Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The SIL gene is required for mouse embryonic axial development and left–right specification

Abstract

The establishment of the main body axis and the determination of left–right asymmetry are fundamental aspects of vertebrate embryonic development. A link between these processes has been revealed by the frequent finding of midline defects in humans with left–right anomalies1. This association is also seen in a number of mutations in mouse2,3,4 and zebrafish1,5, and in experimentally manipulated Xenopus embryos5. However, the severity of laterality defects accompanying abnormal midline development varies6, and the molecular basis for this variation is unknown. Here we show that mouse embryos lacking the early-response gene SIL have axial midline defects, a block in midline Sonic hedgehog (Shh) signalling and randomized cardiac looping. Comparison with Shh mutant embryos7, which have axial defects but normal cardiac looping, indicates that the consequences of abnormal midline development for left–right patterning depend on the time of onset, duration and severity of disruption of the normal asymmetric patterns of expression of nodal, lefty-2 and Pitx2 .

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gross morphology of SIL −/− embryos.
Figure 2: Analysis of left–right asymmetric gene expression at E8.5.
Figure 3: Analysis of Shh signalling.
Figure 4: Analysis of cell proliferation and apoptosis at E8.5.

Similar content being viewed by others

References

  1. Goldstein, A. M., Ticho, B. S. & Fishman, M. C. Patterning the heart's left–right axis: from zebrafish to man. Dev. Genet. 22, 278– 287 (1998).

    Article  CAS  Google Scholar 

  2. Oh, S. P. & Li, E. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev. 11, 1812– 1826 (1997).

    Article  CAS  Google Scholar 

  3. King, T., Beddington, R. S. P. & Brown, N. A. The role of the brachyury gene in heart development and left-right specification in the mouse. Mech. Dev. 79, 29–37 (1998).

    Article  CAS  Google Scholar 

  4. Melloy, P. G. et al . No turning, a mouse mutation causing left–right and axial patterning defects. Dev. Biol. 193, 77–89 (1998).

    Article  CAS  Google Scholar 

  5. Danos, M. C. & Yost, H. J. Role of notochord in specification of cardiac left–right orientation in zebrafish and Xenopus . Dev. Biol. 177, 96–103 (1996).

    Article  CAS  Google Scholar 

  6. Chen, J. N. et al . Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373–4382 (1997).

    CAS  PubMed  Google Scholar 

  7. Chiang, C. et al . Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407– 413 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Aplan, P. D. et al . Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 250, 1426–1429 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Izraeli, S. et al . Expression of the SIL gene is correlated with growth induction and cellular proliferation. Cell Growth Differ. 8, 1171–1179 (1997).

    CAS  PubMed  Google Scholar 

  10. Collazo-Garcia, N., Scherer, P. & Aplan, P. D. Cloning and characterization of a murine SIL gene. Genomics 30, 506–513 (1995).

    Article  CAS  Google Scholar 

  11. Lowe, L. A. et al . Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158 –161 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Collignon, J., Varlet, I. & Robertson, E. J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Heymer, J., Kuehn, M. & Ruther, U. The expression pattern of nodal and lefty in the mouse mutant Ft suggests a function in the establishment of handedness. Mech. Dev. 66, 5–11 ( 1997).

    Article  CAS  Google Scholar 

  14. Meno, C. et al . lefty-1 is required for left–right determination as a regulator of lefty-2 and nodal. Cell 94, 287–297 (1998).

    Article  CAS  Google Scholar 

  15. Piedra, M. E., Icardo, J. M., Albajar, M., Rodriguez-Rey, J. C. & Ros, M. A. Pitx2 participates in the late phase of the pathway controlling left–right asymmetry. Cell 94, 319–324 ( 1998).

    Article  CAS  Google Scholar 

  16. Ryan, A. K. et al . Pitx2 determines left–right asymmetry of internal organs in vertebrates. Nature 394, 545– 551 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Yoshioka, H. et al . Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94, 299–305 (1998).

    Article  CAS  Google Scholar 

  18. Campione, M. et al . The homeobox gene Pitx2: mediator of asymmetric left–right signaling in vertebrate heart and gut looping. Development 126, 1225–1234 (1999).

    CAS  PubMed  Google Scholar 

  19. Ang, S. L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    Article  CAS  Google Scholar 

  20. Weinstein, D. C. et al . The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994).

    Article  CAS  Google Scholar 

  21. Roelink, H. et al . Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  Google Scholar 

  22. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301– 312 (1996).

    Article  CAS  Google Scholar 

  23. Hynes, M. et al . Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26 (1997).

    Article  CAS  Google Scholar 

  24. Akiyama, H. et al . Cloning of a mouse smoothened cDNA and expression patterns of hedgehog signalling molecules during chondrogenesis and cartilage differentiation in clonal mouse EC cells, ATDC5. Biochem. Biophys. Res. Commun. 235, 142–147 ( 1997).

    Article  CAS  Google Scholar 

  25. Ruiz i Altaba, A. Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125, 2203– 2212 (1998).

    PubMed  Google Scholar 

  26. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. Amolecular pathway determining left–right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).

    Article  CAS  Google Scholar 

  27. Lohr, J. L., Danos, M. C. & Yost, H. J. Left–right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development 124, 1465– 1472 (1997).

    CAS  PubMed  Google Scholar 

  28. Litingtung, Y., Lei, L., Westphal, H. & Chiang, C. Sonic hedgehog is essential to foregut development. Nature Genet. 20, 58–61 (1998).

    Article  CAS  Google Scholar 

  29. Motoyama, J. et al . Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nature Genet. 20, 54–57 (1998).

    Article  CAS  Google Scholar 

  30. Good, D. J. et al . Hypogonadism and obesity in mice with a targeted deletion of the NhIh2 gene. Nature Genet. 15, 397 –401 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Westphal and N. Takuma for Shh knockout mice; A.-M. Walsh and staff for generation of chimaeras; J. Magrath and R. Mollina for animal care; G. Miller for pathology on teratomas; R. Dryfus for photography; P. Thomas for technical help; P. Aplan, H. Hamada, A. Joyner, C.Chiang, H. Hahn and M. Blum for providing probes; and M. Halpern, H. Arnheiter and B. Casey for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilan R. Kirsch or Michael R. Kuehn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izraeli, S., Lowe, L., Bertness, V. et al. The SIL gene is required for mouse embryonic axial development and left–right specification. Nature 399, 691–694 (1999). https://doi.org/10.1038/21429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing