well as preferably co-expressed
(Wuchty et al., 2006). These findings are significant all the more they were shown to be
stable under perturbations. This propensity of interacting proteins to be more conserved
and prevalent among taxa was later confirmed by Tillier & Charlebois (2009) who used
evolutionary distances to estimate the protein’s conservation. Yet another perspective on
conservation of PPIs was given by Kim & Marcotte (2008) who classified proteins into four
groups (from oldest to youngest) according their age and found a unique interaction density
pattern between different protein age groups, where the interaction density tends to be dense
within the same group and sparse between different age groups.

2.2.2 Evolution and modularity of PPI networks

All the evidences above that PPIs whose proteins are evolutionary correlated tend to form
stable complexes and to be embedded in cohesive areas of a network topology support the
premise that modularity of PPI networks is maintained by evolutionary pressure (Vespignani,
2003). Indeed, when examining networks solely built from sequence co-evolution, gene
context analysis or gene family evolution of completely sequenced genomes, one may observe
that these networks exhibit high modularity with clusters corresponding to known functional
modules, thus revealing the structure of cellular organization (Cordero et al., 2008; Tuller et al.,
2009; von Mering et al., 2003).

Regarding the networks of physically interacting proteins, to the best of our knowledge the
first direct evidence that evolution drives the modularity of PPI networks was provided by
Wuchty et al. (2003). They looked beyond a single protein pair and studied the more complex
patterns of interacting proteins, called topological motifs. In general, they found that, as the
number of nodes in a motif and number of links among its constituents increase, a greater
and stronger conservation of the proteins could be observed. This was corroborated by
Vergassola et al. (2005) who focused on specific instances of motifs known as cliques. Cliques
are topological patterns where all protein constituents interact with each other. Vergassola
et al. (2005) provided evidence for co-operative co-evolution within cliques of interacting
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proteins. Later, Lee et al. (2006) investigated motifs at a higher resolution level, by defining
for each motif different motif modes based on functional attributes of interacting proteins:
again their findings indicated that motifs modes may very well represent the evolutionary
conserved topological units of PPI networks. More recently, Liu et al. (2011) studied network
motifs according to the age of their proteins and discovered that the proteins within motifs
whose constituents are of the same age class tend to be densely interconnected, to co-evolve
and to share the same biological functions. Moreover, these motifs tend to be within protein
complexes.

The finding that modularity of PPI networks is constrained by evolution and that conserved
interactions are enriched in dense motifs and regions of a PPI network also suggest that
protein complexes present in such cohesive areas should be evolutionary driven (Jancura
et al., 2012). As putative protein complexes can be extracted from a PPI network by means of
clustering techniques, Jancura et al. (2012) detected such protein complexes in the PPI network
consisting of only yeast proteins having an ortholog in another organism and compared
them with those protein complexes derived either by using the global topology of a yeast
PPI network or by using a network induced by randomly selected proteins. The in-depth
examination of enriched functions in these three types of protein complexes revealed that
evolutionary-driven complexes are functionally well differentiated from other two types of
protein complexes found in the same interaction data. As a consequence, new complexes and
protein function predictions could be unravelled from PPI data by using a standard clustering
approach with the inclusion of evolutionary information. In addition, evolutionary-driven
complexes were found to be differentially conserved, in particular some complexes were
detected for all distinct set of orthologs as determined by comparison with different species,
some exhibited only a subset of proteins identifiable in a complex across all species, and some
complexes being found only for one specific set of orthologs. This suggests that presence of
evolution in modularity of PPI networks is more versatile and flexible with different degrees
of conservation.

The findings of Jancura et al. (2012) seem to conform with related studies that focused on
evolutionary cohesiveness of protein functional modules in order to investigate whether a
group of proteins which functionally interact, co-evolve more cohesively than a random group
of proteins. Either known protein complexes and pathways were analysed (Fokkens & Snel,
2009; Seidl & Schultz, 2009; Snel & Huynen, 2004) or putative protein modules usually derived
from integrated networks of functional link evidences (Campillos et al., 2006; Zhao et al., 2007;
Zinman et al., 2011). A different strategy was employed by Yamada et al. (2006) who at first
detected evolutionary modules which were afterwards compared with enzyme connectivity
in a metabolic network.

Although the co-evolution of modules is assessed by the presence or absence of modules’
constituents across a set of species, there is no standard method to measure the degree
to which a module evolves cohesively (Fokkens & Snel, 2009). For instance, Snel &
Huynen (2004) used the deviation of the number of modules’ orthologs per species from the
average number of modules’ orthologs per species, whereas Campillos et al. (2006) measured
the fraction of joined evolutionary events given the reconstructed, most parsimonious
evolutionary scenario of the genes in a module over their phylogenetic profiles.
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Despite this measures’ diversity, the common conclusion is that the majority of modules
evolve flexibly (Campillos et al., 2006; Fokkens & Snel, 2009; Seidl & Schultz, 2009; Snel &
Huynen, 2004; Yamada et al., 2006). Also, it appears that curated modules evolve more
cohesively than modules derived from high throughput interaction data (Fokkens & Snel,
2009; Seidl & Schultz, 2009; Snel & Huynen, 2004). Moreover, there is a different enrichment
in functions which co-evolve. For example, biochemical pathways, certain metabolic and
signalling processes, as well as core functions like transcription and translation, tend to have
higher rate of evolutionary cohesiveness (Campillos et al., 2006; Fokkens & Snel, 2009; Zhao
et al., 2007). This is also supported by methods which cluster phylogenetic profiles in order to
detect biochemical pathways or to predict functional links and thus exploiting the predictive
power of phylogenetic methods (Glazko & Mushegian, 2004; Li et al., 2009; Watanabe et al.,
2008). These methods show a relatively good performance in characterizing biochemical
pathways but seem to have a limited coverage for physically interacting proteins (Watanabe
et al., 2008). A dubious result was reported on inter-connectivity of cohesive and flexible
modules. Specifically, Fokkens & Snel (2009) demonstrated that components of cohesive
modules are less likely to interact with each other than in the case of flexible modules, while
two other studies (Campillos et al., 2006; Zinman et al., 2011) suggest cohesive modules to be
more highly connected.

It is possible that the above studies underestimated the actual degree of evolutionary
cohesiveness present in the modularity of protein interaction networks due to their
conservative approach, the limitations in ortholog detection as well as the cohesiveness
measures which are restricted to phylogenetic profiles. Nevertheless, they show that, as
evolution is a complex process, its presence in modularity of protein interaction networks also
exhibits a very complex nature, whose understanding is far from being complete. Evolution
itself, indeed, can be expected to be asynchronous and heterotactous along the tree of life.

In general, the interim evidence shows different evolutionary pressure for different types
of protein interactions and data. In particular, the slowly evolving interacting partners
are enriched in stable, permanent complexes, and functional modules such as biochemical
pathways and curated complexes exhibit higher evolutionary cohesiveness than high
throughput complexes. It seems that the co-evolutionary degree of modules within PPI
networks increases with greater integration of various sources of evidence for proteins
to functionally interact (Zinman et al., 2011). Also, not all protein complexes and
functional modules need to be co-evolutionary modules (Fokkens & Snel, 2009). There is a
continuum from extremely conserved to rapidly changing modules, where those modules
found to be co-evolving appear to be enriched in certain, specific functional categories
(Campillos et al., 2006). In addition, the degree of conservation and co-evolution of
functional modules within interaction networks seem to reflect cellular organization and their
spatio-temporal characteristics. For instance, cohesive modules can be classified according
to their evolutionary age as ancestral, intermediate and young, where one may observe
ancient, ancestral modules to be highly conserved and perform essential, core processes
such as information storage and metabolism of amino acids, while young modules are less
conserved and responsible for the communication with the environment (Campillos et al.,
2006). Therefore one might expect ancestral modules to contain static, obligate interactions as
the proteins of essential functions tend to involve multiple domains with slow evolutionary
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proteins. Later, Lee et al. (2006) investigated motifs at a higher resolution level, by defining
for each motif different motif modes based on functional attributes of interacting proteins:
again their findings indicated that motifs modes may very well represent the evolutionary
conserved topological units of PPI networks. More recently, Liu et al. (2011) studied network
motifs according to the age of their proteins and discovered that the proteins within motifs
whose constituents are of the same age class tend to be densely interconnected, to co-evolve
and to share the same biological functions. Moreover, these motifs tend to be within protein
complexes.

The finding that modularity of PPI networks is constrained by evolution and that conserved
interactions are enriched in dense motifs and regions of a PPI network also suggest that
protein complexes present in such cohesive areas should be evolutionary driven (Jancura
et al., 2012). As putative protein complexes can be extracted from a PPI network by means of
clustering techniques, Jancura et al. (2012) detected such protein complexes in the PPI network
consisting of only yeast proteins having an ortholog in another organism and compared
them with those protein complexes derived either by using the global topology of a yeast
PPI network or by using a network induced by randomly selected proteins. The in-depth
examination of enriched functions in these three types of protein complexes revealed that
evolutionary-driven complexes are functionally well differentiated from other two types of
protein complexes found in the same interaction data. As a consequence, new complexes and
protein function predictions could be unravelled from PPI data by using a standard clustering
approach with the inclusion of evolutionary information. In addition, evolutionary-driven
complexes were found to be differentially conserved, in particular some complexes were
detected for all distinct set of orthologs as determined by comparison with different species,
some exhibited only a subset of proteins identifiable in a complex across all species, and some
complexes being found only for one specific set of orthologs. This suggests that presence of
evolution in modularity of PPI networks is more versatile and flexible with different degrees
of conservation.

The findings of Jancura et al. (2012) seem to conform with related studies that focused on
evolutionary cohesiveness of protein functional modules in order to investigate whether a
group of proteins which functionally interact, co-evolve more cohesively than a random group
of proteins. Either known protein complexes and pathways were analysed (Fokkens & Snel,
2009; Seidl & Schultz, 2009; Snel & Huynen, 2004) or putative protein modules usually derived
from integrated networks of functional link evidences (Campillos et al., 2006; Zhao et al., 2007;
Zinman et al., 2011). A different strategy was employed by Yamada et al. (2006) who at first
detected evolutionary modules which were afterwards compared with enzyme connectivity
in a metabolic network.

Although the co-evolution of modules is assessed by the presence or absence of modules’
constituents across a set of species, there is no standard method to measure the degree
to which a module evolves cohesively (Fokkens & Snel, 2009). For instance, Snel &
Huynen (2004) used the deviation of the number of modules’ orthologs per species from the
average number of modules’ orthologs per species, whereas Campillos et al. (2006) measured
the fraction of joined evolutionary events given the reconstructed, most parsimonious
evolutionary scenario of the genes in a module over their phylogenetic profiles.
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Despite this measures’ diversity, the common conclusion is that the majority of modules
evolve flexibly (Campillos et al., 2006; Fokkens & Snel, 2009; Seidl & Schultz, 2009; Snel &
Huynen, 2004; Yamada et al., 2006). Also, it appears that curated modules evolve more
cohesively than modules derived from high throughput interaction data (Fokkens & Snel,
2009; Seidl & Schultz, 2009; Snel & Huynen, 2004). Moreover, there is a different enrichment
in functions which co-evolve. For example, biochemical pathways, certain metabolic and
signalling processes, as well as core functions like transcription and translation, tend to have
higher rate of evolutionary cohesiveness (Campillos et al., 2006; Fokkens & Snel, 2009; Zhao
et al., 2007). This is also supported by methods which cluster phylogenetic profiles in order to
detect biochemical pathways or to predict functional links and thus exploiting the predictive
power of phylogenetic methods (Glazko & Mushegian, 2004; Li et al., 2009; Watanabe et al.,
2008). These methods show a relatively good performance in characterizing biochemical
pathways but seem to have a limited coverage for physically interacting proteins (Watanabe
et al., 2008). A dubious result was reported on inter-connectivity of cohesive and flexible
modules. Specifically, Fokkens & Snel (2009) demonstrated that components of cohesive
modules are less likely to interact with each other than in the case of flexible modules, while
two other studies (Campillos et al., 2006; Zinman et al., 2011) suggest cohesive modules to be
more highly connected.

It is possible that the above studies underestimated the actual degree of evolutionary
cohesiveness present in the modularity of protein interaction networks due to their
conservative approach, the limitations in ortholog detection as well as the cohesiveness
measures which are restricted to phylogenetic profiles. Nevertheless, they show that, as
evolution is a complex process, its presence in modularity of protein interaction networks also
exhibits a very complex nature, whose understanding is far from being complete. Evolution
itself, indeed, can be expected to be asynchronous and heterotactous along the tree of life.

In general, the interim evidence shows different evolutionary pressure for different types
of protein interactions and data. In particular, the slowly evolving interacting partners
are enriched in stable, permanent complexes, and functional modules such as biochemical
pathways and curated complexes exhibit higher evolutionary cohesiveness than high
throughput complexes. It seems that the co-evolutionary degree of modules within PPI
networks increases with greater integration of various sources of evidence for proteins
to functionally interact (Zinman et al., 2011). Also, not all protein complexes and
functional modules need to be co-evolutionary modules (Fokkens & Snel, 2009). There is a
continuum from extremely conserved to rapidly changing modules, where those modules
found to be co-evolving appear to be enriched in certain, specific functional categories
(Campillos et al., 2006). In addition, the degree of conservation and co-evolution of
functional modules within interaction networks seem to reflect cellular organization and their
spatio-temporal characteristics. For instance, cohesive modules can be classified according
to their evolutionary age as ancestral, intermediate and young, where one may observe
ancient, ancestral modules to be highly conserved and perform essential, core processes
such as information storage and metabolism of amino acids, while young modules are less
conserved and responsible for the communication with the environment (Campillos et al.,
2006). Therefore one might expect ancestral modules to contain static, obligate interactions as
the proteins of essential functions tend to involve multiple domains with slow evolutionary
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rates, whereas young modules can be enriched with dynamic, transient interactions with less
but fast evolving protein domains to allow adaptation to the environment.

3. Using evolutionary information for knowledge discovery in PPI networks

The tendency of functionally linked or physically interacting proteins and densely interacting
motifs to exhibit correlated evolution and/or to be conserved across species is at the core of
methods for inferring relevant biological information using PPI networks. Although such
biological information can be limited and biased towards specific type of known interactions
and protein functions, it allows one to infer new, unknown functions of proteins, to improve
the understanding of biological systems, and to guide the discovery of drug-target interaction.
In its basic form, the knowledge discovery process is based on the transfer of information
involving a single interaction between two organisms, while in its most complex form it
involves the identification and transfer of protein complexes across multiple species. In the
sequel we summarize concepts and techniques used to achieve these goals, in particular the
notions of “interologs” and of multiple PPI networks alignment.

3.1 Predicting protein interaction: Interologs

If two proteins physically interact in one species and they have orthologous counterparts in
another species, it is likely that their orthologs interact in that species too. If such conserved
interactions exist, they are called interologs. This simple method of protein interaction
inference was firstly introduced and tested by Walhout et al. (2000) on proteins involved in
vulval development of nematode worm, where potential interactions between these proteins
were identified based on interactions of their orthologs in other species. Later, Matthews
et al. (2001) performed a large-scale analysis of this inference technique using the yeast PPI
network as a model and proteins of worm as a target. Although the success rate of detection
of inferred interactions by Y2H analysis was between 16%-31%, it represented a 600-1100-fold
increase compared to a conventional approach at that time (Matthews et al., 2001).

The interologs-based protein interaction prediction has become one of the standard methods
for in silico PPI prediction. The method can be easily extended to more PPI data from
multiple species. In particular, having two groups of orthologs, where each ortholog group
contains proteins from the same N species, and observing an interaction between proteins
of these orthologous groups in (N − 1) species, the interaction between proteins of the N-th
species present in the ortholog groups can be predicted. This multidimensional character of
interolog inference has been extensively used to predict and build databases of the whole
interactome for various species, either as a stand alone approach or in combination with other
in silico methods, which often integrate multiple data types including the gene co-expression,
co-localization, functional category, the occurrence of orthologs and other genomic context
methods. In this way researchers could provide, for instance, the first sketch of human
interactome (Lehner & Fraser, 2004), build the interactome of plants (Geisler-Lee et al., 2007;
Gu et al., 2011), and improve the understanding of processes in a malarial parasite (Pavithra
et al., 2007) or in cancer (Jonsson & Bates, 2006). Also, three, up-to-date, tools have been
recently implemented and made available to perform this inference task (Gallone et al., 2011;
Michaut et al., 2008; Pedamallu & Posfai, 2010).
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Several algorithmic enhancements of the interologs-based approach have been introduced
since the first proposal of a systematic use of interolog inference (Matthews et al., 2001). For
instance, Yu et al. (2004) have strengthen the definition of ortholog by using a reciprocal
best-hit approach and compared it to the original one-way best-hit approach implemented
by Matthews et al. (2001). In addition, they required a minimum level for a joint similarity of
orthologous sequences in order to perform interolog mapping. Their method yielded a 54%
accuracy in contrast to a 30% of the previous method by Matthews et al. (2001).

Other approaches exploited the knowledge on a higher conservation rate of PPIs in dense
network motifs. For instance Huang et al. (2007) scored interologs according to the density
of the topological pattern containing the respective PPI of the interolog in a model species
as determined by the extraction of maximal quasi-cliques from the PPI network of the
model species. This score was integrated with scores of other various features used
for PPI prediction, such as tissue specificity, sub-cellular localization, interacting domains
and cell-cycle stage. The use of multiple types of features was shown to yield more
accurate predictions of PPIs in comparison with other interolog-based methods used to build
interactome databases. More recently, Jaeger et al. (2010) proposed another interesting method
based on two steps. First a set of all candidate interologs is built across the considered
species. Next, interologs are assembled into maximal conserved and connected patterns by
detecting frequent sub-graphs appearing in the interolog network of the candidate set. Only
functionally coherent patterns were used for interolog inference.

The interolog concept was also modified and used in other ways and application domains.
In particular, Tirosh & Barkai (2005) proposed a method to assess and increase the confidence
of a predicted PPI by examining the co-expression of proteins of its potential interolog in
other species. Chen et al. (2007) extended interolog mapping for homologous inference
of interacting 3D-domains and they built a database of so-called 3D-interologs (Lo, Chen
& Yang, 2010). Chen et al. (2009) used interologs to transfer conserved domain-domain
interactions. Recently, Lo, Lin & Yang (2010) combined this interolog domain transfer with the
former 3D-interolog detection technique and implemented an integrated tool for searching
homologous protein complexes. Finally, Lee et al. (2008) exploited interologs to predict
inter-species interactions.

Despite the successful use of interolog inference, a gap was observed between the actual,
observed number of conserved interactions and the expected theoretical coverage (Gandhi
et al., 2006; Lee et al., 2008). In order to test the reliability of interolog transfer, Mika
& Rost (2006) performed a comprehensive validation of the method on several datasets.
Their findings suggested that interolog transfers are only accurate at very high levels of
sequence identity. In addition, they also compared the interolog transfer within species
and across species. In the case of within-species interolog inference a PPI is transferred
onto proteins which are sequence similar to the proteins of the considered PPI in the same
species. Surprisingly, such paralogous interolog transfers of protein-protein interactions were
shown to be significantly more reliable than the orthologous ones. This result was later
substantiated by Saeed & Deane (2008), indicating that homology-based interaction prediction
methods may yield better results when within-species interolog inference is also considered.
In addition, Brown & Jurisica (2007) argued that one also needs to take into account whether
all interactions have equal probability of being transferred between organisms. For example,
the dynamic components of the interactomes are less likely to be accurately mapped from
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rates, whereas young modules can be enriched with dynamic, transient interactions with less
but fast evolving protein domains to allow adaptation to the environment.

3. Using evolutionary information for knowledge discovery in PPI networks

The tendency of functionally linked or physically interacting proteins and densely interacting
motifs to exhibit correlated evolution and/or to be conserved across species is at the core of
methods for inferring relevant biological information using PPI networks. Although such
biological information can be limited and biased towards specific type of known interactions
and protein functions, it allows one to infer new, unknown functions of proteins, to improve
the understanding of biological systems, and to guide the discovery of drug-target interaction.
In its basic form, the knowledge discovery process is based on the transfer of information
involving a single interaction between two organisms, while in its most complex form it
involves the identification and transfer of protein complexes across multiple species. In the
sequel we summarize concepts and techniques used to achieve these goals, in particular the
notions of “interologs” and of multiple PPI networks alignment.

3.1 Predicting protein interaction: Interologs

If two proteins physically interact in one species and they have orthologous counterparts in
another species, it is likely that their orthologs interact in that species too. If such conserved
interactions exist, they are called interologs. This simple method of protein interaction
inference was firstly introduced and tested by Walhout et al. (2000) on proteins involved in
vulval development of nematode worm, where potential interactions between these proteins
were identified based on interactions of their orthologs in other species. Later, Matthews
et al. (2001) performed a large-scale analysis of this inference technique using the yeast PPI
network as a model and proteins of worm as a target. Although the success rate of detection
of inferred interactions by Y2H analysis was between 16%-31%, it represented a 600-1100-fold
increase compared to a conventional approach at that time (Matthews et al., 2001).

The interologs-based protein interaction prediction has become one of the standard methods
for in silico PPI prediction. The method can be easily extended to more PPI data from
multiple species. In particular, having two groups of orthologs, where each ortholog group
contains proteins from the same N species, and observing an interaction between proteins
of these orthologous groups in (N − 1) species, the interaction between proteins of the N-th
species present in the ortholog groups can be predicted. This multidimensional character of
interolog inference has been extensively used to predict and build databases of the whole
interactome for various species, either as a stand alone approach or in combination with other
in silico methods, which often integrate multiple data types including the gene co-expression,
co-localization, functional category, the occurrence of orthologs and other genomic context
methods. In this way researchers could provide, for instance, the first sketch of human
interactome (Lehner & Fraser, 2004), build the interactome of plants (Geisler-Lee et al., 2007;
Gu et al., 2011), and improve the understanding of processes in a malarial parasite (Pavithra
et al., 2007) or in cancer (Jonsson & Bates, 2006). Also, three, up-to-date, tools have been
recently implemented and made available to perform this inference task (Gallone et al., 2011;
Michaut et al., 2008; Pedamallu & Posfai, 2010).

438 Protein-Protein Interactions – Computational and Experimental Tools A Survey on Evolutionary Analysis in PPI Networks 13

Several algorithmic enhancements of the interologs-based approach have been introduced
since the first proposal of a systematic use of interolog inference (Matthews et al., 2001). For
instance, Yu et al. (2004) have strengthen the definition of ortholog by using a reciprocal
best-hit approach and compared it to the original one-way best-hit approach implemented
by Matthews et al. (2001). In addition, they required a minimum level for a joint similarity of
orthologous sequences in order to perform interolog mapping. Their method yielded a 54%
accuracy in contrast to a 30% of the previous method by Matthews et al. (2001).

Other approaches exploited the knowledge on a higher conservation rate of PPIs in dense
network motifs. For instance Huang et al. (2007) scored interologs according to the density
of the topological pattern containing the respective PPI of the interolog in a model species
as determined by the extraction of maximal quasi-cliques from the PPI network of the
model species. This score was integrated with scores of other various features used
for PPI prediction, such as tissue specificity, sub-cellular localization, interacting domains
and cell-cycle stage. The use of multiple types of features was shown to yield more
accurate predictions of PPIs in comparison with other interolog-based methods used to build
interactome databases. More recently, Jaeger et al. (2010) proposed another interesting method
based on two steps. First a set of all candidate interologs is built across the considered
species. Next, interologs are assembled into maximal conserved and connected patterns by
detecting frequent sub-graphs appearing in the interolog network of the candidate set. Only
functionally coherent patterns were used for interolog inference.

The interolog concept was also modified and used in other ways and application domains.
In particular, Tirosh & Barkai (2005) proposed a method to assess and increase the confidence
of a predicted PPI by examining the co-expression of proteins of its potential interolog in
other species. Chen et al. (2007) extended interolog mapping for homologous inference
of interacting 3D-domains and they built a database of so-called 3D-interologs (Lo, Chen
& Yang, 2010). Chen et al. (2009) used interologs to transfer conserved domain-domain
interactions. Recently, Lo, Lin & Yang (2010) combined this interolog domain transfer with the
former 3D-interolog detection technique and implemented an integrated tool for searching
homologous protein complexes. Finally, Lee et al. (2008) exploited interologs to predict
inter-species interactions.

Despite the successful use of interolog inference, a gap was observed between the actual,
observed number of conserved interactions and the expected theoretical coverage (Gandhi
et al., 2006; Lee et al., 2008). In order to test the reliability of interolog transfer, Mika
& Rost (2006) performed a comprehensive validation of the method on several datasets.
Their findings suggested that interolog transfers are only accurate at very high levels of
sequence identity. In addition, they also compared the interolog transfer within species
and across species. In the case of within-species interolog inference a PPI is transferred
onto proteins which are sequence similar to the proteins of the considered PPI in the same
species. Surprisingly, such paralogous interolog transfers of protein-protein interactions were
shown to be significantly more reliable than the orthologous ones. This result was later
substantiated by Saeed & Deane (2008), indicating that homology-based interaction prediction
methods may yield better results when within-species interolog inference is also considered.
In addition, Brown & Jurisica (2007) argued that one also needs to take into account whether
all interactions have equal probability of being transferred between organisms. For example,
the dynamic components of the interactomes are less likely to be accurately mapped from
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distantly related organisms. Moreover, there is apparent bias of interologs to be enriched
in stable, permanent complexes (Brown & Jurisica, 2007), which is completely in accordance
with findings on the different evolution of transient and permanent interactions. On the other
hand, it is likely that the performance of interolog inference could be underestimated since its
accuracy is assessed using experimentally tests based on Y2H techniques or high-throughput
datasets with a high abundance in Y2H interactions, which were found to be highly enriched
in transient and inter-complex connections (Yu et al., 2008).

3.2 Pairwise protein network alignment

Detection and transfer of an interolog between species have motivated the study and
exploration of interspecies conservation of protein interactions on a global scale. In particular,
instead of focusing on a conserved interaction alone one can compare and align whole
interactome maps of distinct species, which mimics the idea behind sequence alignment
methods. This approach gave a rise to so-called network alignment approach (Sharan & Ideker,
2006).

Using protein network alignment, one can either search for conserved functional network
structures such as protein complexes and pathways, or identify functional orthologs across
species. As a result this approach should provide a greater evidence and support for protein
function and protein interaction prediction for yet uncharacterized or unknown biological
processes. Protein network alignment methods can be classified into two main groups:local
network alignments and global network alignments.

As most of the research attention has focused on comparing PPI networks of two different
species, here we discuss the successive development of methods for, so-called, pairwise network
alignment. In sequel we survey local pairwise alignments for detecting evolutionary conserved
pathways, local pairwise alignments for detecting conserved protein complexes, and global
pairwise network alignment techniques.

3.2.1 Local pairwise network alignment for pathway detection and query tasks

The main goal of local protein network alignment is to detect conserved pathways and protein
complexes across species, by searching for local regions of input networks having both high
topological similarity between the regions and high sequence similarity between proteins of
these regions. The standard approach to this task consists of two main phases: an alignment
phase and a searching phase. In the first phase a merged network representation of compared
PPI networks is constructed, called alignment or orthology graph. The second phase performs
a search for the structures of interest in the orthology graph. Each output result corresponds
to a pair or multiplet of complexes or pathways which are evolutionary conserved across the
two or more (PPI networks of the) species, respectively.

The first alignment method of whole PPI networks of two species using protein sequence
similarity was introduced by Kelley et al. (2003). In this method, called PathBLAST, first a
many-to-many mapping between proteins of the two species is determined by considering
each pair of proteins with a sequence similarity higher than a given threshold as putative
orthologs. Next, every orthologous pair is encoded in one alignment node of the new
alignment graph and three types of edges (direct, gap and mismatch edge) are identified
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between these alignment nodes as follows. The direct edge corresponds to the case when a
PPI between proteins of two orthologous pairs exists in the PPI networks of both species. The
gap edge represents the case when in one species the respective proteins of alignments nodes
are connected indirectly through a common neighbour. Finally, the mismatch edge between
alignments nodes is formed if such indirect connection is found between the corresponding
proteins in the PPI networks of both species. Gap and mismatch edges are used to describe
possible evolutionary variations or account for experimental errors in data (Kelley et al., 2003).
In the search phase, the alignment graph is turned into acyclic sub-graphs by random removal
of alignment edges, which allows to extract high-scoring paths in linear time by a dynamic
programming approach. The score of a path is computed as the sum of log probabilities of true
orthology encoded in alignment nodes of the path and of true conserved interactions encoded
by alignment edges contained in the path. Interestingly, the method was also applied to align
a PPI network with its own copy. In this way they could identify conserved (paralogous)
pathways within one species.

The work of Kelley et al. (2003) was followed by other alignment techniques for discovering
conserved pathways based on evolutionary conservation. The main drawbacks of PathBLAST
are that it detects conserved linear pathways in protein interaction data, which is represented
as an undirected graph, and it has an exponentially worsening efficiency with the expected
increasing length of a pathway to be detected. To circumvent these limitations Pinter et al.
(2005) proposed an alignment technique designed explicitly for metabolic networks with
directed links between enzymes. The method also handles more complex structures than
a simple path, because the scoring of the alignment is based on sub-tree homeomorphism,
which can be solved by an efficient deterministic approximation. Another enhancement for
the pathway alignment problem was proposed by Wernicke & Rasche (2007) who designed
a method that does not impose topological restrictions upon pathways and exploits the
biological and local properties of pathways within the network. Another effective approach
to metabolic network alignment was developed by Li et al. (2008) which uses an integrative
score on compound and enzyme similarities. Pathway alignment has been further extensively
investigated and various other techniques have been proposed (see e.g. Cheng et al., 2008;
Koyutürk, Kim, Subramaniam, Szpankowski & Grama, 2006; Li et al., 2007).

The evolutionary mapping of PathBLAST can also be used to query a known pathway
of one species into the PPI network of another species. However, due to limitations and
algorithmic constraints of PathBLAST, many other methods have been developed with a
focussed application of orthologous querying of biological functional complexes, and tools
and web-services are available for querying general pathways and other types of protein
functional modules across species (see e.g. Bruckner et al., 2009; Dost et al., 2008; Qian et al.,
2009; Yang & Sze, 2007).

3.2.2 Local pairwise network alignment for protein complex detection

Another group of methods which followed PathBLAST focus on detection of conserved
protein complexes across (PPI networks of two or more) species. As these methods
compare networks of physical interactions, the identified complexes can be used for interolog
prediction as well as for protein function prediction of yet uncharacterized proteins. The
detected conserved complexes are either (putative) entire physical complexes or conserved
parts of them.
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alignment. In sequel we survey local pairwise alignments for detecting evolutionary conserved
pathways, local pairwise alignments for detecting conserved protein complexes, and global
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3.2.1 Local pairwise network alignment for pathway detection and query tasks

The main goal of local protein network alignment is to detect conserved pathways and protein
complexes across species, by searching for local regions of input networks having both high
topological similarity between the regions and high sequence similarity between proteins of
these regions. The standard approach to this task consists of two main phases: an alignment
phase and a searching phase. In the first phase a merged network representation of compared
PPI networks is constructed, called alignment or orthology graph. The second phase performs
a search for the structures of interest in the orthology graph. Each output result corresponds
to a pair or multiplet of complexes or pathways which are evolutionary conserved across the
two or more (PPI networks of the) species, respectively.

The first alignment method of whole PPI networks of two species using protein sequence
similarity was introduced by Kelley et al. (2003). In this method, called PathBLAST, first a
many-to-many mapping between proteins of the two species is determined by considering
each pair of proteins with a sequence similarity higher than a given threshold as putative
orthologs. Next, every orthologous pair is encoded in one alignment node of the new
alignment graph and three types of edges (direct, gap and mismatch edge) are identified
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between these alignment nodes as follows. The direct edge corresponds to the case when a
PPI between proteins of two orthologous pairs exists in the PPI networks of both species. The
gap edge represents the case when in one species the respective proteins of alignments nodes
are connected indirectly through a common neighbour. Finally, the mismatch edge between
alignments nodes is formed if such indirect connection is found between the corresponding
proteins in the PPI networks of both species. Gap and mismatch edges are used to describe
possible evolutionary variations or account for experimental errors in data (Kelley et al., 2003).
In the search phase, the alignment graph is turned into acyclic sub-graphs by random removal
of alignment edges, which allows to extract high-scoring paths in linear time by a dynamic
programming approach. The score of a path is computed as the sum of log probabilities of true
orthology encoded in alignment nodes of the path and of true conserved interactions encoded
by alignment edges contained in the path. Interestingly, the method was also applied to align
a PPI network with its own copy. In this way they could identify conserved (paralogous)
pathways within one species.

The work of Kelley et al. (2003) was followed by other alignment techniques for discovering
conserved pathways based on evolutionary conservation. The main drawbacks of PathBLAST
are that it detects conserved linear pathways in protein interaction data, which is represented
as an undirected graph, and it has an exponentially worsening efficiency with the expected
increasing length of a pathway to be detected. To circumvent these limitations Pinter et al.
(2005) proposed an alignment technique designed explicitly for metabolic networks with
directed links between enzymes. The method also handles more complex structures than
a simple path, because the scoring of the alignment is based on sub-tree homeomorphism,
which can be solved by an efficient deterministic approximation. Another enhancement for
the pathway alignment problem was proposed by Wernicke & Rasche (2007) who designed
a method that does not impose topological restrictions upon pathways and exploits the
biological and local properties of pathways within the network. Another effective approach
to metabolic network alignment was developed by Li et al. (2008) which uses an integrative
score on compound and enzyme similarities. Pathway alignment has been further extensively
investigated and various other techniques have been proposed (see e.g. Cheng et al., 2008;
Koyutürk, Kim, Subramaniam, Szpankowski & Grama, 2006; Li et al., 2007).

The evolutionary mapping of PathBLAST can also be used to query a known pathway
of one species into the PPI network of another species. However, due to limitations and
algorithmic constraints of PathBLAST, many other methods have been developed with a
focussed application of orthologous querying of biological functional complexes, and tools
and web-services are available for querying general pathways and other types of protein
functional modules across species (see e.g. Bruckner et al., 2009; Dost et al., 2008; Qian et al.,
2009; Yang & Sze, 2007).

3.2.2 Local pairwise network alignment for protein complex detection

Another group of methods which followed PathBLAST focus on detection of conserved
protein complexes across (PPI networks of two or more) species. As these methods
compare networks of physical interactions, the identified complexes can be used for interolog
prediction as well as for protein function prediction of yet uncharacterized proteins. The
detected conserved complexes are either (putative) entire physical complexes or conserved
parts of them.
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To the best of our knowledge, the first method for detecting conserved complexes using
pairwise comparison of PPI networks was introduced by Sharan, Ideker, Kelley, Shamir &
Karp (2005) and called NetworkBLAST. It can be viewed as a direct extension of PathBLAST
for the task of complex detection across species. The method employs a comprehensive
probabilistic model for conservation of protein complexes and searches for heavy induced
sub-graphs in the weighted orthology graph. As the maximal induced sub-graph problem is
computationally intractable, NetworkBLAST employs a bottom-up greedy heuristic for this
task.

Many alignment network techniques which followed NetworkBLAST are motivated by the
computational intractability issue derived from the problem of a finding maximal common
or induced sub-graph in an ortholog graph, and are based on different heuristics. For
instance, Koyutürk, Kim, Topkara, Subramaniam, Grama & Szpankowski (2006) partitions
the alignment graph into smaller clusters by performing an approximated balanced ratio-cut.
In another method by Koyutürk, Kim, Subramaniam, Szpankowski & Grama (2006) the
most frequent interaction motifs are extracted from an orthology-contracted graph. Liang
et al. (2006) transforms the problem of maximal common sub-graph into the problem of
finding all maximal cliques in the graph. Recently, Tian & Samatova (2009) introduced an
algorithm based on detection of connected-components of the orthology graph solvable in a
very efficient way.

Other researchers propose to restrict the search space to cope with intractability issue
of searching phase instead of performing heavy heuristics. For example Li et al. (2007)
pre-clusters one PPI network in order to detect candidate complexes which are afterwards
aligned to the target species network with an exact integer programming algorithm. Jancura
& Marchiori (2010) proposed a pre-processing algorithm based on detection of network hubs
for dividing PPI networks, prior to their alignment, into smaller sub-networks containing
potential conserved modules. Each possible pair of sub-networks can be later aligned with a
state-of-the-art alignment method where the search phase can be performed by means of an
exact algorithm, allowing one to perform network comparison in a fully modular fashion and
possibly to parallelize the computation. An interesting modular approach was introduced by
Narayanan & Karp (2007), where an orthology graph is not constructed but rather networks
are compared and split consecutively in several recursive steps until all possible solutions,
conserved sub-graphs, are found. Similarly, Gerke et al. (2007) only compares, but does not
merge, local hub-centred regions of PPI networks as identified by clustering coefficients and
node degrees. The method by Ali & Deane (2009) is again another example of approach
where an alignment graph is not explicitly constructed; there interspecies protein similarities
are considered as new edges in such a way that species PPI networks and similarity edges
between them are encoded into a single global meta-graph which can be searched by standard
clustering techniques.

There are also alignment methods which try to incorporate or use other types of information
than just the one based on sequence similarity and interaction conservation. For instance,
Guo & Hartemink (2009) exploited the findings on co-evolving interacting domains which
mediate PPIs and, instead of using putatively homologous proteins for alignment, compares
PPI networks across species according to conserved domains of protein-protein interactions.
Ali & Deane (2009) propose a functionally guided alignment of PPI networks, where a scoring
function incorporates not only sequence and topological similarity of aligned proteins but also
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their gene co-expression characteristics and coherence of functional annotations. Thus, the
method can be seen as detecting functional modules shared across species rather than strictly
evolutionary modules. Finally, Berg & Lässig (2006) developed a generalized alignment
Bayesian method applicable to different biological networks.

Despite various pairwise alignment techniques have been introduced, only a few of them
embody an evolutionary model of PPI networks in the scoring scheme of an alignment.
Notably, Koyutürk, Kim, Topkara, Subramaniam, Grama & Szpankowski (2006) were the first
to introduce a method that builds the orthology graph following the duplication/divergence
model based on gene duplications. Another interesting method was proposed by Hirsh &
Sharan (2007) who extended the probabilistic score of NetworkBLAST to asses the likelihood
that two complexes originated from an ancestral complex in the common ancestor of the two
species being compared under the evolutionary pressure of duplication and link dynamics
events.

3.2.3 Global pairwise network alignment

In contrast to local network alignment, which uses many-to-many homologous mapping
between proteins of distinct species to detect local conserved regions of a high topological
similarity in the respective PPI networks, global protein network alignment uses this mapping
to define an unique, globally optimal mapping across whole topologies of PPI networks (Singh
et al., 2007), even if it were locally suboptimal in some regions of the networks. In the most
strict form of this unique mapping each node in one input network is either matched to
one node in the other input network or has no match in the other network. Thus the goal
of global protein network alignment is to define functional orthologs across species, as the
solution offers a way to resolve the ambiguity of orthology detection with the use of species
interactome map. Naturally, as a by-product the global alignment can also identify conserved
complexes or pathways.

To the best of our knowledge, the first method performing explicitly global alignment
on pair of networks, called IsoRank, was introduced by Singh et al. (2007). Similarly to
the local network alignment problem, the global network alignment problem is in general
computationally intractable. As a consequence, IsoRank employs an approximation using an
eigenvalue framework in a manner analogous to Google’s PageRank algorithm.

Several advancements have naturally followed the introduction of IsoRank. For instance,
Evans et al. (2008) proposed an asymmetric network matching algorithm based on a network
simulation method called quantitative simulation, where a similarity score of a protein pair is
iteratively updated by the similarity scores of their neighbours and vice versa until a unique
global optimum is found. Other researchers focused more on formulating global alignment
as combinatorial optimization problems. For instance Zaslavskiy et al. (2009) redefined the
problem of global alignment as a standard graph matching problem and investigated methods
using ideas and approaches from state-of-the-art graph matching techniques. Klau (2009)
formalized global network alignment as an integer linear programming problem, where a
near-optimal solution with a quality guarantee is found by solving a Lagrangian relaxation of
the original optimization formulation. Recently, Chindelevitch et al. (2010) proposed a method
where the global alignment is encoded as bipartite matching and applied a very efficient local
optimization heuristic used for the well-known Travelling Salesman Problem.

443A Survey on Evolutionary Analysis in PPI Networks



16 Will-be-set-by-IN-TECH
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between them are encoded into a single global meta-graph which can be searched by standard
clustering techniques.

There are also alignment methods which try to incorporate or use other types of information
than just the one based on sequence similarity and interaction conservation. For instance,
Guo & Hartemink (2009) exploited the findings on co-evolving interacting domains which
mediate PPIs and, instead of using putatively homologous proteins for alignment, compares
PPI networks across species according to conserved domains of protein-protein interactions.
Ali & Deane (2009) propose a functionally guided alignment of PPI networks, where a scoring
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their gene co-expression characteristics and coherence of functional annotations. Thus, the
method can be seen as detecting functional modules shared across species rather than strictly
evolutionary modules. Finally, Berg & Lässig (2006) developed a generalized alignment
Bayesian method applicable to different biological networks.

Despite various pairwise alignment techniques have been introduced, only a few of them
embody an evolutionary model of PPI networks in the scoring scheme of an alignment.
Notably, Koyutürk, Kim, Topkara, Subramaniam, Grama & Szpankowski (2006) were the first
to introduce a method that builds the orthology graph following the duplication/divergence
model based on gene duplications. Another interesting method was proposed by Hirsh &
Sharan (2007) who extended the probabilistic score of NetworkBLAST to asses the likelihood
that two complexes originated from an ancestral complex in the common ancestor of the two
species being compared under the evolutionary pressure of duplication and link dynamics
events.

3.2.3 Global pairwise network alignment

In contrast to local network alignment, which uses many-to-many homologous mapping
between proteins of distinct species to detect local conserved regions of a high topological
similarity in the respective PPI networks, global protein network alignment uses this mapping
to define an unique, globally optimal mapping across whole topologies of PPI networks (Singh
et al., 2007), even if it were locally suboptimal in some regions of the networks. In the most
strict form of this unique mapping each node in one input network is either matched to
one node in the other input network or has no match in the other network. Thus the goal
of global protein network alignment is to define functional orthologs across species, as the
solution offers a way to resolve the ambiguity of orthology detection with the use of species
interactome map. Naturally, as a by-product the global alignment can also identify conserved
complexes or pathways.

To the best of our knowledge, the first method performing explicitly global alignment
on pair of networks, called IsoRank, was introduced by Singh et al. (2007). Similarly to
the local network alignment problem, the global network alignment problem is in general
computationally intractable. As a consequence, IsoRank employs an approximation using an
eigenvalue framework in a manner analogous to Google’s PageRank algorithm.

Several advancements have naturally followed the introduction of IsoRank. For instance,
Evans et al. (2008) proposed an asymmetric network matching algorithm based on a network
simulation method called quantitative simulation, where a similarity score of a protein pair is
iteratively updated by the similarity scores of their neighbours and vice versa until a unique
global optimum is found. Other researchers focused more on formulating global alignment
as combinatorial optimization problems. For instance Zaslavskiy et al. (2009) redefined the
problem of global alignment as a standard graph matching problem and investigated methods
using ideas and approaches from state-of-the-art graph matching techniques. Klau (2009)
formalized global network alignment as an integer linear programming problem, where a
near-optimal solution with a quality guarantee is found by solving a Lagrangian relaxation of
the original optimization formulation. Recently, Chindelevitch et al. (2010) proposed a method
where the global alignment is encoded as bipartite matching and applied a very efficient local
optimization heuristic used for the well-known Travelling Salesman Problem.
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3.3 Multiple protein network alignment

The methods on network alignment discussed so far perform alignment of two PPI networks
of distinct species. The next natural extension is aligning more than two PPI networks, that
is multiple network alignment. A first attempt to perform multiple local network alignment
using three species was done by Sharan, Suthram, Kelley, Kuhn, McCuine, Uetz, Sittler, Karp
& Ideker (2005), which exploited the scoring model of NetworkBLAST. However, the method
scales exponentially with the number of input species and consequently it is ineffective for
large scale comparisons.

Apart from the scalability problem, there are also other issues related to the problem of
aligning more than two species. For instance, the putative orthologous mapping of certain
proteins does not need to span across all species, meaning that proteins may be conserved
only for a particular subset of species. This “orthology decay” is more evident when a large
number of increasingly distant species are considered in the alignment. As a result, functional
modules, such as pathways and complexes, can have a different degree of conservation,
with some modules being strictly conserved across all species and some other modules being
conserved only for a particular clade. Thus, a good alignment method should allow one to
search for conserved modules at different degree of conservation. However, such requirement
also increases the complexity of searching and consequently one may need to prune the
number of all possible species combinations in alignment.

To the best of our knowledge, the first method capable of an efficient comparison of multiple
PPI networks, called Graemlin, was introduced by Flannick et al. (2006). The alignment model
of the method allows one to perform local as well as global alignment and is also applicable
for querying tasks of particular biological modules of interest across PPI networks. It employs
a rather involved scoring scheme which allows one to search for conserved pathways as
well as for conserved complexes. It also outputs modules with a different conservation
degree. Graemlin progressively aligns the closest pair of PPI networks according the species
distance measured using a phylogenetic tree, until the last pair on the root of the tree is
compared, corresponding to the most conserved parts of the aligned networks. The main
disadvantage of this approach is that it involves to estimate many parameters. Recently, a
supervised, automated parameter learner was proposed to lessen the burden of parameter
tuning (Flannick et al., 2009).

Another phylogeny-guided local network alignment was proposed by Kalaev et al. (2008).
Although the method uses the same probabilistic scoring for conserved complex as
NetworkBLAST, it avoids its exponential scalability by redefining the alignment model such
that it does not construct the merged representation of aligned networks but represents them
as separate layers interconnected via orthologous mapping. Then a seed, that is, a group
of putatively orthologous proteins spanning across all species, is selected using the species
phylogeny and greedily expanded by adding other proteins being orthologous to each other
in all respective species in order to maximize the alignment conservation score. The proposed
method, however, identifies only protein complexes conserved across all species and does not
detect complexes conserved only for a certain subset of species.

Notably, the functionally guided network alignment method of Ali & Deane (2009), previously
mentioned as one of the methods for pairwise alignment, was also shown to perform
efficiently local alignment of multiple networks.
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All these multiple local network alignments do not reconstruct a plausible evolutionary
history of PPI networks based on a model of evolution, although they might be
phylogeny-aware. Motivated by this observation, Dutkowski & Tiuryn (2007) introduced
a new multiple local network alignment method, called CAPPI, which from the given PPI
networks of distinct species aims to reconstruct an ancient PPI network of the common
ancestor. The method uses a Bayesian inference framework based on a duplication and
divergence model of network evolution which mimics the processes by which most protein
interactions are formed. After the reconstruction step, the ancestral network is decomposed
into connected components which correspond to the ancestral modules of protein interactions
and are projected back to the original networks to obtain the actual conserved network
residues. Although the demonstrated application of the method was restricted to orthologous
groups spanning across all species (Dutkowski & Tiuryn, 2007), to the best of our knowledge
CAPPI is the only model-based approach for large-scale ancestral network reconstruction.

Among the multiple alignment methods above mentioned, only Graemlin was shown to
perform a global multiple network alignment, yet it relies on a involved parameter estimation
step and phylogeny-guided approximation. Recently Liao et al. (2009) developed another
global alignment technique which is fully unsupervised and phylogeny-free. The method,
called IsoRankN, is built on the IsoRank algorithm mentioned above (Singh et al., 2007) and
its extension to the multiple global network alignment (Singh et al., 2008a). At first IsoRankN
scores topological and sequence similarity matching between putatively orthologous proteins
of each pair of input networks using IsoRank. Then, a maximum k-partite graph matching
problem is formulated on the induced graph of pairwise alignment scores (Singh et al., 2008a)
and the exact solution is approximated by a spectral graph partitioning algorithm. IsoRankN
also effectively identifies one-to-one orthologous mappings for all subset of species and
appears to out-perform Graemlin in terms of coverage and quality of functional enrichments.

3.4 Applications and future developments

Local and global alignment methods have been successfully applied to study evolution of
species and to discover relevant biological knowledge. For example, Suthram et al. (2005)
applied the network alignment of Sharan, Suthram, Kelley, Kuhn, McCuine, Uetz, Sittler,
Karp & Ideker (2005) to examine the degree of conservation between the Plasmodium protein
network and other model organisms, such as yeast, nematode worm, fruit fly and the bacterial
pathogen Helicobacter pylori. They investigated whether the divergence of Plasmodium
at the sequence level is reflected in the configuration of its protein network. Indeed, the
alignments showed very little conservation suggesting that the patterns of protein interaction
in Plasmodium, like its genome sequence, set it apart from other species (Suthram et al., 2005).

Another application of local network alignment was performed by Tan et al. (2007)
who combined transcriptional regulatory interactions with protein-protein interactions and
identified co-regulated complexes between yeast and fly revealing different conservation
of their regulators. This finding advocates that PPI networks may evolve more slowly
than transcriptional interaction networks. In addition, Schwartz et al. (2009) and
Dutkowski & Tiuryn (2009) used conserved complexes detected by network alignments
for protein interaction prediction in a manner similar to the interologs transfer approach
and demonstrated their usefulness. In particular, Schwartz et al. (2009) provided a
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3.3 Multiple protein network alignment

The methods on network alignment discussed so far perform alignment of two PPI networks
of distinct species. The next natural extension is aligning more than two PPI networks, that
is multiple network alignment. A first attempt to perform multiple local network alignment
using three species was done by Sharan, Suthram, Kelley, Kuhn, McCuine, Uetz, Sittler, Karp
& Ideker (2005), which exploited the scoring model of NetworkBLAST. However, the method
scales exponentially with the number of input species and consequently it is ineffective for
large scale comparisons.

Apart from the scalability problem, there are also other issues related to the problem of
aligning more than two species. For instance, the putative orthologous mapping of certain
proteins does not need to span across all species, meaning that proteins may be conserved
only for a particular subset of species. This “orthology decay” is more evident when a large
number of increasingly distant species are considered in the alignment. As a result, functional
modules, such as pathways and complexes, can have a different degree of conservation,
with some modules being strictly conserved across all species and some other modules being
conserved only for a particular clade. Thus, a good alignment method should allow one to
search for conserved modules at different degree of conservation. However, such requirement
also increases the complexity of searching and consequently one may need to prune the
number of all possible species combinations in alignment.

To the best of our knowledge, the first method capable of an efficient comparison of multiple
PPI networks, called Graemlin, was introduced by Flannick et al. (2006). The alignment model
of the method allows one to perform local as well as global alignment and is also applicable
for querying tasks of particular biological modules of interest across PPI networks. It employs
a rather involved scoring scheme which allows one to search for conserved pathways as
well as for conserved complexes. It also outputs modules with a different conservation
degree. Graemlin progressively aligns the closest pair of PPI networks according the species
distance measured using a phylogenetic tree, until the last pair on the root of the tree is
compared, corresponding to the most conserved parts of the aligned networks. The main
disadvantage of this approach is that it involves to estimate many parameters. Recently, a
supervised, automated parameter learner was proposed to lessen the burden of parameter
tuning (Flannick et al., 2009).

Another phylogeny-guided local network alignment was proposed by Kalaev et al. (2008).
Although the method uses the same probabilistic scoring for conserved complex as
NetworkBLAST, it avoids its exponential scalability by redefining the alignment model such
that it does not construct the merged representation of aligned networks but represents them
as separate layers interconnected via orthologous mapping. Then a seed, that is, a group
of putatively orthologous proteins spanning across all species, is selected using the species
phylogeny and greedily expanded by adding other proteins being orthologous to each other
in all respective species in order to maximize the alignment conservation score. The proposed
method, however, identifies only protein complexes conserved across all species and does not
detect complexes conserved only for a certain subset of species.

Notably, the functionally guided network alignment method of Ali & Deane (2009), previously
mentioned as one of the methods for pairwise alignment, was also shown to perform
efficiently local alignment of multiple networks.
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and are projected back to the original networks to obtain the actual conserved network
residues. Although the demonstrated application of the method was restricted to orthologous
groups spanning across all species (Dutkowski & Tiuryn, 2007), to the best of our knowledge
CAPPI is the only model-based approach for large-scale ancestral network reconstruction.

Among the multiple alignment methods above mentioned, only Graemlin was shown to
perform a global multiple network alignment, yet it relies on a involved parameter estimation
step and phylogeny-guided approximation. Recently Liao et al. (2009) developed another
global alignment technique which is fully unsupervised and phylogeny-free. The method,
called IsoRankN, is built on the IsoRank algorithm mentioned above (Singh et al., 2007) and
its extension to the multiple global network alignment (Singh et al., 2008a). At first IsoRankN
scores topological and sequence similarity matching between putatively orthologous proteins
of each pair of input networks using IsoRank. Then, a maximum k-partite graph matching
problem is formulated on the induced graph of pairwise alignment scores (Singh et al., 2008a)
and the exact solution is approximated by a spectral graph partitioning algorithm. IsoRankN
also effectively identifies one-to-one orthologous mappings for all subset of species and
appears to out-perform Graemlin in terms of coverage and quality of functional enrichments.

3.4 Applications and future developments

Local and global alignment methods have been successfully applied to study evolution of
species and to discover relevant biological knowledge. For example, Suthram et al. (2005)
applied the network alignment of Sharan, Suthram, Kelley, Kuhn, McCuine, Uetz, Sittler,
Karp & Ideker (2005) to examine the degree of conservation between the Plasmodium protein
network and other model organisms, such as yeast, nematode worm, fruit fly and the bacterial
pathogen Helicobacter pylori. They investigated whether the divergence of Plasmodium
at the sequence level is reflected in the configuration of its protein network. Indeed, the
alignments showed very little conservation suggesting that the patterns of protein interaction
in Plasmodium, like its genome sequence, set it apart from other species (Suthram et al., 2005).

Another application of local network alignment was performed by Tan et al. (2007)
who combined transcriptional regulatory interactions with protein-protein interactions and
identified co-regulated complexes between yeast and fly revealing different conservation
of their regulators. This finding advocates that PPI networks may evolve more slowly
than transcriptional interaction networks. In addition, Schwartz et al. (2009) and
Dutkowski & Tiuryn (2009) used conserved complexes detected by network alignments
for protein interaction prediction in a manner similar to the interologs transfer approach
and demonstrated their usefulness. In particular, Schwartz et al. (2009) provided a
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comprehensive experimental design which includes PPI prediction using network alignment,
and demonstrated how effectively it reduces the cost of interactome mapping.

Furthermore, Bandyopadhyay et al. (2006) presented the first systematic identification of
functional orthologs based on protein network comparison. They used the pairwise local
alignment model of Kelley et al. (2003) to construct the orthology graph and then they resolved
ambiguity of orthology mapping by fitting a logistic function previously trained on a known
set of functional orthologs. In contrast, Singh et al. (2008b) predicted functional orthologs in
unsupervised manner by using explicitly a global multiple network alignment method.

Finally, Kolar et al. (2008) performed a cross-species analysis of two herpes-viruses using the
generalized Bayesian network alignment of Berg & Lässig (2006). Interestingly, the performed
alignment employs in its probabilistic scoring system evolutionary rates of sequences and
thus it goes beyond the narrow use of orthologous mapping as done in all other alignment
techniques. The method predicted meaningful functional associations that could not be
obtained from sequence or interaction data alone.

Despite the recent progress and increasing number of network alignment tools, their
further development remains an ongoing research issue, in particular for multiple network
comparison. Only a few methods perform the scoring of alignment according to evolutionary
models and there is only one of them which fully reconstructs network evolutionary history.
This clearly is in contrast with the numerous techniques for the reconstruction of evolutionary
history of gene families. Also, actual alignment methods do not distinguish among
diverse types of interactions, specifically between transient and permanent interactions. For
example, the prior knowledge on different evolutionary behaviour of these types of physical
interactions could be incorporated into a scoring scheme of alignment construction.

In addition, all but one network comparison methods just rely on the straightforward use
of putative orthologous mapping as identified by sequence comparison or available in
orthologous databases, but they do not employ evolutionary measures, such as evolutionary
distances or retentions, which can be derived from the corresponding sequence alignments.
These measures assess the level of evolutionary conservation and they could potentially
improve the performance of network alignments.

Mostly all current applications of network alignments have worked with networks of physical
interactome. However, the power of network alignment for functional annotation and other
system biology applications could be explored when one performs comparison of more
general, functional interaction networks. One may expect that such alignment could reveal
a higher number of conserved modules as the interspecies conservation of modularity across
protein networks increases with combined, integrated evidence for a pair of proteins to be
functionally linked. Finally, all available methods here considered focused on conservation
of modules but not on the more general concept of module evolutionary cohesiveness or
co-evolution. The evolutionary cohesiveness can be assessed especially for the case of multiple
alignments. Indeed, all conserved modules are inherently very cohesive, however not all
evolutionary modules need to exhibit the correlated conservation at a level as expected by
actual multiple network alignments. Protein functional modules differ in the degree of
conservation and also in the degree of cohesiveness.
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example, the prior knowledge on different evolutionary behaviour of these types of physical
interactions could be incorporated into a scoring scheme of alignment construction.

In addition, all but one network comparison methods just rely on the straightforward use
of putative orthologous mapping as identified by sequence comparison or available in
orthologous databases, but they do not employ evolutionary measures, such as evolutionary
distances or retentions, which can be derived from the corresponding sequence alignments.
These measures assess the level of evolutionary conservation and they could potentially
improve the performance of network alignments.

Mostly all current applications of network alignments have worked with networks of physical
interactome. However, the power of network alignment for functional annotation and other
system biology applications could be explored when one performs comparison of more
general, functional interaction networks. One may expect that such alignment could reveal
a higher number of conserved modules as the interspecies conservation of modularity across
protein networks increases with combined, integrated evidence for a pair of proteins to be
functionally linked. Finally, all available methods here considered focused on conservation
of modules but not on the more general concept of module evolutionary cohesiveness or
co-evolution. The evolutionary cohesiveness can be assessed especially for the case of multiple
alignments. Indeed, all conserved modules are inherently very cohesive, however not all
evolutionary modules need to exhibit the correlated conservation at a level as expected by
actual multiple network alignments. Protein functional modules differ in the degree of
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1. Introduction  
Biology offers a diversity of problems, leading to many computational biology workflows, 
including tasks where network visualization is helpful to interpret and analyse data. High-
throughput screening techniques generate large amounts of data useful for the 
comprehension of the biological mechanisms underlying different diseases. The need for 
agile tools to handle such data and analyse it correctly has become continuously more 
evident. 

Individual network visualization systems differ greatly in terms of the features and 
standards they support, and consequently the analyses they enable. Importantly, users have 
a broad range of skills and expectations, ranging from biology to computational biology. As 
a result, network visualization tools must satisfy diverse requirements and thus offer 
different user interfaces and features. In this role, they are also fundamental in helping 
scientists in different fields integrate their knowledge and their data in an interdisciplinary 
approach to research. 

The number of ‘-omics’ disciplines that use high-throughput techniques and that can benefit 
from a network approach are increasing. The diverse data that can be represented as a graph 
includes physical protein-protein interactions (PPIs), metabolic networks (Swainston et al., 
2011), genetic co-expression (Helaers et al., 2011), gene regulatory networks (Longabaugh, 
2012), microRNA-target (Shirdel et al., 2011) and drug-target associations (Morrow et al., 
2010). In this chapter we focus on physical PPIs. 

Proteins are key players in virtually all biological events that take place within and between 
cells and often accomplish their function as part of large molecular machines, whose action 
is coordinated through intricate regulatory networks of transient PPIs. The understanding of 
the interrelationships between molecules is the basis for an understanding of the behaviour 
of biological systems (Stein et al., 2011).  
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1. Introduction  
Biology offers a diversity of problems, leading to many computational biology workflows, 
including tasks where network visualization is helpful to interpret and analyse data. High-
throughput screening techniques generate large amounts of data useful for the 
comprehension of the biological mechanisms underlying different diseases. The need for 
agile tools to handle such data and analyse it correctly has become continuously more 
evident. 

Individual network visualization systems differ greatly in terms of the features and 
standards they support, and consequently the analyses they enable. Importantly, users have 
a broad range of skills and expectations, ranging from biology to computational biology. As 
a result, network visualization tools must satisfy diverse requirements and thus offer 
different user interfaces and features. In this role, they are also fundamental in helping 
scientists in different fields integrate their knowledge and their data in an interdisciplinary 
approach to research. 

