Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transformation of fast fibres to slow prevented by lack of activity in developing lobster muscle

Abstract

Adult mammalian twitch muscle fibres are extremely plastic, being able to transform from one type to another under the direction of their motoneurones1–3. The most unequivocal type of fibre transformation is that of fast-twitch to slow-twitch type, either with cross-reinnervation of the fast muscle with a slow nerve4–6, or with chronic low frequency stimulation of the intact nerve to a fast muscle7,8. Moreover, direct electrical stimulation of the muscle itself with a tonic pattern is just as effective in converting fast fibres to slow9. All these experiments suggest that activity of the muscle itself, imposed by whatever means, is crucial in the transformation of fast to slow fibres8–10. A similar transformation during development may be responsible for producing the adult diversity of fibre types, as fibres begin by synthesizing myosin of an embryonic type which is replaced by a neonatal type and finally the adult type of fast11 and slow12, which occurs concurrently with innervation. We report here that during development of the paired claw closer muscle in lobsters, reducing or eliminating activity in one of the muscles by tenotomy or denervation prevents its fast fibres from becoming transformed into slow. Our results therefore suggest a regulatory role for activity in the differentiation of lobster slow fibres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guth, L. Physiol. Rev. 48, 645–687 (1968).

    Article  CAS  Google Scholar 

  2. Harris, A. J. A. Rev. Physiol. 36, 251–305 (1974).

    Article  CAS  Google Scholar 

  3. Gutmann, E. A. Rev. Physiol. 38, 177–216 (1976).

    Article  CAS  Google Scholar 

  4. Buller, A. J. & Pope, R. Phil. Trans. R. Soc. 278, 295–305 (1977).

    Article  CAS  Google Scholar 

  5. Close, R. J. Physiol., Lond. 204, 331–346 (1969).

    Article  CAS  Google Scholar 

  6. Sreter, F. A., Luff, A. R. & Gergely, J. J. gen. Physiol. 66, 811–821 (1975).

    Article  CAS  Google Scholar 

  7. Salmons, S. & Sreter, F. A. Nature 263, 30–34 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Salmons, S. & Henrikson, J. Muscle Nerve 4, 94–105 (1981).

    Article  CAS  Google Scholar 

  9. Pette, D., Smith, M. F., Staudte, H. W. & Vrbova, G. Pflügers Arch. ges. Physiol. 338, 257–272 (1973).

    Article  CAS  Google Scholar 

  10. Jolesz, F. & Sreter, F. A. A. Rev. Physiol. 43, 531–552 (1981).

    Article  CAS  Google Scholar 

  11. Whalen, R. G. et al. Nature 292, 805–809 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Gauthier, G. F., Lowey, S. & Hobbs, A. Nature 274, 25–29 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Herrick, F. H. Bull. U.S. Fish. Commn. 15, 1–252 (1895).

    Google Scholar 

  14. Govind, C. K. & Lang, F. J. exp. Zool. 190, 281–288 (1974).

    Article  CAS  Google Scholar 

  15. Jahromi, S. S. & Atwood, H. L. J. exp. Zool. 176, 475–486 (1971).

    Article  CAS  Google Scholar 

  16. Lang, F., Costello, W. J. & Govind, C. K. Biol. Bull. 152, 75–83 (1977).

    Article  CAS  Google Scholar 

  17. Lang, F., Govind, C. K. & She, J. Biol. Bull. 152, 382–391 (1977).

    Article  Google Scholar 

  18. Govind, C. K. & Lang, F. Biol. Bull. 154, 55–67 (1978).

    Article  CAS  Google Scholar 

  19. Ogonowski, M. M., Lang, F. & Govind, C. K. J. exp. Zool. 213, 359–367 (1980).

    Article  CAS  Google Scholar 

  20. Emmel, V. E. J. exp. Zool. 5, 471–484 (1908).

    Article  Google Scholar 

  21. Lang, F., Govind, C. K. & Costello, W. J. Science 201, 1037–1039 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Lang, F. Aquaculture 6, 389–393 (1975).

    Article  Google Scholar 

  23. Padykula, H. A. & Hermann, E. J. Histochem. Cytochem. 4, 161–169 (1955).

    Article  Google Scholar 

  24. Ogonowski, M. M. & Lang, F. J. exp. Zool. 207, 143–151 (1979).

    Article  CAS  Google Scholar 

  25. Hajek, I., Chari, N., Bass, A. & Gutmann, E. Physiol. Bohemslov. 22, 603–612 (1973).

    CAS  Google Scholar 

  26. Lehman, W. & Szent-Gyorgi, A. G. J. gen. Physiol. 66, 1–30 (1975).

    Article  CAS  Google Scholar 

  27. Govind, C. K. & Lang, F. J. exp. Biol. 94, 329–339 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govind, C., Kent, K. Transformation of fast fibres to slow prevented by lack of activity in developing lobster muscle. Nature 298, 755–757 (1982). https://doi.org/10.1038/298755a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298755a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing