Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cloning and Expression of Antibiotic Production Genes

Abstract

Recent advances in the molecular genetics of antibiotic biosynthesis open new perspectives for improvement of antibiotic production. Genes coding for enzymes involved in antibiotic biosynthesis appear to be clustered on the DNA of antibiotic producers. Both low and high copy plasmids and phage vectors have been developed for cloning in antibiotic-producing Strepto-myces. DNA can be introduced by polyethylene glycol-assisted transformation or transfection of Streptomyces protoplasts. Several specific genes for antibiotic biosynthesis have been cloned. Expression of genes coding for antibiotic biosynthesis has been achieved both in Streptomyces and in E. coli. Expression of Streptomyces genes in E. coli appears to occur only by transcriptional readthrough from E. coli promoters. Promoter-probe vectors have been constructed and used to clone DNA sequences containing transcriptional control signals. Increasing antibiotic production by amplification of the genes coding for limiting enzymes in the biosynthetic pathways is now possible. A likely outcome in the next few years is the construction of combinations of genes that may synthesize entirely new antibiotics that do not exist in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berdy, J. 1974. Recent developments of antibiotic research and classification of antibiotics according to the chemical structure. Adv. Appl. Microbiol. 18: 309–406.

    CAS  PubMed  Google Scholar 

  2. Martín, J.F. 1981. Biosynthesis of metabolic products with antimicrobial activities: β-lactam antibiotics. p. 417–434. In: Actinomycetes. K.P. Schaal and G. Pulverer (eds.) Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  3. Kreft, J. and Hugues, C. 1982. Cloning vectors derived from plasmids and phage of Bacillus. p. 1–18. In: Gene Cloning in Organisms Other Than E. coli . P.H. Hofschneider and W. Goebel (eds.), Springer-Verlag, Berlin.

    Google Scholar 

  4. Cohen, S.S. 1977. Strategy for the chemotherapy of infectious diseases. Science 197: 431–432.

    CAS  PubMed  Google Scholar 

  5. Burg, R.W. 1982. Fermentation products in animal health. ASM News 48: 460–463.

    Google Scholar 

  6. Aoyagi, T. 1978. Structure and activity of proteinase inhibitors of microbial origin. p. 129–152. In: Bioactive Peptides Produced by Microorganisms. H. Umezawa, T. Tahita and T. Shiba (eds.), John Wiley and Sons, New York.

    Google Scholar 

  7. Umezawa, H. 1982. Trends in antibiotic research and its expanded area: Antibiotics and low molecular weight immunomodifiers. p. 1–15. In: Trends in Antibiotic Research. Japan Antibiotic Research Association, Tokyo.

    Google Scholar 

  8. Bu'Lock, J.D., Nisbet, L.J. and Winstanley, D.J. 1982. Bioactive Microbial Products: Search and Discovery. Academic Press, London.

    Google Scholar 

  9. Martín, J.F. and Demain, A.L. 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230–251.

    PubMed  PubMed Central  Google Scholar 

  10. Martín, J.F. and Liras, P. 1981. Biosynthetic pathways of secondary metabolites in industrial microorganisms. p. 211–233. In: Biotechnology. Vol. 1. Microbial Fundamentals. H.J. Rehm and G. Reed (eds.), Verlag Chemie, Weinheim.

    Google Scholar 

  11. Kirby, D. and Hopwood, D.A. 1977. Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J. Gen. Microbiol. 98: 239–252.

    CAS  PubMed  Google Scholar 

  12. Hopwood, D.A. and Merrick, M.J. 1977. Genetics of antibiotic production. Bacteriol. Rev. 41: 595–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hopwood, D.A. 1983. Actinomycetes genetics and antibiotic production. p. 1–24. In: Biochemistry and Genetic Regulation of Commercially Important Antibiotics. L.C. Vining (ed.), Addison-Wesley, Reading, MA.

    Google Scholar 

  14. Rhodes, P.M., Winskill, N., Friend, E.J. and Warren, M. 1981. Biochemical and genetic characterization of Streptomyces rimosus mutants impaired in oxytetracycline biosynthesis. J. Gen. Microbiol. 124: 329–338.

    CAS  Google Scholar 

  15. Schupp, T. and Nuesch, J. 1979. Chromosomal mutations in the final step of rifamycin B biosynthesis. FEMS Microbiol. Lett. 6: 23–27.