The number of ‘-omics’ disciplines that use high-throughput techniques and that can benefit 
from a network approach are increasing. The diverse data that can be represented as a graph 
includes physical protein-protein interactions (PPIs), metabolic networks (Swainston et al., 
2011), genetic co-expression (Helaers et al., 2011), gene regulatory networks (Longabaugh, 
2012), microRNA-target (Shirdel et al., 2011) and drug-target associations (Morrow et al., 
2010). In this chapter we focus on physical PPIs. 

Proteins are key players in virtually all biological events that take place within and between 
cells and often accomplish their function as part of large molecular machines, whose action 
is coordinated through intricate regulatory networks of transient PPIs. The understanding of 
the interrelationships between molecules is the basis for an understanding of the behaviour 
of biological systems (Stein et al., 2011).  
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The analysis of the full proteome is possible with techniques such as mass spectrometry and 
protein microarray, which can be integrated with targeted approaches such as yeast-2-
hybrid screen, immune precipitation and affinity purification. So far, PPI discovery methods 
are not accurate enough to be used alone, but the combination of different techniques can 
help to build an accurate interactome map (Remmerie et al. 2011). Still, this kind of analysis 
can only indicate that two proteins interact but does not reveal the molecular details or the 
mechanism of binding captured in high resolution three-dimensional (3D) structures, in 
which individual residue contacts are resolved and the interaction interfaces characterized. 
Moreover, they do not capture transient interactions and post translational modifications 
(PTMs) that can be addressed by techniques such as immobilized metal affinity 
chromatography (IMAC) mass spectrometry for protein phosphorylation analysis. 

It becomes evident that the analysis of protein interactions is already a huge field with a 
plethora of data coming from different sources that can be improved by computational 
techniques and integrative network visualization and analysis. It is even more interesting to 
integrate PPI data with protein-target interaction data to have a wider view of the 
environmental context that influences network operations.  

In this context, a pathway-centric analysis can help to elucidate the role and the importance 
of proteins in the context of the cell environment, specifically when the pathways can be 
related to the process/disease being studied. However, it is mandatory to be aware of the 
limits of this analysis, due to the cross-talk among pathways: a singular protein, in fact, can 
be associated or interact with multiple pathways so none of the pathways can be considered 
a single actor but rather a piece of a bigger puzzle (Kreeger & Lauffenburger, 2010). 

Another intriguing aspect that protein-target interactions can describe is the relationship 
between protein exogenous molecules like drugs or toxins (Yu, 2011). The analysis of 
networks generated from drug-target and protein-target interactions can highlight different 
molecules that can be responsible of the response or resistance to a certain drug as well as 
alternative drugs that can target disease specific proteins. 

2. Network visualization tools 
There are dozens of applications available for the visualization of biological networks, each 
with its own focus, work-flow and tools (Pavlopoulos et al., 2008; Gehlenborg et al., 2010). 
We will describe some of the most common features and workflows involved in using these 
applications, with brief discussion of NAViGaTOR (Brown et al., 2009; McGuffin and 
Jurisica, 2009; Djebbari et al., 2011), Cytoscape (Smoot et al., 2011), VANTED (Björn et al., 
2006) and VisANT (Mellor et al., 2004), four popular multi-platform biological network 
visualization applications. 

2.1 Biological networks as annotated graphs 

The most basic mathematical structure common to all of these applications is the graph, a 
collection of objects connected by links, referred to as nodes and edges. These objects are 
abstractions of real-world biological entities, where nodes could represent proteins, genes, 
molecules, drugs, etc. and edges could represent physical protein-protein, metabolic, or 
genetic interactions, microRNA to target associations, correlation, similarity relationships, 
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etc. Edges can be directed or undirected, weighted or not. In a case like gene regulation, 
Gene A may regulate Gene B, but the relationship may not be symmetric, meaning Gene B 
does not regulate Gene A. These models of biological networks have differing levels of 
support across various applications. An application may only support a small subset of 
node and edge types in order to specialize on one particular model, such as VisANT, which 
integrates many specialized tools for tasks such as Gene Ontology (GO) annotation, name 
resolution and online searches. Other applications may be more open-ended to provide 
support for as many models as possible, such as NAViGaTOR, Cytoscape and VANTED. 
The advantage of such a model is versatility, but it comes at the cost of having to manually 
define the nature of each node or edge via annotation. 

To populate a graph within an application, the application must support one or more input 
formats. Often, the most basic level of input is either plain text or spreadsheet files such as 
Excel XLS format. For more graph-specific data, such as layout, GML can be used. To 
support more complex and structured biological data, several community standards exist: 
PSI-MI, BioPAX, and SBML. 

Adding new nodes and edges to an existing graph can generally be done manually or by 
adding additional interactions from a supported database or file format. Some applications 
may have a workspace that supports concurrent, multiple graphs, which can then be 
combined or compared in various ways. Cytoscape and NAViGaTOR both support this type 
of workspace. 

Once the graph is loaded within an application, a researcher may wish to add additional 
annotations, such as gene or protein expression, experimental confidence measures or Gene 
Ontology (The Gene Ontology Consortium, 2000) to their graph objects. Data from in-house 
sources must generally conform to the application used; generally, this is in the form of 
spreadsheets or text data with varying degrees of format flexibility. The researcher can also 
call upon more specialized data from public databases, such as UniProt, Entrez, KEGG or 
Genbank, either through the import of files or from direct access to the database through the 
application or a plug-in. 

The amount of biological networks available to the researcher is ever expanding, and the 
size of the networks involved in many types of analysis is in order of thousands of nodes 
and edges. For example, the yeast interactome comprises 23,918 interactions according to 
DIP and 152,877 known and predicted interactions in I2D, the Interologous Interaction 
Database (http://ophid.utoronto.ca/i2d), an integrated database of PPIs from curated 
databases, experimental sources and predicted interactions (Niu et al., 2010; Brown and 
Jurisica, 2007; Brown and Jurisica 2005). While the researcher may only be interested in a 
small portion of the network in question, the scalability of an individual application and its 
analysis methods to networks of such size can be a considerable advantage. 

2.2 Network visualization 

Part of the challenge of visualizing a network is the laying out of the graph in a 
comprehensible manner. For smaller graphs, manual editing of node positions may be 
sufficient. With the aforementioned instances of graphs in the order of thousands of 
interactions, more robust tools are available with which to lay out a graph. Automated 
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The analysis of the full proteome is possible with techniques such as mass spectrometry and 
protein microarray, which can be integrated with targeted approaches such as yeast-2-
hybrid screen, immune precipitation and affinity purification. So far, PPI discovery methods 
are not accurate enough to be used alone, but the combination of different techniques can 
help to build an accurate interactome map (Remmerie et al. 2011). Still, this kind of analysis 
can only indicate that two proteins interact but does not reveal the molecular details or the 
mechanism of binding captured in high resolution three-dimensional (3D) structures, in 
which individual residue contacts are resolved and the interaction interfaces characterized. 
Moreover, they do not capture transient interactions and post translational modifications 
(PTMs) that can be addressed by techniques such as immobilized metal affinity 
chromatography (IMAC) mass spectrometry for protein phosphorylation analysis. 

It becomes evident that the analysis of protein interactions is already a huge field with a 
plethora of data coming from different sources that can be improved by computational 
techniques and integrative network visualization and analysis. It is even more interesting to 
integrate PPI data with protein-target interaction data to have a wider view of the 
environmental context that influences network operations.  

In this context, a pathway-centric analysis can help to elucidate the role and the importance 
of proteins in the context of the cell environment, specifically when the pathways can be 
related to the process/disease being studied. However, it is mandatory to be aware of the 
limits of this analysis, due to the cross-talk among pathways: a singular protein, in fact, can 
be associated or interact with multiple pathways so none of the pathways can be considered 
a single actor but rather a piece of a bigger puzzle (Kreeger & Lauffenburger, 2010). 

Another intriguing aspect that protein-target interactions can describe is the relationship 
between protein exogenous molecules like drugs or toxins (Yu, 2011). The analysis of 
networks generated from drug-target and protein-target interactions can highlight different 
molecules that can be responsible of the response or resistance to a certain drug as well as 
alternative drugs that can target disease specific proteins. 

2. Network visualization tools 
There are dozens of applications available for the visualization of biological networks, each 
with its own focus, work-flow and tools (Pavlopoulos et al., 2008; Gehlenborg et al., 2010). 
We will describe some of the most common features and workflows involved in using these 
applications, with brief discussion of NAViGaTOR (Brown et al., 2009; McGuffin and 
Jurisica, 2009; Djebbari et al., 2011), Cytoscape (Smoot et al., 2011), VANTED (Björn et al., 
2006) and VisANT (Mellor et al., 2004), four popular multi-platform biological network 
visualization applications. 

2.1 Biological networks as annotated graphs 

The most basic mathematical structure common to all of these applications is the graph, a 
collection of objects connected by links, referred to as nodes and edges. These objects are 
abstractions of real-world biological entities, where nodes could represent proteins, genes, 
molecules, drugs, etc. and edges could represent physical protein-protein, metabolic, or 
genetic interactions, microRNA to target associations, correlation, similarity relationships, 
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etc. Edges can be directed or undirected, weighted or not. In a case like gene regulation, 
Gene A may regulate Gene B, but the relationship may not be symmetric, meaning Gene B 
does not regulate Gene A. These models of biological networks have differing levels of 
support across various applications. An application may only support a small subset of 
node and edge types in order to specialize on one particular model, such as VisANT, which 
integrates many specialized tools for tasks such as Gene Ontology (GO) annotation, name 
resolution and online searches. Other applications may be more open-ended to provide 
support for as many models as possible, such as NAViGaTOR, Cytoscape and VANTED. 
The advantage of such a model is versatility, but it comes at the cost of having to manually 
define the nature of each node or edge via annotation. 

To populate a graph within an application, the application must support one or more input 
formats. Often, the most basic level of input is either plain text or spreadsheet files such as 
Excel XLS format. For more graph-specific data, such as layout, GML can be used. To 
support more complex and structured biological data, several community standards exist: 
PSI-MI, BioPAX, and SBML. 

Adding new nodes and edges to an existing graph can generally be done manually or by 
adding additional interactions from a supported database or file format. Some applications 
may have a workspace that supports concurrent, multiple graphs, which can then be 
combined or compared in various ways. Cytoscape and NAViGaTOR both support this type 
of workspace. 

Once the graph is loaded within an application, a researcher may wish to add additional 
annotations, such as gene or protein expression, experimental confidence measures or Gene 
Ontology (The Gene Ontology Consortium, 2000) to their graph objects. Data from in-house 
sources must generally conform to the application used; generally, this is in the form of 
spreadsheets or text data with varying degrees of format flexibility. The researcher can also 
call upon more specialized data from public databases, such as UniProt, Entrez, KEGG or 
Genbank, either through the import of files or from direct access to the database through the 
application or a plug-in. 

The amount of biological networks available to the researcher is ever expanding, and the 
size of the networks involved in many types of analysis is in order of thousands of nodes 
and edges. For example, the yeast interactome comprises 23,918 interactions according to 
DIP and 152,877 known and predicted interactions in I2D, the Interologous Interaction 
Database (http://ophid.utoronto.ca/i2d), an integrated database of PPIs from curated 
databases, experimental sources and predicted interactions (Niu et al., 2010; Brown and 
Jurisica, 2007; Brown and Jurisica 2005). While the researcher may only be interested in a 
small portion of the network in question, the scalability of an individual application and its 
analysis methods to networks of such size can be a considerable advantage. 

2.2 Network visualization 

Part of the challenge of visualizing a network is the laying out of the graph in a 
comprehensible manner. For smaller graphs, manual editing of node positions may be 
sufficient. With the aforementioned instances of graphs in the order of thousands of 
interactions, more robust tools are available with which to lay out a graph. Automated 
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graph layout algorithms, such as the force-directed and hierarchical, make the process 
easier, but often produce messy, uninterpretable graphs. Manual control over the placement 
of nodes and specialized tools for doing so are often necessary, from simple movement of 
single nodes to alignments in circles and lines to manipulate groups of nodes. 

Algorithms for graph analysis are generally included in each application. Here, the number 
and type of analyses available are wildly variable. Algorithms can be used to find important 
graph properties, such as node degree, centrality, shortest paths, cliques and clusters. In 
addition, diverse biology-specific algorithms exist such as GeneMANIA (Montojo et al., 
2010). Some applications may be designed specifically for one type of analysis while others 
contain a variety of analysis methods and in some cases allow for the addition of third party 
methods through plug-ins (NAViGaTOR, Cytoscape) or scripting languages (VisANT). 

How an application chooses to visualize a graph is also variable. Nodes can be represented as 
anything from basic geometric shapes with variable size, color and transparency to application 
specific or user supplied bit-mapped images (Cytoscape, VANTED) or even other data 
visualizations such as bar charts (VANTED, VisANT). Edges can be straight, curved, 
displayed with various dot or dash schemes and can have variable widths, colors and 
transparencies. To make certain attributes readily visible, it is also possible in some instances 
to map an attribute to a visual property, such as color or size. All four of our example 
applications have different implementations of such mapping; the utility of a specific 
implementation is dependent upon the needs and competencies of the individual researcher. 

Once the graph satisfies the requirements envisioned by the researcher, its state must be 
stored or exported. Proprietary formats are generally the norm for most programs, as 
visualization and data are often application specific and must be stored for later editing. 
Export formats often take the form of community standards (PSI-MI, BioPAX) and graphical 
exports. Graphical export is generally the final stage before publication. Usually, this can be 
done in bitmap (JPEG, TIFF, PNG, etc.) or vector (SVG, PDF, etc) formats, the latter being 
preferable for publication, as it can be resized and manipulated without loss of quality. 

2.3 NAViGaTOR 

NAViGaTOR (Network Analysis, Visualization and Graphing Toronto; 
http://ophid.utoronto.ca/navigator) is a network and graph visualization application with 
an emphasis on large graphs with integrated data (Brown et al., 2009). Data can be imported 
using diverse formats, ranging from community standards such as PSI-MI XML (Kerrien et 
al., 2007), BioPAX (Demir et al., 2010) or GML (Himsolt, 1996), to user-defined text files. 
Though the application is geared towards protein-protein interactions, the graph 
implementation within NAViGaTOR is not PPI specific, and can be used to model many 
types of real world or theoretical objects. Nodes and edges can have data associated with 
them, from simple numeric or text data to structured XML. Once imported, graphs can be 
combined from within a multi-graph workspace using combinations of cut, copy and paste 
operations. Additional data for the annotation of existing graphs can be imported using 
compatible files or online resources, such as I2D, cPath, or the one of the many online 
databases implementing the PSICQUIC web service. 

Graphs generated by the above methods can quickly increase in size to thousands of nodes 
and edges. NAViGaTOR was designed with networks of this size in mind. While graphs this 
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size do create a demand for both memory and processing power to render, layout and 
navigate, the conservation of important paths and data is important to end-user analysis, 
particularly since most graphs of interest are subsets of a much larger interaction networks. 
NAViGaTOR approaches the problem of limited computing resources through the 
combination of a powerful OpenGL rendering engine through JOGL, and a suite of efficient 
layout, search and analysis tools. The JOGL rendering system gives the application access to 
the graphic processing power of the OpenGL compliant hardware of most graphics cards, 
allowing the application to use the CPU for more intensive graph operations. 

NAViGaTOR supports several layout algorithms tailored for large graphs, including GRIP 
(Graph Drawing with Intelligent Placement) and several variants of the force directed 
algorithm. These algorithms come in both single and multi-threaded modes to take 
advantage of computers with multi-core CPUs. 

When the structure and data contained within a graph are sufficient, the user can then 
interact with the graph, identifying significant nodes, edges or subsets of the graph using a 
variety of searches, spreadsheet tables and algorithms. Online or file supported databases 
can also be used to indicate known pathways and complexes within the data. 

Users can highlight interesting structures within a graph with a variety of methods. Nodes 
and edges can be assigned visual properties to differentiate them from each other. Nodes 
can be given different colors, sizes, and highlighting styles. Edges can be given different 
colors, widths and styles and have the option to be rendered as user adjustable curves. 
Transparency can be used on both nodes and edges to either increase or decrease the 
visibility of graph objects. 

The user can save the file in native NAViGaTOR format, GML, PSI-MI or delimited plain 
text. In addition, for presentation or publication purposes, the graph can be exported to one 
of several graphical formats, including JPEG, PNG, TIFF, SVG and PDF.  

3. Iterative expansion of a protein interaction network 
The increasing amount of data that can be collected from high-throughput analyses is 
accelerating research in the field of molecular biology; however, data of this type is also 
challenging due to its size. It can be used either for knowledge-based targeted analyses, 
meaning to improve the understanding of the role of an important well-known player in a 
specific field of interest (for example of BRCA1 in breast cancer), or unbiased analyses to 
understand the processes involved in a specific behaviour without a priori knowledge (for 
example, which genes/proteins are responsible for the poor survival of patients with 
pancreatic cancer?) 

For our example, we have a list of potential interactors for a hypothetical protein of interest, 
PRO1, generated by computational PPI prediction. Also at our disposal are two meta 
analyses efforts, specifying the number of ovarian or prostate cancer related studies found 
in which the gene and its interactors were significantly deregulated. All other data will be 
collected from publicly available resources, including a PPI database, and a catalogue of 
drugs and their gene targets. 

For our example, we will start with our experimental data in a tabular format. Data such as 
this can be obtained from any number of sources, from high-throughput experiments to 
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graph layout algorithms, such as the force-directed and hierarchical, make the process 
easier, but often produce messy, uninterpretable graphs. Manual control over the placement 
of nodes and specialized tools for doing so are often necessary, from simple movement of 
single nodes to alignments in circles and lines to manipulate groups of nodes. 

Algorithms for graph analysis are generally included in each application. Here, the number 
and type of analyses available are wildly variable. Algorithms can be used to find important 
graph properties, such as node degree, centrality, shortest paths, cliques and clusters. In 
addition, diverse biology-specific algorithms exist such as GeneMANIA (Montojo et al., 
2010). Some applications may be designed specifically for one type of analysis while others 
contain a variety of analysis methods and in some cases allow for the addition of third party 
methods through plug-ins (NAViGaTOR, Cytoscape) or scripting languages (VisANT). 

How an application chooses to visualize a graph is also variable. Nodes can be represented as 
anything from basic geometric shapes with variable size, color and transparency to application 
specific or user supplied bit-mapped images (Cytoscape, VANTED) or even other data 
visualizations such as bar charts (VANTED, VisANT). Edges can be straight, curved, 
displayed with various dot or dash schemes and can have variable widths, colors and 
transparencies. To make certain attributes readily visible, it is also possible in some instances 
to map an attribute to a visual property, such as color or size. All four of our example 
applications have different implementations of such mapping; the utility of a specific 
implementation is dependent upon the needs and competencies of the individual researcher. 

Once the graph satisfies the requirements envisioned by the researcher, its state must be 
stored or exported. Proprietary formats are generally the norm for most programs, as 
visualization and data are often application specific and must be stored for later editing. 
Export formats often take the form of community standards (PSI-MI, BioPAX) and graphical 
exports. Graphical export is generally the final stage before publication. Usually, this can be 
done in bitmap (JPEG, TIFF, PNG, etc.) or vector (SVG, PDF, etc) formats, the latter being 
preferable for publication, as it can be resized and manipulated without loss of quality. 

2.3 NAViGaTOR 

NAViGaTOR (Network Analysis, Visualization and Graphing Toronto; 
http://ophid.utoronto.ca/navigator) is a network and graph visualization application with 
an emphasis on large graphs with integrated data (Brown et al., 2009). Data can be imported 
using diverse formats, ranging from community standards such as PSI-MI XML (Kerrien et 
al., 2007), BioPAX (Demir et al., 2010) or GML (Himsolt, 1996), to user-defined text files. 
Though the application is geared towards protein-protein interactions, the graph 
implementation within NAViGaTOR is not PPI specific, and can be used to model many 
types of real world or theoretical objects. Nodes and edges can have data associated with 
them, from simple numeric or text data to structured XML. Once imported, graphs can be 
combined from within a multi-graph workspace using combinations of cut, copy and paste 
operations. Additional data for the annotation of existing graphs can be imported using 
compatible files or online resources, such as I2D, cPath, or the one of the many online 
databases implementing the PSICQUIC web service. 

Graphs generated by the above methods can quickly increase in size to thousands of nodes 
and edges. NAViGaTOR was designed with networks of this size in mind. While graphs this 
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size do create a demand for both memory and processing power to render, layout and 
navigate, the conservation of important paths and data is important to end-user analysis, 
particularly since most graphs of interest are subsets of a much larger interaction networks. 
NAViGaTOR approaches the problem of limited computing resources through the 
combination of a powerful OpenGL rendering engine through JOGL, and a suite of efficient 
layout, search and analysis tools. The JOGL rendering system gives the application access to 
the graphic processing power of the OpenGL compliant hardware of most graphics cards, 
allowing the application to use the CPU for more intensive graph operations. 

NAViGaTOR supports several layout algorithms tailored for large graphs, including GRIP 
(Graph Drawing with Intelligent Placement) and several variants of the force directed 
algorithm. These algorithms come in both single and multi-threaded modes to take 
advantage of computers with multi-core CPUs. 

When the structure and data contained within a graph are sufficient, the user can then 
interact with the graph, identifying significant nodes, edges or subsets of the graph using a 
variety of searches, spreadsheet tables and algorithms. Online or file supported databases 
can also be used to indicate known pathways and complexes within the data. 

Users can highlight interesting structures within a graph with a variety of methods. Nodes 
and edges can be assigned visual properties to differentiate them from each other. Nodes 
can be given different colors, sizes, and highlighting styles. Edges can be given different 
colors, widths and styles and have the option to be rendered as user adjustable curves. 
Transparency can be used on both nodes and edges to either increase or decrease the 
visibility of graph objects. 

The user can save the file in native NAViGaTOR format, GML, PSI-MI or delimited plain 
text. In addition, for presentation or publication purposes, the graph can be exported to one 
of several graphical formats, including JPEG, PNG, TIFF, SVG and PDF.  

3. Iterative expansion of a protein interaction network 
The increasing amount of data that can be collected from high-throughput analyses is 
accelerating research in the field of molecular biology; however, data of this type is also 
challenging due to its size. It can be used either for knowledge-based targeted analyses, 
meaning to improve the understanding of the role of an important well-known player in a 
specific field of interest (for example of BRCA1 in breast cancer), or unbiased analyses to 
understand the processes involved in a specific behaviour without a priori knowledge (for 
example, which genes/proteins are responsible for the poor survival of patients with 
pancreatic cancer?) 

For our example, we have a list of potential interactors for a hypothetical protein of interest, 
PRO1, generated by computational PPI prediction. Also at our disposal are two meta 
analyses efforts, specifying the number of ovarian or prostate cancer related studies found 
in which the gene and its interactors were significantly deregulated. All other data will be 
collected from publicly available resources, including a PPI database, and a catalogue of 
drugs and their gene targets. 

For our example, we will start with our experimental data in a tabular format. Data such as 
this can be obtained from any number of sources, from high-throughput experiments to 
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computational predictions. In our case, we have 21,302 predicted PPIs. Our analysis has 
produced a confidence metric associated with each interaction, ranging from 0 to 1.0. This 
confidence metric can be used to reduce the number of interactions we are dealing with to a 
more manageable size by removing lower confidence interactions. Our cut-off for high 
confidence will be 0.892, a value determined by cross validation. This leaves us with only 39 
interactions, a far more manageable number for the next analysis steps. More complex 
filtering can be done through a simple spreadsheet application, such as Excel, or with a 
mathematical application such as R or Matlab. 

At this point, we translate this data into a pair-wise table of PPIs, and import this table into 
NAViGaTOR. While NAViGaTOR supports several formats for loading interactions, we 
have chosen the tab-delimited format to facilitate easy translation from our original data. 
Other interaction data sets can be imported using community standard file formats, such as 
BioPAX, GML, PSI-MI XML and PSI-MITAB. Though these formats are harder to construct, 
they can contain more structured data, and facilitate easier data interchange among diverse 
programs and databases. 
 

 
 

Fig. 1. Example graph containing hypothetical protein PRO1, with interactors loaded from 
experimental data. Tabular view of the data is available as a supplemental material  
(http:// http://www.cs.utoronto.ca/~juris/data/intech12/). 

Loading our pair-wise data, we get a very basic view (Figure 1). The visualization of this 
network at this stage is a spoke diagram with PRO1 in the center, and offers little information 
to the researcher that could not have been seen through a simple spreadsheet. We already 
have data regarding 39 interactions in the form of the confidence metric imported from our 
initial study. This can be mapped to one or more visual attributes using NAViGaTORs filter 
framework. In this case, we can make the highest confidence interactions more visible by 
applying a filter to map confidence to both edge width and transparency (Figure 2). 
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Fig. 2. Example graph with experimental interaction confidence mapped to edge width and 
transparency. 

 
Fig. 3. Example graph enriched with interactions loaded from I2D, and laid out using the 
GRID algorithm. 
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Fig. 4. Example graph laid out hierarchically, with PRO1 in a central position. 

This is better, but still not that much more informative. One way of enriching our isolated 
data is by viewing it in the context of known and predicted interactions. I2D, the 
Interologous Interaction Database (http://ophid.utoronto.ca/i2d; (Brown et al., 2005, Brown 
et al., 2007)), will be our source for these interactions. NAViGaTOR offers an I2D plug-in, 
which enables the researcher to easily add interactions to the existing graph. NAViGaTOR 
also has the PSICQUIC search plug-in, which supports the searching of databases that 
implement the PSICQUIC interface (Aranda et al., 2011). To further support the openness 
and versatility of PPI integration, NAViGaTOR can import additional interactions from the 
same file formats listed above. If a database does not support any of these formats, finding 
or building a representation of the database in tab-delimited format may be an option as 
well. Our interaction search returns 1,367 nodes and 3,192 edges (Figure 3). 

At this point, the graph has become more complex, and the force-directed layout is not helpful 
in interpreting it. Several options exist at this point for manually laying out objects in the 
graph. The user can select 'fix' nodes within the graph and either move them manually (which 
would be very labor intensive and inflexible) or lay them out with an array of tools such as 
linear, circular, arc or radial layout. We will use the radial layout method, starting with PRO1 
as our central node and extending to a depth of 2. This gives us a hierarchical arrangement of 
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nodes starting with PRO1 in the centre, with its immediate interactors arranged circularly 
around it, and their interactors in turn arranged around them (Figure 4). 

3.1 Ambiguity of protein names 

When combining data from different sources, the users’ choice of protein nomenclature 
becomes extremely important. Although a researcher knows which genes or proteins they 
are referring to, queries to a database require additional levels of specificity to resolve 
ambiguities in entity names. 

For example, DLC1 has the following SwissProt identifiers: Q96QB1, Q9Y238, P63167, 
Q7Z5R8, Q45XF9, Q86UC6. However, names in literature could be ambiguous and 
confusing, potentially resulting in incorrect interpretation and analyses: 

• DLC1 (ARHGAP7) (KIAA1723) (STARD12) [Rho GTPase-activating protein 7 (Rho-
type GTPase-activating protein 7) (Deleted in liver cancer 1 protein) (Dlc-1) (StAR-
related lipid transfer protein 12) (START domain-containing protein 12) (StARD12) (HP 
protein)] 

• DLEC1 (DLC1) [Deleted in lung and esophageal cancer protein 1 (Deleted in lung 
cancer protein 1) (DLC-1)] 

• DYNLL1 (DLC1) (DNCL1) (DNCLC1) (HDLC1) [Dynein light chain 1, cytoplasmic 
(Dynein light chain LC8-type 1) (8 kDa dynein light chain) (DLC8) (Protein inhibitor of 
neuronal nitric oxide synthase) (PIN)] 

• DLC1 [Deleted in liver cancer 1 variant 2 (Fragment)] 
• DLC1 [DLC1 protein] 

Similarly, many papers refer to SHC – but details about which variant and which species are 
frequently “hidden” in the supplemental information 
(http://www.cs.utoronto.ca/~juris/data/intech12/). Yet, there are at least four variants in 
mouse and human. Sometimes, a radical change in nomenclature is required, such as in case of 
Caspases (Alnemri et al., 1986). Systematic analysis led to redefying various ICE, MACH, 
MCH genes into Caspase1-10 (Alnemri et al., 1986). 

There are many different standards of referring to genes and proteins: UniProt 
(http://www.uniprot.org) (Jain et al., 2009), Ensembl (http://www.ensembl.org) (Flicek et 
al., 2012), EBI IPI (http://www.ebi.ac.uk) (Kersey et al., 2004), Gene Cards 
(http://www.genecards.org) (Safran et al., 2010), NCBI Gene 
(http://www.ncbi.nlm.nih.gov) (Maglott et al., 2010) are just a few examples of databases 
that attempt to systematically characterize and describe genes and proteins. Each database 
has its own focus and strengths, and different interaction or annotation databases may 
choose any one of these standards to organize their data. In this example, and in many other 
case uses of NAViGaTOR, the user may have to import data from one or more databases 
that use different nomenclatures. To facilitate the use of multiple nomenclatures, 
NAViGaTOR can store multiple IDs per node as a text feature, allowing alternative keys for 
node identification. When combining data from two or more databases using different 
formats, the user must translate between these different nomenclatures. This must be done 
very carefully and methodically, as this additional translation step often effects the data 
returned. For example, UniProt stores mappings from its own accession IDs to Ensembl 
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mouse and human. Sometimes, a radical change in nomenclature is required, such as in case of 
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MCH genes into Caspase1-10 (Alnemri et al., 1986). 
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that attempt to systematically characterize and describe genes and proteins. Each database 
has its own focus and strengths, and different interaction or annotation databases may 
choose any one of these standards to organize their data. In this example, and in many other 
case uses of NAViGaTOR, the user may have to import data from one or more databases 
that use different nomenclatures. To facilitate the use of multiple nomenclatures, 
NAViGaTOR can store multiple IDs per node as a text feature, allowing alternative keys for 
node identification. When combining data from two or more databases using different 
formats, the user must translate between these different nomenclatures. This must be done 
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returned. For example, UniProt stores mappings from its own accession IDs to Ensembl 
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Gene IDs, and Ensembl stores mappings from its own IDs to UniProt. However, 
respectively, they return 55,639 unique UniProt accession IDs for 20,995 unique Ensembl 
gene IDs and 21,735 unique Ensembl gene IDs for 63,370 unique UniProt accession IDs. The 
mapping is clearly different depending on which method is used. There is no definitive 
mapping available in situations such as these: it is up to the individual researcher to choose 
and document the translations used to amalgamate their data in a fashion that is replicable. 
Bearing this in mind during the earlier stages of experiment design will make this process 
much easier and less prone to confusion or ambiguity. 

3.2 Associating data with an existing graph 

Though better organized, we still have in excess of 1,000 nodes and 3,000 interactions, and to 
better identify nodes and edges that represent novel research material, we must associate 
more data with those objects. 

 

 
 

Fig. 5. Example graph with numbers of referencing studies in ovarian and prostate mapped 
to node width and height. 
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We can for example integrate PPIs with the gene expression results obtained from our 
literature studies. Each file contains several values associated with each gene, specifying the 
number of studies in which the gene was down-regulated, up-regulated and a total 
representing both (Figure 5). We will also generate a third file representing the total studies 
in which the gene was found to have been significantly deregulated, which simply sums the 
totals for the previous two files. Similarly to the opening of the initial experiment, 
NAViGaTOR requires a unique identifier column to be specified. In this case, because we 
are only concerned with data to be associated with nodes, the program only requires a 
single Node ID column. This process is the same for the prostate, ovarian cancer and 
generated data sets. To visualize this data, we will add another filter, this time mapping the 
total number of significantly deregulated studies in ovarian cancer to node width, and the 
total number of significantly deregulated studies in prostate cancer to its height. It is 
immediately evident which nodes have already been described to be up/down regulated in 
either one or both types of cancer. This can be useful to parallel the information already 
known from one cancer to the other. In addition, we can map the generated total of studies 
to node transparency, making genes with less disease evidence less obtrusive. 
 

 
 

Fig. 6. Example graph with GO Annotation mapped to a color scheme. 
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We can also import structured data, in the form of GO attributes, retrieved from the I2D 
plug-in(Figure 6). We can view this data per individual node in the Node side panel, 
revealing the list of individual GO attributes and their descriptions. To get a graph-wide 
view of these attributes, we will add a filter to map the GO data to one of several categories, 
each with its own colour. The same result can be obtained by applying GO terms or other 
attributes, like pathways to which the node belongs, retrieved from other sources to the 
nodes as features and editing the filter in the desired way. 

3.3 Importing drug-protein interactions 

Finally, we will import a list of drugs and their gene targets as additional interactions. This 
expands our network to 2,707 nodes and 5,257 edges (Figure 7). Through a combination of 
manual layout and radial layout tools, we arrange the drugs in a circle around PRO1, its 
interactors, and their interactors from I2D. The edges connecting drugs to proteins are 
coloured blue to differentiate them from PPIs. To see the impact of individual drugs to this 
network, we map their degree to node size and transparency. Thus, large nodes represent 
drugs that target many of the proteins in the network. The top six of these drugs are labelled 
for convenience. Analogously, some proteins have a high degree of blue edges and connect 
to small nodes, such as ProX. These drugs show strong specificity to ProX. The initial data 
will be available in ASCII tab-delimited format and the final figure in NAViGaTOR 2 XML 
file at http://www.cs.utoronto.ca/~juris/data/intech12/.  

 
Fig. 7. Final graph, with drug interactions included and the size of nodes representing drugs 
derived from number of interactions within the graph. NAViGaTOR 2 XML file for the final 
figure is available in supplemental material 
(http://www.cs.utoronto.ca/~juris/data/intech12/). 
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4. Conclusions  
Integrated databases and resources are only useful when they can be effectively accessed, 
navigated and analyzed. Several biological network visualization tools are currently 
available, providing a diverse range of approaches and algorithms. While many existing 
visualization tools are effective and widely used, there are several critical areas where these 
applications require improvement. Scalability is essential to visualize the tens of thousands 
of known PPIs, which is a challenge for current layout algorithms and software. Biological 
graph drawing software must also be able to handle richly annotated data, including 
genomic and proteomic profiles, pathways, Gene Ontology annotations and data in PSI-MI 
and BioPAX formats, in addition to the vast quantity of microarray and proteomic data that 
is available. 

Individual tools need a good balance of performance and useful features. The features that 
are needed for each use are highly dependent on the available data and the workflow. As in 
any creative activity, a tool may enable new workflows by providing novel features, but the 
tool may also lack certain important features, or offer features that are not needed. There is 
no single solution that satisfies all of these requirements at the present time, and as data and 
workflows change over time, network visualization tools must also evolve. 

As the data grow more complex, the performance of layout algorithms will need to improve, 
and new options of differentiating multiple attributes will be required. As certain workflows 
become more main-stream, they may be turned into analysis patterns and implemented as 
plug-ins. Standardizing file formats, APIs and plug-ins will further intertwine existing tools, 
enabling their easier integration and specialization. 

With new data and advances in computational biology, user tasks are modified, which must 
be reflected by types of algorithms that support analyses and the user interfaces that 
effectively enable them. New graph theory algorithms for faster and biologically meaningful 
network layouts and algorithms for network structure analysis will need to be integrated 
into network visualization tools. Importantly, none of these algorithms would make a broad 
difference unless a user interface appropriate for biologists is available (Viau et al., 2010). 

5. Acknowledgment  
This research was funded in part by Ontario Research Fund (GL2-01-030), Canada 
Foundation for Innovation (CFI #12301 and CFI #203383), and the Ontario Ministry of 
Health and Long Term Care. The views expressed do not necessarily reflect those of the 
OMOHLTC. CP was funded in part by Friuli Exchange Program. IJ is supported in part by 
the Canada Research Chair Program. 

The authors would like to thank Max Kotlyar, Dan Strumpf, Fiona Broackes-Carter and the 
entire Jurisica lab for useful comments and discussions. 

6. References 
Alnemri, Emad, S., David J Livingston, Donald W Nicholson, Guy Salvesen, Nancy A 

Thornberry, Winnie W Wong, Junying Yuan (1986). Human ICE/CED-3 protease 
nomenclature, Cell, 87(2):171. 



 
Protein-Protein Interactions – Computational and Experimental Tools 468 

We can also import structured data, in the form of GO attributes, retrieved from the I2D 
plug-in(Figure 6). We can view this data per individual node in the Node side panel, 
revealing the list of individual GO attributes and their descriptions. To get a graph-wide 
view of these attributes, we will add a filter to map the GO data to one of several categories, 
each with its own colour. The same result can be obtained by applying GO terms or other 
attributes, like pathways to which the node belongs, retrieved from other sources to the 
nodes as features and editing the filter in the desired way. 

3.3 Importing drug-protein interactions 

Finally, we will import a list of drugs and their gene targets as additional interactions. This 
expands our network to 2,707 nodes and 5,257 edges (Figure 7). Through a combination of 
manual layout and radial layout tools, we arrange the drugs in a circle around PRO1, its 
interactors, and their interactors from I2D. The edges connecting drugs to proteins are 
coloured blue to differentiate them from PPIs. To see the impact of individual drugs to this 
network, we map their degree to node size and transparency. Thus, large nodes represent 
drugs that target many of the proteins in the network. The top six of these drugs are labelled 
for convenience. Analogously, some proteins have a high degree of blue edges and connect 
to small nodes, such as ProX. These drugs show strong specificity to ProX. The initial data 
will be available in ASCII tab-delimited format and the final figure in NAViGaTOR 2 XML 
file at http://www.cs.utoronto.ca/~juris/data/intech12/.  

 
Fig. 7. Final graph, with drug interactions included and the size of nodes representing drugs 
derived from number of interactions within the graph. NAViGaTOR 2 XML file for the final 
figure is available in supplemental material 
(http://www.cs.utoronto.ca/~juris/data/intech12/). 

 
Scalable, Integrative Analysis and Visualization of Protein Interactions 469 

4. Conclusions  
Integrated databases and resources are only useful when they can be effectively accessed, 
navigated and analyzed. Several biological network visualization tools are currently 
available, providing a diverse range of approaches and algorithms. While many existing 
visualization tools are effective and widely used, there are several critical areas where these 
applications require improvement. Scalability is essential to visualize the tens of thousands 
of known PPIs, which is a challenge for current layout algorithms and software. Biological 
graph drawing software must also be able to handle richly annotated data, including 
genomic and proteomic profiles, pathways, Gene Ontology annotations and data in PSI-MI 
and BioPAX formats, in addition to the vast quantity of microarray and proteomic data that 
is available. 

Individual tools need a good balance of performance and useful features. The features that 
are needed for each use are highly dependent on the available data and the workflow. As in 
any creative activity, a tool may enable new workflows by providing novel features, but the 
tool may also lack certain important features, or offer features that are not needed. There is 
no single solution that satisfies all of these requirements at the present time, and as data and 
workflows change over time, network visualization tools must also evolve. 

As the data grow more complex, the performance of layout algorithms will need to improve, 
and new options of differentiating multiple attributes will be required. As certain workflows 
become more main-stream, they may be turned into analysis patterns and implemented as 
plug-ins. Standardizing file formats, APIs and plug-ins will further intertwine existing tools, 
enabling their easier integration and specialization. 

With new data and advances in computational biology, user tasks are modified, which must 
be reflected by types of algorithms that support analyses and the user interfaces that 
effectively enable them. New graph theory algorithms for faster and biologically meaningful 
network layouts and algorithms for network structure analysis will need to be integrated 
into network visualization tools. Importantly, none of these algorithms would make a broad 
difference unless a user interface appropriate for biologists is available (Viau et al., 2010). 

5. Acknowledgment  
This research was funded in part by Ontario Research Fund (GL2-01-030), Canada 
Foundation for Innovation (CFI #12301 and CFI #203383), and the Ontario Ministry of 
Health and Long Term Care. The views expressed do not necessarily reflect those of the 
OMOHLTC. CP was funded in part by Friuli Exchange Program. IJ is supported in part by 
the Canada Research Chair Program. 

The authors would like to thank Max Kotlyar, Dan Strumpf, Fiona Broackes-Carter and the 
entire Jurisica lab for useful comments and discussions. 

6. References 
Alnemri, Emad, S., David J Livingston, Donald W Nicholson, Guy Salvesen, Nancy A 

Thornberry, Winnie W Wong, Junying Yuan (1986). Human ICE/CED-3 protease 
nomenclature, Cell, 87(2):171. 



 
Protein-Protein Interactions – Computational and Experimental Tools 470 

Aranda, B.,Blankenburg, H.,Kerrien, S.,Brinkman, F.S.L., Ceol, A., Chautard, E., Dana, 
J.M.,De Las Rivas, J., Dumousseau, M.,Galeota, E., Gaulton, A., Goll, J., Hancock, 
R.E.W., Isserlin, R., Jimenez, R.C., Kerssemakers, J., Khadake, J., Lynn, D.J., 
Michaut, M.,O'Kelly, G., Ono, K., Orchard, S., Prieto, C., Razick, S., Rigina, O., 
Salwinski, L., Simonovic, M., Velankar, S., Winter, A., Wu, G., Bader, G.D., 
Cesareni, G., Donaldson, I.M., Eisenberg, D., Kleywegt, G.J., Overington, J., Ricard-
Blum, S., Tyers, M., Albrecht, M.,Hermjakob, H. (2011). PSICQUIC and PSISCORE: 
Accessing and scoring molecular interactions. Nature Methods, 8(7): 28-529. 

Björn H. Junker, Christian Klukas and Falk Schreiber (2006). VANTED: A system for 
advanced data analysis and visualization in the context of biological networks. 
BMC Bioinformatics, 7:109 

Brown, K.R., and Jurisica, I. (2005). Online Predicted Human Interaction Database.  
Bioinformatics, 21(9):2076-82. 

Brown, K.R., and Jurisica, I. (2007). Unequal evolutionary conservation of human protein 
interactions in interologous networks. Genome Biol, 8(5):R95. 

Brown, K.R., Otasek D, Ali M, McGuffin, M.J., Xie W, Devani B, van Toch I.L., and Jurisica I. 
(2009). NAViGaTOR: Network Analysis, Visualization and Graphing Toronto, 
Bioinformatics, 25(24): 3327-3329. 

Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, 
Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, 
Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, 
Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, 
Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, 
Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Reubenacker O, 
Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, 
Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig 
M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri 
V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy 
S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, 
Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novère N, Maltsev N, 
Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD. (2010). The 
BioPAX community standard for pathway data sharing. Nature Biotechnology. 
28(9):935-42. 

Djebbari, A., Ali, M., Otasek, D., Kotlyar. M., Fortney, K., Wong, S., Hrvojic, A. and Jurisica, 
I. (2011). NAViGaTOR: Scalable and Interactive Navigation and Analysis of Large 
Graphs. Internet Mathematics, 7(4):314-347. 

Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, 
Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri 
AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, 
Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard 
B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, 
Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, 
Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Harrow J, Herrero J, 
Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle 
SM. (2012). Ensembl. Nucleic Acids Res. [Epub ahead of print] 

 
Scalable, Integrative Analysis and Visualization of Protein Interactions 471 

Gehlenborg N., O'Donoghue S.I., Baliga N.S., Goesmann A., Hibbs M.A., Kitano H., 
Kohlbacher O., Neuweger H., Schneider R., Tenenbaum D., Gavin A.C. (2003). 
Visualization of omics data for systems biology. Nat Methods, 7(3 Suppl):S56-68.  

Helaers R, Bareke E, De Meulder B, Pierre M, Depiereux S, Habra N, Depiereux E. (2011). 
gViz, a novel tool for the visualization of co-expression networks. BMC Res Notes. 
4(1):452. 

Himsolt, M. (1996). GML: A portable Graph File Format. Syntax. Retrieved from 
http://www.fim.uni-
passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-
report.pdf 

Himsolt, M. (1996). GML: A portable Graph File Format. Syntax. Retrieved from 
http://www.fim.uni-
passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-
report.pdf 

Hu Z., Hung J.H., Wang Y., Chang Y.C., Huang C.L., Huyck M., DeLisi C. (2009). VisANT 
3.5: multi-scale network visualization, analysis and inference based on the gene 
ontology. Nucleic Acids Res, 37, W115–W121. 

Hu, Z., Mellor, J., Wu, J. and DeLisi, C. (2004). VisANT: an online visualization and analysis 
tool for biological interaction data. BMC Bioinformatics, 5, 17. 

Jain E., Bairoch A., Duvaud S., Phan I., Redaschi N., Suzek B.E., Martin M.J., McGarvey P., 
Gasteiger E. (2009). Infrastructure for the life sciences: design and implementation 
of the UniProt website. BMC Bioinformatics, 10:136. 

Junker B.H., Klukas C. & Schreiber F. (2006). VANTED: a system for advanced data analysis 
and visualization in the context of biological networks. BMC Bioinformatics, 7(109). 

Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, Bader GD, 
Xenarios I, Wojcik J, Sherman D, Tyers M, Salama JJ , Moore S, Ceol A, Chatr-
Aryamontri A, Oesterheld M, Stümpflen V, Salwinski L, Nerothin J, Cerami E, 
Cusick ME, Vidal M, Gilson M, Armstrong J, Woollard P, Hogue C, Eisenberg D, 
Cesareni G, Apweiler R, Hermjakob H (2007). Broadening the horizon--level 2.5 of 
the HUPO-PSI format for molecular interactions. BMC Biol. 5, 44 

Kersey P. J., Duarte J., Williams A., Karavidopoulou Y., Birney E., Apweiler R. (2004). The 
International Protein Index: An integrated database for proteomics experiments. 
Proteomics 4(7): 1985-1988 

Kreeger P.K., Lauffenburger D.A. (2010). Cancer systems biology: a network modeling 
perspective, Carcinogenesis, 31(1):2-8. 

Longabaugh WJ. (2012). BioTapestry: a tool to visualize the dynamic properties of gene 
regulatory networks. Methods Mol Biol. 786:359-94. 

Maglott D, Ostell J, Pruitt KD, Tatusova T. (2011). Entrez Gene: gene-centered information at 
NCBI. Nucleic Acids Res. 39(Database issue):D52-7. 

McGuffin, M, and Jurisica, I. (2009). Interaction techniques for selecting and manipulating 
subgraphs in network visualizations. IEEE Trans Vis Comput Graph, 15 (6): 937-944. 

Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD 
(2010). GeneMANIA Cytoscape plugin: fast gene function predictions on the 
desktop. Bioinformatics, 26: 22 

Morrow JK, Tian L, Zhang S. (2010). Molecular networks in drug discovery. Crit Rev Biomed 
Eng. 38(2):143-56. 



 
Protein-Protein Interactions – Computational and Experimental Tools 470 

Aranda, B.,Blankenburg, H.,Kerrien, S.,Brinkman, F.S.L., Ceol, A., Chautard, E., Dana, 
J.M.,De Las Rivas, J., Dumousseau, M.,Galeota, E., Gaulton, A., Goll, J., Hancock, 
R.E.W., Isserlin, R., Jimenez, R.C., Kerssemakers, J., Khadake, J., Lynn, D.J., 
Michaut, M.,O'Kelly, G., Ono, K., Orchard, S., Prieto, C., Razick, S., Rigina, O., 
Salwinski, L., Simonovic, M., Velankar, S., Winter, A., Wu, G., Bader, G.D., 
Cesareni, G., Donaldson, I.M., Eisenberg, D., Kleywegt, G.J., Overington, J., Ricard-
Blum, S., Tyers, M., Albrecht, M.,Hermjakob, H. (2011). PSICQUIC and PSISCORE: 
Accessing and scoring molecular interactions. Nature Methods, 8(7): 28-529. 

Björn H. Junker, Christian Klukas and Falk Schreiber (2006). VANTED: A system for 
advanced data analysis and visualization in the context of biological networks. 
BMC Bioinformatics, 7:109 

Brown, K.R., and Jurisica, I. (2005). Online Predicted Human Interaction Database.  
Bioinformatics, 21(9):2076-82. 

Brown, K.R., and Jurisica, I. (2007). Unequal evolutionary conservation of human protein 
interactions in interologous networks. Genome Biol, 8(5):R95. 

Brown, K.R., Otasek D, Ali M, McGuffin, M.J., Xie W, Devani B, van Toch I.L., and Jurisica I. 
(2009). NAViGaTOR: Network Analysis, Visualization and Graphing Toronto, 
Bioinformatics, 25(24): 3327-3329. 

Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, 
Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, 
Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, 
Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, 
Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, 
Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Reubenacker O, 
Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, 
Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig 
M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri 
V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy 
S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, 
Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novère N, Maltsev N, 
Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD. (2010). The 
BioPAX community standard for pathway data sharing. Nature Biotechnology. 
28(9):935-42. 

Djebbari, A., Ali, M., Otasek, D., Kotlyar. M., Fortney, K., Wong, S., Hrvojic, A. and Jurisica, 
I. (2011). NAViGaTOR: Scalable and Interactive Navigation and Analysis of Large 
Graphs. Internet Mathematics, 7(4):314-347. 

Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, 
Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri 
AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, 
Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard 
B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, 
Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, 
Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Harrow J, Herrero J, 
Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle 
SM. (2012). Ensembl. Nucleic Acids Res. [Epub ahead of print] 

 
Scalable, Integrative Analysis and Visualization of Protein Interactions 471 

Gehlenborg N., O'Donoghue S.I., Baliga N.S., Goesmann A., Hibbs M.A., Kitano H., 
Kohlbacher O., Neuweger H., Schneider R., Tenenbaum D., Gavin A.C. (2003). 
Visualization of omics data for systems biology. Nat Methods, 7(3 Suppl):S56-68.  

Helaers R, Bareke E, De Meulder B, Pierre M, Depiereux S, Habra N, Depiereux E. (2011). 
gViz, a novel tool for the visualization of co-expression networks. BMC Res Notes. 
4(1):452. 

Himsolt, M. (1996). GML: A portable Graph File Format. Syntax. Retrieved from 
http://www.fim.uni-
passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-
report.pdf 

Himsolt, M. (1996). GML: A portable Graph File Format. Syntax. Retrieved from 
http://www.fim.uni-
passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-
report.pdf 

Hu Z., Hung J.H., Wang Y., Chang Y.C., Huang C.L., Huyck M., DeLisi C. (2009). VisANT 
3.5: multi-scale network visualization, analysis and inference based on the gene 
ontology. Nucleic Acids Res, 37, W115–W121. 

Hu, Z., Mellor, J., Wu, J. and DeLisi, C. (2004). VisANT: an online visualization and analysis 
tool for biological interaction data. BMC Bioinformatics, 5, 17. 

Jain E., Bairoch A., Duvaud S., Phan I., Redaschi N., Suzek B.E., Martin M.J., McGarvey P., 
Gasteiger E. (2009). Infrastructure for the life sciences: design and implementation 
of the UniProt website. BMC Bioinformatics, 10:136. 

Junker B.H., Klukas C. & Schreiber F. (2006). VANTED: a system for advanced data analysis 
and visualization in the context of biological networks. BMC Bioinformatics, 7(109). 

Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, Bader GD, 
Xenarios I, Wojcik J, Sherman D, Tyers M, Salama JJ , Moore S, Ceol A, Chatr-
Aryamontri A, Oesterheld M, Stümpflen V, Salwinski L, Nerothin J, Cerami E, 
Cusick ME, Vidal M, Gilson M, Armstrong J, Woollard P, Hogue C, Eisenberg D, 
Cesareni G, Apweiler R, Hermjakob H (2007). Broadening the horizon--level 2.5 of 
the HUPO-PSI format for molecular interactions. BMC Biol. 5, 44 

Kersey P. J., Duarte J., Williams A., Karavidopoulou Y., Birney E., Apweiler R. (2004). The 
International Protein Index: An integrated database for proteomics experiments. 
Proteomics 4(7): 1985-1988 

Kreeger P.K., Lauffenburger D.A. (2010). Cancer systems biology: a network modeling 
perspective, Carcinogenesis, 31(1):2-8. 

Longabaugh WJ. (2012). BioTapestry: a tool to visualize the dynamic properties of gene 
regulatory networks. Methods Mol Biol. 786:359-94. 

Maglott D, Ostell J, Pruitt KD, Tatusova T. (2011). Entrez Gene: gene-centered information at 
NCBI. Nucleic Acids Res. 39(Database issue):D52-7. 

McGuffin, M, and Jurisica, I. (2009). Interaction techniques for selecting and manipulating 
subgraphs in network visualizations. IEEE Trans Vis Comput Graph, 15 (6): 937-944. 

Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD 
(2010). GeneMANIA Cytoscape plugin: fast gene function predictions on the 
desktop. Bioinformatics, 26: 22 

Morrow JK, Tian L, Zhang S. (2010). Molecular networks in drug discovery. Crit Rev Biomed 
Eng. 38(2):143-56. 



 
Protein-Protein Interactions – Computational and Experimental Tools 472 

Niu, Y., Otasek, D., Jurisica, I. (2011). Evaluation of linguistic features useful in extraction of 
interactions from PubMed; Application to annotating known, high-throughput and 
predicted interactions in I2D. Bioinformatics, 26(1): 111-9. 

Pavlopoulos G.A., Wegener A.L., Schneider R. (2008). A survey of visualization tools for 
biological network analysis, BioData Min, 1(12). 

Remmerie N., De Vijlder T., Laukens K., Dang T.H., Lemière F., Mertens I., Valkenborg D., 
Blust R., Witters E. (2011). Next generation functional proteomics in non-model 
plants: A survey on techniques and applications for the analysis of protein 
complexes and post-translational modifications. Phytochemistry, 72(10):1192-218.  

Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger 
T, Krug H, Sirota-Madi A, Olender T, Golan Y, Stelzer G, Harel A and Lancet D. 
(2010). GeneCards Version 3: the human gene integrator Database; doi: 
10.1093/database/baq020 

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski 
B., Ideker T. (2003). Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res, 13:2498–2504. 

Shirdel EA, Xie W, Mak TW, Jurisica I. (2011) NAViGaTing the micronome--using multiple 
microRNA prediction databases to identify signalling pathway-associated 
microRNAs. PLoS One. 6(2):e17429. 

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. (2011). Cytoscape 2.8: new features for 
data integration and network visualization. Bioinformatics. 1;27(3):431-2. 

Stein A., Mosca R., Aloy P. (2011). Three-dimensional modeling of protein interactions and 
complexes is going 'omics. Curr Opin Struct Biol, 21(2):200-8. 

Swainston N, Smallbone K, Mendes P, Kell D, Paton N. (2011). The SuBliMinaL Toolbox: 
automating steps in the reconstruction of metabolic networks. J Integr Bioinform. 
8(2):186. 

The Gene Ontology Consortium. (2000). Gene ontology: tool for the unification of biology. 
Nat. Genet. 25(1):25-9. 

Viau, C., McGuffin, M J., Chiricota, Y., and Jurisica, I. (2010). The FlowVizMenu and parallel 
scatterplot matrix: Hybrid multidimensional visualizations for network 
exploration. IEEE Trans Vis Comput Graph, 16(6):1100-8. 

Yu L.R. (2011). Pharmacoproteomics and toxicoproteomics: The field of dreams. J Proteomics, 
74(12):2549-53. 



 
Protein-Protein Interactions – Computational and Experimental Tools 472 

Niu, Y., Otasek, D., Jurisica, I. (2011). Evaluation of linguistic features useful in extraction of 
interactions from PubMed; Application to annotating known, high-throughput and 
predicted interactions in I2D. Bioinformatics, 26(1): 111-9. 

Pavlopoulos G.A., Wegener A.L., Schneider R. (2008). A survey of visualization tools for 
biological network analysis, BioData Min, 1(12). 

Remmerie N., De Vijlder T., Laukens K., Dang T.H., Lemière F., Mertens I., Valkenborg D., 
Blust R., Witters E. (2011). Next generation functional proteomics in non-model 
plants: A survey on techniques and applications for the analysis of protein 
complexes and post-translational modifications. Phytochemistry, 72(10):1192-218.  

Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger 
T, Krug H, Sirota-Madi A, Olender T, Golan Y, Stelzer G, Harel A and Lancet D. 
(2010). GeneCards Version 3: the human gene integrator Database; doi: 
10.1093/database/baq020 

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski 
B., Ideker T. (2003). Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res, 13:2498–2504. 

Shirdel EA, Xie W, Mak TW, Jurisica I. (2011) NAViGaTing the micronome--using multiple 
microRNA prediction databases to identify signalling pathway-associated 
microRNAs. PLoS One. 6(2):e17429. 

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. (2011). Cytoscape 2.8: new features for 
data integration and network visualization. Bioinformatics. 1;27(3):431-2. 

Stein A., Mosca R., Aloy P. (2011). Three-dimensional modeling of protein interactions and 
complexes is going 'omics. Curr Opin Struct Biol, 21(2):200-8. 

Swainston N, Smallbone K, Mendes P, Kell D, Paton N. (2011). The SuBliMinaL Toolbox: 
automating steps in the reconstruction of metabolic networks. J Integr Bioinform. 
8(2):186. 

The Gene Ontology Consortium. (2000). Gene ontology: tool for the unification of biology. 
Nat. Genet. 25(1):25-9. 

Viau, C., McGuffin, M J., Chiricota, Y., and Jurisica, I. (2010). The FlowVizMenu and parallel 
scatterplot matrix: Hybrid multidimensional visualizations for network 
exploration. IEEE Trans Vis Comput Graph, 16(6):1100-8. 

Yu L.R. (2011). Pharmacoproteomics and toxicoproteomics: The field of dreams. J Proteomics, 
74(12):2549-53. 



Protein-Protein Interactions 
Computational and Experimental Tools

Edited by Weibo Cai and Hao Hong

Edited by Weibo Cai and Hao Hong

Proteins are indispensable players in virtually all biological events. The functions of 
proteins are coordinated through intricate regulatory networks of transient protein-

protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques 
have been developed over the last several decades. Many in vitro and in vivo assays have 
been implemented to explore the mechanism of these ubiquitous interactions. However, 
despite significant advances in these experimental approaches, many limitations exist 

such as false-positives/false-negatives, difficulty in obtaining crystal structures of 
proteins, challenges in the detection of transient PPI, among others. To overcome these 
limitations, many computational approaches have been developed which are becoming 

increasingly widely used to facilitate the investigation of PPIs. This book has gathered an 
ensemble of experts in the field, in 22 chapters, which have been broadly categorized into 

Computational Approaches, Experimental Approaches, and Others.

Photo by Ugreen / iStock

ISBN 978-953-51-0397-4

Protein-Protein Interactions - C
om

putational and Experim
ental Tools

 

ISBN 978-953-51-4312-3


	Protein-Protein Interactions - Computational and Experimental Tools
	Contents
	Preface
	Part 1
Computational Approaches
	Chapter 1
Computational Methods for Prediction of Protein-Protein Interaction Sites
	Chapter 2
Advances in Human-Protein Interaction - Interactive and Immersive Molecular Simulations
	Chapter 3
Protein Interactome and Its Application to Protein Function Prediction
	Chapter 4
Integrative Approach for Detection of Functional Modules from Protein-Protein Interaction Networks
	Chapter 5
Mining Protein Interaction Groups
	Chapter 6
Prediction of Combinatorial Protein-Protein Interaction from Expression Data Based on Conditional Probability
	Chapter 7
Inferring Protein-Protein Interactions (PPIs) Based on Computational Methods
	Chapter 8
Slow Protein Conformational Change, Allostery and Network Dynamics
	Chapter 9
Prediction of Protein Interaction Sites Using Mimotope Analysis
	Chapter 10
Structural Bioinformatics of Proteins: Predicting the Tertiary and Quaternary Structure of Proteins from Sequence
	Chapter 11
Computational Approaches to Predict Protein Interaction
	Chapter 12
G-Protein Coupled Receptors: Experimental and Computational Approaches
	Chapter 13
Computational Approaches to Elucidating Transient Protein-Protein Interactions, Predicting Receptor-Ligand Pairings
	Chapter 14
Finding Protein Complexes via Fuzzy Learning Vector Quantization Algorithm

	Part 2
Experimental Approaches
	Chapter 15
In Vivo Imaging of Protein-Protein Interactions
	Chapter 16
NMR Investigations on Ruggedness of Native State Energy Landscape in Folded Proteins
	Chapter 17
Conformational and Disorder to Order Transitions in Proteins: Structure / Function Correlation in Apolipoproteins
	Chapter 18
Protein-Protein Interactions in Salt Solutions

	Part 3
Others Chapter 19 Computational Tools and Databases for the Study and Characterization of Protein Interactions
	Chapter 20
Protein-Protein Interaction Networks: Structures, Evolution, and Application to Drug Design
	Chapter 21
A Survey on Evolutionary Analysis in PPI Networks
	Chapter 22
Scalable, Integrative Analysis and Visualization of Protein Interactions


