Skip to main content
Log in

Effects of Nano-maghemite on Trace Element Accumulation and Drought Response of Helianthus annuus L. in a Contaminated Mine Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Although recent studies show that the iron oxides do not enter or accumulate in plants, they may preclude the transport of water and nutrients in the plants through/as a consequence of their aggregation on the surface of the roots. The feasibility of using iron oxide nanoparticles to modify the availability of trace elements (TEs) to Helianthus annuus in the soil as well as their interference with the plant response during an imposed water deficiency stress were studied in a pot experiment. Plants were grown in a compost pre-amended contaminated soil with and without nano-maghemite (NM) and later exposed to drought. The nano-amendment promoted the growth of H. annuus (higher (25 %) dry weight than in the same soil without NM), mainly due to the insolubilisation of pore water Zn in the soil and the consequent reduction of its availability to the plants. During the water stress, NM did not cause an increase in the accumulation of proline or total amino acids in the plants, which are normally used as drought stress indicators, compared to the control plants without NM. In conclusion, NM could be useful soil amendments during phytoremediation procedures, since it can immobilise TEs in the soil without disrupting the plant water balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alburquerque, J. A., de la Fuente, C., & Bernal, M. P. (2011). Improvement of soil quality after “alperujo” compost application to two contaminated soils characterised by differing heavy metal solubility. Journal of Environmental Management, 92, 733–741.

    Article  CAS  Google Scholar 

  • Angadi, S. V., & Entz, M. H. (2002). Water relation of standard height and dwarf sunflower cultivars. Crop Science, 42, 125–159.

    Article  Google Scholar 

  • Bates, L. S., Waldern, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bernal, M. P., Clemente, R., & Walker, D. J. (2007). The role of organic amendments in the bioremediation of heavy metal-polluted soils. In R. B. Gore (Ed.), Environmental research at the leading edge (pp. 1–57). New York: Nova.

    Google Scholar 

  • Bernal, M. P., Clemente, R., & Walker, D. J. (2009). Interactions of heavy metals with soil organic matter in relation to phytoremediation. In J. P. Navarro-Aviño (Ed.), Phytoremediation: the green salvation of the world (pp. 109–129). Trivandrum: Research Signpost.

    Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, 17–71.

    Article  Google Scholar 

  • Deliyanni, E. A., Lazaridis, N. K., Peleka, E. N., & Matis, K. A. (2004). Metals removal from aqueous solution by iron-based bonding agents. Environmental Science and Pollution Research, 11, 18–21.

    Article  CAS  Google Scholar 

  • Fassler, E., Robinson, B. H., Stauffer, W., Gupta, S. K., Papritz, A., & Schulin, R. (2010). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, Ecosystems & Environment, 136, 49–58.

    Article  Google Scholar 

  • Flagella, Z., Rotunno, T., Tarantino, E., Di Caterina, R., & De Caro, A. (2002). Changesin seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur J Agron, 17, 221–230.

    Article  CAS  Google Scholar 

  • Gao, J., Youn, S., Hovsepyan, A., Llaneza, V. L., Wang, Y., Bitton, G., & Bonzongo, J. J. (2009). Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environmental Science & Technology, 43, 3322–3328.

    Article  CAS  Google Scholar 

  • Gómez-Pastora, J., Bringas, E., & Ortiz, I. (2012). Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 256, 187–204.

    Article  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211–212, 317–331.

    Article  Google Scholar 

  • IUPAC. (1979). Reference material for trace analysis by radioanalytical methods: Bowen’s kale. Pure and Applied Chemistry, 51, 1183–1193.

    Google Scholar 

  • Jones, J. B., Jr. (2012). Plant nutrition and soil fertility manual (2nd ed.). Boca Raton: CRC.

    Book  Google Scholar 

  • Judy, J. D., & Bertsch, P. M. (2014). Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems. Advances in Agronomy, 123:1–64.

  • Judy, J. D., Unrine, J. M., & Bertsch, P. M. (2011). Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environmental Science & Technology, 45, 776–781.

    Article  CAS  Google Scholar 

  • Karam, F., Lahoud, R., Masaad, R., Kabalan, R., Breidi, J., Chalita, C., & Rouphael, Y. (2007). Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions. Agricultural Water Management, 90, 213–223.

    Article  Google Scholar 

  • Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environmental Toxicology and Chemistry, 27, 1825–1851.

    Article  CAS  Google Scholar 

  • Komárek, M., Vaněk, A., & Ettler, V. (2013). Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environmental Pollution, 172, 9–22.

    Article  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28, 215–225.

    Article  CAS  Google Scholar 

  • Lee, Y. P., & Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochemistry, 14, 71–77.

    Article  CAS  Google Scholar 

  • Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to terrestrial plants Phaseolus radiatus (mungbean) and Triticum aestivum (wheat); plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27, 1915–1921.

    Article  CAS  Google Scholar 

  • Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces, B: Biointerfaces, 59, 141–149.