    CAS  Google Scholar 

  16. Ghisalba, O., Auden, J.A., Schupp, T. and Nuesh, J., 1983. Rifamycins. In: Antibiotic Production by Fermentation. E.J. Vandamme (ed.), Marcel Dekker, New York, In press.

    Google Scholar 

  17. Rudd, B.A.M. and Hopwood, D.A. 1979. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor. J. Gen. Microbiol. 144: 35–43.

    Google Scholar 

  18. Rudd, B.A.M. and Hopwood, D.A. 1980. A pigmented mycelial antibiotic in Streptomyces coelicolor: Control by a chromosomal gene cluster. J. Gen. Microbiol. 119: 333–340.

    CAS  PubMed  Google Scholar 

  19. Feitelson, J.S. and Hopwood, D.A. 1983. Cloning of a Streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol. Gen. Genet. 190: 394–398.

    CAS  PubMed  Google Scholar 

  20. Hopwood, D.A., Bibb, M.J., Bruton, C.J., Chater, K.F., Feitelson, J.S. and Gil, J.A., 1983. Streptomyces genes for antibiotic production. Trends. Biotechnol. 1: 42–48.

    CAS  Google Scholar 

  21. Charter, K.F., Hopwood, D.A., Kieser, T. and Thompson, C.J. 1982. Gene cloning in Streptomyces. p. 69–96. In: Gene Cloning in Organisms Other Than E. coli . P.H. Hofschneider and W. Goebel (eds.), Springer-Verlag, Berlin.

    Google Scholar 

  22. Bibb, M.J., Chater, K.F. and Hopwood, D.A. 1983. Developments in Streptomyces cloning. p. 54–82. In: Experimental Manipulation of Gene Expression. M. Inouye (ed.), Academic Press, New York.

    Google Scholar 

  23. Hershberger, C.L. 1982. Recombinant DNA system for application to antibiotic fermentation in Streptomyces. Ann. Rep. Ferment. Proc. 5: 101–126.

    CAS  Google Scholar 

  24. Watanabe, S. and Tanaka, K. 1976. Effect of rifamycin on in vitro RNA synthesis of Streptomyces mediterranei. Biochem. Biophys. Res. Commun. 72: 522–529.

    CAS  PubMed  Google Scholar 

  25. Graham, M.Y. and Weisblum, B. 1979. Ribosomal rebonucleic acid of macrolide-producing streptomycetes contains methylated adenine. J. Bacteriol. 137: 1464–1467.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Skinner, R.H. and Cundliffe, E. 1980. Resistance to antibiotics viomycin and capreomycin in Streptomyces which produce them. J. Gen. Microbiol. 120: 95–104.

    CAS  PubMed  Google Scholar 

  27. Piwowarski, J.M. and Shaw, P.D. 1979. Streptomycin resistance in streptomycin-producing microorganisms. Antimicrob. Ag. Chemother. 16: 176–182.

    CAS  Google Scholar 

  28. Hotta, K., Yamamoto, H., Okami, Y. and Umezawa, H. 1982. Resistance mechanism of kanamycin, neomycin and streptomycin-producing streptomycetes to aminoglycoside antibiotics. J. Antibiot. 34: 1175–1182.

    Google Scholar 

  29. Sugiyama, M., Mochizuki, H., Nimi, O. and Nomi, R. 1981. Mechanism of protection of protein synthesis against streptomycin inhibition in a producing strain. J. Antibiot. 34: 1183–1188.

    CAS  PubMed  Google Scholar 

  30. Thompson, J. and Cundliffe, E. 1980. Resistance to thiostrepton, siomycin and sporangiomycin in actinomycetes that produce them. J. Bacteriol. 142: 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bibb, M.J., Schottel, J.L. and Cohen, S.N. 1980. A DNA cloning system for interspecific gene transfer to antibiotic-producing Streptomyces. 284: 526–531.

  32. Thompson, C.J., Ward, J.M. and Hopwood, D.A. 1980. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 286: 525–527.

    CAS  PubMed  Google Scholar 

  33. Thompson, C.J., Ward, J.M. and Hopwood, D.A. 1982. Cloning of antibiotic-resistance and nutritional genes in Streptomyces. J. Bacteriol. 151: 668–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gil, J.A. and Hopwood, D.A. 1982. unpublished data.

  35. Thompson, C.J., Kieser, T., Ward, J.M. and Hopwood, D.A. 1982. Physical anaylsis of antibiotic-resistance genes from Streptomyces and their use in vector construction. Gene 20: 51–62.