    Article  CAS  Google Scholar 

  • Manivannan, P., Jaleel, C. A., Somasundaram, R., & Panneerselvam, R. (2008). Osmoregulation and antioxidant metabolism in drought stressed Helianthus annuus under triadimefon drenching. Comptes Rendus Biologies, 331, 418–425.

    Article  CAS  Google Scholar 

  • Martínez-Fernández, D., & Walker, D. J. (2012). The effects of soil amendments on the growth of Atriplex halimus and Bituminaria bituminosa in heavy metal contaminated soils. Water, Air, & Soil Pollution, 223, 63–72.

    Article  Google Scholar 

  • Martínez-Fernández, D., Arco, E., Bernal, M. P., & Clemente, R. (2014a). Comparison of compost and humic fertiliser effects on growth and trace elements accumulation of native plant species in a mine soil phytoremediation experiment. Ecological Engineering, 73, 588–597.

    Article  Google Scholar 

  • Martínez-Fernández, D., Bingol, D., & Komárek, M. (2014b). Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: a geochemical/statistical approach. Journal of Hazardous Material, 276, 271–277.

    Article  Google Scholar 

  • Michálková, Z., Komárek, M., Šillerová, H., Della Puppa, L., Joussein, E., Bordas, F., Vaněk, A., Vaněk, O., & Ettler, V. (2014). Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. Journal of Environmental Management, 46, 226–234.

    Article  Google Scholar 

  • Mueller, N. C., & Nowack, B. (2010). Nanoparticles for remediation: solving big problems with little particles. Elements, 6, 395–400.

    Article  CAS  Google Scholar 

  • Nassar, N. N. (2010). Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. Journal of Hazardous Materials, 184, 538–546.

    Article  CAS  Google Scholar 

  • Pagano, L., Marmiroli, M., Imperiale, D., & Marmiroli, N. (2014). Toxicogenomics of CdS QDs interactions with Arabidopsis thaliana. 11th International Phytotechnologies Conference 2014. Heraklion, Crete, Greece. In: N. Kalogerakis &Th. Manios (Ed.).

  • Pardo, T., Clemente, R., & Bernal, M. P. (2011). Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere, 84, 642–650.

    Article  CAS  Google Scholar 

  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59, 3485–3498.

    Article  CAS  Google Scholar 

  • Rojas-Tapias, D. F., Bonilla, R. B., & Dussan, J. (2012). Effect of inoculation with plant growth promoting bacteria on growth and copper uptake by sunflowers. Water, Air, & Soil Pollution, 223, 643–654.

    Article  CAS  Google Scholar 

  • Rondeau-Mouro, C., Defer, D., Leboeuf, E., & Lahaye, M. (2008). Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. International Journal of Biological Macromolecules, 42, 83–92.

    Article  CAS  Google Scholar 

  • Roy, A., & Bhattacharya, J. (2012). Removal of Cu(II), Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes. Chemical Engineering Journal, 211–212, 493–500.

    Article  Google Scholar 

  • Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35, 753–759.

    Article  CAS  Google Scholar 

  • Walker, D. J., Clemente, R., Roig, A., & Bernal, M. P. (2003). The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122, 303–312.

    Article  CAS  Google Scholar 

  • Walker, D. J., Bernal, M. P., & Correal, E. (2007). The influence of heavy metals and mineral nutrient supply on Bituminaria bituminosa. Water, Air, & Soil Pollution, 184, 335–345.

    Article  CAS  Google Scholar 

  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5, 30–42.

    Article  Google Scholar 

  • Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C., & Xing, B. (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology, 46, 4434–4441.

    Article  CAS  Google Scholar 

  • Waychunas, G. A., Kim, C. S., & Banfiled, J. F. (2005). Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. Journal of Nanoparticle Research, 7, 409–433.

    Article  CAS  Google Scholar 

  • Whitley, A. R., Levard, C., Oostveen, E., Bertsch, P. M., Matocha, C. J., vd Kammer, F., & Unrine, J. M. (2013). Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environmental Pollution, 182, 141–149.

  • Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10, 713–717.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sylva Číhalová and the PhytoRec Team of CEBAS-CSIC for their assistance with analyses. Domingo Martínez-Fernández is grateful for the financial support from the European project Postdok ČZU (ESF/MŠMT CZ.1.07/2.3.00/30.0040). This work was partially co-funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and the EU through FEDER funds (CTM2013-48697-C2-1-R), the Czech Science Foundation (GAČR 503/11/0840) and the Internal Grant Agency of Czech University of Life Sciences Prague (CIGA 20154202). The English revision by Dr. David J. Walker is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Martínez-Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Fernández, D., Vítková, M., Bernal, M.P. et al. Effects of Nano-maghemite on Trace Element Accumulation and Drought Response of Helianthus annuus L. in a Contaminated Mine Soil. Water Air Soil Pollut 226, 101 (2015). https://doi.org/10.1007/s11270-015-2365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2365-y

Keywords

Navigation