    CAS  PubMed  Google Scholar 

  36. Schrempf, H., Hopwood, D.A. and Goebel, W. 1975. Isolation of covalently closed circular deoxyribonudeica acid from Streptomyces coelicolor. J. Bacteriol. 146: 360–368.

    Google Scholar 

  37. Bibb, M.J., Freeman, R.F. and Hopwood, D.A. 1977. Physical and genetical characterization of a second sex factor, SCP2, from Streptomyces coelicolor. Molec. Gen. Genet. 154: 155–156.

    CAS  Google Scholar 

  38. Bibb, M.J. and Hopwood, D.A. 1981. Genetic studies of the fertility plasmid SCP2 and its SCP2* variants in Streptomyces coelicolor A3(2). J. Gen. Microbiol. 126: 427–442.

    Google Scholar 

  39. Lydiate, D.J. and Hopwood, D.A. personal communication.

  40. Larson, and Hershberger, C.L. personal communication.

  41. Bibb, M.J., Ward, J.M., Kieser, T., Cohen, S.N. and Hopwood, D.A. 1981. Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol. Gen. Genet. 184: 230–240.

    CAS  PubMed  Google Scholar 

  42. Kieser, T., Hopwood, D.A., Wright, H.M. and Thompson, C.J. 1982. pIJ101, a multicopy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol. Gen. Genet. 185: 223–238.

    CAS  PubMed  Google Scholar 

  43. Katz, E., Thompson, C.J. and Hopwood, D.A. 1983. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J. Gen. Microbiol. 129: 2703–2714.

    CAS  PubMed  Google Scholar 

  44. Gil, J.A. and Martín, J.F. unpublished data.

  45. Berg, D.E. and Berg, C.M. 1983. The prokaryotic transposable element Tn5. Bio/Technology 1: 417–435.

    Google Scholar 

  46. Gil, J.A. and Hopwood, D.A. 1983. Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin producer, Streptomyces griseus. Gene 25: 119–132.

    CAS  PubMed  Google Scholar 

  47. Foster, S.G. 1982. A search for transposons active on Streptomyces DNA. Ph.D. Thesis. University of East Anglia, Norwich.

  48. Richardson, M.A., Mabe, J.A., Beerman, N.E., Nakatsukasa, W.M. and Fayerman, J.T. 1982. Development of cloning vehicles from the Streptomyces plasmid pFJ103. Gene 20: 451–457.

    CAS  PubMed  Google Scholar 

  49. Chater, K.F., Bruton, C.J., Springer, W. and Suárez, J.E. 1981. Dispensable sequences and packaging constraints of DNA from Streptomyces temperate phage φC31. Gene 15: 249–256.

    CAS  PubMed  Google Scholar 

  50. Harris, J.E., Charter, K.F., Bruton, C.J. and Piret, J.M. 1983. The restriction mapping of C gene deletions in Streptomyces bacteriophage φC31 and their use in cloning vector development. Gene 22: 167–174.

    CAS  PubMed  Google Scholar 

  51. Williams, S.T., Goodfellow, M., Alderson, G., Williamson, E.M., Sneath, P.H.A. and Salkin, M.J. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743–1813.

    CAS  PubMed  Google Scholar 

  52. Okanishi, M., Katagiri, K., Furumai, T., Takeda, K., Kawaguchi, K., Saitoh, M. and Nabeshima, S. 1983. Basic techniques for DNA cloning and conditions required for streptomycetes as a host. J. Antibiotics 36: 99–108.

    CAS  Google Scholar 

  53. Baltz, R.H. and Matsushima, P. 1981. Protoplast fusion in Streptomyces: Conditions for efficient genetic recombination and cell regeneration. J. Gen. Microbiol. 127: 137–146.

    CAS  PubMed  Google Scholar 

  54. Baltz, R.H. 1978. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J. Gen. Microbiol. 107: 93–102.

    CAS  PubMed  Google Scholar 

  55. Hopwood, D.A. and Wright, H.M. 1979. Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolori. J. Gen. Microbiol. 111: 37–143.

    Google Scholar 

  56. Hopwood, D.A. 1981. Genetic studies with bacterial protoplasts. Ann. Rev. Microbiol. 35: 237–272.

    CAS  Google Scholar 

  57. Bibb, M.J., Ward, J.M. and Hopwood, D.A. 1978. Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274: 398–400.

    CAS  PubMed  Google Scholar 

  58. Krugel, H., Fiedler, G. and Noack, D. 1980. Transfection of protoplasts from Streptomyces lividans 66 with actinophage SH1O DNA. Mol. Gen. Genet. 177: 297–300.

    CAS  PubMed  Google Scholar 

  59. Suárez, J.E. and Chater, K.F. 1980. Polyethyleneglicol-assisted transfection of Streptomyces protoplasts. J. Bacteriol. 142: 8–14.

    PubMed  PubMed Central  Google Scholar 

  60. Rodicio, M.R. and Chater, K.F., 1982. DNA-free liposomes stimulate transfection of Streptomyces protoplasts. J. Bacteriol. 151: 1078–1085.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ogata, S., Suenaga, H., Koyama, Y., Yoshino, S., Hayashida, S. and Seino, A. 1982. Pock phenotype of antibiotic-producing actinomycetes. p. 118. In: Abstracts of the Fourth International Symposium on Genetics of Industrial Microorganisms. Kyoto, Japan.

    Google Scholar 

  62. Martín, J.F. 1977. Biosynthesis of polyene antibiotics. Ann. Rev. Microbiol. 31: 13–38.

    Google Scholar 

  63. Martin, J.F. 1983. Polyenes. p. 207–230. In: Biochemistry and Genetic Regulation of Commercially Important Antibiotics. L.C. Vining (ed.), Addison-Wesley, Reading, MA.

    Google Scholar 

  64. Martín, J.F. and Gil, J.A. 1983. Cloning of a gene involved in antibiotic synthesis. Bio/Technology 1: 483–488.

    Google Scholar 

  65. Gil, J.A., Naharro, G., Villanueva, J.R. and Martín, J.F. 1981. Regulation by aromatic amino acids of the p-aminobenzoic acid synthetase level in S. griseus. p. 141–145. In: Advances in Biotechnology. Vol. 3. Fermentation Products. C. Vezina and K. Singh (eds.), Pergamon Press, New York.

    Google Scholar 

  66. Martin, J.F. 1977. Control of antibiotic synthesis by phosphate. Adv. Biochem. Engineer. 6: 105–127.

    CAS  Google Scholar 

  67. Chater, K.F. 1983. The deployment of Streptomyces vectors. p. 71–75. In: Genetics of Industrial Microorganisms 1982. Y. Ikeda and T. Beppu (eds.), Kodansha Ltd., Tokyo.

    Google Scholar 

  68. Chater, K.F. and Bruton, C.J. 1983. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene, In press.

  69. Erlich, S.D., Bursztyn-Pettergrew, H., Stroynowski, I. and Lederberg, J. 1976. Expression of the thymidylate synthetase gene of Bacillus subtilis bacteriophage Phi-3-T in Escherichia coli. Proc. Natl. Acad. Sci. USA 73: 4145–4149.

    Google Scholar 

  70. Mahler, I. and Halvorson, H.O. 1977. Transformation of Escherichia coli and Bacillus subtilis with a hybrid plasmid molecule. J. Bacteriol. 131: 374–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Courvalin, P., Weisblum, B. and Davies, J. 1977. Aminoglycoside-modifying enzymes of an antibiotic-producing bacterium act as a determinant of antibiotic resistance in Escherichia coli. Proc. Natl. Acad. Sci. USA 74: 999–1003.

    CAS  PubMed  Google Scholar 

  72. Chang, A.C.Y. and Cohen, S.N. 1974. Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 71: 1030–1034.

    CAS  PubMed  Google Scholar 

  73. Courvalin, P., Fiandt, M. 1980. Aminoglycoside-modifying enzymes of Staphylococcus aureus: expression in Escherichia coli. Gene 9: 247–269.

    CAS  PubMed  Google Scholar 

  74. Demain, A.L. 1974. How do antibiotic-producing microorganisms avoid suicide?. Ann. N.Y. Acad. Sci. 235: 601–612.

    CAS  PubMed  Google Scholar 

  75. Thompson, C.J. and Gray, C. 1984. The nucleotide sequence of a streptomycete aminoglycoside transferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proc. Natl. Acad. Sci. USA, In press.

  76. Stüber, D. and Bujard, H. 1981. Organization of transcriptional signals in plasmids pBR322 and pACYC184. Proc. Nad. Acad. Sci. USA 78: 167–171.

    Google Scholar 

  77. Bachman, B.J. 1983. Linkage map of Escherichia coli K-12. Microbiol. Rev. 47: 127–184.

    Google Scholar 

  78. Rodgers, W.H., Springer, W. and Young, F.E. 1982. Cloning and expression of a Streptomyces fradiae neomycin resistance gene in Escherichia coli. Gene 18: 133–141.

    CAS  PubMed  Google Scholar 

  79. Schupp, T., Toupet, C., Stalhammar-Carlemalm, M. and Meyer, J. 1983. Expression of a neomycin phosphotransferase gene from Streptomyces fradiae in Escherichia coli after interplasmidic recombination. Mol. Gen. Genet. 189: 27–33.

    CAS  PubMed  Google Scholar 

  80. Robbins, W.R., Wirth, D.F. and Hering, C. 1981. Expression of the Streptomyces enzyme endoglycosidase H in E. coli. J. Biol. Chem. 256: 10640–10644.

    CAS  PubMed  Google Scholar 

  81. Bibb, M.J. and Cohen, S.N. 1982. Gene expression in Streptomyces. Construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol. Gen. Genet. 187: 265–277.

    CAS  PubMed  Google Scholar 

  82. Bibb, M.J. and Cohen, S.N. 1982. Studies on gene expression in Streptomyces. p. 49–55. In: Genetics of Industrial Microorganisms 1982. Y. Ikeda and T. Beppu (eds.), Kodansha Ltd., Tokyo.

    Google Scholar 

  83. Kreft, J., Burger, K.J. and Goebel, W. 1983. Expression of antibiotic-resistance genes from Escherichia coli in Bacillus subtilis. Mol. Gen. Genet. 190: 384–389.

    CAS  PubMed  Google Scholar 

  84. Ollington, J.F., Haldelwang, W.G., Huynh, T.W. and Losick, R. 1981. Developmentally regulated transcription in a cloned segment of the Bacillus subtilis chromosome. J. Bact. 47: 432–442.

    Google Scholar 

  85. Haldenwang, W.G., Lang, N. and Losick, R. 1981. A sporulation induced sigma-like regulatory protein from B. subtilis. Cell. 23: 615–624.

    CAS  PubMed  Google Scholar 

  86. Eckhardt, T. and Fare, L. personal communication.

  87. Gentz, R., Langner, A., Chang, A.C.Y., Cohen, S.N. and Bujard, H. 1981. Cloning and analysis of strong promoters is made possible by the downstream placement of a RNA termination signal. Proc. Nat. Acad. Sci. USA. 78: 4936–4940.

    CAS  PubMed  Google Scholar 

  88. Bibb, M. personal communication.

  89. Gil, J.A. unpublished results.

  90. Rosenberg, M. and Court, D. 1979. Regulatory sequences involved in the promotion and termination of RNA transcription. Ann. Rev. Genet. 13: 319–353.

    CAS  PubMed  Google Scholar 

  91. Kirby, R., Gertsch, K. and Uedin, K. 1982. Repetitive DNA sequences in Streptomyces. p. 90. In: Abstracts of the Fourth International Symposium on Genetics of Industrial Microorganisms. Kyoto, Japan.

    Google Scholar 

  92. Jayaraman, K. and Murthy, S. 1982. Localization of (dA-dT)-rich sequences in the membrane bound DNA and their possible role in sporulation of Bacillus polymyxa. Mol. Gen. Genet. 185: 158–164.

    CAS  Google Scholar 

  93. Kaur, S., Balakrishnan, R. and Jayaraman, K. 1978. The correlation between antibiotic synthesis, transcription and sporulation in Bacillus polymyxa. Biochem. Biophys. Res. Commun. 81: 50–53.

    CAS  PubMed  Google Scholar 

  94. Gold, L., Pribnow, D., Schneider, T., Shindedung, S., Singer, B.S. and Storno, G. 1981. Translational initiation in prokaryotes. Ann. Rev. Microbiol. 35: 365–403.

    CAS  Google Scholar 

  95. Smith, M. 1982. Site-directed mutagenesis. Trends Biochem. Sci. 7: 440–442.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, J., Gil, J. Cloning and Expression of Antibiotic Production Genes. Nat Biotechnol 2, 63–72 (1984). https://doi.org/10.1038/nbt0184-63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0184-63

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing